xref: /linux/drivers/opp/core.c (revision 1cd4bc987abb2823836cbb8f887026011ccddc8a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic OPP Interface
4  *
5  * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6  *	Nishanth Menon
7  *	Romit Dasgupta
8  *	Kevin Hilman
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/clk.h>
14 #include <linux/errno.h>
15 #include <linux/err.h>
16 #include <linux/device.h>
17 #include <linux/export.h>
18 #include <linux/pm_domain.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/slab.h>
21 #include <linux/xarray.h>
22 
23 #include "opp.h"
24 
25 /*
26  * The root of the list of all opp-tables. All opp_table structures branch off
27  * from here, with each opp_table containing the list of opps it supports in
28  * various states of availability.
29  */
30 LIST_HEAD(opp_tables);
31 
32 /* Lock to allow exclusive modification to the device and opp lists */
33 DEFINE_MUTEX(opp_table_lock);
34 /* Flag indicating that opp_tables list is being updated at the moment */
35 static bool opp_tables_busy;
36 
37 /* OPP ID allocator */
38 static DEFINE_XARRAY_ALLOC1(opp_configs);
39 
40 static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
41 {
42 	struct opp_device *opp_dev;
43 	bool found = false;
44 
45 	mutex_lock(&opp_table->lock);
46 	list_for_each_entry(opp_dev, &opp_table->dev_list, node)
47 		if (opp_dev->dev == dev) {
48 			found = true;
49 			break;
50 		}
51 
52 	mutex_unlock(&opp_table->lock);
53 	return found;
54 }
55 
56 static struct opp_table *_find_opp_table_unlocked(struct device *dev)
57 {
58 	struct opp_table *opp_table;
59 
60 	list_for_each_entry(opp_table, &opp_tables, node) {
61 		if (_find_opp_dev(dev, opp_table)) {
62 			_get_opp_table_kref(opp_table);
63 			return opp_table;
64 		}
65 	}
66 
67 	return ERR_PTR(-ENODEV);
68 }
69 
70 /**
71  * _find_opp_table() - find opp_table struct using device pointer
72  * @dev:	device pointer used to lookup OPP table
73  *
74  * Search OPP table for one containing matching device.
75  *
76  * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
77  * -EINVAL based on type of error.
78  *
79  * The callers must call dev_pm_opp_put_opp_table() after the table is used.
80  */
81 struct opp_table *_find_opp_table(struct device *dev)
82 {
83 	struct opp_table *opp_table;
84 
85 	if (IS_ERR_OR_NULL(dev)) {
86 		pr_err("%s: Invalid parameters\n", __func__);
87 		return ERR_PTR(-EINVAL);
88 	}
89 
90 	mutex_lock(&opp_table_lock);
91 	opp_table = _find_opp_table_unlocked(dev);
92 	mutex_unlock(&opp_table_lock);
93 
94 	return opp_table;
95 }
96 
97 /*
98  * Returns true if multiple clocks aren't there, else returns false with WARN.
99  *
100  * We don't force clk_count == 1 here as there are users who don't have a clock
101  * representation in the OPP table and manage the clock configuration themselves
102  * in an platform specific way.
103  */
104 static bool assert_single_clk(struct opp_table *opp_table)
105 {
106 	return !WARN_ON(opp_table->clk_count > 1);
107 }
108 
109 /**
110  * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
111  * @opp:	opp for which voltage has to be returned for
112  *
113  * Return: voltage in micro volt corresponding to the opp, else
114  * return 0
115  *
116  * This is useful only for devices with single power supply.
117  */
118 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
119 {
120 	if (IS_ERR_OR_NULL(opp)) {
121 		pr_err("%s: Invalid parameters\n", __func__);
122 		return 0;
123 	}
124 
125 	return opp->supplies[0].u_volt;
126 }
127 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
128 
129 /**
130  * dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp
131  * @opp:	opp for which voltage has to be returned for
132  * @supplies:	Placeholder for copying the supply information.
133  *
134  * Return: negative error number on failure, 0 otherwise on success after
135  * setting @supplies.
136  *
137  * This can be used for devices with any number of power supplies. The caller
138  * must ensure the @supplies array must contain space for each regulator.
139  */
140 int dev_pm_opp_get_supplies(struct dev_pm_opp *opp,
141 			    struct dev_pm_opp_supply *supplies)
142 {
143 	if (IS_ERR_OR_NULL(opp) || !supplies) {
144 		pr_err("%s: Invalid parameters\n", __func__);
145 		return -EINVAL;
146 	}
147 
148 	memcpy(supplies, opp->supplies,
149 	       sizeof(*supplies) * opp->opp_table->regulator_count);
150 	return 0;
151 }
152 EXPORT_SYMBOL_GPL(dev_pm_opp_get_supplies);
153 
154 /**
155  * dev_pm_opp_get_power() - Gets the power corresponding to an opp
156  * @opp:	opp for which power has to be returned for
157  *
158  * Return: power in micro watt corresponding to the opp, else
159  * return 0
160  *
161  * This is useful only for devices with single power supply.
162  */
163 unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp)
164 {
165 	unsigned long opp_power = 0;
166 	int i;
167 
168 	if (IS_ERR_OR_NULL(opp)) {
169 		pr_err("%s: Invalid parameters\n", __func__);
170 		return 0;
171 	}
172 	for (i = 0; i < opp->opp_table->regulator_count; i++)
173 		opp_power += opp->supplies[i].u_watt;
174 
175 	return opp_power;
176 }
177 EXPORT_SYMBOL_GPL(dev_pm_opp_get_power);
178 
179 /**
180  * dev_pm_opp_get_freq_indexed() - Gets the frequency corresponding to an
181  *				   available opp with specified index
182  * @opp: opp for which frequency has to be returned for
183  * @index: index of the frequency within the required opp
184  *
185  * Return: frequency in hertz corresponding to the opp with specified index,
186  * else return 0
187  */
188 unsigned long dev_pm_opp_get_freq_indexed(struct dev_pm_opp *opp, u32 index)
189 {
190 	if (IS_ERR_OR_NULL(opp) || index >= opp->opp_table->clk_count) {
191 		pr_err("%s: Invalid parameters\n", __func__);
192 		return 0;
193 	}
194 
195 	return opp->rates[index];
196 }
197 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq_indexed);
198 
199 /**
200  * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
201  * @opp:	opp for which level value has to be returned for
202  *
203  * Return: level read from device tree corresponding to the opp, else
204  * return U32_MAX.
205  */
206 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
207 {
208 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
209 		pr_err("%s: Invalid parameters\n", __func__);
210 		return 0;
211 	}
212 
213 	return opp->level;
214 }
215 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
216 
217 /**
218  * dev_pm_opp_get_required_pstate() - Gets the required performance state
219  *                                    corresponding to an available opp
220  * @opp:	opp for which performance state has to be returned for
221  * @index:	index of the required opp
222  *
223  * Return: performance state read from device tree corresponding to the
224  * required opp, else return U32_MAX.
225  */
226 unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
227 					    unsigned int index)
228 {
229 	if (IS_ERR_OR_NULL(opp) || !opp->available ||
230 	    index >= opp->opp_table->required_opp_count) {
231 		pr_err("%s: Invalid parameters\n", __func__);
232 		return 0;
233 	}
234 
235 	/* required-opps not fully initialized yet */
236 	if (lazy_linking_pending(opp->opp_table))
237 		return 0;
238 
239 	/* The required OPP table must belong to a genpd */
240 	if (unlikely(!opp->opp_table->required_opp_tables[index]->is_genpd)) {
241 		pr_err("%s: Performance state is only valid for genpds.\n", __func__);
242 		return 0;
243 	}
244 
245 	return opp->required_opps[index]->level;
246 }
247 EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
248 
249 /**
250  * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
251  * @opp: opp for which turbo mode is being verified
252  *
253  * Turbo OPPs are not for normal use, and can be enabled (under certain
254  * conditions) for short duration of times to finish high throughput work
255  * quickly. Running on them for longer times may overheat the chip.
256  *
257  * Return: true if opp is turbo opp, else false.
258  */
259 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
260 {
261 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
262 		pr_err("%s: Invalid parameters\n", __func__);
263 		return false;
264 	}
265 
266 	return opp->turbo;
267 }
268 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
269 
270 /**
271  * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
272  * @dev:	device for which we do this operation
273  *
274  * Return: This function returns the max clock latency in nanoseconds.
275  */
276 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
277 {
278 	struct opp_table *opp_table;
279 	unsigned long clock_latency_ns;
280 
281 	opp_table = _find_opp_table(dev);
282 	if (IS_ERR(opp_table))
283 		return 0;
284 
285 	clock_latency_ns = opp_table->clock_latency_ns_max;
286 
287 	dev_pm_opp_put_opp_table(opp_table);
288 
289 	return clock_latency_ns;
290 }
291 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
292 
293 /**
294  * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
295  * @dev: device for which we do this operation
296  *
297  * Return: This function returns the max voltage latency in nanoseconds.
298  */
299 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
300 {
301 	struct opp_table *opp_table;
302 	struct dev_pm_opp *opp;
303 	struct regulator *reg;
304 	unsigned long latency_ns = 0;
305 	int ret, i, count;
306 	struct {
307 		unsigned long min;
308 		unsigned long max;
309 	} *uV;
310 
311 	opp_table = _find_opp_table(dev);
312 	if (IS_ERR(opp_table))
313 		return 0;
314 
315 	/* Regulator may not be required for the device */
316 	if (!opp_table->regulators)
317 		goto put_opp_table;
318 
319 	count = opp_table->regulator_count;
320 
321 	uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
322 	if (!uV)
323 		goto put_opp_table;
324 
325 	mutex_lock(&opp_table->lock);
326 
327 	for (i = 0; i < count; i++) {
328 		uV[i].min = ~0;
329 		uV[i].max = 0;
330 
331 		list_for_each_entry(opp, &opp_table->opp_list, node) {
332 			if (!opp->available)
333 				continue;
334 
335 			if (opp->supplies[i].u_volt_min < uV[i].min)
336 				uV[i].min = opp->supplies[i].u_volt_min;
337 			if (opp->supplies[i].u_volt_max > uV[i].max)
338 				uV[i].max = opp->supplies[i].u_volt_max;
339 		}
340 	}
341 
342 	mutex_unlock(&opp_table->lock);
343 
344 	/*
345 	 * The caller needs to ensure that opp_table (and hence the regulator)
346 	 * isn't freed, while we are executing this routine.
347 	 */
348 	for (i = 0; i < count; i++) {
349 		reg = opp_table->regulators[i];
350 		ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
351 		if (ret > 0)
352 			latency_ns += ret * 1000;
353 	}
354 
355 	kfree(uV);
356 put_opp_table:
357 	dev_pm_opp_put_opp_table(opp_table);
358 
359 	return latency_ns;
360 }
361 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
362 
363 /**
364  * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
365  *					     nanoseconds
366  * @dev: device for which we do this operation
367  *
368  * Return: This function returns the max transition latency, in nanoseconds, to
369  * switch from one OPP to other.
370  */
371 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
372 {
373 	return dev_pm_opp_get_max_volt_latency(dev) +
374 		dev_pm_opp_get_max_clock_latency(dev);
375 }
376 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
377 
378 /**
379  * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
380  * @dev:	device for which we do this operation
381  *
382  * Return: This function returns the frequency of the OPP marked as suspend_opp
383  * if one is available, else returns 0;
384  */
385 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
386 {
387 	struct opp_table *opp_table;
388 	unsigned long freq = 0;
389 
390 	opp_table = _find_opp_table(dev);
391 	if (IS_ERR(opp_table))
392 		return 0;
393 
394 	if (opp_table->suspend_opp && opp_table->suspend_opp->available)
395 		freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
396 
397 	dev_pm_opp_put_opp_table(opp_table);
398 
399 	return freq;
400 }
401 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
402 
403 int _get_opp_count(struct opp_table *opp_table)
404 {
405 	struct dev_pm_opp *opp;
406 	int count = 0;
407 
408 	mutex_lock(&opp_table->lock);
409 
410 	list_for_each_entry(opp, &opp_table->opp_list, node) {
411 		if (opp->available)
412 			count++;
413 	}
414 
415 	mutex_unlock(&opp_table->lock);
416 
417 	return count;
418 }
419 
420 /**
421  * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
422  * @dev:	device for which we do this operation
423  *
424  * Return: This function returns the number of available opps if there are any,
425  * else returns 0 if none or the corresponding error value.
426  */
427 int dev_pm_opp_get_opp_count(struct device *dev)
428 {
429 	struct opp_table *opp_table;
430 	int count;
431 
432 	opp_table = _find_opp_table(dev);
433 	if (IS_ERR(opp_table)) {
434 		count = PTR_ERR(opp_table);
435 		dev_dbg(dev, "%s: OPP table not found (%d)\n",
436 			__func__, count);
437 		return count;
438 	}
439 
440 	count = _get_opp_count(opp_table);
441 	dev_pm_opp_put_opp_table(opp_table);
442 
443 	return count;
444 }
445 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
446 
447 /* Helpers to read keys */
448 static unsigned long _read_freq(struct dev_pm_opp *opp, int index)
449 {
450 	return opp->rates[index];
451 }
452 
453 static unsigned long _read_level(struct dev_pm_opp *opp, int index)
454 {
455 	return opp->level;
456 }
457 
458 static unsigned long _read_bw(struct dev_pm_opp *opp, int index)
459 {
460 	return opp->bandwidth[index].peak;
461 }
462 
463 /* Generic comparison helpers */
464 static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
465 			   unsigned long opp_key, unsigned long key)
466 {
467 	if (opp_key == key) {
468 		*opp = temp_opp;
469 		return true;
470 	}
471 
472 	return false;
473 }
474 
475 static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
476 			  unsigned long opp_key, unsigned long key)
477 {
478 	if (opp_key >= key) {
479 		*opp = temp_opp;
480 		return true;
481 	}
482 
483 	return false;
484 }
485 
486 static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
487 			   unsigned long opp_key, unsigned long key)
488 {
489 	if (opp_key > key)
490 		return true;
491 
492 	*opp = temp_opp;
493 	return false;
494 }
495 
496 /* Generic key finding helpers */
497 static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table,
498 		unsigned long *key, int index, bool available,
499 		unsigned long (*read)(struct dev_pm_opp *opp, int index),
500 		bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
501 				unsigned long opp_key, unsigned long key),
502 		bool (*assert)(struct opp_table *opp_table))
503 {
504 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
505 
506 	/* Assert that the requirement is met */
507 	if (assert && !assert(opp_table))
508 		return ERR_PTR(-EINVAL);
509 
510 	mutex_lock(&opp_table->lock);
511 
512 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
513 		if (temp_opp->available == available) {
514 			if (compare(&opp, temp_opp, read(temp_opp, index), *key))
515 				break;
516 		}
517 	}
518 
519 	/* Increment the reference count of OPP */
520 	if (!IS_ERR(opp)) {
521 		*key = read(opp, index);
522 		dev_pm_opp_get(opp);
523 	}
524 
525 	mutex_unlock(&opp_table->lock);
526 
527 	return opp;
528 }
529 
530 static struct dev_pm_opp *
531 _find_key(struct device *dev, unsigned long *key, int index, bool available,
532 	  unsigned long (*read)(struct dev_pm_opp *opp, int index),
533 	  bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
534 			  unsigned long opp_key, unsigned long key),
535 	  bool (*assert)(struct opp_table *opp_table))
536 {
537 	struct opp_table *opp_table;
538 	struct dev_pm_opp *opp;
539 
540 	opp_table = _find_opp_table(dev);
541 	if (IS_ERR(opp_table)) {
542 		dev_err(dev, "%s: OPP table not found (%ld)\n", __func__,
543 			PTR_ERR(opp_table));
544 		return ERR_CAST(opp_table);
545 	}
546 
547 	opp = _opp_table_find_key(opp_table, key, index, available, read,
548 				  compare, assert);
549 
550 	dev_pm_opp_put_opp_table(opp_table);
551 
552 	return opp;
553 }
554 
555 static struct dev_pm_opp *_find_key_exact(struct device *dev,
556 		unsigned long key, int index, bool available,
557 		unsigned long (*read)(struct dev_pm_opp *opp, int index),
558 		bool (*assert)(struct opp_table *opp_table))
559 {
560 	/*
561 	 * The value of key will be updated here, but will be ignored as the
562 	 * caller doesn't need it.
563 	 */
564 	return _find_key(dev, &key, index, available, read, _compare_exact,
565 			 assert);
566 }
567 
568 static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table,
569 		unsigned long *key, int index, bool available,
570 		unsigned long (*read)(struct dev_pm_opp *opp, int index),
571 		bool (*assert)(struct opp_table *opp_table))
572 {
573 	return _opp_table_find_key(opp_table, key, index, available, read,
574 				   _compare_ceil, assert);
575 }
576 
577 static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key,
578 		int index, bool available,
579 		unsigned long (*read)(struct dev_pm_opp *opp, int index),
580 		bool (*assert)(struct opp_table *opp_table))
581 {
582 	return _find_key(dev, key, index, available, read, _compare_ceil,
583 			 assert);
584 }
585 
586 static struct dev_pm_opp *_find_key_floor(struct device *dev,
587 		unsigned long *key, int index, bool available,
588 		unsigned long (*read)(struct dev_pm_opp *opp, int index),
589 		bool (*assert)(struct opp_table *opp_table))
590 {
591 	return _find_key(dev, key, index, available, read, _compare_floor,
592 			 assert);
593 }
594 
595 /**
596  * dev_pm_opp_find_freq_exact() - search for an exact frequency
597  * @dev:		device for which we do this operation
598  * @freq:		frequency to search for
599  * @available:		true/false - match for available opp
600  *
601  * Return: Searches for exact match in the opp table and returns pointer to the
602  * matching opp if found, else returns ERR_PTR in case of error and should
603  * be handled using IS_ERR. Error return values can be:
604  * EINVAL:	for bad pointer
605  * ERANGE:	no match found for search
606  * ENODEV:	if device not found in list of registered devices
607  *
608  * Note: available is a modifier for the search. if available=true, then the
609  * match is for exact matching frequency and is available in the stored OPP
610  * table. if false, the match is for exact frequency which is not available.
611  *
612  * This provides a mechanism to enable an opp which is not available currently
613  * or the opposite as well.
614  *
615  * The callers are required to call dev_pm_opp_put() for the returned OPP after
616  * use.
617  */
618 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
619 		unsigned long freq, bool available)
620 {
621 	return _find_key_exact(dev, freq, 0, available, _read_freq,
622 			       assert_single_clk);
623 }
624 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
625 
626 /**
627  * dev_pm_opp_find_freq_exact_indexed() - Search for an exact freq for the
628  *					 clock corresponding to the index
629  * @dev:	Device for which we do this operation
630  * @freq:	frequency to search for
631  * @index:	Clock index
632  * @available:	true/false - match for available opp
633  *
634  * Search for the matching exact OPP for the clock corresponding to the
635  * specified index from a starting freq for a device.
636  *
637  * Return: matching *opp , else returns ERR_PTR in case of error and should be
638  * handled using IS_ERR. Error return values can be:
639  * EINVAL:	for bad pointer
640  * ERANGE:	no match found for search
641  * ENODEV:	if device not found in list of registered devices
642  *
643  * The callers are required to call dev_pm_opp_put() for the returned OPP after
644  * use.
645  */
646 struct dev_pm_opp *
647 dev_pm_opp_find_freq_exact_indexed(struct device *dev, unsigned long freq,
648 				   u32 index, bool available)
649 {
650 	return _find_key_exact(dev, freq, index, available, _read_freq, NULL);
651 }
652 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact_indexed);
653 
654 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
655 						   unsigned long *freq)
656 {
657 	return _opp_table_find_key_ceil(opp_table, freq, 0, true, _read_freq,
658 					assert_single_clk);
659 }
660 
661 /**
662  * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
663  * @dev:	device for which we do this operation
664  * @freq:	Start frequency
665  *
666  * Search for the matching ceil *available* OPP from a starting freq
667  * for a device.
668  *
669  * Return: matching *opp and refreshes *freq accordingly, else returns
670  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
671  * values can be:
672  * EINVAL:	for bad pointer
673  * ERANGE:	no match found for search
674  * ENODEV:	if device not found in list of registered devices
675  *
676  * The callers are required to call dev_pm_opp_put() for the returned OPP after
677  * use.
678  */
679 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
680 					     unsigned long *freq)
681 {
682 	return _find_key_ceil(dev, freq, 0, true, _read_freq, assert_single_clk);
683 }
684 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
685 
686 /**
687  * dev_pm_opp_find_freq_ceil_indexed() - Search for a rounded ceil freq for the
688  *					 clock corresponding to the index
689  * @dev:	Device for which we do this operation
690  * @freq:	Start frequency
691  * @index:	Clock index
692  *
693  * Search for the matching ceil *available* OPP for the clock corresponding to
694  * the specified index from a starting freq for a device.
695  *
696  * Return: matching *opp and refreshes *freq accordingly, else returns
697  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
698  * values can be:
699  * EINVAL:	for bad pointer
700  * ERANGE:	no match found for search
701  * ENODEV:	if device not found in list of registered devices
702  *
703  * The callers are required to call dev_pm_opp_put() for the returned OPP after
704  * use.
705  */
706 struct dev_pm_opp *
707 dev_pm_opp_find_freq_ceil_indexed(struct device *dev, unsigned long *freq,
708 				  u32 index)
709 {
710 	return _find_key_ceil(dev, freq, index, true, _read_freq, NULL);
711 }
712 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_indexed);
713 
714 /**
715  * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
716  * @dev:	device for which we do this operation
717  * @freq:	Start frequency
718  *
719  * Search for the matching floor *available* OPP from a starting freq
720  * for a device.
721  *
722  * Return: matching *opp and refreshes *freq accordingly, else returns
723  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
724  * values can be:
725  * EINVAL:	for bad pointer
726  * ERANGE:	no match found for search
727  * ENODEV:	if device not found in list of registered devices
728  *
729  * The callers are required to call dev_pm_opp_put() for the returned OPP after
730  * use.
731  */
732 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
733 					      unsigned long *freq)
734 {
735 	return _find_key_floor(dev, freq, 0, true, _read_freq, assert_single_clk);
736 }
737 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
738 
739 /**
740  * dev_pm_opp_find_freq_floor_indexed() - Search for a rounded floor freq for the
741  *					  clock corresponding to the index
742  * @dev:	Device for which we do this operation
743  * @freq:	Start frequency
744  * @index:	Clock index
745  *
746  * Search for the matching floor *available* OPP for the clock corresponding to
747  * the specified index from a starting freq for a device.
748  *
749  * Return: matching *opp and refreshes *freq accordingly, else returns
750  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
751  * values can be:
752  * EINVAL:	for bad pointer
753  * ERANGE:	no match found for search
754  * ENODEV:	if device not found in list of registered devices
755  *
756  * The callers are required to call dev_pm_opp_put() for the returned OPP after
757  * use.
758  */
759 struct dev_pm_opp *
760 dev_pm_opp_find_freq_floor_indexed(struct device *dev, unsigned long *freq,
761 				   u32 index)
762 {
763 	return _find_key_floor(dev, freq, index, true, _read_freq, NULL);
764 }
765 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor_indexed);
766 
767 /**
768  * dev_pm_opp_find_level_exact() - search for an exact level
769  * @dev:		device for which we do this operation
770  * @level:		level to search for
771  *
772  * Return: Searches for exact match in the opp table and returns pointer to the
773  * matching opp if found, else returns ERR_PTR in case of error and should
774  * be handled using IS_ERR. Error return values can be:
775  * EINVAL:	for bad pointer
776  * ERANGE:	no match found for search
777  * ENODEV:	if device not found in list of registered devices
778  *
779  * The callers are required to call dev_pm_opp_put() for the returned OPP after
780  * use.
781  */
782 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
783 					       unsigned int level)
784 {
785 	return _find_key_exact(dev, level, 0, true, _read_level, NULL);
786 }
787 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
788 
789 /**
790  * dev_pm_opp_find_level_ceil() - search for an rounded up level
791  * @dev:		device for which we do this operation
792  * @level:		level to search for
793  *
794  * Return: Searches for rounded up match in the opp table and returns pointer
795  * to the  matching opp if found, else returns ERR_PTR in case of error and
796  * should be handled using IS_ERR. Error return values can be:
797  * EINVAL:	for bad pointer
798  * ERANGE:	no match found for search
799  * ENODEV:	if device not found in list of registered devices
800  *
801  * The callers are required to call dev_pm_opp_put() for the returned OPP after
802  * use.
803  */
804 struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
805 					      unsigned int *level)
806 {
807 	unsigned long temp = *level;
808 	struct dev_pm_opp *opp;
809 
810 	opp = _find_key_ceil(dev, &temp, 0, true, _read_level, NULL);
811 	if (IS_ERR(opp))
812 		return opp;
813 
814 	/* False match */
815 	if (temp == OPP_LEVEL_UNSET) {
816 		dev_err(dev, "%s: OPP levels aren't available\n", __func__);
817 		dev_pm_opp_put(opp);
818 		return ERR_PTR(-ENODEV);
819 	}
820 
821 	*level = temp;
822 	return opp;
823 }
824 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
825 
826 /**
827  * dev_pm_opp_find_level_floor() - Search for a rounded floor level
828  * @dev:	device for which we do this operation
829  * @level:	Start level
830  *
831  * Search for the matching floor *available* OPP from a starting level
832  * for a device.
833  *
834  * Return: matching *opp and refreshes *level accordingly, else returns
835  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
836  * values can be:
837  * EINVAL:	for bad pointer
838  * ERANGE:	no match found for search
839  * ENODEV:	if device not found in list of registered devices
840  *
841  * The callers are required to call dev_pm_opp_put() for the returned OPP after
842  * use.
843  */
844 struct dev_pm_opp *dev_pm_opp_find_level_floor(struct device *dev,
845 					       unsigned int *level)
846 {
847 	unsigned long temp = *level;
848 	struct dev_pm_opp *opp;
849 
850 	opp = _find_key_floor(dev, &temp, 0, true, _read_level, NULL);
851 	*level = temp;
852 	return opp;
853 }
854 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_floor);
855 
856 /**
857  * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth
858  * @dev:	device for which we do this operation
859  * @bw:	start bandwidth
860  * @index:	which bandwidth to compare, in case of OPPs with several values
861  *
862  * Search for the matching floor *available* OPP from a starting bandwidth
863  * for a device.
864  *
865  * Return: matching *opp and refreshes *bw accordingly, else returns
866  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
867  * values can be:
868  * EINVAL:	for bad pointer
869  * ERANGE:	no match found for search
870  * ENODEV:	if device not found in list of registered devices
871  *
872  * The callers are required to call dev_pm_opp_put() for the returned OPP after
873  * use.
874  */
875 struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw,
876 					   int index)
877 {
878 	unsigned long temp = *bw;
879 	struct dev_pm_opp *opp;
880 
881 	opp = _find_key_ceil(dev, &temp, index, true, _read_bw, NULL);
882 	*bw = temp;
883 	return opp;
884 }
885 EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil);
886 
887 /**
888  * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth
889  * @dev:	device for which we do this operation
890  * @bw:	start bandwidth
891  * @index:	which bandwidth to compare, in case of OPPs with several values
892  *
893  * Search for the matching floor *available* OPP from a starting bandwidth
894  * for a device.
895  *
896  * Return: matching *opp and refreshes *bw accordingly, else returns
897  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
898  * values can be:
899  * EINVAL:	for bad pointer
900  * ERANGE:	no match found for search
901  * ENODEV:	if device not found in list of registered devices
902  *
903  * The callers are required to call dev_pm_opp_put() for the returned OPP after
904  * use.
905  */
906 struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev,
907 					    unsigned int *bw, int index)
908 {
909 	unsigned long temp = *bw;
910 	struct dev_pm_opp *opp;
911 
912 	opp = _find_key_floor(dev, &temp, index, true, _read_bw, NULL);
913 	*bw = temp;
914 	return opp;
915 }
916 EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor);
917 
918 static int _set_opp_voltage(struct device *dev, struct regulator *reg,
919 			    struct dev_pm_opp_supply *supply)
920 {
921 	int ret;
922 
923 	/* Regulator not available for device */
924 	if (IS_ERR(reg)) {
925 		dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
926 			PTR_ERR(reg));
927 		return 0;
928 	}
929 
930 	dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
931 		supply->u_volt_min, supply->u_volt, supply->u_volt_max);
932 
933 	ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
934 					    supply->u_volt, supply->u_volt_max);
935 	if (ret)
936 		dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
937 			__func__, supply->u_volt_min, supply->u_volt,
938 			supply->u_volt_max, ret);
939 
940 	return ret;
941 }
942 
943 static int
944 _opp_config_clk_single(struct device *dev, struct opp_table *opp_table,
945 		       struct dev_pm_opp *opp, void *data, bool scaling_down)
946 {
947 	unsigned long *target = data;
948 	unsigned long freq;
949 	int ret;
950 
951 	/* One of target and opp must be available */
952 	if (target) {
953 		freq = *target;
954 	} else if (opp) {
955 		freq = opp->rates[0];
956 	} else {
957 		WARN_ON(1);
958 		return -EINVAL;
959 	}
960 
961 	ret = clk_set_rate(opp_table->clk, freq);
962 	if (ret) {
963 		dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
964 			ret);
965 	} else {
966 		opp_table->current_rate_single_clk = freq;
967 	}
968 
969 	return ret;
970 }
971 
972 /*
973  * Simple implementation for configuring multiple clocks. Configure clocks in
974  * the order in which they are present in the array while scaling up.
975  */
976 int dev_pm_opp_config_clks_simple(struct device *dev,
977 		struct opp_table *opp_table, struct dev_pm_opp *opp, void *data,
978 		bool scaling_down)
979 {
980 	int ret, i;
981 
982 	if (scaling_down) {
983 		for (i = opp_table->clk_count - 1; i >= 0; i--) {
984 			ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
985 			if (ret) {
986 				dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
987 					ret);
988 				return ret;
989 			}
990 		}
991 	} else {
992 		for (i = 0; i < opp_table->clk_count; i++) {
993 			ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
994 			if (ret) {
995 				dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
996 					ret);
997 				return ret;
998 			}
999 		}
1000 	}
1001 
1002 	return 0;
1003 }
1004 EXPORT_SYMBOL_GPL(dev_pm_opp_config_clks_simple);
1005 
1006 static int _opp_config_regulator_single(struct device *dev,
1007 			struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp,
1008 			struct regulator **regulators, unsigned int count)
1009 {
1010 	struct regulator *reg = regulators[0];
1011 	int ret;
1012 
1013 	/* This function only supports single regulator per device */
1014 	if (WARN_ON(count > 1)) {
1015 		dev_err(dev, "multiple regulators are not supported\n");
1016 		return -EINVAL;
1017 	}
1018 
1019 	ret = _set_opp_voltage(dev, reg, new_opp->supplies);
1020 	if (ret)
1021 		return ret;
1022 
1023 	/*
1024 	 * Enable the regulator after setting its voltages, otherwise it breaks
1025 	 * some boot-enabled regulators.
1026 	 */
1027 	if (unlikely(!new_opp->opp_table->enabled)) {
1028 		ret = regulator_enable(reg);
1029 		if (ret < 0)
1030 			dev_warn(dev, "Failed to enable regulator: %d", ret);
1031 	}
1032 
1033 	return 0;
1034 }
1035 
1036 static int _set_opp_bw(const struct opp_table *opp_table,
1037 		       struct dev_pm_opp *opp, struct device *dev)
1038 {
1039 	u32 avg, peak;
1040 	int i, ret;
1041 
1042 	if (!opp_table->paths)
1043 		return 0;
1044 
1045 	for (i = 0; i < opp_table->path_count; i++) {
1046 		if (!opp) {
1047 			avg = 0;
1048 			peak = 0;
1049 		} else {
1050 			avg = opp->bandwidth[i].avg;
1051 			peak = opp->bandwidth[i].peak;
1052 		}
1053 		ret = icc_set_bw(opp_table->paths[i], avg, peak);
1054 		if (ret) {
1055 			dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
1056 				opp ? "set" : "remove", i, ret);
1057 			return ret;
1058 		}
1059 	}
1060 
1061 	return 0;
1062 }
1063 
1064 /* This is only called for PM domain for now */
1065 static int _set_required_opps(struct device *dev, struct opp_table *opp_table,
1066 			      struct dev_pm_opp *opp, bool up)
1067 {
1068 	struct device **devs = opp_table->required_devs;
1069 	struct dev_pm_opp *required_opp;
1070 	int index, target, delta, ret;
1071 
1072 	if (!devs)
1073 		return 0;
1074 
1075 	/* required-opps not fully initialized yet */
1076 	if (lazy_linking_pending(opp_table))
1077 		return -EBUSY;
1078 
1079 	/* Scaling up? Set required OPPs in normal order, else reverse */
1080 	if (up) {
1081 		index = 0;
1082 		target = opp_table->required_opp_count;
1083 		delta = 1;
1084 	} else {
1085 		index = opp_table->required_opp_count - 1;
1086 		target = -1;
1087 		delta = -1;
1088 	}
1089 
1090 	while (index != target) {
1091 		if (devs[index]) {
1092 			required_opp = opp ? opp->required_opps[index] : NULL;
1093 
1094 			ret = dev_pm_opp_set_opp(devs[index], required_opp);
1095 			if (ret)
1096 				return ret;
1097 		}
1098 
1099 		index += delta;
1100 	}
1101 
1102 	return 0;
1103 }
1104 
1105 static int _set_opp_level(struct device *dev, struct opp_table *opp_table,
1106 			  struct dev_pm_opp *opp)
1107 {
1108 	unsigned int level = 0;
1109 	int ret = 0;
1110 
1111 	if (opp) {
1112 		if (opp->level == OPP_LEVEL_UNSET)
1113 			return 0;
1114 
1115 		level = opp->level;
1116 	}
1117 
1118 	/* Request a new performance state through the device's PM domain. */
1119 	ret = dev_pm_domain_set_performance_state(dev, level);
1120 	if (ret)
1121 		dev_err(dev, "Failed to set performance state %u (%d)\n", level,
1122 			ret);
1123 
1124 	return ret;
1125 }
1126 
1127 static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
1128 {
1129 	struct dev_pm_opp *opp = ERR_PTR(-ENODEV);
1130 	unsigned long freq;
1131 
1132 	if (!IS_ERR(opp_table->clk)) {
1133 		freq = clk_get_rate(opp_table->clk);
1134 		opp = _find_freq_ceil(opp_table, &freq);
1135 	}
1136 
1137 	/*
1138 	 * Unable to find the current OPP ? Pick the first from the list since
1139 	 * it is in ascending order, otherwise rest of the code will need to
1140 	 * make special checks to validate current_opp.
1141 	 */
1142 	if (IS_ERR(opp)) {
1143 		mutex_lock(&opp_table->lock);
1144 		opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node);
1145 		dev_pm_opp_get(opp);
1146 		mutex_unlock(&opp_table->lock);
1147 	}
1148 
1149 	opp_table->current_opp = opp;
1150 }
1151 
1152 static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
1153 {
1154 	int ret;
1155 
1156 	if (!opp_table->enabled)
1157 		return 0;
1158 
1159 	/*
1160 	 * Some drivers need to support cases where some platforms may
1161 	 * have OPP table for the device, while others don't and
1162 	 * opp_set_rate() just needs to behave like clk_set_rate().
1163 	 */
1164 	if (!_get_opp_count(opp_table))
1165 		return 0;
1166 
1167 	ret = _set_opp_bw(opp_table, NULL, dev);
1168 	if (ret)
1169 		return ret;
1170 
1171 	if (opp_table->regulators)
1172 		regulator_disable(opp_table->regulators[0]);
1173 
1174 	ret = _set_opp_level(dev, opp_table, NULL);
1175 	if (ret)
1176 		goto out;
1177 
1178 	ret = _set_required_opps(dev, opp_table, NULL, false);
1179 
1180 out:
1181 	opp_table->enabled = false;
1182 	return ret;
1183 }
1184 
1185 static int _set_opp(struct device *dev, struct opp_table *opp_table,
1186 		    struct dev_pm_opp *opp, void *clk_data, bool forced)
1187 {
1188 	struct dev_pm_opp *old_opp;
1189 	int scaling_down, ret;
1190 
1191 	if (unlikely(!opp))
1192 		return _disable_opp_table(dev, opp_table);
1193 
1194 	/* Find the currently set OPP if we don't know already */
1195 	if (unlikely(!opp_table->current_opp))
1196 		_find_current_opp(dev, opp_table);
1197 
1198 	old_opp = opp_table->current_opp;
1199 
1200 	/* Return early if nothing to do */
1201 	if (!forced && old_opp == opp && opp_table->enabled) {
1202 		dev_dbg_ratelimited(dev, "%s: OPPs are same, nothing to do\n", __func__);
1203 		return 0;
1204 	}
1205 
1206 	dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
1207 		__func__, old_opp->rates[0], opp->rates[0], old_opp->level,
1208 		opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
1209 		opp->bandwidth ? opp->bandwidth[0].peak : 0);
1210 
1211 	scaling_down = _opp_compare_key(opp_table, old_opp, opp);
1212 	if (scaling_down == -1)
1213 		scaling_down = 0;
1214 
1215 	/* Scaling up? Configure required OPPs before frequency */
1216 	if (!scaling_down) {
1217 		ret = _set_required_opps(dev, opp_table, opp, true);
1218 		if (ret) {
1219 			dev_err(dev, "Failed to set required opps: %d\n", ret);
1220 			return ret;
1221 		}
1222 
1223 		ret = _set_opp_level(dev, opp_table, opp);
1224 		if (ret)
1225 			return ret;
1226 
1227 		ret = _set_opp_bw(opp_table, opp, dev);
1228 		if (ret) {
1229 			dev_err(dev, "Failed to set bw: %d\n", ret);
1230 			return ret;
1231 		}
1232 
1233 		if (opp_table->config_regulators) {
1234 			ret = opp_table->config_regulators(dev, old_opp, opp,
1235 							   opp_table->regulators,
1236 							   opp_table->regulator_count);
1237 			if (ret) {
1238 				dev_err(dev, "Failed to set regulator voltages: %d\n",
1239 					ret);
1240 				return ret;
1241 			}
1242 		}
1243 	}
1244 
1245 	if (opp_table->config_clks) {
1246 		ret = opp_table->config_clks(dev, opp_table, opp, clk_data, scaling_down);
1247 		if (ret)
1248 			return ret;
1249 	}
1250 
1251 	/* Scaling down? Configure required OPPs after frequency */
1252 	if (scaling_down) {
1253 		if (opp_table->config_regulators) {
1254 			ret = opp_table->config_regulators(dev, old_opp, opp,
1255 							   opp_table->regulators,
1256 							   opp_table->regulator_count);
1257 			if (ret) {
1258 				dev_err(dev, "Failed to set regulator voltages: %d\n",
1259 					ret);
1260 				return ret;
1261 			}
1262 		}
1263 
1264 		ret = _set_opp_bw(opp_table, opp, dev);
1265 		if (ret) {
1266 			dev_err(dev, "Failed to set bw: %d\n", ret);
1267 			return ret;
1268 		}
1269 
1270 		ret = _set_opp_level(dev, opp_table, opp);
1271 		if (ret)
1272 			return ret;
1273 
1274 		ret = _set_required_opps(dev, opp_table, opp, false);
1275 		if (ret) {
1276 			dev_err(dev, "Failed to set required opps: %d\n", ret);
1277 			return ret;
1278 		}
1279 	}
1280 
1281 	opp_table->enabled = true;
1282 	dev_pm_opp_put(old_opp);
1283 
1284 	/* Make sure current_opp doesn't get freed */
1285 	dev_pm_opp_get(opp);
1286 	opp_table->current_opp = opp;
1287 
1288 	return ret;
1289 }
1290 
1291 /**
1292  * dev_pm_opp_set_rate() - Configure new OPP based on frequency
1293  * @dev:	 device for which we do this operation
1294  * @target_freq: frequency to achieve
1295  *
1296  * This configures the power-supplies to the levels specified by the OPP
1297  * corresponding to the target_freq, and programs the clock to a value <=
1298  * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
1299  * provided by the opp, should have already rounded to the target OPP's
1300  * frequency.
1301  */
1302 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
1303 {
1304 	struct opp_table *opp_table;
1305 	unsigned long freq = 0, temp_freq;
1306 	struct dev_pm_opp *opp = NULL;
1307 	bool forced = false;
1308 	int ret;
1309 
1310 	opp_table = _find_opp_table(dev);
1311 	if (IS_ERR(opp_table)) {
1312 		dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
1313 		return PTR_ERR(opp_table);
1314 	}
1315 
1316 	if (target_freq) {
1317 		/*
1318 		 * For IO devices which require an OPP on some platforms/SoCs
1319 		 * while just needing to scale the clock on some others
1320 		 * we look for empty OPP tables with just a clock handle and
1321 		 * scale only the clk. This makes dev_pm_opp_set_rate()
1322 		 * equivalent to a clk_set_rate()
1323 		 */
1324 		if (!_get_opp_count(opp_table)) {
1325 			ret = opp_table->config_clks(dev, opp_table, NULL,
1326 						     &target_freq, false);
1327 			goto put_opp_table;
1328 		}
1329 
1330 		freq = clk_round_rate(opp_table->clk, target_freq);
1331 		if ((long)freq <= 0)
1332 			freq = target_freq;
1333 
1334 		/*
1335 		 * The clock driver may support finer resolution of the
1336 		 * frequencies than the OPP table, don't update the frequency we
1337 		 * pass to clk_set_rate() here.
1338 		 */
1339 		temp_freq = freq;
1340 		opp = _find_freq_ceil(opp_table, &temp_freq);
1341 		if (IS_ERR(opp)) {
1342 			ret = PTR_ERR(opp);
1343 			dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
1344 				__func__, freq, ret);
1345 			goto put_opp_table;
1346 		}
1347 
1348 		/*
1349 		 * An OPP entry specifies the highest frequency at which other
1350 		 * properties of the OPP entry apply. Even if the new OPP is
1351 		 * same as the old one, we may still reach here for a different
1352 		 * value of the frequency. In such a case, do not abort but
1353 		 * configure the hardware to the desired frequency forcefully.
1354 		 */
1355 		forced = opp_table->current_rate_single_clk != freq;
1356 	}
1357 
1358 	ret = _set_opp(dev, opp_table, opp, &freq, forced);
1359 
1360 	if (freq)
1361 		dev_pm_opp_put(opp);
1362 
1363 put_opp_table:
1364 	dev_pm_opp_put_opp_table(opp_table);
1365 	return ret;
1366 }
1367 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1368 
1369 /**
1370  * dev_pm_opp_set_opp() - Configure device for OPP
1371  * @dev: device for which we do this operation
1372  * @opp: OPP to set to
1373  *
1374  * This configures the device based on the properties of the OPP passed to this
1375  * routine.
1376  *
1377  * Return: 0 on success, a negative error number otherwise.
1378  */
1379 int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
1380 {
1381 	struct opp_table *opp_table;
1382 	int ret;
1383 
1384 	opp_table = _find_opp_table(dev);
1385 	if (IS_ERR(opp_table)) {
1386 		dev_err(dev, "%s: device opp doesn't exist\n", __func__);
1387 		return PTR_ERR(opp_table);
1388 	}
1389 
1390 	ret = _set_opp(dev, opp_table, opp, NULL, false);
1391 	dev_pm_opp_put_opp_table(opp_table);
1392 
1393 	return ret;
1394 }
1395 EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
1396 
1397 /* OPP-dev Helpers */
1398 static void _remove_opp_dev(struct opp_device *opp_dev,
1399 			    struct opp_table *opp_table)
1400 {
1401 	opp_debug_unregister(opp_dev, opp_table);
1402 	list_del(&opp_dev->node);
1403 	kfree(opp_dev);
1404 }
1405 
1406 struct opp_device *_add_opp_dev(const struct device *dev,
1407 				struct opp_table *opp_table)
1408 {
1409 	struct opp_device *opp_dev;
1410 
1411 	opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1412 	if (!opp_dev)
1413 		return NULL;
1414 
1415 	/* Initialize opp-dev */
1416 	opp_dev->dev = dev;
1417 
1418 	mutex_lock(&opp_table->lock);
1419 	list_add(&opp_dev->node, &opp_table->dev_list);
1420 	mutex_unlock(&opp_table->lock);
1421 
1422 	/* Create debugfs entries for the opp_table */
1423 	opp_debug_register(opp_dev, opp_table);
1424 
1425 	return opp_dev;
1426 }
1427 
1428 static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1429 {
1430 	struct opp_table *opp_table;
1431 	struct opp_device *opp_dev;
1432 	int ret;
1433 
1434 	/*
1435 	 * Allocate a new OPP table. In the infrequent case where a new
1436 	 * device is needed to be added, we pay this penalty.
1437 	 */
1438 	opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1439 	if (!opp_table)
1440 		return ERR_PTR(-ENOMEM);
1441 
1442 	mutex_init(&opp_table->lock);
1443 	INIT_LIST_HEAD(&opp_table->dev_list);
1444 	INIT_LIST_HEAD(&opp_table->lazy);
1445 
1446 	opp_table->clk = ERR_PTR(-ENODEV);
1447 
1448 	/* Mark regulator count uninitialized */
1449 	opp_table->regulator_count = -1;
1450 
1451 	opp_dev = _add_opp_dev(dev, opp_table);
1452 	if (!opp_dev) {
1453 		ret = -ENOMEM;
1454 		goto err;
1455 	}
1456 
1457 	_of_init_opp_table(opp_table, dev, index);
1458 
1459 	/* Find interconnect path(s) for the device */
1460 	ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1461 	if (ret) {
1462 		if (ret == -EPROBE_DEFER)
1463 			goto remove_opp_dev;
1464 
1465 		dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1466 			 __func__, ret);
1467 	}
1468 
1469 	BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1470 	INIT_LIST_HEAD(&opp_table->opp_list);
1471 	kref_init(&opp_table->kref);
1472 
1473 	return opp_table;
1474 
1475 remove_opp_dev:
1476 	_of_clear_opp_table(opp_table);
1477 	_remove_opp_dev(opp_dev, opp_table);
1478 	mutex_destroy(&opp_table->lock);
1479 err:
1480 	kfree(opp_table);
1481 	return ERR_PTR(ret);
1482 }
1483 
1484 void _get_opp_table_kref(struct opp_table *opp_table)
1485 {
1486 	kref_get(&opp_table->kref);
1487 }
1488 
1489 static struct opp_table *_update_opp_table_clk(struct device *dev,
1490 					       struct opp_table *opp_table,
1491 					       bool getclk)
1492 {
1493 	int ret;
1494 
1495 	/*
1496 	 * Return early if we don't need to get clk or we have already done it
1497 	 * earlier.
1498 	 */
1499 	if (!getclk || IS_ERR(opp_table) || !IS_ERR(opp_table->clk) ||
1500 	    opp_table->clks)
1501 		return opp_table;
1502 
1503 	/* Find clk for the device */
1504 	opp_table->clk = clk_get(dev, NULL);
1505 
1506 	ret = PTR_ERR_OR_ZERO(opp_table->clk);
1507 	if (!ret) {
1508 		opp_table->config_clks = _opp_config_clk_single;
1509 		opp_table->clk_count = 1;
1510 		return opp_table;
1511 	}
1512 
1513 	if (ret == -ENOENT) {
1514 		/*
1515 		 * There are few platforms which don't want the OPP core to
1516 		 * manage device's clock settings. In such cases neither the
1517 		 * platform provides the clks explicitly to us, nor the DT
1518 		 * contains a valid clk entry. The OPP nodes in DT may still
1519 		 * contain "opp-hz" property though, which we need to parse and
1520 		 * allow the platform to find an OPP based on freq later on.
1521 		 *
1522 		 * This is a simple solution to take care of such corner cases,
1523 		 * i.e. make the clk_count 1, which lets us allocate space for
1524 		 * frequency in opp->rates and also parse the entries in DT.
1525 		 */
1526 		opp_table->clk_count = 1;
1527 
1528 		dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1529 		return opp_table;
1530 	}
1531 
1532 	dev_pm_opp_put_opp_table(opp_table);
1533 	dev_err_probe(dev, ret, "Couldn't find clock\n");
1534 
1535 	return ERR_PTR(ret);
1536 }
1537 
1538 /*
1539  * We need to make sure that the OPP table for a device doesn't get added twice,
1540  * if this routine gets called in parallel with the same device pointer.
1541  *
1542  * The simplest way to enforce that is to perform everything (find existing
1543  * table and if not found, create a new one) under the opp_table_lock, so only
1544  * one creator gets access to the same. But that expands the critical section
1545  * under the lock and may end up causing circular dependencies with frameworks
1546  * like debugfs, interconnect or clock framework as they may be direct or
1547  * indirect users of OPP core.
1548  *
1549  * And for that reason we have to go for a bit tricky implementation here, which
1550  * uses the opp_tables_busy flag to indicate if another creator is in the middle
1551  * of adding an OPP table and others should wait for it to finish.
1552  */
1553 struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
1554 					 bool getclk)
1555 {
1556 	struct opp_table *opp_table;
1557 
1558 again:
1559 	mutex_lock(&opp_table_lock);
1560 
1561 	opp_table = _find_opp_table_unlocked(dev);
1562 	if (!IS_ERR(opp_table))
1563 		goto unlock;
1564 
1565 	/*
1566 	 * The opp_tables list or an OPP table's dev_list is getting updated by
1567 	 * another user, wait for it to finish.
1568 	 */
1569 	if (unlikely(opp_tables_busy)) {
1570 		mutex_unlock(&opp_table_lock);
1571 		cpu_relax();
1572 		goto again;
1573 	}
1574 
1575 	opp_tables_busy = true;
1576 	opp_table = _managed_opp(dev, index);
1577 
1578 	/* Drop the lock to reduce the size of critical section */
1579 	mutex_unlock(&opp_table_lock);
1580 
1581 	if (opp_table) {
1582 		if (!_add_opp_dev(dev, opp_table)) {
1583 			dev_pm_opp_put_opp_table(opp_table);
1584 			opp_table = ERR_PTR(-ENOMEM);
1585 		}
1586 
1587 		mutex_lock(&opp_table_lock);
1588 	} else {
1589 		opp_table = _allocate_opp_table(dev, index);
1590 
1591 		mutex_lock(&opp_table_lock);
1592 		if (!IS_ERR(opp_table))
1593 			list_add(&opp_table->node, &opp_tables);
1594 	}
1595 
1596 	opp_tables_busy = false;
1597 
1598 unlock:
1599 	mutex_unlock(&opp_table_lock);
1600 
1601 	return _update_opp_table_clk(dev, opp_table, getclk);
1602 }
1603 
1604 static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
1605 {
1606 	return _add_opp_table_indexed(dev, 0, getclk);
1607 }
1608 
1609 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1610 {
1611 	return _find_opp_table(dev);
1612 }
1613 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1614 
1615 static void _opp_table_kref_release(struct kref *kref)
1616 {
1617 	struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1618 	struct opp_device *opp_dev, *temp;
1619 	int i;
1620 
1621 	/* Drop the lock as soon as we can */
1622 	list_del(&opp_table->node);
1623 	mutex_unlock(&opp_table_lock);
1624 
1625 	if (opp_table->current_opp)
1626 		dev_pm_opp_put(opp_table->current_opp);
1627 
1628 	_of_clear_opp_table(opp_table);
1629 
1630 	/* Release automatically acquired single clk */
1631 	if (!IS_ERR(opp_table->clk))
1632 		clk_put(opp_table->clk);
1633 
1634 	if (opp_table->paths) {
1635 		for (i = 0; i < opp_table->path_count; i++)
1636 			icc_put(opp_table->paths[i]);
1637 		kfree(opp_table->paths);
1638 	}
1639 
1640 	WARN_ON(!list_empty(&opp_table->opp_list));
1641 
1642 	list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node)
1643 		_remove_opp_dev(opp_dev, opp_table);
1644 
1645 	mutex_destroy(&opp_table->lock);
1646 	kfree(opp_table);
1647 }
1648 
1649 void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1650 {
1651 	kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1652 		       &opp_table_lock);
1653 }
1654 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1655 
1656 void _opp_free(struct dev_pm_opp *opp)
1657 {
1658 	kfree(opp);
1659 }
1660 
1661 static void _opp_kref_release(struct kref *kref)
1662 {
1663 	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1664 	struct opp_table *opp_table = opp->opp_table;
1665 
1666 	list_del(&opp->node);
1667 	mutex_unlock(&opp_table->lock);
1668 
1669 	/*
1670 	 * Notify the changes in the availability of the operable
1671 	 * frequency/voltage list.
1672 	 */
1673 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1674 	_of_clear_opp(opp_table, opp);
1675 	opp_debug_remove_one(opp);
1676 	kfree(opp);
1677 }
1678 
1679 void dev_pm_opp_get(struct dev_pm_opp *opp)
1680 {
1681 	kref_get(&opp->kref);
1682 }
1683 
1684 void dev_pm_opp_put(struct dev_pm_opp *opp)
1685 {
1686 	kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1687 }
1688 EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1689 
1690 /**
1691  * dev_pm_opp_remove()  - Remove an OPP from OPP table
1692  * @dev:	device for which we do this operation
1693  * @freq:	OPP to remove with matching 'freq'
1694  *
1695  * This function removes an opp from the opp table.
1696  */
1697 void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1698 {
1699 	struct dev_pm_opp *opp = NULL, *iter;
1700 	struct opp_table *opp_table;
1701 
1702 	opp_table = _find_opp_table(dev);
1703 	if (IS_ERR(opp_table))
1704 		return;
1705 
1706 	if (!assert_single_clk(opp_table))
1707 		goto put_table;
1708 
1709 	mutex_lock(&opp_table->lock);
1710 
1711 	list_for_each_entry(iter, &opp_table->opp_list, node) {
1712 		if (iter->rates[0] == freq) {
1713 			opp = iter;
1714 			break;
1715 		}
1716 	}
1717 
1718 	mutex_unlock(&opp_table->lock);
1719 
1720 	if (opp) {
1721 		dev_pm_opp_put(opp);
1722 
1723 		/* Drop the reference taken by dev_pm_opp_add() */
1724 		dev_pm_opp_put_opp_table(opp_table);
1725 	} else {
1726 		dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1727 			 __func__, freq);
1728 	}
1729 
1730 put_table:
1731 	/* Drop the reference taken by _find_opp_table() */
1732 	dev_pm_opp_put_opp_table(opp_table);
1733 }
1734 EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1735 
1736 static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1737 					bool dynamic)
1738 {
1739 	struct dev_pm_opp *opp = NULL, *temp;
1740 
1741 	mutex_lock(&opp_table->lock);
1742 	list_for_each_entry(temp, &opp_table->opp_list, node) {
1743 		/*
1744 		 * Refcount must be dropped only once for each OPP by OPP core,
1745 		 * do that with help of "removed" flag.
1746 		 */
1747 		if (!temp->removed && dynamic == temp->dynamic) {
1748 			opp = temp;
1749 			break;
1750 		}
1751 	}
1752 
1753 	mutex_unlock(&opp_table->lock);
1754 	return opp;
1755 }
1756 
1757 /*
1758  * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to
1759  * happen lock less to avoid circular dependency issues. This routine must be
1760  * called without the opp_table->lock held.
1761  */
1762 static void _opp_remove_all(struct opp_table *opp_table, bool dynamic)
1763 {
1764 	struct dev_pm_opp *opp;
1765 
1766 	while ((opp = _opp_get_next(opp_table, dynamic))) {
1767 		opp->removed = true;
1768 		dev_pm_opp_put(opp);
1769 
1770 		/* Drop the references taken by dev_pm_opp_add() */
1771 		if (dynamic)
1772 			dev_pm_opp_put_opp_table(opp_table);
1773 	}
1774 }
1775 
1776 bool _opp_remove_all_static(struct opp_table *opp_table)
1777 {
1778 	mutex_lock(&opp_table->lock);
1779 
1780 	if (!opp_table->parsed_static_opps) {
1781 		mutex_unlock(&opp_table->lock);
1782 		return false;
1783 	}
1784 
1785 	if (--opp_table->parsed_static_opps) {
1786 		mutex_unlock(&opp_table->lock);
1787 		return true;
1788 	}
1789 
1790 	mutex_unlock(&opp_table->lock);
1791 
1792 	_opp_remove_all(opp_table, false);
1793 	return true;
1794 }
1795 
1796 /**
1797  * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1798  * @dev:	device for which we do this operation
1799  *
1800  * This function removes all dynamically created OPPs from the opp table.
1801  */
1802 void dev_pm_opp_remove_all_dynamic(struct device *dev)
1803 {
1804 	struct opp_table *opp_table;
1805 
1806 	opp_table = _find_opp_table(dev);
1807 	if (IS_ERR(opp_table))
1808 		return;
1809 
1810 	_opp_remove_all(opp_table, true);
1811 
1812 	/* Drop the reference taken by _find_opp_table() */
1813 	dev_pm_opp_put_opp_table(opp_table);
1814 }
1815 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1816 
1817 struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table)
1818 {
1819 	struct dev_pm_opp *opp;
1820 	int supply_count, supply_size, icc_size, clk_size;
1821 
1822 	/* Allocate space for at least one supply */
1823 	supply_count = opp_table->regulator_count > 0 ?
1824 			opp_table->regulator_count : 1;
1825 	supply_size = sizeof(*opp->supplies) * supply_count;
1826 	clk_size = sizeof(*opp->rates) * opp_table->clk_count;
1827 	icc_size = sizeof(*opp->bandwidth) * opp_table->path_count;
1828 
1829 	/* allocate new OPP node and supplies structures */
1830 	opp = kzalloc(sizeof(*opp) + supply_size + clk_size + icc_size, GFP_KERNEL);
1831 	if (!opp)
1832 		return NULL;
1833 
1834 	/* Put the supplies, bw and clock at the end of the OPP structure */
1835 	opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1836 
1837 	opp->rates = (unsigned long *)(opp->supplies + supply_count);
1838 
1839 	if (icc_size)
1840 		opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->rates + opp_table->clk_count);
1841 
1842 	INIT_LIST_HEAD(&opp->node);
1843 
1844 	opp->level = OPP_LEVEL_UNSET;
1845 
1846 	return opp;
1847 }
1848 
1849 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1850 					 struct opp_table *opp_table)
1851 {
1852 	struct regulator *reg;
1853 	int i;
1854 
1855 	if (!opp_table->regulators)
1856 		return true;
1857 
1858 	for (i = 0; i < opp_table->regulator_count; i++) {
1859 		reg = opp_table->regulators[i];
1860 
1861 		if (!regulator_is_supported_voltage(reg,
1862 					opp->supplies[i].u_volt_min,
1863 					opp->supplies[i].u_volt_max)) {
1864 			pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1865 				__func__, opp->supplies[i].u_volt_min,
1866 				opp->supplies[i].u_volt_max);
1867 			return false;
1868 		}
1869 	}
1870 
1871 	return true;
1872 }
1873 
1874 static int _opp_compare_rate(struct opp_table *opp_table,
1875 			     struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1876 {
1877 	int i;
1878 
1879 	for (i = 0; i < opp_table->clk_count; i++) {
1880 		if (opp1->rates[i] != opp2->rates[i])
1881 			return opp1->rates[i] < opp2->rates[i] ? -1 : 1;
1882 	}
1883 
1884 	/* Same rates for both OPPs */
1885 	return 0;
1886 }
1887 
1888 static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1889 			   struct dev_pm_opp *opp2)
1890 {
1891 	int i;
1892 
1893 	for (i = 0; i < opp_table->path_count; i++) {
1894 		if (opp1->bandwidth[i].peak != opp2->bandwidth[i].peak)
1895 			return opp1->bandwidth[i].peak < opp2->bandwidth[i].peak ? -1 : 1;
1896 	}
1897 
1898 	/* Same bw for both OPPs */
1899 	return 0;
1900 }
1901 
1902 /*
1903  * Returns
1904  * 0: opp1 == opp2
1905  * 1: opp1 > opp2
1906  * -1: opp1 < opp2
1907  */
1908 int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1909 		     struct dev_pm_opp *opp2)
1910 {
1911 	int ret;
1912 
1913 	ret = _opp_compare_rate(opp_table, opp1, opp2);
1914 	if (ret)
1915 		return ret;
1916 
1917 	ret = _opp_compare_bw(opp_table, opp1, opp2);
1918 	if (ret)
1919 		return ret;
1920 
1921 	if (opp1->level != opp2->level)
1922 		return opp1->level < opp2->level ? -1 : 1;
1923 
1924 	/* Duplicate OPPs */
1925 	return 0;
1926 }
1927 
1928 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1929 			     struct opp_table *opp_table,
1930 			     struct list_head **head)
1931 {
1932 	struct dev_pm_opp *opp;
1933 	int opp_cmp;
1934 
1935 	/*
1936 	 * Insert new OPP in order of increasing frequency and discard if
1937 	 * already present.
1938 	 *
1939 	 * Need to use &opp_table->opp_list in the condition part of the 'for'
1940 	 * loop, don't replace it with head otherwise it will become an infinite
1941 	 * loop.
1942 	 */
1943 	list_for_each_entry(opp, &opp_table->opp_list, node) {
1944 		opp_cmp = _opp_compare_key(opp_table, new_opp, opp);
1945 		if (opp_cmp > 0) {
1946 			*head = &opp->node;
1947 			continue;
1948 		}
1949 
1950 		if (opp_cmp < 0)
1951 			return 0;
1952 
1953 		/* Duplicate OPPs */
1954 		dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1955 			 __func__, opp->rates[0], opp->supplies[0].u_volt,
1956 			 opp->available, new_opp->rates[0],
1957 			 new_opp->supplies[0].u_volt, new_opp->available);
1958 
1959 		/* Should we compare voltages for all regulators here ? */
1960 		return opp->available &&
1961 		       new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1962 	}
1963 
1964 	return 0;
1965 }
1966 
1967 void _required_opps_available(struct dev_pm_opp *opp, int count)
1968 {
1969 	int i;
1970 
1971 	for (i = 0; i < count; i++) {
1972 		if (opp->required_opps[i]->available)
1973 			continue;
1974 
1975 		opp->available = false;
1976 		pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
1977 			 __func__, opp->required_opps[i]->np, opp->rates[0]);
1978 		return;
1979 	}
1980 }
1981 
1982 /*
1983  * Returns:
1984  * 0: On success. And appropriate error message for duplicate OPPs.
1985  * -EBUSY: For OPP with same freq/volt and is available. The callers of
1986  *  _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1987  *  sure we don't print error messages unnecessarily if different parts of
1988  *  kernel try to initialize the OPP table.
1989  * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1990  *  should be considered an error by the callers of _opp_add().
1991  */
1992 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1993 	     struct opp_table *opp_table)
1994 {
1995 	struct list_head *head;
1996 	int ret;
1997 
1998 	mutex_lock(&opp_table->lock);
1999 	head = &opp_table->opp_list;
2000 
2001 	ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
2002 	if (ret) {
2003 		mutex_unlock(&opp_table->lock);
2004 		return ret;
2005 	}
2006 
2007 	list_add(&new_opp->node, head);
2008 	mutex_unlock(&opp_table->lock);
2009 
2010 	new_opp->opp_table = opp_table;
2011 	kref_init(&new_opp->kref);
2012 
2013 	opp_debug_create_one(new_opp, opp_table);
2014 
2015 	if (!_opp_supported_by_regulators(new_opp, opp_table)) {
2016 		new_opp->available = false;
2017 		dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
2018 			 __func__, new_opp->rates[0]);
2019 	}
2020 
2021 	/* required-opps not fully initialized yet */
2022 	if (lazy_linking_pending(opp_table))
2023 		return 0;
2024 
2025 	_required_opps_available(new_opp, opp_table->required_opp_count);
2026 
2027 	return 0;
2028 }
2029 
2030 /**
2031  * _opp_add_v1() - Allocate a OPP based on v1 bindings.
2032  * @opp_table:	OPP table
2033  * @dev:	device for which we do this operation
2034  * @data:	The OPP data for the OPP to add
2035  * @dynamic:	Dynamically added OPPs.
2036  *
2037  * This function adds an opp definition to the opp table and returns status.
2038  * The opp is made available by default and it can be controlled using
2039  * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
2040  *
2041  * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
2042  * and freed by dev_pm_opp_of_remove_table.
2043  *
2044  * Return:
2045  * 0		On success OR
2046  *		Duplicate OPPs (both freq and volt are same) and opp->available
2047  * -EEXIST	Freq are same and volt are different OR
2048  *		Duplicate OPPs (both freq and volt are same) and !opp->available
2049  * -ENOMEM	Memory allocation failure
2050  */
2051 int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
2052 		struct dev_pm_opp_data *data, bool dynamic)
2053 {
2054 	struct dev_pm_opp *new_opp;
2055 	unsigned long tol, u_volt = data->u_volt;
2056 	int ret;
2057 
2058 	if (!assert_single_clk(opp_table))
2059 		return -EINVAL;
2060 
2061 	new_opp = _opp_allocate(opp_table);
2062 	if (!new_opp)
2063 		return -ENOMEM;
2064 
2065 	/* populate the opp table */
2066 	new_opp->rates[0] = data->freq;
2067 	new_opp->level = data->level;
2068 	new_opp->turbo = data->turbo;
2069 	tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
2070 	new_opp->supplies[0].u_volt = u_volt;
2071 	new_opp->supplies[0].u_volt_min = u_volt - tol;
2072 	new_opp->supplies[0].u_volt_max = u_volt + tol;
2073 	new_opp->available = true;
2074 	new_opp->dynamic = dynamic;
2075 
2076 	ret = _opp_add(dev, new_opp, opp_table);
2077 	if (ret) {
2078 		/* Don't return error for duplicate OPPs */
2079 		if (ret == -EBUSY)
2080 			ret = 0;
2081 		goto free_opp;
2082 	}
2083 
2084 	/*
2085 	 * Notify the changes in the availability of the operable
2086 	 * frequency/voltage list.
2087 	 */
2088 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
2089 	return 0;
2090 
2091 free_opp:
2092 	_opp_free(new_opp);
2093 
2094 	return ret;
2095 }
2096 
2097 /*
2098  * This is required only for the V2 bindings, and it enables a platform to
2099  * specify the hierarchy of versions it supports. OPP layer will then enable
2100  * OPPs, which are available for those versions, based on its 'opp-supported-hw'
2101  * property.
2102  */
2103 static int _opp_set_supported_hw(struct opp_table *opp_table,
2104 				 const u32 *versions, unsigned int count)
2105 {
2106 	/* Another CPU that shares the OPP table has set the property ? */
2107 	if (opp_table->supported_hw)
2108 		return 0;
2109 
2110 	opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
2111 					GFP_KERNEL);
2112 	if (!opp_table->supported_hw)
2113 		return -ENOMEM;
2114 
2115 	opp_table->supported_hw_count = count;
2116 
2117 	return 0;
2118 }
2119 
2120 static void _opp_put_supported_hw(struct opp_table *opp_table)
2121 {
2122 	if (opp_table->supported_hw) {
2123 		kfree(opp_table->supported_hw);
2124 		opp_table->supported_hw = NULL;
2125 		opp_table->supported_hw_count = 0;
2126 	}
2127 }
2128 
2129 /*
2130  * This is required only for the V2 bindings, and it enables a platform to
2131  * specify the extn to be used for certain property names. The properties to
2132  * which the extension will apply are opp-microvolt and opp-microamp. OPP core
2133  * should postfix the property name with -<name> while looking for them.
2134  */
2135 static int _opp_set_prop_name(struct opp_table *opp_table, const char *name)
2136 {
2137 	/* Another CPU that shares the OPP table has set the property ? */
2138 	if (!opp_table->prop_name) {
2139 		opp_table->prop_name = kstrdup(name, GFP_KERNEL);
2140 		if (!opp_table->prop_name)
2141 			return -ENOMEM;
2142 	}
2143 
2144 	return 0;
2145 }
2146 
2147 static void _opp_put_prop_name(struct opp_table *opp_table)
2148 {
2149 	if (opp_table->prop_name) {
2150 		kfree(opp_table->prop_name);
2151 		opp_table->prop_name = NULL;
2152 	}
2153 }
2154 
2155 /*
2156  * In order to support OPP switching, OPP layer needs to know the name of the
2157  * device's regulators, as the core would be required to switch voltages as
2158  * well.
2159  *
2160  * This must be called before any OPPs are initialized for the device.
2161  */
2162 static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev,
2163 			       const char * const names[])
2164 {
2165 	const char * const *temp = names;
2166 	struct regulator *reg;
2167 	int count = 0, ret, i;
2168 
2169 	/* Count number of regulators */
2170 	while (*temp++)
2171 		count++;
2172 
2173 	if (!count)
2174 		return -EINVAL;
2175 
2176 	/* Another CPU that shares the OPP table has set the regulators ? */
2177 	if (opp_table->regulators)
2178 		return 0;
2179 
2180 	opp_table->regulators = kmalloc_array(count,
2181 					      sizeof(*opp_table->regulators),
2182 					      GFP_KERNEL);
2183 	if (!opp_table->regulators)
2184 		return -ENOMEM;
2185 
2186 	for (i = 0; i < count; i++) {
2187 		reg = regulator_get_optional(dev, names[i]);
2188 		if (IS_ERR(reg)) {
2189 			ret = dev_err_probe(dev, PTR_ERR(reg),
2190 					    "%s: no regulator (%s) found\n",
2191 					    __func__, names[i]);
2192 			goto free_regulators;
2193 		}
2194 
2195 		opp_table->regulators[i] = reg;
2196 	}
2197 
2198 	opp_table->regulator_count = count;
2199 
2200 	/* Set generic config_regulators() for single regulators here */
2201 	if (count == 1)
2202 		opp_table->config_regulators = _opp_config_regulator_single;
2203 
2204 	return 0;
2205 
2206 free_regulators:
2207 	while (i != 0)
2208 		regulator_put(opp_table->regulators[--i]);
2209 
2210 	kfree(opp_table->regulators);
2211 	opp_table->regulators = NULL;
2212 	opp_table->regulator_count = -1;
2213 
2214 	return ret;
2215 }
2216 
2217 static void _opp_put_regulators(struct opp_table *opp_table)
2218 {
2219 	int i;
2220 
2221 	if (!opp_table->regulators)
2222 		return;
2223 
2224 	if (opp_table->enabled) {
2225 		for (i = opp_table->regulator_count - 1; i >= 0; i--)
2226 			regulator_disable(opp_table->regulators[i]);
2227 	}
2228 
2229 	for (i = opp_table->regulator_count - 1; i >= 0; i--)
2230 		regulator_put(opp_table->regulators[i]);
2231 
2232 	kfree(opp_table->regulators);
2233 	opp_table->regulators = NULL;
2234 	opp_table->regulator_count = -1;
2235 }
2236 
2237 static void _put_clks(struct opp_table *opp_table, int count)
2238 {
2239 	int i;
2240 
2241 	for (i = count - 1; i >= 0; i--)
2242 		clk_put(opp_table->clks[i]);
2243 
2244 	kfree(opp_table->clks);
2245 	opp_table->clks = NULL;
2246 }
2247 
2248 /*
2249  * In order to support OPP switching, OPP layer needs to get pointers to the
2250  * clocks for the device. Simple cases work fine without using this routine
2251  * (i.e. by passing connection-id as NULL), but for a device with multiple
2252  * clocks available, the OPP core needs to know the exact names of the clks to
2253  * use.
2254  *
2255  * This must be called before any OPPs are initialized for the device.
2256  */
2257 static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev,
2258 			     const char * const names[],
2259 			     config_clks_t config_clks)
2260 {
2261 	const char * const *temp = names;
2262 	int count = 0, ret, i;
2263 	struct clk *clk;
2264 
2265 	/* Count number of clks */
2266 	while (*temp++)
2267 		count++;
2268 
2269 	/*
2270 	 * This is a special case where we have a single clock, whose connection
2271 	 * id name is NULL, i.e. first two entries are NULL in the array.
2272 	 */
2273 	if (!count && !names[1])
2274 		count = 1;
2275 
2276 	/* Fail early for invalid configurations */
2277 	if (!count || (!config_clks && count > 1))
2278 		return -EINVAL;
2279 
2280 	/* Another CPU that shares the OPP table has set the clkname ? */
2281 	if (opp_table->clks)
2282 		return 0;
2283 
2284 	opp_table->clks = kmalloc_array(count, sizeof(*opp_table->clks),
2285 					GFP_KERNEL);
2286 	if (!opp_table->clks)
2287 		return -ENOMEM;
2288 
2289 	/* Find clks for the device */
2290 	for (i = 0; i < count; i++) {
2291 		clk = clk_get(dev, names[i]);
2292 		if (IS_ERR(clk)) {
2293 			ret = dev_err_probe(dev, PTR_ERR(clk),
2294 					    "%s: Couldn't find clock with name: %s\n",
2295 					    __func__, names[i]);
2296 			goto free_clks;
2297 		}
2298 
2299 		opp_table->clks[i] = clk;
2300 	}
2301 
2302 	opp_table->clk_count = count;
2303 	opp_table->config_clks = config_clks;
2304 
2305 	/* Set generic single clk set here */
2306 	if (count == 1) {
2307 		if (!opp_table->config_clks)
2308 			opp_table->config_clks = _opp_config_clk_single;
2309 
2310 		/*
2311 		 * We could have just dropped the "clk" field and used "clks"
2312 		 * everywhere. Instead we kept the "clk" field around for
2313 		 * following reasons:
2314 		 *
2315 		 * - avoiding clks[0] everywhere else.
2316 		 * - not running single clk helpers for multiple clk usecase by
2317 		 *   mistake.
2318 		 *
2319 		 * Since this is single-clk case, just update the clk pointer
2320 		 * too.
2321 		 */
2322 		opp_table->clk = opp_table->clks[0];
2323 	}
2324 
2325 	return 0;
2326 
2327 free_clks:
2328 	_put_clks(opp_table, i);
2329 	return ret;
2330 }
2331 
2332 static void _opp_put_clknames(struct opp_table *opp_table)
2333 {
2334 	if (!opp_table->clks)
2335 		return;
2336 
2337 	opp_table->config_clks = NULL;
2338 	opp_table->clk = ERR_PTR(-ENODEV);
2339 
2340 	_put_clks(opp_table, opp_table->clk_count);
2341 }
2342 
2343 /*
2344  * This is useful to support platforms with multiple regulators per device.
2345  *
2346  * This must be called before any OPPs are initialized for the device.
2347  */
2348 static int _opp_set_config_regulators_helper(struct opp_table *opp_table,
2349 		struct device *dev, config_regulators_t config_regulators)
2350 {
2351 	/* Another CPU that shares the OPP table has set the helper ? */
2352 	if (!opp_table->config_regulators)
2353 		opp_table->config_regulators = config_regulators;
2354 
2355 	return 0;
2356 }
2357 
2358 static void _opp_put_config_regulators_helper(struct opp_table *opp_table)
2359 {
2360 	if (opp_table->config_regulators)
2361 		opp_table->config_regulators = NULL;
2362 }
2363 
2364 static void _opp_detach_genpd(struct opp_table *opp_table)
2365 {
2366 	int index;
2367 
2368 	for (index = 0; index < opp_table->required_opp_count; index++) {
2369 		if (!opp_table->required_devs[index])
2370 			continue;
2371 
2372 		dev_pm_domain_detach(opp_table->required_devs[index], false);
2373 		opp_table->required_devs[index] = NULL;
2374 	}
2375 }
2376 
2377 /*
2378  * Multiple generic power domains for a device are supported with the help of
2379  * virtual genpd devices, which are created for each consumer device - genpd
2380  * pair. These are the device structures which are attached to the power domain
2381  * and are required by the OPP core to set the performance state of the genpd.
2382  * The same API also works for the case where single genpd is available and so
2383  * we don't need to support that separately.
2384  *
2385  * This helper will normally be called by the consumer driver of the device
2386  * "dev", as only that has details of the genpd names.
2387  *
2388  * This helper needs to be called once with a list of all genpd to attach.
2389  * Otherwise the original device structure will be used instead by the OPP core.
2390  *
2391  * The order of entries in the names array must match the order in which
2392  * "required-opps" are added in DT.
2393  */
2394 static int _opp_attach_genpd(struct opp_table *opp_table, struct device *dev,
2395 			const char * const *names, struct device ***virt_devs)
2396 {
2397 	struct device *virt_dev, *gdev;
2398 	struct opp_table *genpd_table;
2399 	int index = 0, ret = -EINVAL;
2400 	const char * const *name = names;
2401 
2402 	if (!opp_table->required_devs) {
2403 		dev_err(dev, "Required OPPs not available, can't attach genpd\n");
2404 		return -EINVAL;
2405 	}
2406 
2407 	/* Genpd core takes care of propagation to parent genpd */
2408 	if (opp_table->is_genpd) {
2409 		dev_err(dev, "%s: Operation not supported for genpds\n", __func__);
2410 		return -EOPNOTSUPP;
2411 	}
2412 
2413 	/* Checking only the first one is enough ? */
2414 	if (opp_table->required_devs[0])
2415 		return 0;
2416 
2417 	while (*name) {
2418 		if (index >= opp_table->required_opp_count) {
2419 			dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2420 				*name, opp_table->required_opp_count, index);
2421 			goto err;
2422 		}
2423 
2424 		virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2425 		if (IS_ERR_OR_NULL(virt_dev)) {
2426 			ret = virt_dev ? PTR_ERR(virt_dev) : -ENODEV;
2427 			dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2428 			goto err;
2429 		}
2430 
2431 		/*
2432 		 * The required_opp_tables parsing is not perfect, as the OPP
2433 		 * core does the parsing solely based on the DT node pointers.
2434 		 * The core sets the required_opp_tables entry to the first OPP
2435 		 * table in the "opp_tables" list, that matches with the node
2436 		 * pointer.
2437 		 *
2438 		 * If the target DT OPP table is used by multiple devices and
2439 		 * they all create separate instances of 'struct opp_table' from
2440 		 * it, then it is possible that the required_opp_tables entry
2441 		 * may be set to the incorrect sibling device.
2442 		 *
2443 		 * Cross check it again and fix if required.
2444 		 */
2445 		gdev = dev_to_genpd_dev(virt_dev);
2446 		if (IS_ERR(gdev))
2447 			return PTR_ERR(gdev);
2448 
2449 		genpd_table = _find_opp_table(gdev);
2450 		if (!IS_ERR(genpd_table)) {
2451 			if (genpd_table != opp_table->required_opp_tables[index]) {
2452 				dev_pm_opp_put_opp_table(opp_table->required_opp_tables[index]);
2453 				opp_table->required_opp_tables[index] = genpd_table;
2454 			} else {
2455 				dev_pm_opp_put_opp_table(genpd_table);
2456 			}
2457 		}
2458 
2459 		/*
2460 		 * Add the virtual genpd device as a user of the OPP table, so
2461 		 * we can call dev_pm_opp_set_opp() on it directly.
2462 		 *
2463 		 * This will be automatically removed when the OPP table is
2464 		 * removed, don't need to handle that here.
2465 		 */
2466 		if (!_add_opp_dev(virt_dev, opp_table->required_opp_tables[index])) {
2467 			ret = -ENOMEM;
2468 			goto err;
2469 		}
2470 
2471 		opp_table->required_devs[index] = virt_dev;
2472 		index++;
2473 		name++;
2474 	}
2475 
2476 	if (virt_devs)
2477 		*virt_devs = opp_table->required_devs;
2478 
2479 	return 0;
2480 
2481 err:
2482 	_opp_detach_genpd(opp_table);
2483 	return ret;
2484 
2485 }
2486 
2487 static int _opp_set_required_devs(struct opp_table *opp_table,
2488 				  struct device *dev,
2489 				  struct device **required_devs)
2490 {
2491 	int i;
2492 
2493 	if (!opp_table->required_devs) {
2494 		dev_err(dev, "Required OPPs not available, can't set required devs\n");
2495 		return -EINVAL;
2496 	}
2497 
2498 	/* Another device that shares the OPP table has set the required devs ? */
2499 	if (opp_table->required_devs[0])
2500 		return 0;
2501 
2502 	for (i = 0; i < opp_table->required_opp_count; i++) {
2503 		/* Genpd core takes care of propagation to parent genpd */
2504 		if (required_devs[i] && opp_table->is_genpd &&
2505 		    opp_table->required_opp_tables[i]->is_genpd) {
2506 			dev_err(dev, "%s: Operation not supported for genpds\n", __func__);
2507 			return -EOPNOTSUPP;
2508 		}
2509 
2510 		opp_table->required_devs[i] = required_devs[i];
2511 	}
2512 
2513 	return 0;
2514 }
2515 
2516 static void _opp_put_required_devs(struct opp_table *opp_table)
2517 {
2518 	int i;
2519 
2520 	for (i = 0; i < opp_table->required_opp_count; i++)
2521 		opp_table->required_devs[i] = NULL;
2522 }
2523 
2524 static void _opp_clear_config(struct opp_config_data *data)
2525 {
2526 	if (data->flags & OPP_CONFIG_REQUIRED_DEVS)
2527 		_opp_put_required_devs(data->opp_table);
2528 	else if (data->flags & OPP_CONFIG_GENPD)
2529 		_opp_detach_genpd(data->opp_table);
2530 
2531 	if (data->flags & OPP_CONFIG_REGULATOR)
2532 		_opp_put_regulators(data->opp_table);
2533 	if (data->flags & OPP_CONFIG_SUPPORTED_HW)
2534 		_opp_put_supported_hw(data->opp_table);
2535 	if (data->flags & OPP_CONFIG_REGULATOR_HELPER)
2536 		_opp_put_config_regulators_helper(data->opp_table);
2537 	if (data->flags & OPP_CONFIG_PROP_NAME)
2538 		_opp_put_prop_name(data->opp_table);
2539 	if (data->flags & OPP_CONFIG_CLK)
2540 		_opp_put_clknames(data->opp_table);
2541 
2542 	dev_pm_opp_put_opp_table(data->opp_table);
2543 	kfree(data);
2544 }
2545 
2546 /**
2547  * dev_pm_opp_set_config() - Set OPP configuration for the device.
2548  * @dev: Device for which configuration is being set.
2549  * @config: OPP configuration.
2550  *
2551  * This allows all device OPP configurations to be performed at once.
2552  *
2553  * This must be called before any OPPs are initialized for the device. This may
2554  * be called multiple times for the same OPP table, for example once for each
2555  * CPU that share the same table. This must be balanced by the same number of
2556  * calls to dev_pm_opp_clear_config() in order to free the OPP table properly.
2557  *
2558  * This returns a token to the caller, which must be passed to
2559  * dev_pm_opp_clear_config() to free the resources later. The value of the
2560  * returned token will be >= 1 for success and negative for errors. The minimum
2561  * value of 1 is chosen here to make it easy for callers to manage the resource.
2562  */
2563 int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2564 {
2565 	struct opp_table *opp_table;
2566 	struct opp_config_data *data;
2567 	unsigned int id;
2568 	int ret;
2569 
2570 	data = kmalloc(sizeof(*data), GFP_KERNEL);
2571 	if (!data)
2572 		return -ENOMEM;
2573 
2574 	opp_table = _add_opp_table(dev, false);
2575 	if (IS_ERR(opp_table)) {
2576 		kfree(data);
2577 		return PTR_ERR(opp_table);
2578 	}
2579 
2580 	data->opp_table = opp_table;
2581 	data->flags = 0;
2582 
2583 	/* This should be called before OPPs are initialized */
2584 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2585 		ret = -EBUSY;
2586 		goto err;
2587 	}
2588 
2589 	/* Configure clocks */
2590 	if (config->clk_names) {
2591 		ret = _opp_set_clknames(opp_table, dev, config->clk_names,
2592 					config->config_clks);
2593 		if (ret)
2594 			goto err;
2595 
2596 		data->flags |= OPP_CONFIG_CLK;
2597 	} else if (config->config_clks) {
2598 		/* Don't allow config callback without clocks */
2599 		ret = -EINVAL;
2600 		goto err;
2601 	}
2602 
2603 	/* Configure property names */
2604 	if (config->prop_name) {
2605 		ret = _opp_set_prop_name(opp_table, config->prop_name);
2606 		if (ret)
2607 			goto err;
2608 
2609 		data->flags |= OPP_CONFIG_PROP_NAME;
2610 	}
2611 
2612 	/* Configure config_regulators helper */
2613 	if (config->config_regulators) {
2614 		ret = _opp_set_config_regulators_helper(opp_table, dev,
2615 						config->config_regulators);
2616 		if (ret)
2617 			goto err;
2618 
2619 		data->flags |= OPP_CONFIG_REGULATOR_HELPER;
2620 	}
2621 
2622 	/* Configure supported hardware */
2623 	if (config->supported_hw) {
2624 		ret = _opp_set_supported_hw(opp_table, config->supported_hw,
2625 					    config->supported_hw_count);
2626 		if (ret)
2627 			goto err;
2628 
2629 		data->flags |= OPP_CONFIG_SUPPORTED_HW;
2630 	}
2631 
2632 	/* Configure supplies */
2633 	if (config->regulator_names) {
2634 		ret = _opp_set_regulators(opp_table, dev,
2635 					  config->regulator_names);
2636 		if (ret)
2637 			goto err;
2638 
2639 		data->flags |= OPP_CONFIG_REGULATOR;
2640 	}
2641 
2642 	/* Attach genpds */
2643 	if (config->genpd_names) {
2644 		if (config->required_devs)
2645 			goto err;
2646 
2647 		ret = _opp_attach_genpd(opp_table, dev, config->genpd_names,
2648 					config->virt_devs);
2649 		if (ret)
2650 			goto err;
2651 
2652 		data->flags |= OPP_CONFIG_GENPD;
2653 	} else if (config->required_devs) {
2654 		ret = _opp_set_required_devs(opp_table, dev,
2655 					     config->required_devs);
2656 		if (ret)
2657 			goto err;
2658 
2659 		data->flags |= OPP_CONFIG_REQUIRED_DEVS;
2660 	}
2661 
2662 	ret = xa_alloc(&opp_configs, &id, data, XA_LIMIT(1, INT_MAX),
2663 		       GFP_KERNEL);
2664 	if (ret)
2665 		goto err;
2666 
2667 	return id;
2668 
2669 err:
2670 	_opp_clear_config(data);
2671 	return ret;
2672 }
2673 EXPORT_SYMBOL_GPL(dev_pm_opp_set_config);
2674 
2675 /**
2676  * dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration.
2677  * @token: The token returned by dev_pm_opp_set_config() previously.
2678  *
2679  * This allows all device OPP configurations to be cleared at once. This must be
2680  * called once for each call made to dev_pm_opp_set_config(), in order to free
2681  * the OPPs properly.
2682  *
2683  * Currently the first call itself ends up freeing all the OPP configurations,
2684  * while the later ones only drop the OPP table reference. This works well for
2685  * now as we would never want to use an half initialized OPP table and want to
2686  * remove the configurations together.
2687  */
2688 void dev_pm_opp_clear_config(int token)
2689 {
2690 	struct opp_config_data *data;
2691 
2692 	/*
2693 	 * This lets the callers call this unconditionally and keep their code
2694 	 * simple.
2695 	 */
2696 	if (unlikely(token <= 0))
2697 		return;
2698 
2699 	data = xa_erase(&opp_configs, token);
2700 	if (WARN_ON(!data))
2701 		return;
2702 
2703 	_opp_clear_config(data);
2704 }
2705 EXPORT_SYMBOL_GPL(dev_pm_opp_clear_config);
2706 
2707 static void devm_pm_opp_config_release(void *token)
2708 {
2709 	dev_pm_opp_clear_config((unsigned long)token);
2710 }
2711 
2712 /**
2713  * devm_pm_opp_set_config() - Set OPP configuration for the device.
2714  * @dev: Device for which configuration is being set.
2715  * @config: OPP configuration.
2716  *
2717  * This allows all device OPP configurations to be performed at once.
2718  * This is a resource-managed variant of dev_pm_opp_set_config().
2719  *
2720  * Return: 0 on success and errorno otherwise.
2721  */
2722 int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2723 {
2724 	int token = dev_pm_opp_set_config(dev, config);
2725 
2726 	if (token < 0)
2727 		return token;
2728 
2729 	return devm_add_action_or_reset(dev, devm_pm_opp_config_release,
2730 					(void *) ((unsigned long) token));
2731 }
2732 EXPORT_SYMBOL_GPL(devm_pm_opp_set_config);
2733 
2734 /**
2735  * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
2736  * @src_table: OPP table which has @dst_table as one of its required OPP table.
2737  * @dst_table: Required OPP table of the @src_table.
2738  * @src_opp: OPP from the @src_table.
2739  *
2740  * This function returns the OPP (present in @dst_table) pointed out by the
2741  * "required-opps" property of the @src_opp (present in @src_table).
2742  *
2743  * The callers are required to call dev_pm_opp_put() for the returned OPP after
2744  * use.
2745  *
2746  * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
2747  */
2748 struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
2749 						 struct opp_table *dst_table,
2750 						 struct dev_pm_opp *src_opp)
2751 {
2752 	struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV);
2753 	int i;
2754 
2755 	if (!src_table || !dst_table || !src_opp ||
2756 	    !src_table->required_opp_tables)
2757 		return ERR_PTR(-EINVAL);
2758 
2759 	/* required-opps not fully initialized yet */
2760 	if (lazy_linking_pending(src_table))
2761 		return ERR_PTR(-EBUSY);
2762 
2763 	for (i = 0; i < src_table->required_opp_count; i++) {
2764 		if (src_table->required_opp_tables[i] == dst_table) {
2765 			mutex_lock(&src_table->lock);
2766 
2767 			list_for_each_entry(opp, &src_table->opp_list, node) {
2768 				if (opp == src_opp) {
2769 					dest_opp = opp->required_opps[i];
2770 					dev_pm_opp_get(dest_opp);
2771 					break;
2772 				}
2773 			}
2774 
2775 			mutex_unlock(&src_table->lock);
2776 			break;
2777 		}
2778 	}
2779 
2780 	if (IS_ERR(dest_opp)) {
2781 		pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
2782 		       src_table, dst_table);
2783 	}
2784 
2785 	return dest_opp;
2786 }
2787 EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
2788 
2789 /**
2790  * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2791  * @src_table: OPP table which has dst_table as one of its required OPP table.
2792  * @dst_table: Required OPP table of the src_table.
2793  * @pstate: Current performance state of the src_table.
2794  *
2795  * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2796  * "required-opps" property of the OPP (present in @src_table) which has
2797  * performance state set to @pstate.
2798  *
2799  * Return: Zero or positive performance state on success, otherwise negative
2800  * value on errors.
2801  */
2802 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2803 				       struct opp_table *dst_table,
2804 				       unsigned int pstate)
2805 {
2806 	struct dev_pm_opp *opp;
2807 	int dest_pstate = -EINVAL;
2808 	int i;
2809 
2810 	/*
2811 	 * Normally the src_table will have the "required_opps" property set to
2812 	 * point to one of the OPPs in the dst_table, but in some cases the
2813 	 * genpd and its master have one to one mapping of performance states
2814 	 * and so none of them have the "required-opps" property set. Return the
2815 	 * pstate of the src_table as it is in such cases.
2816 	 */
2817 	if (!src_table || !src_table->required_opp_count)
2818 		return pstate;
2819 
2820 	/* Both OPP tables must belong to genpds */
2821 	if (unlikely(!src_table->is_genpd || !dst_table->is_genpd)) {
2822 		pr_err("%s: Performance state is only valid for genpds.\n", __func__);
2823 		return -EINVAL;
2824 	}
2825 
2826 	/* required-opps not fully initialized yet */
2827 	if (lazy_linking_pending(src_table))
2828 		return -EBUSY;
2829 
2830 	for (i = 0; i < src_table->required_opp_count; i++) {
2831 		if (src_table->required_opp_tables[i]->np == dst_table->np)
2832 			break;
2833 	}
2834 
2835 	if (unlikely(i == src_table->required_opp_count)) {
2836 		pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2837 		       __func__, src_table, dst_table);
2838 		return -EINVAL;
2839 	}
2840 
2841 	mutex_lock(&src_table->lock);
2842 
2843 	list_for_each_entry(opp, &src_table->opp_list, node) {
2844 		if (opp->level == pstate) {
2845 			dest_pstate = opp->required_opps[i]->level;
2846 			goto unlock;
2847 		}
2848 	}
2849 
2850 	pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2851 	       dst_table);
2852 
2853 unlock:
2854 	mutex_unlock(&src_table->lock);
2855 
2856 	return dest_pstate;
2857 }
2858 
2859 /**
2860  * dev_pm_opp_add_dynamic()  - Add an OPP table from a table definitions
2861  * @dev:	The device for which we do this operation
2862  * @data:	The OPP data for the OPP to add
2863  *
2864  * This function adds an opp definition to the opp table and returns status.
2865  * The opp is made available by default and it can be controlled using
2866  * dev_pm_opp_enable/disable functions.
2867  *
2868  * Return:
2869  * 0		On success OR
2870  *		Duplicate OPPs (both freq and volt are same) and opp->available
2871  * -EEXIST	Freq are same and volt are different OR
2872  *		Duplicate OPPs (both freq and volt are same) and !opp->available
2873  * -ENOMEM	Memory allocation failure
2874  */
2875 int dev_pm_opp_add_dynamic(struct device *dev, struct dev_pm_opp_data *data)
2876 {
2877 	struct opp_table *opp_table;
2878 	int ret;
2879 
2880 	opp_table = _add_opp_table(dev, true);
2881 	if (IS_ERR(opp_table))
2882 		return PTR_ERR(opp_table);
2883 
2884 	/* Fix regulator count for dynamic OPPs */
2885 	opp_table->regulator_count = 1;
2886 
2887 	ret = _opp_add_v1(opp_table, dev, data, true);
2888 	if (ret)
2889 		dev_pm_opp_put_opp_table(opp_table);
2890 
2891 	return ret;
2892 }
2893 EXPORT_SYMBOL_GPL(dev_pm_opp_add_dynamic);
2894 
2895 /**
2896  * _opp_set_availability() - helper to set the availability of an opp
2897  * @dev:		device for which we do this operation
2898  * @freq:		OPP frequency to modify availability
2899  * @availability_req:	availability status requested for this opp
2900  *
2901  * Set the availability of an OPP, opp_{enable,disable} share a common logic
2902  * which is isolated here.
2903  *
2904  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2905  * copy operation, returns 0 if no modification was done OR modification was
2906  * successful.
2907  */
2908 static int _opp_set_availability(struct device *dev, unsigned long freq,
2909 				 bool availability_req)
2910 {
2911 	struct opp_table *opp_table;
2912 	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2913 	int r = 0;
2914 
2915 	/* Find the opp_table */
2916 	opp_table = _find_opp_table(dev);
2917 	if (IS_ERR(opp_table)) {
2918 		r = PTR_ERR(opp_table);
2919 		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2920 		return r;
2921 	}
2922 
2923 	if (!assert_single_clk(opp_table)) {
2924 		r = -EINVAL;
2925 		goto put_table;
2926 	}
2927 
2928 	mutex_lock(&opp_table->lock);
2929 
2930 	/* Do we have the frequency? */
2931 	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2932 		if (tmp_opp->rates[0] == freq) {
2933 			opp = tmp_opp;
2934 			break;
2935 		}
2936 	}
2937 
2938 	if (IS_ERR(opp)) {
2939 		r = PTR_ERR(opp);
2940 		goto unlock;
2941 	}
2942 
2943 	/* Is update really needed? */
2944 	if (opp->available == availability_req)
2945 		goto unlock;
2946 
2947 	opp->available = availability_req;
2948 
2949 	dev_pm_opp_get(opp);
2950 	mutex_unlock(&opp_table->lock);
2951 
2952 	/* Notify the change of the OPP availability */
2953 	if (availability_req)
2954 		blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2955 					     opp);
2956 	else
2957 		blocking_notifier_call_chain(&opp_table->head,
2958 					     OPP_EVENT_DISABLE, opp);
2959 
2960 	dev_pm_opp_put(opp);
2961 	goto put_table;
2962 
2963 unlock:
2964 	mutex_unlock(&opp_table->lock);
2965 put_table:
2966 	dev_pm_opp_put_opp_table(opp_table);
2967 	return r;
2968 }
2969 
2970 /**
2971  * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2972  * @dev:		device for which we do this operation
2973  * @freq:		OPP frequency to adjust voltage of
2974  * @u_volt:		new OPP target voltage
2975  * @u_volt_min:		new OPP min voltage
2976  * @u_volt_max:		new OPP max voltage
2977  *
2978  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2979  * copy operation, returns 0 if no modifcation was done OR modification was
2980  * successful.
2981  */
2982 int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2983 			      unsigned long u_volt, unsigned long u_volt_min,
2984 			      unsigned long u_volt_max)
2985 
2986 {
2987 	struct opp_table *opp_table;
2988 	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2989 	int r = 0;
2990 
2991 	/* Find the opp_table */
2992 	opp_table = _find_opp_table(dev);
2993 	if (IS_ERR(opp_table)) {
2994 		r = PTR_ERR(opp_table);
2995 		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2996 		return r;
2997 	}
2998 
2999 	if (!assert_single_clk(opp_table)) {
3000 		r = -EINVAL;
3001 		goto put_table;
3002 	}
3003 
3004 	mutex_lock(&opp_table->lock);
3005 
3006 	/* Do we have the frequency? */
3007 	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
3008 		if (tmp_opp->rates[0] == freq) {
3009 			opp = tmp_opp;
3010 			break;
3011 		}
3012 	}
3013 
3014 	if (IS_ERR(opp)) {
3015 		r = PTR_ERR(opp);
3016 		goto adjust_unlock;
3017 	}
3018 
3019 	/* Is update really needed? */
3020 	if (opp->supplies->u_volt == u_volt)
3021 		goto adjust_unlock;
3022 
3023 	opp->supplies->u_volt = u_volt;
3024 	opp->supplies->u_volt_min = u_volt_min;
3025 	opp->supplies->u_volt_max = u_volt_max;
3026 
3027 	dev_pm_opp_get(opp);
3028 	mutex_unlock(&opp_table->lock);
3029 
3030 	/* Notify the voltage change of the OPP */
3031 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
3032 				     opp);
3033 
3034 	dev_pm_opp_put(opp);
3035 	goto put_table;
3036 
3037 adjust_unlock:
3038 	mutex_unlock(&opp_table->lock);
3039 put_table:
3040 	dev_pm_opp_put_opp_table(opp_table);
3041 	return r;
3042 }
3043 EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
3044 
3045 /**
3046  * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
3047  * @dev:	device for which we do this operation
3048  *
3049  * Sync voltage state of the OPP table regulators.
3050  *
3051  * Return: 0 on success or a negative error value.
3052  */
3053 int dev_pm_opp_sync_regulators(struct device *dev)
3054 {
3055 	struct opp_table *opp_table;
3056 	struct regulator *reg;
3057 	int i, ret = 0;
3058 
3059 	/* Device may not have OPP table */
3060 	opp_table = _find_opp_table(dev);
3061 	if (IS_ERR(opp_table))
3062 		return 0;
3063 
3064 	/* Regulator may not be required for the device */
3065 	if (unlikely(!opp_table->regulators))
3066 		goto put_table;
3067 
3068 	/* Nothing to sync if voltage wasn't changed */
3069 	if (!opp_table->enabled)
3070 		goto put_table;
3071 
3072 	for (i = 0; i < opp_table->regulator_count; i++) {
3073 		reg = opp_table->regulators[i];
3074 		ret = regulator_sync_voltage(reg);
3075 		if (ret)
3076 			break;
3077 	}
3078 put_table:
3079 	/* Drop reference taken by _find_opp_table() */
3080 	dev_pm_opp_put_opp_table(opp_table);
3081 
3082 	return ret;
3083 }
3084 EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);
3085 
3086 /**
3087  * dev_pm_opp_enable() - Enable a specific OPP
3088  * @dev:	device for which we do this operation
3089  * @freq:	OPP frequency to enable
3090  *
3091  * Enables a provided opp. If the operation is valid, this returns 0, else the
3092  * corresponding error value. It is meant to be used for users an OPP available
3093  * after being temporarily made unavailable with dev_pm_opp_disable.
3094  *
3095  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3096  * copy operation, returns 0 if no modification was done OR modification was
3097  * successful.
3098  */
3099 int dev_pm_opp_enable(struct device *dev, unsigned long freq)
3100 {
3101 	return _opp_set_availability(dev, freq, true);
3102 }
3103 EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
3104 
3105 /**
3106  * dev_pm_opp_disable() - Disable a specific OPP
3107  * @dev:	device for which we do this operation
3108  * @freq:	OPP frequency to disable
3109  *
3110  * Disables a provided opp. If the operation is valid, this returns
3111  * 0, else the corresponding error value. It is meant to be a temporary
3112  * control by users to make this OPP not available until the circumstances are
3113  * right to make it available again (with a call to dev_pm_opp_enable).
3114  *
3115  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3116  * copy operation, returns 0 if no modification was done OR modification was
3117  * successful.
3118  */
3119 int dev_pm_opp_disable(struct device *dev, unsigned long freq)
3120 {
3121 	return _opp_set_availability(dev, freq, false);
3122 }
3123 EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
3124 
3125 /**
3126  * dev_pm_opp_register_notifier() - Register OPP notifier for the device
3127  * @dev:	Device for which notifier needs to be registered
3128  * @nb:		Notifier block to be registered
3129  *
3130  * Return: 0 on success or a negative error value.
3131  */
3132 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
3133 {
3134 	struct opp_table *opp_table;
3135 	int ret;
3136 
3137 	opp_table = _find_opp_table(dev);
3138 	if (IS_ERR(opp_table))
3139 		return PTR_ERR(opp_table);
3140 
3141 	ret = blocking_notifier_chain_register(&opp_table->head, nb);
3142 
3143 	dev_pm_opp_put_opp_table(opp_table);
3144 
3145 	return ret;
3146 }
3147 EXPORT_SYMBOL(dev_pm_opp_register_notifier);
3148 
3149 /**
3150  * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
3151  * @dev:	Device for which notifier needs to be unregistered
3152  * @nb:		Notifier block to be unregistered
3153  *
3154  * Return: 0 on success or a negative error value.
3155  */
3156 int dev_pm_opp_unregister_notifier(struct device *dev,
3157 				   struct notifier_block *nb)
3158 {
3159 	struct opp_table *opp_table;
3160 	int ret;
3161 
3162 	opp_table = _find_opp_table(dev);
3163 	if (IS_ERR(opp_table))
3164 		return PTR_ERR(opp_table);
3165 
3166 	ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
3167 
3168 	dev_pm_opp_put_opp_table(opp_table);
3169 
3170 	return ret;
3171 }
3172 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
3173 
3174 /**
3175  * dev_pm_opp_remove_table() - Free all OPPs associated with the device
3176  * @dev:	device pointer used to lookup OPP table.
3177  *
3178  * Free both OPPs created using static entries present in DT and the
3179  * dynamically added entries.
3180  */
3181 void dev_pm_opp_remove_table(struct device *dev)
3182 {
3183 	struct opp_table *opp_table;
3184 
3185 	/* Check for existing table for 'dev' */
3186 	opp_table = _find_opp_table(dev);
3187 	if (IS_ERR(opp_table)) {
3188 		int error = PTR_ERR(opp_table);
3189 
3190 		if (error != -ENODEV)
3191 			WARN(1, "%s: opp_table: %d\n",
3192 			     IS_ERR_OR_NULL(dev) ?
3193 					"Invalid device" : dev_name(dev),
3194 			     error);
3195 		return;
3196 	}
3197 
3198 	/*
3199 	 * Drop the extra reference only if the OPP table was successfully added
3200 	 * with dev_pm_opp_of_add_table() earlier.
3201 	 **/
3202 	if (_opp_remove_all_static(opp_table))
3203 		dev_pm_opp_put_opp_table(opp_table);
3204 
3205 	/* Drop reference taken by _find_opp_table() */
3206 	dev_pm_opp_put_opp_table(opp_table);
3207 }
3208 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
3209