1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic OPP Interface 4 * 5 * Copyright (C) 2009-2010 Texas Instruments Incorporated. 6 * Nishanth Menon 7 * Romit Dasgupta 8 * Kevin Hilman 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/clk.h> 14 #include <linux/errno.h> 15 #include <linux/err.h> 16 #include <linux/device.h> 17 #include <linux/export.h> 18 #include <linux/pm_domain.h> 19 #include <linux/regulator/consumer.h> 20 #include <linux/slab.h> 21 #include <linux/xarray.h> 22 23 #include "opp.h" 24 25 /* 26 * The root of the list of all opp-tables. All opp_table structures branch off 27 * from here, with each opp_table containing the list of opps it supports in 28 * various states of availability. 29 */ 30 LIST_HEAD(opp_tables); 31 32 /* OPP tables with uninitialized required OPPs */ 33 LIST_HEAD(lazy_opp_tables); 34 35 /* Lock to allow exclusive modification to the device and opp lists */ 36 DEFINE_MUTEX(opp_table_lock); 37 /* Flag indicating that opp_tables list is being updated at the moment */ 38 static bool opp_tables_busy; 39 40 /* OPP ID allocator */ 41 static DEFINE_XARRAY_ALLOC1(opp_configs); 42 43 static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table) 44 { 45 struct opp_device *opp_dev; 46 bool found = false; 47 48 mutex_lock(&opp_table->lock); 49 list_for_each_entry(opp_dev, &opp_table->dev_list, node) 50 if (opp_dev->dev == dev) { 51 found = true; 52 break; 53 } 54 55 mutex_unlock(&opp_table->lock); 56 return found; 57 } 58 59 static struct opp_table *_find_opp_table_unlocked(struct device *dev) 60 { 61 struct opp_table *opp_table; 62 63 list_for_each_entry(opp_table, &opp_tables, node) { 64 if (_find_opp_dev(dev, opp_table)) { 65 _get_opp_table_kref(opp_table); 66 return opp_table; 67 } 68 } 69 70 return ERR_PTR(-ENODEV); 71 } 72 73 /** 74 * _find_opp_table() - find opp_table struct using device pointer 75 * @dev: device pointer used to lookup OPP table 76 * 77 * Search OPP table for one containing matching device. 78 * 79 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or 80 * -EINVAL based on type of error. 81 * 82 * The callers must call dev_pm_opp_put_opp_table() after the table is used. 83 */ 84 struct opp_table *_find_opp_table(struct device *dev) 85 { 86 struct opp_table *opp_table; 87 88 if (IS_ERR_OR_NULL(dev)) { 89 pr_err("%s: Invalid parameters\n", __func__); 90 return ERR_PTR(-EINVAL); 91 } 92 93 mutex_lock(&opp_table_lock); 94 opp_table = _find_opp_table_unlocked(dev); 95 mutex_unlock(&opp_table_lock); 96 97 return opp_table; 98 } 99 100 /* 101 * Returns true if multiple clocks aren't there, else returns false with WARN. 102 * 103 * We don't force clk_count == 1 here as there are users who don't have a clock 104 * representation in the OPP table and manage the clock configuration themselves 105 * in an platform specific way. 106 */ 107 static bool assert_single_clk(struct opp_table *opp_table) 108 { 109 return !WARN_ON(opp_table->clk_count > 1); 110 } 111 112 /** 113 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp 114 * @opp: opp for which voltage has to be returned for 115 * 116 * Return: voltage in micro volt corresponding to the opp, else 117 * return 0 118 * 119 * This is useful only for devices with single power supply. 120 */ 121 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp) 122 { 123 if (IS_ERR_OR_NULL(opp)) { 124 pr_err("%s: Invalid parameters\n", __func__); 125 return 0; 126 } 127 128 return opp->supplies[0].u_volt; 129 } 130 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage); 131 132 /** 133 * dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp 134 * @opp: opp for which voltage has to be returned for 135 * @supplies: Placeholder for copying the supply information. 136 * 137 * Return: negative error number on failure, 0 otherwise on success after 138 * setting @supplies. 139 * 140 * This can be used for devices with any number of power supplies. The caller 141 * must ensure the @supplies array must contain space for each regulator. 142 */ 143 int dev_pm_opp_get_supplies(struct dev_pm_opp *opp, 144 struct dev_pm_opp_supply *supplies) 145 { 146 if (IS_ERR_OR_NULL(opp) || !supplies) { 147 pr_err("%s: Invalid parameters\n", __func__); 148 return -EINVAL; 149 } 150 151 memcpy(supplies, opp->supplies, 152 sizeof(*supplies) * opp->opp_table->regulator_count); 153 return 0; 154 } 155 EXPORT_SYMBOL_GPL(dev_pm_opp_get_supplies); 156 157 /** 158 * dev_pm_opp_get_power() - Gets the power corresponding to an opp 159 * @opp: opp for which power has to be returned for 160 * 161 * Return: power in micro watt corresponding to the opp, else 162 * return 0 163 * 164 * This is useful only for devices with single power supply. 165 */ 166 unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp) 167 { 168 unsigned long opp_power = 0; 169 int i; 170 171 if (IS_ERR_OR_NULL(opp)) { 172 pr_err("%s: Invalid parameters\n", __func__); 173 return 0; 174 } 175 for (i = 0; i < opp->opp_table->regulator_count; i++) 176 opp_power += opp->supplies[i].u_watt; 177 178 return opp_power; 179 } 180 EXPORT_SYMBOL_GPL(dev_pm_opp_get_power); 181 182 /** 183 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp 184 * @opp: opp for which frequency has to be returned for 185 * 186 * Return: frequency in hertz corresponding to the opp, else 187 * return 0 188 */ 189 unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp) 190 { 191 if (IS_ERR_OR_NULL(opp)) { 192 pr_err("%s: Invalid parameters\n", __func__); 193 return 0; 194 } 195 196 if (!assert_single_clk(opp->opp_table)) 197 return 0; 198 199 return opp->rates[0]; 200 } 201 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq); 202 203 /** 204 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp 205 * @opp: opp for which level value has to be returned for 206 * 207 * Return: level read from device tree corresponding to the opp, else 208 * return 0. 209 */ 210 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp) 211 { 212 if (IS_ERR_OR_NULL(opp) || !opp->available) { 213 pr_err("%s: Invalid parameters\n", __func__); 214 return 0; 215 } 216 217 return opp->level; 218 } 219 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level); 220 221 /** 222 * dev_pm_opp_get_required_pstate() - Gets the required performance state 223 * corresponding to an available opp 224 * @opp: opp for which performance state has to be returned for 225 * @index: index of the required opp 226 * 227 * Return: performance state read from device tree corresponding to the 228 * required opp, else return 0. 229 */ 230 unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp, 231 unsigned int index) 232 { 233 if (IS_ERR_OR_NULL(opp) || !opp->available || 234 index >= opp->opp_table->required_opp_count) { 235 pr_err("%s: Invalid parameters\n", __func__); 236 return 0; 237 } 238 239 /* required-opps not fully initialized yet */ 240 if (lazy_linking_pending(opp->opp_table)) 241 return 0; 242 243 return opp->required_opps[index]->pstate; 244 } 245 EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate); 246 247 /** 248 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not 249 * @opp: opp for which turbo mode is being verified 250 * 251 * Turbo OPPs are not for normal use, and can be enabled (under certain 252 * conditions) for short duration of times to finish high throughput work 253 * quickly. Running on them for longer times may overheat the chip. 254 * 255 * Return: true if opp is turbo opp, else false. 256 */ 257 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp) 258 { 259 if (IS_ERR_OR_NULL(opp) || !opp->available) { 260 pr_err("%s: Invalid parameters\n", __func__); 261 return false; 262 } 263 264 return opp->turbo; 265 } 266 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo); 267 268 /** 269 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds 270 * @dev: device for which we do this operation 271 * 272 * Return: This function returns the max clock latency in nanoseconds. 273 */ 274 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev) 275 { 276 struct opp_table *opp_table; 277 unsigned long clock_latency_ns; 278 279 opp_table = _find_opp_table(dev); 280 if (IS_ERR(opp_table)) 281 return 0; 282 283 clock_latency_ns = opp_table->clock_latency_ns_max; 284 285 dev_pm_opp_put_opp_table(opp_table); 286 287 return clock_latency_ns; 288 } 289 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency); 290 291 /** 292 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds 293 * @dev: device for which we do this operation 294 * 295 * Return: This function returns the max voltage latency in nanoseconds. 296 */ 297 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev) 298 { 299 struct opp_table *opp_table; 300 struct dev_pm_opp *opp; 301 struct regulator *reg; 302 unsigned long latency_ns = 0; 303 int ret, i, count; 304 struct { 305 unsigned long min; 306 unsigned long max; 307 } *uV; 308 309 opp_table = _find_opp_table(dev); 310 if (IS_ERR(opp_table)) 311 return 0; 312 313 /* Regulator may not be required for the device */ 314 if (!opp_table->regulators) 315 goto put_opp_table; 316 317 count = opp_table->regulator_count; 318 319 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL); 320 if (!uV) 321 goto put_opp_table; 322 323 mutex_lock(&opp_table->lock); 324 325 for (i = 0; i < count; i++) { 326 uV[i].min = ~0; 327 uV[i].max = 0; 328 329 list_for_each_entry(opp, &opp_table->opp_list, node) { 330 if (!opp->available) 331 continue; 332 333 if (opp->supplies[i].u_volt_min < uV[i].min) 334 uV[i].min = opp->supplies[i].u_volt_min; 335 if (opp->supplies[i].u_volt_max > uV[i].max) 336 uV[i].max = opp->supplies[i].u_volt_max; 337 } 338 } 339 340 mutex_unlock(&opp_table->lock); 341 342 /* 343 * The caller needs to ensure that opp_table (and hence the regulator) 344 * isn't freed, while we are executing this routine. 345 */ 346 for (i = 0; i < count; i++) { 347 reg = opp_table->regulators[i]; 348 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max); 349 if (ret > 0) 350 latency_ns += ret * 1000; 351 } 352 353 kfree(uV); 354 put_opp_table: 355 dev_pm_opp_put_opp_table(opp_table); 356 357 return latency_ns; 358 } 359 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency); 360 361 /** 362 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in 363 * nanoseconds 364 * @dev: device for which we do this operation 365 * 366 * Return: This function returns the max transition latency, in nanoseconds, to 367 * switch from one OPP to other. 368 */ 369 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev) 370 { 371 return dev_pm_opp_get_max_volt_latency(dev) + 372 dev_pm_opp_get_max_clock_latency(dev); 373 } 374 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency); 375 376 /** 377 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz 378 * @dev: device for which we do this operation 379 * 380 * Return: This function returns the frequency of the OPP marked as suspend_opp 381 * if one is available, else returns 0; 382 */ 383 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev) 384 { 385 struct opp_table *opp_table; 386 unsigned long freq = 0; 387 388 opp_table = _find_opp_table(dev); 389 if (IS_ERR(opp_table)) 390 return 0; 391 392 if (opp_table->suspend_opp && opp_table->suspend_opp->available) 393 freq = dev_pm_opp_get_freq(opp_table->suspend_opp); 394 395 dev_pm_opp_put_opp_table(opp_table); 396 397 return freq; 398 } 399 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq); 400 401 int _get_opp_count(struct opp_table *opp_table) 402 { 403 struct dev_pm_opp *opp; 404 int count = 0; 405 406 mutex_lock(&opp_table->lock); 407 408 list_for_each_entry(opp, &opp_table->opp_list, node) { 409 if (opp->available) 410 count++; 411 } 412 413 mutex_unlock(&opp_table->lock); 414 415 return count; 416 } 417 418 /** 419 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table 420 * @dev: device for which we do this operation 421 * 422 * Return: This function returns the number of available opps if there are any, 423 * else returns 0 if none or the corresponding error value. 424 */ 425 int dev_pm_opp_get_opp_count(struct device *dev) 426 { 427 struct opp_table *opp_table; 428 int count; 429 430 opp_table = _find_opp_table(dev); 431 if (IS_ERR(opp_table)) { 432 count = PTR_ERR(opp_table); 433 dev_dbg(dev, "%s: OPP table not found (%d)\n", 434 __func__, count); 435 return count; 436 } 437 438 count = _get_opp_count(opp_table); 439 dev_pm_opp_put_opp_table(opp_table); 440 441 return count; 442 } 443 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count); 444 445 /* Helpers to read keys */ 446 static unsigned long _read_freq(struct dev_pm_opp *opp, int index) 447 { 448 return opp->rates[0]; 449 } 450 451 static unsigned long _read_level(struct dev_pm_opp *opp, int index) 452 { 453 return opp->level; 454 } 455 456 static unsigned long _read_bw(struct dev_pm_opp *opp, int index) 457 { 458 return opp->bandwidth[index].peak; 459 } 460 461 /* Generic comparison helpers */ 462 static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp, 463 unsigned long opp_key, unsigned long key) 464 { 465 if (opp_key == key) { 466 *opp = temp_opp; 467 return true; 468 } 469 470 return false; 471 } 472 473 static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp, 474 unsigned long opp_key, unsigned long key) 475 { 476 if (opp_key >= key) { 477 *opp = temp_opp; 478 return true; 479 } 480 481 return false; 482 } 483 484 static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp, 485 unsigned long opp_key, unsigned long key) 486 { 487 if (opp_key > key) 488 return true; 489 490 *opp = temp_opp; 491 return false; 492 } 493 494 /* Generic key finding helpers */ 495 static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table, 496 unsigned long *key, int index, bool available, 497 unsigned long (*read)(struct dev_pm_opp *opp, int index), 498 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp, 499 unsigned long opp_key, unsigned long key), 500 bool (*assert)(struct opp_table *opp_table)) 501 { 502 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 503 504 /* Assert that the requirement is met */ 505 if (assert && !assert(opp_table)) 506 return ERR_PTR(-EINVAL); 507 508 mutex_lock(&opp_table->lock); 509 510 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 511 if (temp_opp->available == available) { 512 if (compare(&opp, temp_opp, read(temp_opp, index), *key)) 513 break; 514 } 515 } 516 517 /* Increment the reference count of OPP */ 518 if (!IS_ERR(opp)) { 519 *key = read(opp, index); 520 dev_pm_opp_get(opp); 521 } 522 523 mutex_unlock(&opp_table->lock); 524 525 return opp; 526 } 527 528 static struct dev_pm_opp * 529 _find_key(struct device *dev, unsigned long *key, int index, bool available, 530 unsigned long (*read)(struct dev_pm_opp *opp, int index), 531 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp, 532 unsigned long opp_key, unsigned long key), 533 bool (*assert)(struct opp_table *opp_table)) 534 { 535 struct opp_table *opp_table; 536 struct dev_pm_opp *opp; 537 538 opp_table = _find_opp_table(dev); 539 if (IS_ERR(opp_table)) { 540 dev_err(dev, "%s: OPP table not found (%ld)\n", __func__, 541 PTR_ERR(opp_table)); 542 return ERR_CAST(opp_table); 543 } 544 545 opp = _opp_table_find_key(opp_table, key, index, available, read, 546 compare, assert); 547 548 dev_pm_opp_put_opp_table(opp_table); 549 550 return opp; 551 } 552 553 static struct dev_pm_opp *_find_key_exact(struct device *dev, 554 unsigned long key, int index, bool available, 555 unsigned long (*read)(struct dev_pm_opp *opp, int index), 556 bool (*assert)(struct opp_table *opp_table)) 557 { 558 /* 559 * The value of key will be updated here, but will be ignored as the 560 * caller doesn't need it. 561 */ 562 return _find_key(dev, &key, index, available, read, _compare_exact, 563 assert); 564 } 565 566 static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table, 567 unsigned long *key, int index, bool available, 568 unsigned long (*read)(struct dev_pm_opp *opp, int index), 569 bool (*assert)(struct opp_table *opp_table)) 570 { 571 return _opp_table_find_key(opp_table, key, index, available, read, 572 _compare_ceil, assert); 573 } 574 575 static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key, 576 int index, bool available, 577 unsigned long (*read)(struct dev_pm_opp *opp, int index), 578 bool (*assert)(struct opp_table *opp_table)) 579 { 580 return _find_key(dev, key, index, available, read, _compare_ceil, 581 assert); 582 } 583 584 static struct dev_pm_opp *_find_key_floor(struct device *dev, 585 unsigned long *key, int index, bool available, 586 unsigned long (*read)(struct dev_pm_opp *opp, int index), 587 bool (*assert)(struct opp_table *opp_table)) 588 { 589 return _find_key(dev, key, index, available, read, _compare_floor, 590 assert); 591 } 592 593 /** 594 * dev_pm_opp_find_freq_exact() - search for an exact frequency 595 * @dev: device for which we do this operation 596 * @freq: frequency to search for 597 * @available: true/false - match for available opp 598 * 599 * Return: Searches for exact match in the opp table and returns pointer to the 600 * matching opp if found, else returns ERR_PTR in case of error and should 601 * be handled using IS_ERR. Error return values can be: 602 * EINVAL: for bad pointer 603 * ERANGE: no match found for search 604 * ENODEV: if device not found in list of registered devices 605 * 606 * Note: available is a modifier for the search. if available=true, then the 607 * match is for exact matching frequency and is available in the stored OPP 608 * table. if false, the match is for exact frequency which is not available. 609 * 610 * This provides a mechanism to enable an opp which is not available currently 611 * or the opposite as well. 612 * 613 * The callers are required to call dev_pm_opp_put() for the returned OPP after 614 * use. 615 */ 616 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev, 617 unsigned long freq, bool available) 618 { 619 return _find_key_exact(dev, freq, 0, available, _read_freq, 620 assert_single_clk); 621 } 622 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact); 623 624 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table, 625 unsigned long *freq) 626 { 627 return _opp_table_find_key_ceil(opp_table, freq, 0, true, _read_freq, 628 assert_single_clk); 629 } 630 631 /** 632 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq 633 * @dev: device for which we do this operation 634 * @freq: Start frequency 635 * 636 * Search for the matching ceil *available* OPP from a starting freq 637 * for a device. 638 * 639 * Return: matching *opp and refreshes *freq accordingly, else returns 640 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 641 * values can be: 642 * EINVAL: for bad pointer 643 * ERANGE: no match found for search 644 * ENODEV: if device not found in list of registered devices 645 * 646 * The callers are required to call dev_pm_opp_put() for the returned OPP after 647 * use. 648 */ 649 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev, 650 unsigned long *freq) 651 { 652 return _find_key_ceil(dev, freq, 0, true, _read_freq, assert_single_clk); 653 } 654 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil); 655 656 /** 657 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq 658 * @dev: device for which we do this operation 659 * @freq: Start frequency 660 * 661 * Search for the matching floor *available* OPP from a starting freq 662 * for a device. 663 * 664 * Return: matching *opp and refreshes *freq accordingly, else returns 665 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 666 * values can be: 667 * EINVAL: for bad pointer 668 * ERANGE: no match found for search 669 * ENODEV: if device not found in list of registered devices 670 * 671 * The callers are required to call dev_pm_opp_put() for the returned OPP after 672 * use. 673 */ 674 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev, 675 unsigned long *freq) 676 { 677 return _find_key_floor(dev, freq, 0, true, _read_freq, assert_single_clk); 678 } 679 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor); 680 681 /** 682 * dev_pm_opp_find_level_exact() - search for an exact level 683 * @dev: device for which we do this operation 684 * @level: level to search for 685 * 686 * Return: Searches for exact match in the opp table and returns pointer to the 687 * matching opp if found, else returns ERR_PTR in case of error and should 688 * be handled using IS_ERR. Error return values can be: 689 * EINVAL: for bad pointer 690 * ERANGE: no match found for search 691 * ENODEV: if device not found in list of registered devices 692 * 693 * The callers are required to call dev_pm_opp_put() for the returned OPP after 694 * use. 695 */ 696 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev, 697 unsigned int level) 698 { 699 return _find_key_exact(dev, level, 0, true, _read_level, NULL); 700 } 701 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact); 702 703 /** 704 * dev_pm_opp_find_level_ceil() - search for an rounded up level 705 * @dev: device for which we do this operation 706 * @level: level to search for 707 * 708 * Return: Searches for rounded up match in the opp table and returns pointer 709 * to the matching opp if found, else returns ERR_PTR in case of error and 710 * should be handled using IS_ERR. Error return values can be: 711 * EINVAL: for bad pointer 712 * ERANGE: no match found for search 713 * ENODEV: if device not found in list of registered devices 714 * 715 * The callers are required to call dev_pm_opp_put() for the returned OPP after 716 * use. 717 */ 718 struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev, 719 unsigned int *level) 720 { 721 unsigned long temp = *level; 722 struct dev_pm_opp *opp; 723 724 opp = _find_key_ceil(dev, &temp, 0, true, _read_level, NULL); 725 *level = temp; 726 return opp; 727 } 728 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil); 729 730 /** 731 * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth 732 * @dev: device for which we do this operation 733 * @bw: start bandwidth 734 * @index: which bandwidth to compare, in case of OPPs with several values 735 * 736 * Search for the matching floor *available* OPP from a starting bandwidth 737 * for a device. 738 * 739 * Return: matching *opp and refreshes *bw accordingly, else returns 740 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 741 * values can be: 742 * EINVAL: for bad pointer 743 * ERANGE: no match found for search 744 * ENODEV: if device not found in list of registered devices 745 * 746 * The callers are required to call dev_pm_opp_put() for the returned OPP after 747 * use. 748 */ 749 struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw, 750 int index) 751 { 752 unsigned long temp = *bw; 753 struct dev_pm_opp *opp; 754 755 opp = _find_key_ceil(dev, &temp, index, true, _read_bw, NULL); 756 *bw = temp; 757 return opp; 758 } 759 EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil); 760 761 /** 762 * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth 763 * @dev: device for which we do this operation 764 * @bw: start bandwidth 765 * @index: which bandwidth to compare, in case of OPPs with several values 766 * 767 * Search for the matching floor *available* OPP from a starting bandwidth 768 * for a device. 769 * 770 * Return: matching *opp and refreshes *bw accordingly, else returns 771 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 772 * values can be: 773 * EINVAL: for bad pointer 774 * ERANGE: no match found for search 775 * ENODEV: if device not found in list of registered devices 776 * 777 * The callers are required to call dev_pm_opp_put() for the returned OPP after 778 * use. 779 */ 780 struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev, 781 unsigned int *bw, int index) 782 { 783 unsigned long temp = *bw; 784 struct dev_pm_opp *opp; 785 786 opp = _find_key_floor(dev, &temp, index, true, _read_bw, NULL); 787 *bw = temp; 788 return opp; 789 } 790 EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor); 791 792 static int _set_opp_voltage(struct device *dev, struct regulator *reg, 793 struct dev_pm_opp_supply *supply) 794 { 795 int ret; 796 797 /* Regulator not available for device */ 798 if (IS_ERR(reg)) { 799 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__, 800 PTR_ERR(reg)); 801 return 0; 802 } 803 804 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__, 805 supply->u_volt_min, supply->u_volt, supply->u_volt_max); 806 807 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min, 808 supply->u_volt, supply->u_volt_max); 809 if (ret) 810 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n", 811 __func__, supply->u_volt_min, supply->u_volt, 812 supply->u_volt_max, ret); 813 814 return ret; 815 } 816 817 static int 818 _opp_config_clk_single(struct device *dev, struct opp_table *opp_table, 819 struct dev_pm_opp *opp, void *data, bool scaling_down) 820 { 821 unsigned long *target = data; 822 unsigned long freq; 823 int ret; 824 825 /* One of target and opp must be available */ 826 if (target) { 827 freq = *target; 828 } else if (opp) { 829 freq = opp->rates[0]; 830 } else { 831 WARN_ON(1); 832 return -EINVAL; 833 } 834 835 ret = clk_set_rate(opp_table->clk, freq); 836 if (ret) { 837 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__, 838 ret); 839 } else { 840 opp_table->rate_clk_single = freq; 841 } 842 843 return ret; 844 } 845 846 /* 847 * Simple implementation for configuring multiple clocks. Configure clocks in 848 * the order in which they are present in the array while scaling up. 849 */ 850 int dev_pm_opp_config_clks_simple(struct device *dev, 851 struct opp_table *opp_table, struct dev_pm_opp *opp, void *data, 852 bool scaling_down) 853 { 854 int ret, i; 855 856 if (scaling_down) { 857 for (i = opp_table->clk_count - 1; i >= 0; i--) { 858 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]); 859 if (ret) { 860 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__, 861 ret); 862 return ret; 863 } 864 } 865 } else { 866 for (i = 0; i < opp_table->clk_count; i++) { 867 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]); 868 if (ret) { 869 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__, 870 ret); 871 return ret; 872 } 873 } 874 } 875 876 return ret; 877 } 878 EXPORT_SYMBOL_GPL(dev_pm_opp_config_clks_simple); 879 880 static int _opp_config_regulator_single(struct device *dev, 881 struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp, 882 struct regulator **regulators, unsigned int count) 883 { 884 struct regulator *reg = regulators[0]; 885 int ret; 886 887 /* This function only supports single regulator per device */ 888 if (WARN_ON(count > 1)) { 889 dev_err(dev, "multiple regulators are not supported\n"); 890 return -EINVAL; 891 } 892 893 ret = _set_opp_voltage(dev, reg, new_opp->supplies); 894 if (ret) 895 return ret; 896 897 /* 898 * Enable the regulator after setting its voltages, otherwise it breaks 899 * some boot-enabled regulators. 900 */ 901 if (unlikely(!new_opp->opp_table->enabled)) { 902 ret = regulator_enable(reg); 903 if (ret < 0) 904 dev_warn(dev, "Failed to enable regulator: %d", ret); 905 } 906 907 return 0; 908 } 909 910 static int _set_opp_bw(const struct opp_table *opp_table, 911 struct dev_pm_opp *opp, struct device *dev) 912 { 913 u32 avg, peak; 914 int i, ret; 915 916 if (!opp_table->paths) 917 return 0; 918 919 for (i = 0; i < opp_table->path_count; i++) { 920 if (!opp) { 921 avg = 0; 922 peak = 0; 923 } else { 924 avg = opp->bandwidth[i].avg; 925 peak = opp->bandwidth[i].peak; 926 } 927 ret = icc_set_bw(opp_table->paths[i], avg, peak); 928 if (ret) { 929 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n", 930 opp ? "set" : "remove", i, ret); 931 return ret; 932 } 933 } 934 935 return 0; 936 } 937 938 static int _set_required_opp(struct device *dev, struct device *pd_dev, 939 struct dev_pm_opp *opp, int i) 940 { 941 unsigned int pstate = likely(opp) ? opp->required_opps[i]->pstate : 0; 942 int ret; 943 944 if (!pd_dev) 945 return 0; 946 947 ret = dev_pm_genpd_set_performance_state(pd_dev, pstate); 948 if (ret) { 949 dev_err(dev, "Failed to set performance state of %s: %d (%d)\n", 950 dev_name(pd_dev), pstate, ret); 951 } 952 953 return ret; 954 } 955 956 /* This is only called for PM domain for now */ 957 static int _set_required_opps(struct device *dev, 958 struct opp_table *opp_table, 959 struct dev_pm_opp *opp, bool up) 960 { 961 struct opp_table **required_opp_tables = opp_table->required_opp_tables; 962 struct device **genpd_virt_devs = opp_table->genpd_virt_devs; 963 int i, ret = 0; 964 965 if (!required_opp_tables) 966 return 0; 967 968 /* required-opps not fully initialized yet */ 969 if (lazy_linking_pending(opp_table)) 970 return -EBUSY; 971 972 /* 973 * We only support genpd's OPPs in the "required-opps" for now, as we 974 * don't know much about other use cases. Error out if the required OPP 975 * doesn't belong to a genpd. 976 */ 977 if (unlikely(!required_opp_tables[0]->is_genpd)) { 978 dev_err(dev, "required-opps don't belong to a genpd\n"); 979 return -ENOENT; 980 } 981 982 /* Single genpd case */ 983 if (!genpd_virt_devs) 984 return _set_required_opp(dev, dev, opp, 0); 985 986 /* Multiple genpd case */ 987 988 /* 989 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev 990 * after it is freed from another thread. 991 */ 992 mutex_lock(&opp_table->genpd_virt_dev_lock); 993 994 /* Scaling up? Set required OPPs in normal order, else reverse */ 995 if (up) { 996 for (i = 0; i < opp_table->required_opp_count; i++) { 997 ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i); 998 if (ret) 999 break; 1000 } 1001 } else { 1002 for (i = opp_table->required_opp_count - 1; i >= 0; i--) { 1003 ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i); 1004 if (ret) 1005 break; 1006 } 1007 } 1008 1009 mutex_unlock(&opp_table->genpd_virt_dev_lock); 1010 1011 return ret; 1012 } 1013 1014 static void _find_current_opp(struct device *dev, struct opp_table *opp_table) 1015 { 1016 struct dev_pm_opp *opp = ERR_PTR(-ENODEV); 1017 unsigned long freq; 1018 1019 if (!IS_ERR(opp_table->clk)) { 1020 freq = clk_get_rate(opp_table->clk); 1021 opp = _find_freq_ceil(opp_table, &freq); 1022 } 1023 1024 /* 1025 * Unable to find the current OPP ? Pick the first from the list since 1026 * it is in ascending order, otherwise rest of the code will need to 1027 * make special checks to validate current_opp. 1028 */ 1029 if (IS_ERR(opp)) { 1030 mutex_lock(&opp_table->lock); 1031 opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node); 1032 dev_pm_opp_get(opp); 1033 mutex_unlock(&opp_table->lock); 1034 } 1035 1036 opp_table->current_opp = opp; 1037 } 1038 1039 static int _disable_opp_table(struct device *dev, struct opp_table *opp_table) 1040 { 1041 int ret; 1042 1043 if (!opp_table->enabled) 1044 return 0; 1045 1046 /* 1047 * Some drivers need to support cases where some platforms may 1048 * have OPP table for the device, while others don't and 1049 * opp_set_rate() just needs to behave like clk_set_rate(). 1050 */ 1051 if (!_get_opp_count(opp_table)) 1052 return 0; 1053 1054 ret = _set_opp_bw(opp_table, NULL, dev); 1055 if (ret) 1056 return ret; 1057 1058 if (opp_table->regulators) 1059 regulator_disable(opp_table->regulators[0]); 1060 1061 ret = _set_required_opps(dev, opp_table, NULL, false); 1062 1063 opp_table->enabled = false; 1064 return ret; 1065 } 1066 1067 static int _set_opp(struct device *dev, struct opp_table *opp_table, 1068 struct dev_pm_opp *opp, void *clk_data, bool forced) 1069 { 1070 struct dev_pm_opp *old_opp; 1071 int scaling_down, ret; 1072 1073 if (unlikely(!opp)) 1074 return _disable_opp_table(dev, opp_table); 1075 1076 /* Find the currently set OPP if we don't know already */ 1077 if (unlikely(!opp_table->current_opp)) 1078 _find_current_opp(dev, opp_table); 1079 1080 old_opp = opp_table->current_opp; 1081 1082 /* Return early if nothing to do */ 1083 if (!forced && old_opp == opp && opp_table->enabled) { 1084 dev_dbg(dev, "%s: OPPs are same, nothing to do\n", __func__); 1085 return 0; 1086 } 1087 1088 dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n", 1089 __func__, old_opp->rates[0], opp->rates[0], old_opp->level, 1090 opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0, 1091 opp->bandwidth ? opp->bandwidth[0].peak : 0); 1092 1093 scaling_down = _opp_compare_key(opp_table, old_opp, opp); 1094 if (scaling_down == -1) 1095 scaling_down = 0; 1096 1097 /* Scaling up? Configure required OPPs before frequency */ 1098 if (!scaling_down) { 1099 ret = _set_required_opps(dev, opp_table, opp, true); 1100 if (ret) { 1101 dev_err(dev, "Failed to set required opps: %d\n", ret); 1102 return ret; 1103 } 1104 1105 ret = _set_opp_bw(opp_table, opp, dev); 1106 if (ret) { 1107 dev_err(dev, "Failed to set bw: %d\n", ret); 1108 return ret; 1109 } 1110 1111 if (opp_table->config_regulators) { 1112 ret = opp_table->config_regulators(dev, old_opp, opp, 1113 opp_table->regulators, 1114 opp_table->regulator_count); 1115 if (ret) { 1116 dev_err(dev, "Failed to set regulator voltages: %d\n", 1117 ret); 1118 return ret; 1119 } 1120 } 1121 } 1122 1123 if (opp_table->config_clks) { 1124 ret = opp_table->config_clks(dev, opp_table, opp, clk_data, scaling_down); 1125 if (ret) 1126 return ret; 1127 } 1128 1129 /* Scaling down? Configure required OPPs after frequency */ 1130 if (scaling_down) { 1131 if (opp_table->config_regulators) { 1132 ret = opp_table->config_regulators(dev, old_opp, opp, 1133 opp_table->regulators, 1134 opp_table->regulator_count); 1135 if (ret) { 1136 dev_err(dev, "Failed to set regulator voltages: %d\n", 1137 ret); 1138 return ret; 1139 } 1140 } 1141 1142 ret = _set_opp_bw(opp_table, opp, dev); 1143 if (ret) { 1144 dev_err(dev, "Failed to set bw: %d\n", ret); 1145 return ret; 1146 } 1147 1148 ret = _set_required_opps(dev, opp_table, opp, false); 1149 if (ret) { 1150 dev_err(dev, "Failed to set required opps: %d\n", ret); 1151 return ret; 1152 } 1153 } 1154 1155 opp_table->enabled = true; 1156 dev_pm_opp_put(old_opp); 1157 1158 /* Make sure current_opp doesn't get freed */ 1159 dev_pm_opp_get(opp); 1160 opp_table->current_opp = opp; 1161 1162 return ret; 1163 } 1164 1165 /** 1166 * dev_pm_opp_set_rate() - Configure new OPP based on frequency 1167 * @dev: device for which we do this operation 1168 * @target_freq: frequency to achieve 1169 * 1170 * This configures the power-supplies to the levels specified by the OPP 1171 * corresponding to the target_freq, and programs the clock to a value <= 1172 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax 1173 * provided by the opp, should have already rounded to the target OPP's 1174 * frequency. 1175 */ 1176 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq) 1177 { 1178 struct opp_table *opp_table; 1179 unsigned long freq = 0, temp_freq; 1180 struct dev_pm_opp *opp = NULL; 1181 bool forced = false; 1182 int ret; 1183 1184 opp_table = _find_opp_table(dev); 1185 if (IS_ERR(opp_table)) { 1186 dev_err(dev, "%s: device's opp table doesn't exist\n", __func__); 1187 return PTR_ERR(opp_table); 1188 } 1189 1190 if (target_freq) { 1191 /* 1192 * For IO devices which require an OPP on some platforms/SoCs 1193 * while just needing to scale the clock on some others 1194 * we look for empty OPP tables with just a clock handle and 1195 * scale only the clk. This makes dev_pm_opp_set_rate() 1196 * equivalent to a clk_set_rate() 1197 */ 1198 if (!_get_opp_count(opp_table)) { 1199 ret = opp_table->config_clks(dev, opp_table, NULL, 1200 &target_freq, false); 1201 goto put_opp_table; 1202 } 1203 1204 freq = clk_round_rate(opp_table->clk, target_freq); 1205 if ((long)freq <= 0) 1206 freq = target_freq; 1207 1208 /* 1209 * The clock driver may support finer resolution of the 1210 * frequencies than the OPP table, don't update the frequency we 1211 * pass to clk_set_rate() here. 1212 */ 1213 temp_freq = freq; 1214 opp = _find_freq_ceil(opp_table, &temp_freq); 1215 if (IS_ERR(opp)) { 1216 ret = PTR_ERR(opp); 1217 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n", 1218 __func__, freq, ret); 1219 goto put_opp_table; 1220 } 1221 1222 /* 1223 * An OPP entry specifies the highest frequency at which other 1224 * properties of the OPP entry apply. Even if the new OPP is 1225 * same as the old one, we may still reach here for a different 1226 * value of the frequency. In such a case, do not abort but 1227 * configure the hardware to the desired frequency forcefully. 1228 */ 1229 forced = opp_table->rate_clk_single != target_freq; 1230 } 1231 1232 ret = _set_opp(dev, opp_table, opp, &target_freq, forced); 1233 1234 if (target_freq) 1235 dev_pm_opp_put(opp); 1236 1237 put_opp_table: 1238 dev_pm_opp_put_opp_table(opp_table); 1239 return ret; 1240 } 1241 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate); 1242 1243 /** 1244 * dev_pm_opp_set_opp() - Configure device for OPP 1245 * @dev: device for which we do this operation 1246 * @opp: OPP to set to 1247 * 1248 * This configures the device based on the properties of the OPP passed to this 1249 * routine. 1250 * 1251 * Return: 0 on success, a negative error number otherwise. 1252 */ 1253 int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp) 1254 { 1255 struct opp_table *opp_table; 1256 int ret; 1257 1258 opp_table = _find_opp_table(dev); 1259 if (IS_ERR(opp_table)) { 1260 dev_err(dev, "%s: device opp doesn't exist\n", __func__); 1261 return PTR_ERR(opp_table); 1262 } 1263 1264 ret = _set_opp(dev, opp_table, opp, NULL, false); 1265 dev_pm_opp_put_opp_table(opp_table); 1266 1267 return ret; 1268 } 1269 EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp); 1270 1271 /* OPP-dev Helpers */ 1272 static void _remove_opp_dev(struct opp_device *opp_dev, 1273 struct opp_table *opp_table) 1274 { 1275 opp_debug_unregister(opp_dev, opp_table); 1276 list_del(&opp_dev->node); 1277 kfree(opp_dev); 1278 } 1279 1280 struct opp_device *_add_opp_dev(const struct device *dev, 1281 struct opp_table *opp_table) 1282 { 1283 struct opp_device *opp_dev; 1284 1285 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL); 1286 if (!opp_dev) 1287 return NULL; 1288 1289 /* Initialize opp-dev */ 1290 opp_dev->dev = dev; 1291 1292 mutex_lock(&opp_table->lock); 1293 list_add(&opp_dev->node, &opp_table->dev_list); 1294 mutex_unlock(&opp_table->lock); 1295 1296 /* Create debugfs entries for the opp_table */ 1297 opp_debug_register(opp_dev, opp_table); 1298 1299 return opp_dev; 1300 } 1301 1302 static struct opp_table *_allocate_opp_table(struct device *dev, int index) 1303 { 1304 struct opp_table *opp_table; 1305 struct opp_device *opp_dev; 1306 int ret; 1307 1308 /* 1309 * Allocate a new OPP table. In the infrequent case where a new 1310 * device is needed to be added, we pay this penalty. 1311 */ 1312 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL); 1313 if (!opp_table) 1314 return ERR_PTR(-ENOMEM); 1315 1316 mutex_init(&opp_table->lock); 1317 mutex_init(&opp_table->genpd_virt_dev_lock); 1318 INIT_LIST_HEAD(&opp_table->dev_list); 1319 INIT_LIST_HEAD(&opp_table->lazy); 1320 1321 opp_table->clk = ERR_PTR(-ENODEV); 1322 1323 /* Mark regulator count uninitialized */ 1324 opp_table->regulator_count = -1; 1325 1326 opp_dev = _add_opp_dev(dev, opp_table); 1327 if (!opp_dev) { 1328 ret = -ENOMEM; 1329 goto err; 1330 } 1331 1332 _of_init_opp_table(opp_table, dev, index); 1333 1334 /* Find interconnect path(s) for the device */ 1335 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table); 1336 if (ret) { 1337 if (ret == -EPROBE_DEFER) 1338 goto remove_opp_dev; 1339 1340 dev_warn(dev, "%s: Error finding interconnect paths: %d\n", 1341 __func__, ret); 1342 } 1343 1344 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head); 1345 INIT_LIST_HEAD(&opp_table->opp_list); 1346 kref_init(&opp_table->kref); 1347 1348 return opp_table; 1349 1350 remove_opp_dev: 1351 _remove_opp_dev(opp_dev, opp_table); 1352 err: 1353 kfree(opp_table); 1354 return ERR_PTR(ret); 1355 } 1356 1357 void _get_opp_table_kref(struct opp_table *opp_table) 1358 { 1359 kref_get(&opp_table->kref); 1360 } 1361 1362 static struct opp_table *_update_opp_table_clk(struct device *dev, 1363 struct opp_table *opp_table, 1364 bool getclk) 1365 { 1366 int ret; 1367 1368 /* 1369 * Return early if we don't need to get clk or we have already done it 1370 * earlier. 1371 */ 1372 if (!getclk || IS_ERR(opp_table) || !IS_ERR(opp_table->clk) || 1373 opp_table->clks) 1374 return opp_table; 1375 1376 /* Find clk for the device */ 1377 opp_table->clk = clk_get(dev, NULL); 1378 1379 ret = PTR_ERR_OR_ZERO(opp_table->clk); 1380 if (!ret) { 1381 opp_table->config_clks = _opp_config_clk_single; 1382 opp_table->clk_count = 1; 1383 return opp_table; 1384 } 1385 1386 if (ret == -ENOENT) { 1387 /* 1388 * There are few platforms which don't want the OPP core to 1389 * manage device's clock settings. In such cases neither the 1390 * platform provides the clks explicitly to us, nor the DT 1391 * contains a valid clk entry. The OPP nodes in DT may still 1392 * contain "opp-hz" property though, which we need to parse and 1393 * allow the platform to find an OPP based on freq later on. 1394 * 1395 * This is a simple solution to take care of such corner cases, 1396 * i.e. make the clk_count 1, which lets us allocate space for 1397 * frequency in opp->rates and also parse the entries in DT. 1398 */ 1399 opp_table->clk_count = 1; 1400 1401 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret); 1402 return opp_table; 1403 } 1404 1405 dev_pm_opp_put_opp_table(opp_table); 1406 dev_err_probe(dev, ret, "Couldn't find clock\n"); 1407 1408 return ERR_PTR(ret); 1409 } 1410 1411 /* 1412 * We need to make sure that the OPP table for a device doesn't get added twice, 1413 * if this routine gets called in parallel with the same device pointer. 1414 * 1415 * The simplest way to enforce that is to perform everything (find existing 1416 * table and if not found, create a new one) under the opp_table_lock, so only 1417 * one creator gets access to the same. But that expands the critical section 1418 * under the lock and may end up causing circular dependencies with frameworks 1419 * like debugfs, interconnect or clock framework as they may be direct or 1420 * indirect users of OPP core. 1421 * 1422 * And for that reason we have to go for a bit tricky implementation here, which 1423 * uses the opp_tables_busy flag to indicate if another creator is in the middle 1424 * of adding an OPP table and others should wait for it to finish. 1425 */ 1426 struct opp_table *_add_opp_table_indexed(struct device *dev, int index, 1427 bool getclk) 1428 { 1429 struct opp_table *opp_table; 1430 1431 again: 1432 mutex_lock(&opp_table_lock); 1433 1434 opp_table = _find_opp_table_unlocked(dev); 1435 if (!IS_ERR(opp_table)) 1436 goto unlock; 1437 1438 /* 1439 * The opp_tables list or an OPP table's dev_list is getting updated by 1440 * another user, wait for it to finish. 1441 */ 1442 if (unlikely(opp_tables_busy)) { 1443 mutex_unlock(&opp_table_lock); 1444 cpu_relax(); 1445 goto again; 1446 } 1447 1448 opp_tables_busy = true; 1449 opp_table = _managed_opp(dev, index); 1450 1451 /* Drop the lock to reduce the size of critical section */ 1452 mutex_unlock(&opp_table_lock); 1453 1454 if (opp_table) { 1455 if (!_add_opp_dev(dev, opp_table)) { 1456 dev_pm_opp_put_opp_table(opp_table); 1457 opp_table = ERR_PTR(-ENOMEM); 1458 } 1459 1460 mutex_lock(&opp_table_lock); 1461 } else { 1462 opp_table = _allocate_opp_table(dev, index); 1463 1464 mutex_lock(&opp_table_lock); 1465 if (!IS_ERR(opp_table)) 1466 list_add(&opp_table->node, &opp_tables); 1467 } 1468 1469 opp_tables_busy = false; 1470 1471 unlock: 1472 mutex_unlock(&opp_table_lock); 1473 1474 return _update_opp_table_clk(dev, opp_table, getclk); 1475 } 1476 1477 static struct opp_table *_add_opp_table(struct device *dev, bool getclk) 1478 { 1479 return _add_opp_table_indexed(dev, 0, getclk); 1480 } 1481 1482 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev) 1483 { 1484 return _find_opp_table(dev); 1485 } 1486 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table); 1487 1488 static void _opp_table_kref_release(struct kref *kref) 1489 { 1490 struct opp_table *opp_table = container_of(kref, struct opp_table, kref); 1491 struct opp_device *opp_dev, *temp; 1492 int i; 1493 1494 /* Drop the lock as soon as we can */ 1495 list_del(&opp_table->node); 1496 mutex_unlock(&opp_table_lock); 1497 1498 if (opp_table->current_opp) 1499 dev_pm_opp_put(opp_table->current_opp); 1500 1501 _of_clear_opp_table(opp_table); 1502 1503 /* Release automatically acquired single clk */ 1504 if (!IS_ERR(opp_table->clk)) 1505 clk_put(opp_table->clk); 1506 1507 if (opp_table->paths) { 1508 for (i = 0; i < opp_table->path_count; i++) 1509 icc_put(opp_table->paths[i]); 1510 kfree(opp_table->paths); 1511 } 1512 1513 WARN_ON(!list_empty(&opp_table->opp_list)); 1514 1515 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) { 1516 /* 1517 * The OPP table is getting removed, drop the performance state 1518 * constraints. 1519 */ 1520 if (opp_table->genpd_performance_state) 1521 dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0); 1522 1523 _remove_opp_dev(opp_dev, opp_table); 1524 } 1525 1526 mutex_destroy(&opp_table->genpd_virt_dev_lock); 1527 mutex_destroy(&opp_table->lock); 1528 kfree(opp_table); 1529 } 1530 1531 void dev_pm_opp_put_opp_table(struct opp_table *opp_table) 1532 { 1533 kref_put_mutex(&opp_table->kref, _opp_table_kref_release, 1534 &opp_table_lock); 1535 } 1536 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table); 1537 1538 void _opp_free(struct dev_pm_opp *opp) 1539 { 1540 kfree(opp); 1541 } 1542 1543 static void _opp_kref_release(struct kref *kref) 1544 { 1545 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref); 1546 struct opp_table *opp_table = opp->opp_table; 1547 1548 list_del(&opp->node); 1549 mutex_unlock(&opp_table->lock); 1550 1551 /* 1552 * Notify the changes in the availability of the operable 1553 * frequency/voltage list. 1554 */ 1555 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp); 1556 _of_clear_opp(opp_table, opp); 1557 opp_debug_remove_one(opp); 1558 kfree(opp); 1559 } 1560 1561 void dev_pm_opp_get(struct dev_pm_opp *opp) 1562 { 1563 kref_get(&opp->kref); 1564 } 1565 1566 void dev_pm_opp_put(struct dev_pm_opp *opp) 1567 { 1568 kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock); 1569 } 1570 EXPORT_SYMBOL_GPL(dev_pm_opp_put); 1571 1572 /** 1573 * dev_pm_opp_remove() - Remove an OPP from OPP table 1574 * @dev: device for which we do this operation 1575 * @freq: OPP to remove with matching 'freq' 1576 * 1577 * This function removes an opp from the opp table. 1578 */ 1579 void dev_pm_opp_remove(struct device *dev, unsigned long freq) 1580 { 1581 struct dev_pm_opp *opp = NULL, *iter; 1582 struct opp_table *opp_table; 1583 1584 opp_table = _find_opp_table(dev); 1585 if (IS_ERR(opp_table)) 1586 return; 1587 1588 if (!assert_single_clk(opp_table)) 1589 goto put_table; 1590 1591 mutex_lock(&opp_table->lock); 1592 1593 list_for_each_entry(iter, &opp_table->opp_list, node) { 1594 if (iter->rates[0] == freq) { 1595 opp = iter; 1596 break; 1597 } 1598 } 1599 1600 mutex_unlock(&opp_table->lock); 1601 1602 if (opp) { 1603 dev_pm_opp_put(opp); 1604 1605 /* Drop the reference taken by dev_pm_opp_add() */ 1606 dev_pm_opp_put_opp_table(opp_table); 1607 } else { 1608 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n", 1609 __func__, freq); 1610 } 1611 1612 put_table: 1613 /* Drop the reference taken by _find_opp_table() */ 1614 dev_pm_opp_put_opp_table(opp_table); 1615 } 1616 EXPORT_SYMBOL_GPL(dev_pm_opp_remove); 1617 1618 static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table, 1619 bool dynamic) 1620 { 1621 struct dev_pm_opp *opp = NULL, *temp; 1622 1623 mutex_lock(&opp_table->lock); 1624 list_for_each_entry(temp, &opp_table->opp_list, node) { 1625 /* 1626 * Refcount must be dropped only once for each OPP by OPP core, 1627 * do that with help of "removed" flag. 1628 */ 1629 if (!temp->removed && dynamic == temp->dynamic) { 1630 opp = temp; 1631 break; 1632 } 1633 } 1634 1635 mutex_unlock(&opp_table->lock); 1636 return opp; 1637 } 1638 1639 /* 1640 * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to 1641 * happen lock less to avoid circular dependency issues. This routine must be 1642 * called without the opp_table->lock held. 1643 */ 1644 static void _opp_remove_all(struct opp_table *opp_table, bool dynamic) 1645 { 1646 struct dev_pm_opp *opp; 1647 1648 while ((opp = _opp_get_next(opp_table, dynamic))) { 1649 opp->removed = true; 1650 dev_pm_opp_put(opp); 1651 1652 /* Drop the references taken by dev_pm_opp_add() */ 1653 if (dynamic) 1654 dev_pm_opp_put_opp_table(opp_table); 1655 } 1656 } 1657 1658 bool _opp_remove_all_static(struct opp_table *opp_table) 1659 { 1660 mutex_lock(&opp_table->lock); 1661 1662 if (!opp_table->parsed_static_opps) { 1663 mutex_unlock(&opp_table->lock); 1664 return false; 1665 } 1666 1667 if (--opp_table->parsed_static_opps) { 1668 mutex_unlock(&opp_table->lock); 1669 return true; 1670 } 1671 1672 mutex_unlock(&opp_table->lock); 1673 1674 _opp_remove_all(opp_table, false); 1675 return true; 1676 } 1677 1678 /** 1679 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs 1680 * @dev: device for which we do this operation 1681 * 1682 * This function removes all dynamically created OPPs from the opp table. 1683 */ 1684 void dev_pm_opp_remove_all_dynamic(struct device *dev) 1685 { 1686 struct opp_table *opp_table; 1687 1688 opp_table = _find_opp_table(dev); 1689 if (IS_ERR(opp_table)) 1690 return; 1691 1692 _opp_remove_all(opp_table, true); 1693 1694 /* Drop the reference taken by _find_opp_table() */ 1695 dev_pm_opp_put_opp_table(opp_table); 1696 } 1697 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic); 1698 1699 struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table) 1700 { 1701 struct dev_pm_opp *opp; 1702 int supply_count, supply_size, icc_size, clk_size; 1703 1704 /* Allocate space for at least one supply */ 1705 supply_count = opp_table->regulator_count > 0 ? 1706 opp_table->regulator_count : 1; 1707 supply_size = sizeof(*opp->supplies) * supply_count; 1708 clk_size = sizeof(*opp->rates) * opp_table->clk_count; 1709 icc_size = sizeof(*opp->bandwidth) * opp_table->path_count; 1710 1711 /* allocate new OPP node and supplies structures */ 1712 opp = kzalloc(sizeof(*opp) + supply_size + clk_size + icc_size, GFP_KERNEL); 1713 if (!opp) 1714 return NULL; 1715 1716 /* Put the supplies, bw and clock at the end of the OPP structure */ 1717 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1); 1718 1719 opp->rates = (unsigned long *)(opp->supplies + supply_count); 1720 1721 if (icc_size) 1722 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->rates + opp_table->clk_count); 1723 1724 INIT_LIST_HEAD(&opp->node); 1725 1726 return opp; 1727 } 1728 1729 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp, 1730 struct opp_table *opp_table) 1731 { 1732 struct regulator *reg; 1733 int i; 1734 1735 if (!opp_table->regulators) 1736 return true; 1737 1738 for (i = 0; i < opp_table->regulator_count; i++) { 1739 reg = opp_table->regulators[i]; 1740 1741 if (!regulator_is_supported_voltage(reg, 1742 opp->supplies[i].u_volt_min, 1743 opp->supplies[i].u_volt_max)) { 1744 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n", 1745 __func__, opp->supplies[i].u_volt_min, 1746 opp->supplies[i].u_volt_max); 1747 return false; 1748 } 1749 } 1750 1751 return true; 1752 } 1753 1754 static int _opp_compare_rate(struct opp_table *opp_table, 1755 struct dev_pm_opp *opp1, struct dev_pm_opp *opp2) 1756 { 1757 int i; 1758 1759 for (i = 0; i < opp_table->clk_count; i++) { 1760 if (opp1->rates[i] != opp2->rates[i]) 1761 return opp1->rates[i] < opp2->rates[i] ? -1 : 1; 1762 } 1763 1764 /* Same rates for both OPPs */ 1765 return 0; 1766 } 1767 1768 static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1, 1769 struct dev_pm_opp *opp2) 1770 { 1771 int i; 1772 1773 for (i = 0; i < opp_table->path_count; i++) { 1774 if (opp1->bandwidth[i].peak != opp2->bandwidth[i].peak) 1775 return opp1->bandwidth[i].peak < opp2->bandwidth[i].peak ? -1 : 1; 1776 } 1777 1778 /* Same bw for both OPPs */ 1779 return 0; 1780 } 1781 1782 /* 1783 * Returns 1784 * 0: opp1 == opp2 1785 * 1: opp1 > opp2 1786 * -1: opp1 < opp2 1787 */ 1788 int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1, 1789 struct dev_pm_opp *opp2) 1790 { 1791 int ret; 1792 1793 ret = _opp_compare_rate(opp_table, opp1, opp2); 1794 if (ret) 1795 return ret; 1796 1797 ret = _opp_compare_bw(opp_table, opp1, opp2); 1798 if (ret) 1799 return ret; 1800 1801 if (opp1->level != opp2->level) 1802 return opp1->level < opp2->level ? -1 : 1; 1803 1804 /* Duplicate OPPs */ 1805 return 0; 1806 } 1807 1808 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp, 1809 struct opp_table *opp_table, 1810 struct list_head **head) 1811 { 1812 struct dev_pm_opp *opp; 1813 int opp_cmp; 1814 1815 /* 1816 * Insert new OPP in order of increasing frequency and discard if 1817 * already present. 1818 * 1819 * Need to use &opp_table->opp_list in the condition part of the 'for' 1820 * loop, don't replace it with head otherwise it will become an infinite 1821 * loop. 1822 */ 1823 list_for_each_entry(opp, &opp_table->opp_list, node) { 1824 opp_cmp = _opp_compare_key(opp_table, new_opp, opp); 1825 if (opp_cmp > 0) { 1826 *head = &opp->node; 1827 continue; 1828 } 1829 1830 if (opp_cmp < 0) 1831 return 0; 1832 1833 /* Duplicate OPPs */ 1834 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n", 1835 __func__, opp->rates[0], opp->supplies[0].u_volt, 1836 opp->available, new_opp->rates[0], 1837 new_opp->supplies[0].u_volt, new_opp->available); 1838 1839 /* Should we compare voltages for all regulators here ? */ 1840 return opp->available && 1841 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST; 1842 } 1843 1844 return 0; 1845 } 1846 1847 void _required_opps_available(struct dev_pm_opp *opp, int count) 1848 { 1849 int i; 1850 1851 for (i = 0; i < count; i++) { 1852 if (opp->required_opps[i]->available) 1853 continue; 1854 1855 opp->available = false; 1856 pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n", 1857 __func__, opp->required_opps[i]->np, opp->rates[0]); 1858 return; 1859 } 1860 } 1861 1862 /* 1863 * Returns: 1864 * 0: On success. And appropriate error message for duplicate OPPs. 1865 * -EBUSY: For OPP with same freq/volt and is available. The callers of 1866 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make 1867 * sure we don't print error messages unnecessarily if different parts of 1868 * kernel try to initialize the OPP table. 1869 * -EEXIST: For OPP with same freq but different volt or is unavailable. This 1870 * should be considered an error by the callers of _opp_add(). 1871 */ 1872 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp, 1873 struct opp_table *opp_table) 1874 { 1875 struct list_head *head; 1876 int ret; 1877 1878 mutex_lock(&opp_table->lock); 1879 head = &opp_table->opp_list; 1880 1881 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head); 1882 if (ret) { 1883 mutex_unlock(&opp_table->lock); 1884 return ret; 1885 } 1886 1887 list_add(&new_opp->node, head); 1888 mutex_unlock(&opp_table->lock); 1889 1890 new_opp->opp_table = opp_table; 1891 kref_init(&new_opp->kref); 1892 1893 opp_debug_create_one(new_opp, opp_table); 1894 1895 if (!_opp_supported_by_regulators(new_opp, opp_table)) { 1896 new_opp->available = false; 1897 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n", 1898 __func__, new_opp->rates[0]); 1899 } 1900 1901 /* required-opps not fully initialized yet */ 1902 if (lazy_linking_pending(opp_table)) 1903 return 0; 1904 1905 _required_opps_available(new_opp, opp_table->required_opp_count); 1906 1907 return 0; 1908 } 1909 1910 /** 1911 * _opp_add_v1() - Allocate a OPP based on v1 bindings. 1912 * @opp_table: OPP table 1913 * @dev: device for which we do this operation 1914 * @freq: Frequency in Hz for this OPP 1915 * @u_volt: Voltage in uVolts for this OPP 1916 * @dynamic: Dynamically added OPPs. 1917 * 1918 * This function adds an opp definition to the opp table and returns status. 1919 * The opp is made available by default and it can be controlled using 1920 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove. 1921 * 1922 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table 1923 * and freed by dev_pm_opp_of_remove_table. 1924 * 1925 * Return: 1926 * 0 On success OR 1927 * Duplicate OPPs (both freq and volt are same) and opp->available 1928 * -EEXIST Freq are same and volt are different OR 1929 * Duplicate OPPs (both freq and volt are same) and !opp->available 1930 * -ENOMEM Memory allocation failure 1931 */ 1932 int _opp_add_v1(struct opp_table *opp_table, struct device *dev, 1933 unsigned long freq, long u_volt, bool dynamic) 1934 { 1935 struct dev_pm_opp *new_opp; 1936 unsigned long tol; 1937 int ret; 1938 1939 if (!assert_single_clk(opp_table)) 1940 return -EINVAL; 1941 1942 new_opp = _opp_allocate(opp_table); 1943 if (!new_opp) 1944 return -ENOMEM; 1945 1946 /* populate the opp table */ 1947 new_opp->rates[0] = freq; 1948 tol = u_volt * opp_table->voltage_tolerance_v1 / 100; 1949 new_opp->supplies[0].u_volt = u_volt; 1950 new_opp->supplies[0].u_volt_min = u_volt - tol; 1951 new_opp->supplies[0].u_volt_max = u_volt + tol; 1952 new_opp->available = true; 1953 new_opp->dynamic = dynamic; 1954 1955 ret = _opp_add(dev, new_opp, opp_table); 1956 if (ret) { 1957 /* Don't return error for duplicate OPPs */ 1958 if (ret == -EBUSY) 1959 ret = 0; 1960 goto free_opp; 1961 } 1962 1963 /* 1964 * Notify the changes in the availability of the operable 1965 * frequency/voltage list. 1966 */ 1967 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp); 1968 return 0; 1969 1970 free_opp: 1971 _opp_free(new_opp); 1972 1973 return ret; 1974 } 1975 1976 /** 1977 * _opp_set_supported_hw() - Set supported platforms 1978 * @dev: Device for which supported-hw has to be set. 1979 * @versions: Array of hierarchy of versions to match. 1980 * @count: Number of elements in the array. 1981 * 1982 * This is required only for the V2 bindings, and it enables a platform to 1983 * specify the hierarchy of versions it supports. OPP layer will then enable 1984 * OPPs, which are available for those versions, based on its 'opp-supported-hw' 1985 * property. 1986 */ 1987 static int _opp_set_supported_hw(struct opp_table *opp_table, 1988 const u32 *versions, unsigned int count) 1989 { 1990 /* Another CPU that shares the OPP table has set the property ? */ 1991 if (opp_table->supported_hw) 1992 return 0; 1993 1994 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions), 1995 GFP_KERNEL); 1996 if (!opp_table->supported_hw) 1997 return -ENOMEM; 1998 1999 opp_table->supported_hw_count = count; 2000 2001 return 0; 2002 } 2003 2004 /** 2005 * _opp_put_supported_hw() - Releases resources blocked for supported hw 2006 * @opp_table: OPP table returned by _opp_set_supported_hw(). 2007 * 2008 * This is required only for the V2 bindings, and is called for a matching 2009 * _opp_set_supported_hw(). Until this is called, the opp_table structure 2010 * will not be freed. 2011 */ 2012 static void _opp_put_supported_hw(struct opp_table *opp_table) 2013 { 2014 if (opp_table->supported_hw) { 2015 kfree(opp_table->supported_hw); 2016 opp_table->supported_hw = NULL; 2017 opp_table->supported_hw_count = 0; 2018 } 2019 } 2020 2021 /** 2022 * _opp_set_prop_name() - Set prop-extn name 2023 * @dev: Device for which the prop-name has to be set. 2024 * @name: name to postfix to properties. 2025 * 2026 * This is required only for the V2 bindings, and it enables a platform to 2027 * specify the extn to be used for certain property names. The properties to 2028 * which the extension will apply are opp-microvolt and opp-microamp. OPP core 2029 * should postfix the property name with -<name> while looking for them. 2030 */ 2031 static int _opp_set_prop_name(struct opp_table *opp_table, const char *name) 2032 { 2033 /* Another CPU that shares the OPP table has set the property ? */ 2034 if (!opp_table->prop_name) { 2035 opp_table->prop_name = kstrdup(name, GFP_KERNEL); 2036 if (!opp_table->prop_name) 2037 return -ENOMEM; 2038 } 2039 2040 return 0; 2041 } 2042 2043 /** 2044 * _opp_put_prop_name() - Releases resources blocked for prop-name 2045 * @opp_table: OPP table returned by _opp_set_prop_name(). 2046 * 2047 * This is required only for the V2 bindings, and is called for a matching 2048 * _opp_set_prop_name(). Until this is called, the opp_table structure 2049 * will not be freed. 2050 */ 2051 static void _opp_put_prop_name(struct opp_table *opp_table) 2052 { 2053 if (opp_table->prop_name) { 2054 kfree(opp_table->prop_name); 2055 opp_table->prop_name = NULL; 2056 } 2057 } 2058 2059 /** 2060 * _opp_set_regulators() - Set regulator names for the device 2061 * @dev: Device for which regulator name is being set. 2062 * @names: Array of pointers to the names of the regulator. 2063 * @count: Number of regulators. 2064 * 2065 * In order to support OPP switching, OPP layer needs to know the name of the 2066 * device's regulators, as the core would be required to switch voltages as 2067 * well. 2068 * 2069 * This must be called before any OPPs are initialized for the device. 2070 */ 2071 static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev, 2072 const char * const names[]) 2073 { 2074 const char * const *temp = names; 2075 struct regulator *reg; 2076 int count = 0, ret, i; 2077 2078 /* Count number of regulators */ 2079 while (*temp++) 2080 count++; 2081 2082 if (!count) 2083 return -EINVAL; 2084 2085 /* Another CPU that shares the OPP table has set the regulators ? */ 2086 if (opp_table->regulators) 2087 return 0; 2088 2089 opp_table->regulators = kmalloc_array(count, 2090 sizeof(*opp_table->regulators), 2091 GFP_KERNEL); 2092 if (!opp_table->regulators) 2093 return -ENOMEM; 2094 2095 for (i = 0; i < count; i++) { 2096 reg = regulator_get_optional(dev, names[i]); 2097 if (IS_ERR(reg)) { 2098 ret = dev_err_probe(dev, PTR_ERR(reg), 2099 "%s: no regulator (%s) found\n", 2100 __func__, names[i]); 2101 goto free_regulators; 2102 } 2103 2104 opp_table->regulators[i] = reg; 2105 } 2106 2107 opp_table->regulator_count = count; 2108 2109 /* Set generic config_regulators() for single regulators here */ 2110 if (count == 1) 2111 opp_table->config_regulators = _opp_config_regulator_single; 2112 2113 return 0; 2114 2115 free_regulators: 2116 while (i != 0) 2117 regulator_put(opp_table->regulators[--i]); 2118 2119 kfree(opp_table->regulators); 2120 opp_table->regulators = NULL; 2121 opp_table->regulator_count = -1; 2122 2123 return ret; 2124 } 2125 2126 /** 2127 * _opp_put_regulators() - Releases resources blocked for regulator 2128 * @opp_table: OPP table returned from _opp_set_regulators(). 2129 */ 2130 static void _opp_put_regulators(struct opp_table *opp_table) 2131 { 2132 int i; 2133 2134 if (!opp_table->regulators) 2135 return; 2136 2137 if (opp_table->enabled) { 2138 for (i = opp_table->regulator_count - 1; i >= 0; i--) 2139 regulator_disable(opp_table->regulators[i]); 2140 } 2141 2142 for (i = opp_table->regulator_count - 1; i >= 0; i--) 2143 regulator_put(opp_table->regulators[i]); 2144 2145 kfree(opp_table->regulators); 2146 opp_table->regulators = NULL; 2147 opp_table->regulator_count = -1; 2148 } 2149 2150 static void _put_clks(struct opp_table *opp_table, int count) 2151 { 2152 int i; 2153 2154 for (i = count - 1; i >= 0; i--) 2155 clk_put(opp_table->clks[i]); 2156 2157 kfree(opp_table->clks); 2158 opp_table->clks = NULL; 2159 } 2160 2161 /** 2162 * _opp_set_clknames() - Set clk names for the device 2163 * @dev: Device for which clk names is being set. 2164 * @names: Clk names. 2165 * 2166 * In order to support OPP switching, OPP layer needs to get pointers to the 2167 * clocks for the device. Simple cases work fine without using this routine 2168 * (i.e. by passing connection-id as NULL), but for a device with multiple 2169 * clocks available, the OPP core needs to know the exact names of the clks to 2170 * use. 2171 * 2172 * This must be called before any OPPs are initialized for the device. 2173 */ 2174 static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev, 2175 const char * const names[], 2176 config_clks_t config_clks) 2177 { 2178 const char * const *temp = names; 2179 int count = 0, ret, i; 2180 struct clk *clk; 2181 2182 /* Count number of clks */ 2183 while (*temp++) 2184 count++; 2185 2186 /* 2187 * This is a special case where we have a single clock, whose connection 2188 * id name is NULL, i.e. first two entries are NULL in the array. 2189 */ 2190 if (!count && !names[1]) 2191 count = 1; 2192 2193 /* Fail early for invalid configurations */ 2194 if (!count || (!config_clks && count > 1)) 2195 return -EINVAL; 2196 2197 /* Another CPU that shares the OPP table has set the clkname ? */ 2198 if (opp_table->clks) 2199 return 0; 2200 2201 opp_table->clks = kmalloc_array(count, sizeof(*opp_table->clks), 2202 GFP_KERNEL); 2203 if (!opp_table->clks) 2204 return -ENOMEM; 2205 2206 /* Find clks for the device */ 2207 for (i = 0; i < count; i++) { 2208 clk = clk_get(dev, names[i]); 2209 if (IS_ERR(clk)) { 2210 ret = dev_err_probe(dev, PTR_ERR(clk), 2211 "%s: Couldn't find clock with name: %s\n", 2212 __func__, names[i]); 2213 goto free_clks; 2214 } 2215 2216 opp_table->clks[i] = clk; 2217 } 2218 2219 opp_table->clk_count = count; 2220 opp_table->config_clks = config_clks; 2221 2222 /* Set generic single clk set here */ 2223 if (count == 1) { 2224 if (!opp_table->config_clks) 2225 opp_table->config_clks = _opp_config_clk_single; 2226 2227 /* 2228 * We could have just dropped the "clk" field and used "clks" 2229 * everywhere. Instead we kept the "clk" field around for 2230 * following reasons: 2231 * 2232 * - avoiding clks[0] everywhere else. 2233 * - not running single clk helpers for multiple clk usecase by 2234 * mistake. 2235 * 2236 * Since this is single-clk case, just update the clk pointer 2237 * too. 2238 */ 2239 opp_table->clk = opp_table->clks[0]; 2240 } 2241 2242 return 0; 2243 2244 free_clks: 2245 _put_clks(opp_table, i); 2246 return ret; 2247 } 2248 2249 /** 2250 * _opp_put_clknames() - Releases resources blocked for clks. 2251 * @opp_table: OPP table returned from _opp_set_clknames(). 2252 */ 2253 static void _opp_put_clknames(struct opp_table *opp_table) 2254 { 2255 if (!opp_table->clks) 2256 return; 2257 2258 opp_table->config_clks = NULL; 2259 opp_table->clk = ERR_PTR(-ENODEV); 2260 2261 _put_clks(opp_table, opp_table->clk_count); 2262 } 2263 2264 /** 2265 * _opp_set_config_regulators_helper() - Register custom set regulator helper. 2266 * @dev: Device for which the helper is getting registered. 2267 * @config_regulators: Custom set regulator helper. 2268 * 2269 * This is useful to support platforms with multiple regulators per device. 2270 * 2271 * This must be called before any OPPs are initialized for the device. 2272 */ 2273 static int _opp_set_config_regulators_helper(struct opp_table *opp_table, 2274 struct device *dev, config_regulators_t config_regulators) 2275 { 2276 /* Another CPU that shares the OPP table has set the helper ? */ 2277 if (!opp_table->config_regulators) 2278 opp_table->config_regulators = config_regulators; 2279 2280 return 0; 2281 } 2282 2283 /** 2284 * _opp_put_config_regulators_helper() - Releases resources blocked for 2285 * config_regulators helper. 2286 * @opp_table: OPP table returned from _opp_set_config_regulators_helper(). 2287 * 2288 * Release resources blocked for platform specific config_regulators helper. 2289 */ 2290 static void _opp_put_config_regulators_helper(struct opp_table *opp_table) 2291 { 2292 if (opp_table->config_regulators) 2293 opp_table->config_regulators = NULL; 2294 } 2295 2296 static void _detach_genpd(struct opp_table *opp_table) 2297 { 2298 int index; 2299 2300 if (!opp_table->genpd_virt_devs) 2301 return; 2302 2303 for (index = 0; index < opp_table->required_opp_count; index++) { 2304 if (!opp_table->genpd_virt_devs[index]) 2305 continue; 2306 2307 dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false); 2308 opp_table->genpd_virt_devs[index] = NULL; 2309 } 2310 2311 kfree(opp_table->genpd_virt_devs); 2312 opp_table->genpd_virt_devs = NULL; 2313 } 2314 2315 /** 2316 * _opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer 2317 * @dev: Consumer device for which the genpd is getting attached. 2318 * @names: Null terminated array of pointers containing names of genpd to attach. 2319 * @virt_devs: Pointer to return the array of virtual devices. 2320 * 2321 * Multiple generic power domains for a device are supported with the help of 2322 * virtual genpd devices, which are created for each consumer device - genpd 2323 * pair. These are the device structures which are attached to the power domain 2324 * and are required by the OPP core to set the performance state of the genpd. 2325 * The same API also works for the case where single genpd is available and so 2326 * we don't need to support that separately. 2327 * 2328 * This helper will normally be called by the consumer driver of the device 2329 * "dev", as only that has details of the genpd names. 2330 * 2331 * This helper needs to be called once with a list of all genpd to attach. 2332 * Otherwise the original device structure will be used instead by the OPP core. 2333 * 2334 * The order of entries in the names array must match the order in which 2335 * "required-opps" are added in DT. 2336 */ 2337 static int _opp_attach_genpd(struct opp_table *opp_table, struct device *dev, 2338 const char * const *names, struct device ***virt_devs) 2339 { 2340 struct device *virt_dev; 2341 int index = 0, ret = -EINVAL; 2342 const char * const *name = names; 2343 2344 if (opp_table->genpd_virt_devs) 2345 return 0; 2346 2347 /* 2348 * If the genpd's OPP table isn't already initialized, parsing of the 2349 * required-opps fail for dev. We should retry this after genpd's OPP 2350 * table is added. 2351 */ 2352 if (!opp_table->required_opp_count) 2353 return -EPROBE_DEFER; 2354 2355 mutex_lock(&opp_table->genpd_virt_dev_lock); 2356 2357 opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count, 2358 sizeof(*opp_table->genpd_virt_devs), 2359 GFP_KERNEL); 2360 if (!opp_table->genpd_virt_devs) 2361 goto unlock; 2362 2363 while (*name) { 2364 if (index >= opp_table->required_opp_count) { 2365 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n", 2366 *name, opp_table->required_opp_count, index); 2367 goto err; 2368 } 2369 2370 virt_dev = dev_pm_domain_attach_by_name(dev, *name); 2371 if (IS_ERR_OR_NULL(virt_dev)) { 2372 ret = PTR_ERR(virt_dev) ? : -ENODEV; 2373 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret); 2374 goto err; 2375 } 2376 2377 opp_table->genpd_virt_devs[index] = virt_dev; 2378 index++; 2379 name++; 2380 } 2381 2382 if (virt_devs) 2383 *virt_devs = opp_table->genpd_virt_devs; 2384 mutex_unlock(&opp_table->genpd_virt_dev_lock); 2385 2386 return 0; 2387 2388 err: 2389 _detach_genpd(opp_table); 2390 unlock: 2391 mutex_unlock(&opp_table->genpd_virt_dev_lock); 2392 return ret; 2393 2394 } 2395 2396 /** 2397 * _opp_detach_genpd() - Detach genpd(s) from the device. 2398 * @opp_table: OPP table returned by _opp_attach_genpd(). 2399 * 2400 * This detaches the genpd(s), resets the virtual device pointers, and puts the 2401 * OPP table. 2402 */ 2403 static void _opp_detach_genpd(struct opp_table *opp_table) 2404 { 2405 /* 2406 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting 2407 * used in parallel. 2408 */ 2409 mutex_lock(&opp_table->genpd_virt_dev_lock); 2410 _detach_genpd(opp_table); 2411 mutex_unlock(&opp_table->genpd_virt_dev_lock); 2412 } 2413 2414 static void _opp_clear_config(struct opp_config_data *data) 2415 { 2416 if (data->flags & OPP_CONFIG_GENPD) 2417 _opp_detach_genpd(data->opp_table); 2418 if (data->flags & OPP_CONFIG_REGULATOR) 2419 _opp_put_regulators(data->opp_table); 2420 if (data->flags & OPP_CONFIG_SUPPORTED_HW) 2421 _opp_put_supported_hw(data->opp_table); 2422 if (data->flags & OPP_CONFIG_REGULATOR_HELPER) 2423 _opp_put_config_regulators_helper(data->opp_table); 2424 if (data->flags & OPP_CONFIG_PROP_NAME) 2425 _opp_put_prop_name(data->opp_table); 2426 if (data->flags & OPP_CONFIG_CLK) 2427 _opp_put_clknames(data->opp_table); 2428 2429 dev_pm_opp_put_opp_table(data->opp_table); 2430 kfree(data); 2431 } 2432 2433 /** 2434 * dev_pm_opp_set_config() - Set OPP configuration for the device. 2435 * @dev: Device for which configuration is being set. 2436 * @config: OPP configuration. 2437 * 2438 * This allows all device OPP configurations to be performed at once. 2439 * 2440 * This must be called before any OPPs are initialized for the device. This may 2441 * be called multiple times for the same OPP table, for example once for each 2442 * CPU that share the same table. This must be balanced by the same number of 2443 * calls to dev_pm_opp_clear_config() in order to free the OPP table properly. 2444 * 2445 * This returns a token to the caller, which must be passed to 2446 * dev_pm_opp_clear_config() to free the resources later. The value of the 2447 * returned token will be >= 1 for success and negative for errors. The minimum 2448 * value of 1 is chosen here to make it easy for callers to manage the resource. 2449 */ 2450 int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config) 2451 { 2452 struct opp_table *opp_table; 2453 struct opp_config_data *data; 2454 unsigned int id; 2455 int ret; 2456 2457 data = kmalloc(sizeof(*data), GFP_KERNEL); 2458 if (!data) 2459 return -ENOMEM; 2460 2461 opp_table = _add_opp_table(dev, false); 2462 if (IS_ERR(opp_table)) { 2463 kfree(data); 2464 return PTR_ERR(opp_table); 2465 } 2466 2467 data->opp_table = opp_table; 2468 data->flags = 0; 2469 2470 /* This should be called before OPPs are initialized */ 2471 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 2472 ret = -EBUSY; 2473 goto err; 2474 } 2475 2476 /* Configure clocks */ 2477 if (config->clk_names) { 2478 ret = _opp_set_clknames(opp_table, dev, config->clk_names, 2479 config->config_clks); 2480 if (ret) 2481 goto err; 2482 2483 data->flags |= OPP_CONFIG_CLK; 2484 } else if (config->config_clks) { 2485 /* Don't allow config callback without clocks */ 2486 ret = -EINVAL; 2487 goto err; 2488 } 2489 2490 /* Configure property names */ 2491 if (config->prop_name) { 2492 ret = _opp_set_prop_name(opp_table, config->prop_name); 2493 if (ret) 2494 goto err; 2495 2496 data->flags |= OPP_CONFIG_PROP_NAME; 2497 } 2498 2499 /* Configure config_regulators helper */ 2500 if (config->config_regulators) { 2501 ret = _opp_set_config_regulators_helper(opp_table, dev, 2502 config->config_regulators); 2503 if (ret) 2504 goto err; 2505 2506 data->flags |= OPP_CONFIG_REGULATOR_HELPER; 2507 } 2508 2509 /* Configure supported hardware */ 2510 if (config->supported_hw) { 2511 ret = _opp_set_supported_hw(opp_table, config->supported_hw, 2512 config->supported_hw_count); 2513 if (ret) 2514 goto err; 2515 2516 data->flags |= OPP_CONFIG_SUPPORTED_HW; 2517 } 2518 2519 /* Configure supplies */ 2520 if (config->regulator_names) { 2521 ret = _opp_set_regulators(opp_table, dev, 2522 config->regulator_names); 2523 if (ret) 2524 goto err; 2525 2526 data->flags |= OPP_CONFIG_REGULATOR; 2527 } 2528 2529 /* Attach genpds */ 2530 if (config->genpd_names) { 2531 ret = _opp_attach_genpd(opp_table, dev, config->genpd_names, 2532 config->virt_devs); 2533 if (ret) 2534 goto err; 2535 2536 data->flags |= OPP_CONFIG_GENPD; 2537 } 2538 2539 ret = xa_alloc(&opp_configs, &id, data, XA_LIMIT(1, INT_MAX), 2540 GFP_KERNEL); 2541 if (ret) 2542 goto err; 2543 2544 return id; 2545 2546 err: 2547 _opp_clear_config(data); 2548 return ret; 2549 } 2550 EXPORT_SYMBOL_GPL(dev_pm_opp_set_config); 2551 2552 /** 2553 * dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration. 2554 * @opp_table: OPP table returned from dev_pm_opp_set_config(). 2555 * 2556 * This allows all device OPP configurations to be cleared at once. This must be 2557 * called once for each call made to dev_pm_opp_set_config(), in order to free 2558 * the OPPs properly. 2559 * 2560 * Currently the first call itself ends up freeing all the OPP configurations, 2561 * while the later ones only drop the OPP table reference. This works well for 2562 * now as we would never want to use an half initialized OPP table and want to 2563 * remove the configurations together. 2564 */ 2565 void dev_pm_opp_clear_config(int token) 2566 { 2567 struct opp_config_data *data; 2568 2569 /* 2570 * This lets the callers call this unconditionally and keep their code 2571 * simple. 2572 */ 2573 if (unlikely(token <= 0)) 2574 return; 2575 2576 data = xa_erase(&opp_configs, token); 2577 if (WARN_ON(!data)) 2578 return; 2579 2580 _opp_clear_config(data); 2581 } 2582 EXPORT_SYMBOL_GPL(dev_pm_opp_clear_config); 2583 2584 static void devm_pm_opp_config_release(void *token) 2585 { 2586 dev_pm_opp_clear_config((unsigned long)token); 2587 } 2588 2589 /** 2590 * devm_pm_opp_set_config() - Set OPP configuration for the device. 2591 * @dev: Device for which configuration is being set. 2592 * @config: OPP configuration. 2593 * 2594 * This allows all device OPP configurations to be performed at once. 2595 * This is a resource-managed variant of dev_pm_opp_set_config(). 2596 * 2597 * Return: 0 on success and errorno otherwise. 2598 */ 2599 int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config) 2600 { 2601 int token = dev_pm_opp_set_config(dev, config); 2602 2603 if (token < 0) 2604 return token; 2605 2606 return devm_add_action_or_reset(dev, devm_pm_opp_config_release, 2607 (void *) ((unsigned long) token)); 2608 } 2609 EXPORT_SYMBOL_GPL(devm_pm_opp_set_config); 2610 2611 /** 2612 * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP. 2613 * @src_table: OPP table which has @dst_table as one of its required OPP table. 2614 * @dst_table: Required OPP table of the @src_table. 2615 * @src_opp: OPP from the @src_table. 2616 * 2617 * This function returns the OPP (present in @dst_table) pointed out by the 2618 * "required-opps" property of the @src_opp (present in @src_table). 2619 * 2620 * The callers are required to call dev_pm_opp_put() for the returned OPP after 2621 * use. 2622 * 2623 * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise. 2624 */ 2625 struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table, 2626 struct opp_table *dst_table, 2627 struct dev_pm_opp *src_opp) 2628 { 2629 struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV); 2630 int i; 2631 2632 if (!src_table || !dst_table || !src_opp || 2633 !src_table->required_opp_tables) 2634 return ERR_PTR(-EINVAL); 2635 2636 /* required-opps not fully initialized yet */ 2637 if (lazy_linking_pending(src_table)) 2638 return ERR_PTR(-EBUSY); 2639 2640 for (i = 0; i < src_table->required_opp_count; i++) { 2641 if (src_table->required_opp_tables[i] == dst_table) { 2642 mutex_lock(&src_table->lock); 2643 2644 list_for_each_entry(opp, &src_table->opp_list, node) { 2645 if (opp == src_opp) { 2646 dest_opp = opp->required_opps[i]; 2647 dev_pm_opp_get(dest_opp); 2648 break; 2649 } 2650 } 2651 2652 mutex_unlock(&src_table->lock); 2653 break; 2654 } 2655 } 2656 2657 if (IS_ERR(dest_opp)) { 2658 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, 2659 src_table, dst_table); 2660 } 2661 2662 return dest_opp; 2663 } 2664 EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp); 2665 2666 /** 2667 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table. 2668 * @src_table: OPP table which has dst_table as one of its required OPP table. 2669 * @dst_table: Required OPP table of the src_table. 2670 * @pstate: Current performance state of the src_table. 2671 * 2672 * This Returns pstate of the OPP (present in @dst_table) pointed out by the 2673 * "required-opps" property of the OPP (present in @src_table) which has 2674 * performance state set to @pstate. 2675 * 2676 * Return: Zero or positive performance state on success, otherwise negative 2677 * value on errors. 2678 */ 2679 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table, 2680 struct opp_table *dst_table, 2681 unsigned int pstate) 2682 { 2683 struct dev_pm_opp *opp; 2684 int dest_pstate = -EINVAL; 2685 int i; 2686 2687 /* 2688 * Normally the src_table will have the "required_opps" property set to 2689 * point to one of the OPPs in the dst_table, but in some cases the 2690 * genpd and its master have one to one mapping of performance states 2691 * and so none of them have the "required-opps" property set. Return the 2692 * pstate of the src_table as it is in such cases. 2693 */ 2694 if (!src_table || !src_table->required_opp_count) 2695 return pstate; 2696 2697 /* required-opps not fully initialized yet */ 2698 if (lazy_linking_pending(src_table)) 2699 return -EBUSY; 2700 2701 for (i = 0; i < src_table->required_opp_count; i++) { 2702 if (src_table->required_opp_tables[i]->np == dst_table->np) 2703 break; 2704 } 2705 2706 if (unlikely(i == src_table->required_opp_count)) { 2707 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n", 2708 __func__, src_table, dst_table); 2709 return -EINVAL; 2710 } 2711 2712 mutex_lock(&src_table->lock); 2713 2714 list_for_each_entry(opp, &src_table->opp_list, node) { 2715 if (opp->pstate == pstate) { 2716 dest_pstate = opp->required_opps[i]->pstate; 2717 goto unlock; 2718 } 2719 } 2720 2721 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table, 2722 dst_table); 2723 2724 unlock: 2725 mutex_unlock(&src_table->lock); 2726 2727 return dest_pstate; 2728 } 2729 2730 /** 2731 * dev_pm_opp_add() - Add an OPP table from a table definitions 2732 * @dev: device for which we do this operation 2733 * @freq: Frequency in Hz for this OPP 2734 * @u_volt: Voltage in uVolts for this OPP 2735 * 2736 * This function adds an opp definition to the opp table and returns status. 2737 * The opp is made available by default and it can be controlled using 2738 * dev_pm_opp_enable/disable functions. 2739 * 2740 * Return: 2741 * 0 On success OR 2742 * Duplicate OPPs (both freq and volt are same) and opp->available 2743 * -EEXIST Freq are same and volt are different OR 2744 * Duplicate OPPs (both freq and volt are same) and !opp->available 2745 * -ENOMEM Memory allocation failure 2746 */ 2747 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt) 2748 { 2749 struct opp_table *opp_table; 2750 int ret; 2751 2752 opp_table = _add_opp_table(dev, true); 2753 if (IS_ERR(opp_table)) 2754 return PTR_ERR(opp_table); 2755 2756 /* Fix regulator count for dynamic OPPs */ 2757 opp_table->regulator_count = 1; 2758 2759 ret = _opp_add_v1(opp_table, dev, freq, u_volt, true); 2760 if (ret) 2761 dev_pm_opp_put_opp_table(opp_table); 2762 2763 return ret; 2764 } 2765 EXPORT_SYMBOL_GPL(dev_pm_opp_add); 2766 2767 /** 2768 * _opp_set_availability() - helper to set the availability of an opp 2769 * @dev: device for which we do this operation 2770 * @freq: OPP frequency to modify availability 2771 * @availability_req: availability status requested for this opp 2772 * 2773 * Set the availability of an OPP, opp_{enable,disable} share a common logic 2774 * which is isolated here. 2775 * 2776 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2777 * copy operation, returns 0 if no modification was done OR modification was 2778 * successful. 2779 */ 2780 static int _opp_set_availability(struct device *dev, unsigned long freq, 2781 bool availability_req) 2782 { 2783 struct opp_table *opp_table; 2784 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV); 2785 int r = 0; 2786 2787 /* Find the opp_table */ 2788 opp_table = _find_opp_table(dev); 2789 if (IS_ERR(opp_table)) { 2790 r = PTR_ERR(opp_table); 2791 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r); 2792 return r; 2793 } 2794 2795 if (!assert_single_clk(opp_table)) { 2796 r = -EINVAL; 2797 goto put_table; 2798 } 2799 2800 mutex_lock(&opp_table->lock); 2801 2802 /* Do we have the frequency? */ 2803 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) { 2804 if (tmp_opp->rates[0] == freq) { 2805 opp = tmp_opp; 2806 break; 2807 } 2808 } 2809 2810 if (IS_ERR(opp)) { 2811 r = PTR_ERR(opp); 2812 goto unlock; 2813 } 2814 2815 /* Is update really needed? */ 2816 if (opp->available == availability_req) 2817 goto unlock; 2818 2819 opp->available = availability_req; 2820 2821 dev_pm_opp_get(opp); 2822 mutex_unlock(&opp_table->lock); 2823 2824 /* Notify the change of the OPP availability */ 2825 if (availability_req) 2826 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE, 2827 opp); 2828 else 2829 blocking_notifier_call_chain(&opp_table->head, 2830 OPP_EVENT_DISABLE, opp); 2831 2832 dev_pm_opp_put(opp); 2833 goto put_table; 2834 2835 unlock: 2836 mutex_unlock(&opp_table->lock); 2837 put_table: 2838 dev_pm_opp_put_opp_table(opp_table); 2839 return r; 2840 } 2841 2842 /** 2843 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP 2844 * @dev: device for which we do this operation 2845 * @freq: OPP frequency to adjust voltage of 2846 * @u_volt: new OPP target voltage 2847 * @u_volt_min: new OPP min voltage 2848 * @u_volt_max: new OPP max voltage 2849 * 2850 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2851 * copy operation, returns 0 if no modifcation was done OR modification was 2852 * successful. 2853 */ 2854 int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq, 2855 unsigned long u_volt, unsigned long u_volt_min, 2856 unsigned long u_volt_max) 2857 2858 { 2859 struct opp_table *opp_table; 2860 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV); 2861 int r = 0; 2862 2863 /* Find the opp_table */ 2864 opp_table = _find_opp_table(dev); 2865 if (IS_ERR(opp_table)) { 2866 r = PTR_ERR(opp_table); 2867 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r); 2868 return r; 2869 } 2870 2871 if (!assert_single_clk(opp_table)) { 2872 r = -EINVAL; 2873 goto put_table; 2874 } 2875 2876 mutex_lock(&opp_table->lock); 2877 2878 /* Do we have the frequency? */ 2879 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) { 2880 if (tmp_opp->rates[0] == freq) { 2881 opp = tmp_opp; 2882 break; 2883 } 2884 } 2885 2886 if (IS_ERR(opp)) { 2887 r = PTR_ERR(opp); 2888 goto adjust_unlock; 2889 } 2890 2891 /* Is update really needed? */ 2892 if (opp->supplies->u_volt == u_volt) 2893 goto adjust_unlock; 2894 2895 opp->supplies->u_volt = u_volt; 2896 opp->supplies->u_volt_min = u_volt_min; 2897 opp->supplies->u_volt_max = u_volt_max; 2898 2899 dev_pm_opp_get(opp); 2900 mutex_unlock(&opp_table->lock); 2901 2902 /* Notify the voltage change of the OPP */ 2903 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE, 2904 opp); 2905 2906 dev_pm_opp_put(opp); 2907 goto put_table; 2908 2909 adjust_unlock: 2910 mutex_unlock(&opp_table->lock); 2911 put_table: 2912 dev_pm_opp_put_opp_table(opp_table); 2913 return r; 2914 } 2915 EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage); 2916 2917 /** 2918 * dev_pm_opp_enable() - Enable a specific OPP 2919 * @dev: device for which we do this operation 2920 * @freq: OPP frequency to enable 2921 * 2922 * Enables a provided opp. If the operation is valid, this returns 0, else the 2923 * corresponding error value. It is meant to be used for users an OPP available 2924 * after being temporarily made unavailable with dev_pm_opp_disable. 2925 * 2926 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2927 * copy operation, returns 0 if no modification was done OR modification was 2928 * successful. 2929 */ 2930 int dev_pm_opp_enable(struct device *dev, unsigned long freq) 2931 { 2932 return _opp_set_availability(dev, freq, true); 2933 } 2934 EXPORT_SYMBOL_GPL(dev_pm_opp_enable); 2935 2936 /** 2937 * dev_pm_opp_disable() - Disable a specific OPP 2938 * @dev: device for which we do this operation 2939 * @freq: OPP frequency to disable 2940 * 2941 * Disables a provided opp. If the operation is valid, this returns 2942 * 0, else the corresponding error value. It is meant to be a temporary 2943 * control by users to make this OPP not available until the circumstances are 2944 * right to make it available again (with a call to dev_pm_opp_enable). 2945 * 2946 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2947 * copy operation, returns 0 if no modification was done OR modification was 2948 * successful. 2949 */ 2950 int dev_pm_opp_disable(struct device *dev, unsigned long freq) 2951 { 2952 return _opp_set_availability(dev, freq, false); 2953 } 2954 EXPORT_SYMBOL_GPL(dev_pm_opp_disable); 2955 2956 /** 2957 * dev_pm_opp_register_notifier() - Register OPP notifier for the device 2958 * @dev: Device for which notifier needs to be registered 2959 * @nb: Notifier block to be registered 2960 * 2961 * Return: 0 on success or a negative error value. 2962 */ 2963 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb) 2964 { 2965 struct opp_table *opp_table; 2966 int ret; 2967 2968 opp_table = _find_opp_table(dev); 2969 if (IS_ERR(opp_table)) 2970 return PTR_ERR(opp_table); 2971 2972 ret = blocking_notifier_chain_register(&opp_table->head, nb); 2973 2974 dev_pm_opp_put_opp_table(opp_table); 2975 2976 return ret; 2977 } 2978 EXPORT_SYMBOL(dev_pm_opp_register_notifier); 2979 2980 /** 2981 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device 2982 * @dev: Device for which notifier needs to be unregistered 2983 * @nb: Notifier block to be unregistered 2984 * 2985 * Return: 0 on success or a negative error value. 2986 */ 2987 int dev_pm_opp_unregister_notifier(struct device *dev, 2988 struct notifier_block *nb) 2989 { 2990 struct opp_table *opp_table; 2991 int ret; 2992 2993 opp_table = _find_opp_table(dev); 2994 if (IS_ERR(opp_table)) 2995 return PTR_ERR(opp_table); 2996 2997 ret = blocking_notifier_chain_unregister(&opp_table->head, nb); 2998 2999 dev_pm_opp_put_opp_table(opp_table); 3000 3001 return ret; 3002 } 3003 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier); 3004 3005 /** 3006 * dev_pm_opp_remove_table() - Free all OPPs associated with the device 3007 * @dev: device pointer used to lookup OPP table. 3008 * 3009 * Free both OPPs created using static entries present in DT and the 3010 * dynamically added entries. 3011 */ 3012 void dev_pm_opp_remove_table(struct device *dev) 3013 { 3014 struct opp_table *opp_table; 3015 3016 /* Check for existing table for 'dev' */ 3017 opp_table = _find_opp_table(dev); 3018 if (IS_ERR(opp_table)) { 3019 int error = PTR_ERR(opp_table); 3020 3021 if (error != -ENODEV) 3022 WARN(1, "%s: opp_table: %d\n", 3023 IS_ERR_OR_NULL(dev) ? 3024 "Invalid device" : dev_name(dev), 3025 error); 3026 return; 3027 } 3028 3029 /* 3030 * Drop the extra reference only if the OPP table was successfully added 3031 * with dev_pm_opp_of_add_table() earlier. 3032 **/ 3033 if (_opp_remove_all_static(opp_table)) 3034 dev_pm_opp_put_opp_table(opp_table); 3035 3036 /* Drop reference taken by _find_opp_table() */ 3037 dev_pm_opp_put_opp_table(opp_table); 3038 } 3039 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table); 3040 3041 /** 3042 * dev_pm_opp_sync_regulators() - Sync state of voltage regulators 3043 * @dev: device for which we do this operation 3044 * 3045 * Sync voltage state of the OPP table regulators. 3046 * 3047 * Return: 0 on success or a negative error value. 3048 */ 3049 int dev_pm_opp_sync_regulators(struct device *dev) 3050 { 3051 struct opp_table *opp_table; 3052 struct regulator *reg; 3053 int i, ret = 0; 3054 3055 /* Device may not have OPP table */ 3056 opp_table = _find_opp_table(dev); 3057 if (IS_ERR(opp_table)) 3058 return 0; 3059 3060 /* Regulator may not be required for the device */ 3061 if (unlikely(!opp_table->regulators)) 3062 goto put_table; 3063 3064 /* Nothing to sync if voltage wasn't changed */ 3065 if (!opp_table->enabled) 3066 goto put_table; 3067 3068 for (i = 0; i < opp_table->regulator_count; i++) { 3069 reg = opp_table->regulators[i]; 3070 ret = regulator_sync_voltage(reg); 3071 if (ret) 3072 break; 3073 } 3074 put_table: 3075 /* Drop reference taken by _find_opp_table() */ 3076 dev_pm_opp_put_opp_table(opp_table); 3077 3078 return ret; 3079 } 3080 EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators); 3081