xref: /linux/drivers/opp/core.c (revision 16e5ac127d8d18adf85fe5ba847d77b58d1ed418)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic OPP Interface
4  *
5  * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6  *	Nishanth Menon
7  *	Romit Dasgupta
8  *	Kevin Hilman
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/clk.h>
14 #include <linux/errno.h>
15 #include <linux/err.h>
16 #include <linux/device.h>
17 #include <linux/export.h>
18 #include <linux/pm_domain.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/slab.h>
21 #include <linux/xarray.h>
22 
23 #include "opp.h"
24 
25 /*
26  * The root of the list of all opp-tables. All opp_table structures branch off
27  * from here, with each opp_table containing the list of opps it supports in
28  * various states of availability.
29  */
30 LIST_HEAD(opp_tables);
31 
32 /* Lock to allow exclusive modification to the device and opp lists */
33 DEFINE_MUTEX(opp_table_lock);
34 /* Flag indicating that opp_tables list is being updated at the moment */
35 static bool opp_tables_busy;
36 
37 /* OPP ID allocator */
38 static DEFINE_XARRAY_ALLOC1(opp_configs);
39 
40 static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
41 {
42 	struct opp_device *opp_dev;
43 	bool found = false;
44 
45 	mutex_lock(&opp_table->lock);
46 	list_for_each_entry(opp_dev, &opp_table->dev_list, node)
47 		if (opp_dev->dev == dev) {
48 			found = true;
49 			break;
50 		}
51 
52 	mutex_unlock(&opp_table->lock);
53 	return found;
54 }
55 
56 static struct opp_table *_find_opp_table_unlocked(struct device *dev)
57 {
58 	struct opp_table *opp_table;
59 
60 	list_for_each_entry(opp_table, &opp_tables, node) {
61 		if (_find_opp_dev(dev, opp_table)) {
62 			_get_opp_table_kref(opp_table);
63 			return opp_table;
64 		}
65 	}
66 
67 	return ERR_PTR(-ENODEV);
68 }
69 
70 /**
71  * _find_opp_table() - find opp_table struct using device pointer
72  * @dev:	device pointer used to lookup OPP table
73  *
74  * Search OPP table for one containing matching device.
75  *
76  * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
77  * -EINVAL based on type of error.
78  *
79  * The callers must call dev_pm_opp_put_opp_table() after the table is used.
80  */
81 struct opp_table *_find_opp_table(struct device *dev)
82 {
83 	struct opp_table *opp_table;
84 
85 	if (IS_ERR_OR_NULL(dev)) {
86 		pr_err("%s: Invalid parameters\n", __func__);
87 		return ERR_PTR(-EINVAL);
88 	}
89 
90 	mutex_lock(&opp_table_lock);
91 	opp_table = _find_opp_table_unlocked(dev);
92 	mutex_unlock(&opp_table_lock);
93 
94 	return opp_table;
95 }
96 
97 /*
98  * Returns true if multiple clocks aren't there, else returns false with WARN.
99  *
100  * We don't force clk_count == 1 here as there are users who don't have a clock
101  * representation in the OPP table and manage the clock configuration themselves
102  * in an platform specific way.
103  */
104 static bool assert_single_clk(struct opp_table *opp_table)
105 {
106 	return !WARN_ON(opp_table->clk_count > 1);
107 }
108 
109 /**
110  * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
111  * @opp:	opp for which voltage has to be returned for
112  *
113  * Return: voltage in micro volt corresponding to the opp, else
114  * return 0
115  *
116  * This is useful only for devices with single power supply.
117  */
118 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
119 {
120 	if (IS_ERR_OR_NULL(opp)) {
121 		pr_err("%s: Invalid parameters\n", __func__);
122 		return 0;
123 	}
124 
125 	return opp->supplies[0].u_volt;
126 }
127 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
128 
129 /**
130  * dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp
131  * @opp:	opp for which voltage has to be returned for
132  * @supplies:	Placeholder for copying the supply information.
133  *
134  * Return: negative error number on failure, 0 otherwise on success after
135  * setting @supplies.
136  *
137  * This can be used for devices with any number of power supplies. The caller
138  * must ensure the @supplies array must contain space for each regulator.
139  */
140 int dev_pm_opp_get_supplies(struct dev_pm_opp *opp,
141 			    struct dev_pm_opp_supply *supplies)
142 {
143 	if (IS_ERR_OR_NULL(opp) || !supplies) {
144 		pr_err("%s: Invalid parameters\n", __func__);
145 		return -EINVAL;
146 	}
147 
148 	memcpy(supplies, opp->supplies,
149 	       sizeof(*supplies) * opp->opp_table->regulator_count);
150 	return 0;
151 }
152 EXPORT_SYMBOL_GPL(dev_pm_opp_get_supplies);
153 
154 /**
155  * dev_pm_opp_get_power() - Gets the power corresponding to an opp
156  * @opp:	opp for which power has to be returned for
157  *
158  * Return: power in micro watt corresponding to the opp, else
159  * return 0
160  *
161  * This is useful only for devices with single power supply.
162  */
163 unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp)
164 {
165 	unsigned long opp_power = 0;
166 	int i;
167 
168 	if (IS_ERR_OR_NULL(opp)) {
169 		pr_err("%s: Invalid parameters\n", __func__);
170 		return 0;
171 	}
172 	for (i = 0; i < opp->opp_table->regulator_count; i++)
173 		opp_power += opp->supplies[i].u_watt;
174 
175 	return opp_power;
176 }
177 EXPORT_SYMBOL_GPL(dev_pm_opp_get_power);
178 
179 /**
180  * dev_pm_opp_get_freq_indexed() - Gets the frequency corresponding to an
181  *				   available opp with specified index
182  * @opp: opp for which frequency has to be returned for
183  * @index: index of the frequency within the required opp
184  *
185  * Return: frequency in hertz corresponding to the opp with specified index,
186  * else return 0
187  */
188 unsigned long dev_pm_opp_get_freq_indexed(struct dev_pm_opp *opp, u32 index)
189 {
190 	if (IS_ERR_OR_NULL(opp) || index >= opp->opp_table->clk_count) {
191 		pr_err("%s: Invalid parameters\n", __func__);
192 		return 0;
193 	}
194 
195 	return opp->rates[index];
196 }
197 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq_indexed);
198 
199 /**
200  * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
201  * @opp:	opp for which level value has to be returned for
202  *
203  * Return: level read from device tree corresponding to the opp, else
204  * return 0.
205  */
206 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
207 {
208 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
209 		pr_err("%s: Invalid parameters\n", __func__);
210 		return 0;
211 	}
212 
213 	return opp->level;
214 }
215 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
216 
217 /**
218  * dev_pm_opp_get_required_pstate() - Gets the required performance state
219  *                                    corresponding to an available opp
220  * @opp:	opp for which performance state has to be returned for
221  * @index:	index of the required opp
222  *
223  * Return: performance state read from device tree corresponding to the
224  * required opp, else return 0.
225  */
226 unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
227 					    unsigned int index)
228 {
229 	if (IS_ERR_OR_NULL(opp) || !opp->available ||
230 	    index >= opp->opp_table->required_opp_count) {
231 		pr_err("%s: Invalid parameters\n", __func__);
232 		return 0;
233 	}
234 
235 	/* required-opps not fully initialized yet */
236 	if (lazy_linking_pending(opp->opp_table))
237 		return 0;
238 
239 	/* The required OPP table must belong to a genpd */
240 	if (unlikely(!opp->opp_table->required_opp_tables[index]->is_genpd)) {
241 		pr_err("%s: Performance state is only valid for genpds.\n", __func__);
242 		return 0;
243 	}
244 
245 	return opp->required_opps[index]->level;
246 }
247 EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
248 
249 /**
250  * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
251  * @opp: opp for which turbo mode is being verified
252  *
253  * Turbo OPPs are not for normal use, and can be enabled (under certain
254  * conditions) for short duration of times to finish high throughput work
255  * quickly. Running on them for longer times may overheat the chip.
256  *
257  * Return: true if opp is turbo opp, else false.
258  */
259 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
260 {
261 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
262 		pr_err("%s: Invalid parameters\n", __func__);
263 		return false;
264 	}
265 
266 	return opp->turbo;
267 }
268 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
269 
270 /**
271  * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
272  * @dev:	device for which we do this operation
273  *
274  * Return: This function returns the max clock latency in nanoseconds.
275  */
276 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
277 {
278 	struct opp_table *opp_table;
279 	unsigned long clock_latency_ns;
280 
281 	opp_table = _find_opp_table(dev);
282 	if (IS_ERR(opp_table))
283 		return 0;
284 
285 	clock_latency_ns = opp_table->clock_latency_ns_max;
286 
287 	dev_pm_opp_put_opp_table(opp_table);
288 
289 	return clock_latency_ns;
290 }
291 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
292 
293 /**
294  * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
295  * @dev: device for which we do this operation
296  *
297  * Return: This function returns the max voltage latency in nanoseconds.
298  */
299 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
300 {
301 	struct opp_table *opp_table;
302 	struct dev_pm_opp *opp;
303 	struct regulator *reg;
304 	unsigned long latency_ns = 0;
305 	int ret, i, count;
306 	struct {
307 		unsigned long min;
308 		unsigned long max;
309 	} *uV;
310 
311 	opp_table = _find_opp_table(dev);
312 	if (IS_ERR(opp_table))
313 		return 0;
314 
315 	/* Regulator may not be required for the device */
316 	if (!opp_table->regulators)
317 		goto put_opp_table;
318 
319 	count = opp_table->regulator_count;
320 
321 	uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
322 	if (!uV)
323 		goto put_opp_table;
324 
325 	mutex_lock(&opp_table->lock);
326 
327 	for (i = 0; i < count; i++) {
328 		uV[i].min = ~0;
329 		uV[i].max = 0;
330 
331 		list_for_each_entry(opp, &opp_table->opp_list, node) {
332 			if (!opp->available)
333 				continue;
334 
335 			if (opp->supplies[i].u_volt_min < uV[i].min)
336 				uV[i].min = opp->supplies[i].u_volt_min;
337 			if (opp->supplies[i].u_volt_max > uV[i].max)
338 				uV[i].max = opp->supplies[i].u_volt_max;
339 		}
340 	}
341 
342 	mutex_unlock(&opp_table->lock);
343 
344 	/*
345 	 * The caller needs to ensure that opp_table (and hence the regulator)
346 	 * isn't freed, while we are executing this routine.
347 	 */
348 	for (i = 0; i < count; i++) {
349 		reg = opp_table->regulators[i];
350 		ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
351 		if (ret > 0)
352 			latency_ns += ret * 1000;
353 	}
354 
355 	kfree(uV);
356 put_opp_table:
357 	dev_pm_opp_put_opp_table(opp_table);
358 
359 	return latency_ns;
360 }
361 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
362 
363 /**
364  * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
365  *					     nanoseconds
366  * @dev: device for which we do this operation
367  *
368  * Return: This function returns the max transition latency, in nanoseconds, to
369  * switch from one OPP to other.
370  */
371 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
372 {
373 	return dev_pm_opp_get_max_volt_latency(dev) +
374 		dev_pm_opp_get_max_clock_latency(dev);
375 }
376 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
377 
378 /**
379  * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
380  * @dev:	device for which we do this operation
381  *
382  * Return: This function returns the frequency of the OPP marked as suspend_opp
383  * if one is available, else returns 0;
384  */
385 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
386 {
387 	struct opp_table *opp_table;
388 	unsigned long freq = 0;
389 
390 	opp_table = _find_opp_table(dev);
391 	if (IS_ERR(opp_table))
392 		return 0;
393 
394 	if (opp_table->suspend_opp && opp_table->suspend_opp->available)
395 		freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
396 
397 	dev_pm_opp_put_opp_table(opp_table);
398 
399 	return freq;
400 }
401 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
402 
403 int _get_opp_count(struct opp_table *opp_table)
404 {
405 	struct dev_pm_opp *opp;
406 	int count = 0;
407 
408 	mutex_lock(&opp_table->lock);
409 
410 	list_for_each_entry(opp, &opp_table->opp_list, node) {
411 		if (opp->available)
412 			count++;
413 	}
414 
415 	mutex_unlock(&opp_table->lock);
416 
417 	return count;
418 }
419 
420 /**
421  * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
422  * @dev:	device for which we do this operation
423  *
424  * Return: This function returns the number of available opps if there are any,
425  * else returns 0 if none or the corresponding error value.
426  */
427 int dev_pm_opp_get_opp_count(struct device *dev)
428 {
429 	struct opp_table *opp_table;
430 	int count;
431 
432 	opp_table = _find_opp_table(dev);
433 	if (IS_ERR(opp_table)) {
434 		count = PTR_ERR(opp_table);
435 		dev_dbg(dev, "%s: OPP table not found (%d)\n",
436 			__func__, count);
437 		return count;
438 	}
439 
440 	count = _get_opp_count(opp_table);
441 	dev_pm_opp_put_opp_table(opp_table);
442 
443 	return count;
444 }
445 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
446 
447 /* Helpers to read keys */
448 static unsigned long _read_freq(struct dev_pm_opp *opp, int index)
449 {
450 	return opp->rates[index];
451 }
452 
453 static unsigned long _read_level(struct dev_pm_opp *opp, int index)
454 {
455 	return opp->level;
456 }
457 
458 static unsigned long _read_bw(struct dev_pm_opp *opp, int index)
459 {
460 	return opp->bandwidth[index].peak;
461 }
462 
463 /* Generic comparison helpers */
464 static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
465 			   unsigned long opp_key, unsigned long key)
466 {
467 	if (opp_key == key) {
468 		*opp = temp_opp;
469 		return true;
470 	}
471 
472 	return false;
473 }
474 
475 static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
476 			  unsigned long opp_key, unsigned long key)
477 {
478 	if (opp_key >= key) {
479 		*opp = temp_opp;
480 		return true;
481 	}
482 
483 	return false;
484 }
485 
486 static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
487 			   unsigned long opp_key, unsigned long key)
488 {
489 	if (opp_key > key)
490 		return true;
491 
492 	*opp = temp_opp;
493 	return false;
494 }
495 
496 /* Generic key finding helpers */
497 static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table,
498 		unsigned long *key, int index, bool available,
499 		unsigned long (*read)(struct dev_pm_opp *opp, int index),
500 		bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
501 				unsigned long opp_key, unsigned long key),
502 		bool (*assert)(struct opp_table *opp_table))
503 {
504 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
505 
506 	/* Assert that the requirement is met */
507 	if (assert && !assert(opp_table))
508 		return ERR_PTR(-EINVAL);
509 
510 	mutex_lock(&opp_table->lock);
511 
512 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
513 		if (temp_opp->available == available) {
514 			if (compare(&opp, temp_opp, read(temp_opp, index), *key))
515 				break;
516 		}
517 	}
518 
519 	/* Increment the reference count of OPP */
520 	if (!IS_ERR(opp)) {
521 		*key = read(opp, index);
522 		dev_pm_opp_get(opp);
523 	}
524 
525 	mutex_unlock(&opp_table->lock);
526 
527 	return opp;
528 }
529 
530 static struct dev_pm_opp *
531 _find_key(struct device *dev, unsigned long *key, int index, bool available,
532 	  unsigned long (*read)(struct dev_pm_opp *opp, int index),
533 	  bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
534 			  unsigned long opp_key, unsigned long key),
535 	  bool (*assert)(struct opp_table *opp_table))
536 {
537 	struct opp_table *opp_table;
538 	struct dev_pm_opp *opp;
539 
540 	opp_table = _find_opp_table(dev);
541 	if (IS_ERR(opp_table)) {
542 		dev_err(dev, "%s: OPP table not found (%ld)\n", __func__,
543 			PTR_ERR(opp_table));
544 		return ERR_CAST(opp_table);
545 	}
546 
547 	opp = _opp_table_find_key(opp_table, key, index, available, read,
548 				  compare, assert);
549 
550 	dev_pm_opp_put_opp_table(opp_table);
551 
552 	return opp;
553 }
554 
555 static struct dev_pm_opp *_find_key_exact(struct device *dev,
556 		unsigned long key, int index, bool available,
557 		unsigned long (*read)(struct dev_pm_opp *opp, int index),
558 		bool (*assert)(struct opp_table *opp_table))
559 {
560 	/*
561 	 * The value of key will be updated here, but will be ignored as the
562 	 * caller doesn't need it.
563 	 */
564 	return _find_key(dev, &key, index, available, read, _compare_exact,
565 			 assert);
566 }
567 
568 static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table,
569 		unsigned long *key, int index, bool available,
570 		unsigned long (*read)(struct dev_pm_opp *opp, int index),
571 		bool (*assert)(struct opp_table *opp_table))
572 {
573 	return _opp_table_find_key(opp_table, key, index, available, read,
574 				   _compare_ceil, assert);
575 }
576 
577 static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key,
578 		int index, bool available,
579 		unsigned long (*read)(struct dev_pm_opp *opp, int index),
580 		bool (*assert)(struct opp_table *opp_table))
581 {
582 	return _find_key(dev, key, index, available, read, _compare_ceil,
583 			 assert);
584 }
585 
586 static struct dev_pm_opp *_find_key_floor(struct device *dev,
587 		unsigned long *key, int index, bool available,
588 		unsigned long (*read)(struct dev_pm_opp *opp, int index),
589 		bool (*assert)(struct opp_table *opp_table))
590 {
591 	return _find_key(dev, key, index, available, read, _compare_floor,
592 			 assert);
593 }
594 
595 /**
596  * dev_pm_opp_find_freq_exact() - search for an exact frequency
597  * @dev:		device for which we do this operation
598  * @freq:		frequency to search for
599  * @available:		true/false - match for available opp
600  *
601  * Return: Searches for exact match in the opp table and returns pointer to the
602  * matching opp if found, else returns ERR_PTR in case of error and should
603  * be handled using IS_ERR. Error return values can be:
604  * EINVAL:	for bad pointer
605  * ERANGE:	no match found for search
606  * ENODEV:	if device not found in list of registered devices
607  *
608  * Note: available is a modifier for the search. if available=true, then the
609  * match is for exact matching frequency and is available in the stored OPP
610  * table. if false, the match is for exact frequency which is not available.
611  *
612  * This provides a mechanism to enable an opp which is not available currently
613  * or the opposite as well.
614  *
615  * The callers are required to call dev_pm_opp_put() for the returned OPP after
616  * use.
617  */
618 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
619 		unsigned long freq, bool available)
620 {
621 	return _find_key_exact(dev, freq, 0, available, _read_freq,
622 			       assert_single_clk);
623 }
624 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
625 
626 /**
627  * dev_pm_opp_find_freq_exact_indexed() - Search for an exact freq for the
628  *					 clock corresponding to the index
629  * @dev:	Device for which we do this operation
630  * @freq:	frequency to search for
631  * @index:	Clock index
632  * @available:	true/false - match for available opp
633  *
634  * Search for the matching exact OPP for the clock corresponding to the
635  * specified index from a starting freq for a device.
636  *
637  * Return: matching *opp , else returns ERR_PTR in case of error and should be
638  * handled using IS_ERR. Error return values can be:
639  * EINVAL:	for bad pointer
640  * ERANGE:	no match found for search
641  * ENODEV:	if device not found in list of registered devices
642  *
643  * The callers are required to call dev_pm_opp_put() for the returned OPP after
644  * use.
645  */
646 struct dev_pm_opp *
647 dev_pm_opp_find_freq_exact_indexed(struct device *dev, unsigned long freq,
648 				   u32 index, bool available)
649 {
650 	return _find_key_exact(dev, freq, index, available, _read_freq, NULL);
651 }
652 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact_indexed);
653 
654 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
655 						   unsigned long *freq)
656 {
657 	return _opp_table_find_key_ceil(opp_table, freq, 0, true, _read_freq,
658 					assert_single_clk);
659 }
660 
661 /**
662  * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
663  * @dev:	device for which we do this operation
664  * @freq:	Start frequency
665  *
666  * Search for the matching ceil *available* OPP from a starting freq
667  * for a device.
668  *
669  * Return: matching *opp and refreshes *freq accordingly, else returns
670  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
671  * values can be:
672  * EINVAL:	for bad pointer
673  * ERANGE:	no match found for search
674  * ENODEV:	if device not found in list of registered devices
675  *
676  * The callers are required to call dev_pm_opp_put() for the returned OPP after
677  * use.
678  */
679 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
680 					     unsigned long *freq)
681 {
682 	return _find_key_ceil(dev, freq, 0, true, _read_freq, assert_single_clk);
683 }
684 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
685 
686 /**
687  * dev_pm_opp_find_freq_ceil_indexed() - Search for a rounded ceil freq for the
688  *					 clock corresponding to the index
689  * @dev:	Device for which we do this operation
690  * @freq:	Start frequency
691  * @index:	Clock index
692  *
693  * Search for the matching ceil *available* OPP for the clock corresponding to
694  * the specified index from a starting freq for a device.
695  *
696  * Return: matching *opp and refreshes *freq accordingly, else returns
697  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
698  * values can be:
699  * EINVAL:	for bad pointer
700  * ERANGE:	no match found for search
701  * ENODEV:	if device not found in list of registered devices
702  *
703  * The callers are required to call dev_pm_opp_put() for the returned OPP after
704  * use.
705  */
706 struct dev_pm_opp *
707 dev_pm_opp_find_freq_ceil_indexed(struct device *dev, unsigned long *freq,
708 				  u32 index)
709 {
710 	return _find_key_ceil(dev, freq, index, true, _read_freq, NULL);
711 }
712 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_indexed);
713 
714 /**
715  * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
716  * @dev:	device for which we do this operation
717  * @freq:	Start frequency
718  *
719  * Search for the matching floor *available* OPP from a starting freq
720  * for a device.
721  *
722  * Return: matching *opp and refreshes *freq accordingly, else returns
723  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
724  * values can be:
725  * EINVAL:	for bad pointer
726  * ERANGE:	no match found for search
727  * ENODEV:	if device not found in list of registered devices
728  *
729  * The callers are required to call dev_pm_opp_put() for the returned OPP after
730  * use.
731  */
732 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
733 					      unsigned long *freq)
734 {
735 	return _find_key_floor(dev, freq, 0, true, _read_freq, assert_single_clk);
736 }
737 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
738 
739 /**
740  * dev_pm_opp_find_freq_floor_indexed() - Search for a rounded floor freq for the
741  *					  clock corresponding to the index
742  * @dev:	Device for which we do this operation
743  * @freq:	Start frequency
744  * @index:	Clock index
745  *
746  * Search for the matching floor *available* OPP for the clock corresponding to
747  * the specified index from a starting freq for a device.
748  *
749  * Return: matching *opp and refreshes *freq accordingly, else returns
750  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
751  * values can be:
752  * EINVAL:	for bad pointer
753  * ERANGE:	no match found for search
754  * ENODEV:	if device not found in list of registered devices
755  *
756  * The callers are required to call dev_pm_opp_put() for the returned OPP after
757  * use.
758  */
759 struct dev_pm_opp *
760 dev_pm_opp_find_freq_floor_indexed(struct device *dev, unsigned long *freq,
761 				   u32 index)
762 {
763 	return _find_key_floor(dev, freq, index, true, _read_freq, NULL);
764 }
765 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor_indexed);
766 
767 /**
768  * dev_pm_opp_find_level_exact() - search for an exact level
769  * @dev:		device for which we do this operation
770  * @level:		level to search for
771  *
772  * Return: Searches for exact match in the opp table and returns pointer to the
773  * matching opp if found, else returns ERR_PTR in case of error and should
774  * be handled using IS_ERR. Error return values can be:
775  * EINVAL:	for bad pointer
776  * ERANGE:	no match found for search
777  * ENODEV:	if device not found in list of registered devices
778  *
779  * The callers are required to call dev_pm_opp_put() for the returned OPP after
780  * use.
781  */
782 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
783 					       unsigned int level)
784 {
785 	return _find_key_exact(dev, level, 0, true, _read_level, NULL);
786 }
787 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
788 
789 /**
790  * dev_pm_opp_find_level_ceil() - search for an rounded up level
791  * @dev:		device for which we do this operation
792  * @level:		level to search for
793  *
794  * Return: Searches for rounded up match in the opp table and returns pointer
795  * to the  matching opp if found, else returns ERR_PTR in case of error and
796  * should be handled using IS_ERR. Error return values can be:
797  * EINVAL:	for bad pointer
798  * ERANGE:	no match found for search
799  * ENODEV:	if device not found in list of registered devices
800  *
801  * The callers are required to call dev_pm_opp_put() for the returned OPP after
802  * use.
803  */
804 struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
805 					      unsigned int *level)
806 {
807 	unsigned long temp = *level;
808 	struct dev_pm_opp *opp;
809 
810 	opp = _find_key_ceil(dev, &temp, 0, true, _read_level, NULL);
811 	*level = temp;
812 	return opp;
813 }
814 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
815 
816 /**
817  * dev_pm_opp_find_level_floor() - Search for a rounded floor level
818  * @dev:	device for which we do this operation
819  * @level:	Start level
820  *
821  * Search for the matching floor *available* OPP from a starting level
822  * for a device.
823  *
824  * Return: matching *opp and refreshes *level accordingly, else returns
825  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
826  * values can be:
827  * EINVAL:	for bad pointer
828  * ERANGE:	no match found for search
829  * ENODEV:	if device not found in list of registered devices
830  *
831  * The callers are required to call dev_pm_opp_put() for the returned OPP after
832  * use.
833  */
834 struct dev_pm_opp *dev_pm_opp_find_level_floor(struct device *dev,
835 					       unsigned long *level)
836 {
837 	return _find_key_floor(dev, level, 0, true, _read_level, NULL);
838 }
839 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_floor);
840 
841 /**
842  * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth
843  * @dev:	device for which we do this operation
844  * @bw:	start bandwidth
845  * @index:	which bandwidth to compare, in case of OPPs with several values
846  *
847  * Search for the matching floor *available* OPP from a starting bandwidth
848  * for a device.
849  *
850  * Return: matching *opp and refreshes *bw accordingly, else returns
851  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
852  * values can be:
853  * EINVAL:	for bad pointer
854  * ERANGE:	no match found for search
855  * ENODEV:	if device not found in list of registered devices
856  *
857  * The callers are required to call dev_pm_opp_put() for the returned OPP after
858  * use.
859  */
860 struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw,
861 					   int index)
862 {
863 	unsigned long temp = *bw;
864 	struct dev_pm_opp *opp;
865 
866 	opp = _find_key_ceil(dev, &temp, index, true, _read_bw, NULL);
867 	*bw = temp;
868 	return opp;
869 }
870 EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil);
871 
872 /**
873  * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth
874  * @dev:	device for which we do this operation
875  * @bw:	start bandwidth
876  * @index:	which bandwidth to compare, in case of OPPs with several values
877  *
878  * Search for the matching floor *available* OPP from a starting bandwidth
879  * for a device.
880  *
881  * Return: matching *opp and refreshes *bw accordingly, else returns
882  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
883  * values can be:
884  * EINVAL:	for bad pointer
885  * ERANGE:	no match found for search
886  * ENODEV:	if device not found in list of registered devices
887  *
888  * The callers are required to call dev_pm_opp_put() for the returned OPP after
889  * use.
890  */
891 struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev,
892 					    unsigned int *bw, int index)
893 {
894 	unsigned long temp = *bw;
895 	struct dev_pm_opp *opp;
896 
897 	opp = _find_key_floor(dev, &temp, index, true, _read_bw, NULL);
898 	*bw = temp;
899 	return opp;
900 }
901 EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor);
902 
903 static int _set_opp_voltage(struct device *dev, struct regulator *reg,
904 			    struct dev_pm_opp_supply *supply)
905 {
906 	int ret;
907 
908 	/* Regulator not available for device */
909 	if (IS_ERR(reg)) {
910 		dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
911 			PTR_ERR(reg));
912 		return 0;
913 	}
914 
915 	dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
916 		supply->u_volt_min, supply->u_volt, supply->u_volt_max);
917 
918 	ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
919 					    supply->u_volt, supply->u_volt_max);
920 	if (ret)
921 		dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
922 			__func__, supply->u_volt_min, supply->u_volt,
923 			supply->u_volt_max, ret);
924 
925 	return ret;
926 }
927 
928 static int
929 _opp_config_clk_single(struct device *dev, struct opp_table *opp_table,
930 		       struct dev_pm_opp *opp, void *data, bool scaling_down)
931 {
932 	unsigned long *target = data;
933 	unsigned long freq;
934 	int ret;
935 
936 	/* One of target and opp must be available */
937 	if (target) {
938 		freq = *target;
939 	} else if (opp) {
940 		freq = opp->rates[0];
941 	} else {
942 		WARN_ON(1);
943 		return -EINVAL;
944 	}
945 
946 	ret = clk_set_rate(opp_table->clk, freq);
947 	if (ret) {
948 		dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
949 			ret);
950 	} else {
951 		opp_table->rate_clk_single = freq;
952 	}
953 
954 	return ret;
955 }
956 
957 /*
958  * Simple implementation for configuring multiple clocks. Configure clocks in
959  * the order in which they are present in the array while scaling up.
960  */
961 int dev_pm_opp_config_clks_simple(struct device *dev,
962 		struct opp_table *opp_table, struct dev_pm_opp *opp, void *data,
963 		bool scaling_down)
964 {
965 	int ret, i;
966 
967 	if (scaling_down) {
968 		for (i = opp_table->clk_count - 1; i >= 0; i--) {
969 			ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
970 			if (ret) {
971 				dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
972 					ret);
973 				return ret;
974 			}
975 		}
976 	} else {
977 		for (i = 0; i < opp_table->clk_count; i++) {
978 			ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
979 			if (ret) {
980 				dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
981 					ret);
982 				return ret;
983 			}
984 		}
985 	}
986 
987 	return 0;
988 }
989 EXPORT_SYMBOL_GPL(dev_pm_opp_config_clks_simple);
990 
991 static int _opp_config_regulator_single(struct device *dev,
992 			struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp,
993 			struct regulator **regulators, unsigned int count)
994 {
995 	struct regulator *reg = regulators[0];
996 	int ret;
997 
998 	/* This function only supports single regulator per device */
999 	if (WARN_ON(count > 1)) {
1000 		dev_err(dev, "multiple regulators are not supported\n");
1001 		return -EINVAL;
1002 	}
1003 
1004 	ret = _set_opp_voltage(dev, reg, new_opp->supplies);
1005 	if (ret)
1006 		return ret;
1007 
1008 	/*
1009 	 * Enable the regulator after setting its voltages, otherwise it breaks
1010 	 * some boot-enabled regulators.
1011 	 */
1012 	if (unlikely(!new_opp->opp_table->enabled)) {
1013 		ret = regulator_enable(reg);
1014 		if (ret < 0)
1015 			dev_warn(dev, "Failed to enable regulator: %d", ret);
1016 	}
1017 
1018 	return 0;
1019 }
1020 
1021 static int _set_opp_bw(const struct opp_table *opp_table,
1022 		       struct dev_pm_opp *opp, struct device *dev)
1023 {
1024 	u32 avg, peak;
1025 	int i, ret;
1026 
1027 	if (!opp_table->paths)
1028 		return 0;
1029 
1030 	for (i = 0; i < opp_table->path_count; i++) {
1031 		if (!opp) {
1032 			avg = 0;
1033 			peak = 0;
1034 		} else {
1035 			avg = opp->bandwidth[i].avg;
1036 			peak = opp->bandwidth[i].peak;
1037 		}
1038 		ret = icc_set_bw(opp_table->paths[i], avg, peak);
1039 		if (ret) {
1040 			dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
1041 				opp ? "set" : "remove", i, ret);
1042 			return ret;
1043 		}
1044 	}
1045 
1046 	return 0;
1047 }
1048 
1049 static int _set_performance_state(struct device *dev, struct device *pd_dev,
1050 				  struct dev_pm_opp *opp, int i)
1051 {
1052 	unsigned int pstate = likely(opp) ? opp->required_opps[i]->level: 0;
1053 	int ret;
1054 
1055 	if (!pd_dev)
1056 		return 0;
1057 
1058 	ret = dev_pm_domain_set_performance_state(pd_dev, pstate);
1059 	if (ret) {
1060 		dev_err(dev, "Failed to set performance state of %s: %d (%d)\n",
1061 			dev_name(pd_dev), pstate, ret);
1062 	}
1063 
1064 	return ret;
1065 }
1066 
1067 static int _opp_set_required_opps_generic(struct device *dev,
1068 	struct opp_table *opp_table, struct dev_pm_opp *opp, bool scaling_down)
1069 {
1070 	dev_err(dev, "setting required-opps isn't supported for non-genpd devices\n");
1071 	return -ENOENT;
1072 }
1073 
1074 static int _opp_set_required_opps_genpd(struct device *dev,
1075 	struct opp_table *opp_table, struct dev_pm_opp *opp, bool scaling_down)
1076 {
1077 	struct device **genpd_virt_devs =
1078 		opp_table->genpd_virt_devs ? opp_table->genpd_virt_devs : &dev;
1079 	int index, target, delta, ret;
1080 
1081 	/* Scaling up? Set required OPPs in normal order, else reverse */
1082 	if (!scaling_down) {
1083 		index = 0;
1084 		target = opp_table->required_opp_count;
1085 		delta = 1;
1086 	} else {
1087 		index = opp_table->required_opp_count - 1;
1088 		target = -1;
1089 		delta = -1;
1090 	}
1091 
1092 	while (index != target) {
1093 		ret = _set_performance_state(dev, genpd_virt_devs[index], opp, index);
1094 		if (ret)
1095 			return ret;
1096 
1097 		index += delta;
1098 	}
1099 
1100 	return 0;
1101 }
1102 
1103 /* This is only called for PM domain for now */
1104 static int _set_required_opps(struct device *dev, struct opp_table *opp_table,
1105 			      struct dev_pm_opp *opp, bool up)
1106 {
1107 	/* required-opps not fully initialized yet */
1108 	if (lazy_linking_pending(opp_table))
1109 		return -EBUSY;
1110 
1111 	if (opp_table->set_required_opps)
1112 		return opp_table->set_required_opps(dev, opp_table, opp, up);
1113 
1114 	return 0;
1115 }
1116 
1117 /* Update set_required_opps handler */
1118 void _update_set_required_opps(struct opp_table *opp_table)
1119 {
1120 	/* Already set */
1121 	if (opp_table->set_required_opps)
1122 		return;
1123 
1124 	/* All required OPPs will belong to genpd or none */
1125 	if (opp_table->required_opp_tables[0]->is_genpd)
1126 		opp_table->set_required_opps = _opp_set_required_opps_genpd;
1127 	else
1128 		opp_table->set_required_opps = _opp_set_required_opps_generic;
1129 }
1130 
1131 static int _set_opp_level(struct device *dev, struct opp_table *opp_table,
1132 			  struct dev_pm_opp *opp)
1133 {
1134 	unsigned int level = 0;
1135 	int ret = 0;
1136 
1137 	if (opp) {
1138 		if (!opp->level)
1139 			return 0;
1140 
1141 		level = opp->level;
1142 	}
1143 
1144 	/* Request a new performance state through the device's PM domain. */
1145 	ret = dev_pm_domain_set_performance_state(dev, level);
1146 	if (ret)
1147 		dev_err(dev, "Failed to set performance state %u (%d)\n", level,
1148 			ret);
1149 
1150 	return ret;
1151 }
1152 
1153 static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
1154 {
1155 	struct dev_pm_opp *opp = ERR_PTR(-ENODEV);
1156 	unsigned long freq;
1157 
1158 	if (!IS_ERR(opp_table->clk)) {
1159 		freq = clk_get_rate(opp_table->clk);
1160 		opp = _find_freq_ceil(opp_table, &freq);
1161 	}
1162 
1163 	/*
1164 	 * Unable to find the current OPP ? Pick the first from the list since
1165 	 * it is in ascending order, otherwise rest of the code will need to
1166 	 * make special checks to validate current_opp.
1167 	 */
1168 	if (IS_ERR(opp)) {
1169 		mutex_lock(&opp_table->lock);
1170 		opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node);
1171 		dev_pm_opp_get(opp);
1172 		mutex_unlock(&opp_table->lock);
1173 	}
1174 
1175 	opp_table->current_opp = opp;
1176 }
1177 
1178 static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
1179 {
1180 	int ret;
1181 
1182 	if (!opp_table->enabled)
1183 		return 0;
1184 
1185 	/*
1186 	 * Some drivers need to support cases where some platforms may
1187 	 * have OPP table for the device, while others don't and
1188 	 * opp_set_rate() just needs to behave like clk_set_rate().
1189 	 */
1190 	if (!_get_opp_count(opp_table))
1191 		return 0;
1192 
1193 	ret = _set_opp_bw(opp_table, NULL, dev);
1194 	if (ret)
1195 		return ret;
1196 
1197 	if (opp_table->regulators)
1198 		regulator_disable(opp_table->regulators[0]);
1199 
1200 	ret = _set_opp_level(dev, opp_table, NULL);
1201 	if (ret)
1202 		goto out;
1203 
1204 	ret = _set_required_opps(dev, opp_table, NULL, false);
1205 
1206 out:
1207 	opp_table->enabled = false;
1208 	return ret;
1209 }
1210 
1211 static int _set_opp(struct device *dev, struct opp_table *opp_table,
1212 		    struct dev_pm_opp *opp, void *clk_data, bool forced)
1213 {
1214 	struct dev_pm_opp *old_opp;
1215 	int scaling_down, ret;
1216 
1217 	if (unlikely(!opp))
1218 		return _disable_opp_table(dev, opp_table);
1219 
1220 	/* Find the currently set OPP if we don't know already */
1221 	if (unlikely(!opp_table->current_opp))
1222 		_find_current_opp(dev, opp_table);
1223 
1224 	old_opp = opp_table->current_opp;
1225 
1226 	/* Return early if nothing to do */
1227 	if (!forced && old_opp == opp && opp_table->enabled) {
1228 		dev_dbg_ratelimited(dev, "%s: OPPs are same, nothing to do\n", __func__);
1229 		return 0;
1230 	}
1231 
1232 	dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
1233 		__func__, old_opp->rates[0], opp->rates[0], old_opp->level,
1234 		opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
1235 		opp->bandwidth ? opp->bandwidth[0].peak : 0);
1236 
1237 	scaling_down = _opp_compare_key(opp_table, old_opp, opp);
1238 	if (scaling_down == -1)
1239 		scaling_down = 0;
1240 
1241 	/* Scaling up? Configure required OPPs before frequency */
1242 	if (!scaling_down) {
1243 		ret = _set_required_opps(dev, opp_table, opp, true);
1244 		if (ret) {
1245 			dev_err(dev, "Failed to set required opps: %d\n", ret);
1246 			return ret;
1247 		}
1248 
1249 		ret = _set_opp_level(dev, opp_table, opp);
1250 		if (ret)
1251 			return ret;
1252 
1253 		ret = _set_opp_bw(opp_table, opp, dev);
1254 		if (ret) {
1255 			dev_err(dev, "Failed to set bw: %d\n", ret);
1256 			return ret;
1257 		}
1258 
1259 		if (opp_table->config_regulators) {
1260 			ret = opp_table->config_regulators(dev, old_opp, opp,
1261 							   opp_table->regulators,
1262 							   opp_table->regulator_count);
1263 			if (ret) {
1264 				dev_err(dev, "Failed to set regulator voltages: %d\n",
1265 					ret);
1266 				return ret;
1267 			}
1268 		}
1269 	}
1270 
1271 	if (opp_table->config_clks) {
1272 		ret = opp_table->config_clks(dev, opp_table, opp, clk_data, scaling_down);
1273 		if (ret)
1274 			return ret;
1275 	}
1276 
1277 	/* Scaling down? Configure required OPPs after frequency */
1278 	if (scaling_down) {
1279 		if (opp_table->config_regulators) {
1280 			ret = opp_table->config_regulators(dev, old_opp, opp,
1281 							   opp_table->regulators,
1282 							   opp_table->regulator_count);
1283 			if (ret) {
1284 				dev_err(dev, "Failed to set regulator voltages: %d\n",
1285 					ret);
1286 				return ret;
1287 			}
1288 		}
1289 
1290 		ret = _set_opp_bw(opp_table, opp, dev);
1291 		if (ret) {
1292 			dev_err(dev, "Failed to set bw: %d\n", ret);
1293 			return ret;
1294 		}
1295 
1296 		ret = _set_opp_level(dev, opp_table, opp);
1297 		if (ret)
1298 			return ret;
1299 
1300 		ret = _set_required_opps(dev, opp_table, opp, false);
1301 		if (ret) {
1302 			dev_err(dev, "Failed to set required opps: %d\n", ret);
1303 			return ret;
1304 		}
1305 	}
1306 
1307 	opp_table->enabled = true;
1308 	dev_pm_opp_put(old_opp);
1309 
1310 	/* Make sure current_opp doesn't get freed */
1311 	dev_pm_opp_get(opp);
1312 	opp_table->current_opp = opp;
1313 
1314 	return ret;
1315 }
1316 
1317 /**
1318  * dev_pm_opp_set_rate() - Configure new OPP based on frequency
1319  * @dev:	 device for which we do this operation
1320  * @target_freq: frequency to achieve
1321  *
1322  * This configures the power-supplies to the levels specified by the OPP
1323  * corresponding to the target_freq, and programs the clock to a value <=
1324  * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
1325  * provided by the opp, should have already rounded to the target OPP's
1326  * frequency.
1327  */
1328 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
1329 {
1330 	struct opp_table *opp_table;
1331 	unsigned long freq = 0, temp_freq;
1332 	struct dev_pm_opp *opp = NULL;
1333 	bool forced = false;
1334 	int ret;
1335 
1336 	opp_table = _find_opp_table(dev);
1337 	if (IS_ERR(opp_table)) {
1338 		dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
1339 		return PTR_ERR(opp_table);
1340 	}
1341 
1342 	if (target_freq) {
1343 		/*
1344 		 * For IO devices which require an OPP on some platforms/SoCs
1345 		 * while just needing to scale the clock on some others
1346 		 * we look for empty OPP tables with just a clock handle and
1347 		 * scale only the clk. This makes dev_pm_opp_set_rate()
1348 		 * equivalent to a clk_set_rate()
1349 		 */
1350 		if (!_get_opp_count(opp_table)) {
1351 			ret = opp_table->config_clks(dev, opp_table, NULL,
1352 						     &target_freq, false);
1353 			goto put_opp_table;
1354 		}
1355 
1356 		freq = clk_round_rate(opp_table->clk, target_freq);
1357 		if ((long)freq <= 0)
1358 			freq = target_freq;
1359 
1360 		/*
1361 		 * The clock driver may support finer resolution of the
1362 		 * frequencies than the OPP table, don't update the frequency we
1363 		 * pass to clk_set_rate() here.
1364 		 */
1365 		temp_freq = freq;
1366 		opp = _find_freq_ceil(opp_table, &temp_freq);
1367 		if (IS_ERR(opp)) {
1368 			ret = PTR_ERR(opp);
1369 			dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
1370 				__func__, freq, ret);
1371 			goto put_opp_table;
1372 		}
1373 
1374 		/*
1375 		 * An OPP entry specifies the highest frequency at which other
1376 		 * properties of the OPP entry apply. Even if the new OPP is
1377 		 * same as the old one, we may still reach here for a different
1378 		 * value of the frequency. In such a case, do not abort but
1379 		 * configure the hardware to the desired frequency forcefully.
1380 		 */
1381 		forced = opp_table->rate_clk_single != target_freq;
1382 	}
1383 
1384 	ret = _set_opp(dev, opp_table, opp, &target_freq, forced);
1385 
1386 	if (target_freq)
1387 		dev_pm_opp_put(opp);
1388 
1389 put_opp_table:
1390 	dev_pm_opp_put_opp_table(opp_table);
1391 	return ret;
1392 }
1393 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1394 
1395 /**
1396  * dev_pm_opp_set_opp() - Configure device for OPP
1397  * @dev: device for which we do this operation
1398  * @opp: OPP to set to
1399  *
1400  * This configures the device based on the properties of the OPP passed to this
1401  * routine.
1402  *
1403  * Return: 0 on success, a negative error number otherwise.
1404  */
1405 int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
1406 {
1407 	struct opp_table *opp_table;
1408 	int ret;
1409 
1410 	opp_table = _find_opp_table(dev);
1411 	if (IS_ERR(opp_table)) {
1412 		dev_err(dev, "%s: device opp doesn't exist\n", __func__);
1413 		return PTR_ERR(opp_table);
1414 	}
1415 
1416 	ret = _set_opp(dev, opp_table, opp, NULL, false);
1417 	dev_pm_opp_put_opp_table(opp_table);
1418 
1419 	return ret;
1420 }
1421 EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
1422 
1423 /* OPP-dev Helpers */
1424 static void _remove_opp_dev(struct opp_device *opp_dev,
1425 			    struct opp_table *opp_table)
1426 {
1427 	opp_debug_unregister(opp_dev, opp_table);
1428 	list_del(&opp_dev->node);
1429 	kfree(opp_dev);
1430 }
1431 
1432 struct opp_device *_add_opp_dev(const struct device *dev,
1433 				struct opp_table *opp_table)
1434 {
1435 	struct opp_device *opp_dev;
1436 
1437 	opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1438 	if (!opp_dev)
1439 		return NULL;
1440 
1441 	/* Initialize opp-dev */
1442 	opp_dev->dev = dev;
1443 
1444 	mutex_lock(&opp_table->lock);
1445 	list_add(&opp_dev->node, &opp_table->dev_list);
1446 	mutex_unlock(&opp_table->lock);
1447 
1448 	/* Create debugfs entries for the opp_table */
1449 	opp_debug_register(opp_dev, opp_table);
1450 
1451 	return opp_dev;
1452 }
1453 
1454 static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1455 {
1456 	struct opp_table *opp_table;
1457 	struct opp_device *opp_dev;
1458 	int ret;
1459 
1460 	/*
1461 	 * Allocate a new OPP table. In the infrequent case where a new
1462 	 * device is needed to be added, we pay this penalty.
1463 	 */
1464 	opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1465 	if (!opp_table)
1466 		return ERR_PTR(-ENOMEM);
1467 
1468 	mutex_init(&opp_table->lock);
1469 	INIT_LIST_HEAD(&opp_table->dev_list);
1470 	INIT_LIST_HEAD(&opp_table->lazy);
1471 
1472 	opp_table->clk = ERR_PTR(-ENODEV);
1473 
1474 	/* Mark regulator count uninitialized */
1475 	opp_table->regulator_count = -1;
1476 
1477 	opp_dev = _add_opp_dev(dev, opp_table);
1478 	if (!opp_dev) {
1479 		ret = -ENOMEM;
1480 		goto err;
1481 	}
1482 
1483 	_of_init_opp_table(opp_table, dev, index);
1484 
1485 	/* Find interconnect path(s) for the device */
1486 	ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1487 	if (ret) {
1488 		if (ret == -EPROBE_DEFER)
1489 			goto remove_opp_dev;
1490 
1491 		dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1492 			 __func__, ret);
1493 	}
1494 
1495 	BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1496 	INIT_LIST_HEAD(&opp_table->opp_list);
1497 	kref_init(&opp_table->kref);
1498 
1499 	return opp_table;
1500 
1501 remove_opp_dev:
1502 	_of_clear_opp_table(opp_table);
1503 	_remove_opp_dev(opp_dev, opp_table);
1504 	mutex_destroy(&opp_table->lock);
1505 err:
1506 	kfree(opp_table);
1507 	return ERR_PTR(ret);
1508 }
1509 
1510 void _get_opp_table_kref(struct opp_table *opp_table)
1511 {
1512 	kref_get(&opp_table->kref);
1513 }
1514 
1515 static struct opp_table *_update_opp_table_clk(struct device *dev,
1516 					       struct opp_table *opp_table,
1517 					       bool getclk)
1518 {
1519 	int ret;
1520 
1521 	/*
1522 	 * Return early if we don't need to get clk or we have already done it
1523 	 * earlier.
1524 	 */
1525 	if (!getclk || IS_ERR(opp_table) || !IS_ERR(opp_table->clk) ||
1526 	    opp_table->clks)
1527 		return opp_table;
1528 
1529 	/* Find clk for the device */
1530 	opp_table->clk = clk_get(dev, NULL);
1531 
1532 	ret = PTR_ERR_OR_ZERO(opp_table->clk);
1533 	if (!ret) {
1534 		opp_table->config_clks = _opp_config_clk_single;
1535 		opp_table->clk_count = 1;
1536 		return opp_table;
1537 	}
1538 
1539 	if (ret == -ENOENT) {
1540 		/*
1541 		 * There are few platforms which don't want the OPP core to
1542 		 * manage device's clock settings. In such cases neither the
1543 		 * platform provides the clks explicitly to us, nor the DT
1544 		 * contains a valid clk entry. The OPP nodes in DT may still
1545 		 * contain "opp-hz" property though, which we need to parse and
1546 		 * allow the platform to find an OPP based on freq later on.
1547 		 *
1548 		 * This is a simple solution to take care of such corner cases,
1549 		 * i.e. make the clk_count 1, which lets us allocate space for
1550 		 * frequency in opp->rates and also parse the entries in DT.
1551 		 */
1552 		opp_table->clk_count = 1;
1553 
1554 		dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1555 		return opp_table;
1556 	}
1557 
1558 	dev_pm_opp_put_opp_table(opp_table);
1559 	dev_err_probe(dev, ret, "Couldn't find clock\n");
1560 
1561 	return ERR_PTR(ret);
1562 }
1563 
1564 /*
1565  * We need to make sure that the OPP table for a device doesn't get added twice,
1566  * if this routine gets called in parallel with the same device pointer.
1567  *
1568  * The simplest way to enforce that is to perform everything (find existing
1569  * table and if not found, create a new one) under the opp_table_lock, so only
1570  * one creator gets access to the same. But that expands the critical section
1571  * under the lock and may end up causing circular dependencies with frameworks
1572  * like debugfs, interconnect or clock framework as they may be direct or
1573  * indirect users of OPP core.
1574  *
1575  * And for that reason we have to go for a bit tricky implementation here, which
1576  * uses the opp_tables_busy flag to indicate if another creator is in the middle
1577  * of adding an OPP table and others should wait for it to finish.
1578  */
1579 struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
1580 					 bool getclk)
1581 {
1582 	struct opp_table *opp_table;
1583 
1584 again:
1585 	mutex_lock(&opp_table_lock);
1586 
1587 	opp_table = _find_opp_table_unlocked(dev);
1588 	if (!IS_ERR(opp_table))
1589 		goto unlock;
1590 
1591 	/*
1592 	 * The opp_tables list or an OPP table's dev_list is getting updated by
1593 	 * another user, wait for it to finish.
1594 	 */
1595 	if (unlikely(opp_tables_busy)) {
1596 		mutex_unlock(&opp_table_lock);
1597 		cpu_relax();
1598 		goto again;
1599 	}
1600 
1601 	opp_tables_busy = true;
1602 	opp_table = _managed_opp(dev, index);
1603 
1604 	/* Drop the lock to reduce the size of critical section */
1605 	mutex_unlock(&opp_table_lock);
1606 
1607 	if (opp_table) {
1608 		if (!_add_opp_dev(dev, opp_table)) {
1609 			dev_pm_opp_put_opp_table(opp_table);
1610 			opp_table = ERR_PTR(-ENOMEM);
1611 		}
1612 
1613 		mutex_lock(&opp_table_lock);
1614 	} else {
1615 		opp_table = _allocate_opp_table(dev, index);
1616 
1617 		mutex_lock(&opp_table_lock);
1618 		if (!IS_ERR(opp_table))
1619 			list_add(&opp_table->node, &opp_tables);
1620 	}
1621 
1622 	opp_tables_busy = false;
1623 
1624 unlock:
1625 	mutex_unlock(&opp_table_lock);
1626 
1627 	return _update_opp_table_clk(dev, opp_table, getclk);
1628 }
1629 
1630 static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
1631 {
1632 	return _add_opp_table_indexed(dev, 0, getclk);
1633 }
1634 
1635 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1636 {
1637 	return _find_opp_table(dev);
1638 }
1639 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1640 
1641 static void _opp_table_kref_release(struct kref *kref)
1642 {
1643 	struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1644 	struct opp_device *opp_dev, *temp;
1645 	int i;
1646 
1647 	/* Drop the lock as soon as we can */
1648 	list_del(&opp_table->node);
1649 	mutex_unlock(&opp_table_lock);
1650 
1651 	if (opp_table->current_opp)
1652 		dev_pm_opp_put(opp_table->current_opp);
1653 
1654 	_of_clear_opp_table(opp_table);
1655 
1656 	/* Release automatically acquired single clk */
1657 	if (!IS_ERR(opp_table->clk))
1658 		clk_put(opp_table->clk);
1659 
1660 	if (opp_table->paths) {
1661 		for (i = 0; i < opp_table->path_count; i++)
1662 			icc_put(opp_table->paths[i]);
1663 		kfree(opp_table->paths);
1664 	}
1665 
1666 	WARN_ON(!list_empty(&opp_table->opp_list));
1667 
1668 	list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node)
1669 		_remove_opp_dev(opp_dev, opp_table);
1670 
1671 	mutex_destroy(&opp_table->lock);
1672 	kfree(opp_table);
1673 }
1674 
1675 void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1676 {
1677 	kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1678 		       &opp_table_lock);
1679 }
1680 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1681 
1682 void _opp_free(struct dev_pm_opp *opp)
1683 {
1684 	kfree(opp);
1685 }
1686 
1687 static void _opp_kref_release(struct kref *kref)
1688 {
1689 	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1690 	struct opp_table *opp_table = opp->opp_table;
1691 
1692 	list_del(&opp->node);
1693 	mutex_unlock(&opp_table->lock);
1694 
1695 	/*
1696 	 * Notify the changes in the availability of the operable
1697 	 * frequency/voltage list.
1698 	 */
1699 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1700 	_of_clear_opp(opp_table, opp);
1701 	opp_debug_remove_one(opp);
1702 	kfree(opp);
1703 }
1704 
1705 void dev_pm_opp_get(struct dev_pm_opp *opp)
1706 {
1707 	kref_get(&opp->kref);
1708 }
1709 
1710 void dev_pm_opp_put(struct dev_pm_opp *opp)
1711 {
1712 	kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1713 }
1714 EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1715 
1716 /**
1717  * dev_pm_opp_remove()  - Remove an OPP from OPP table
1718  * @dev:	device for which we do this operation
1719  * @freq:	OPP to remove with matching 'freq'
1720  *
1721  * This function removes an opp from the opp table.
1722  */
1723 void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1724 {
1725 	struct dev_pm_opp *opp = NULL, *iter;
1726 	struct opp_table *opp_table;
1727 
1728 	opp_table = _find_opp_table(dev);
1729 	if (IS_ERR(opp_table))
1730 		return;
1731 
1732 	if (!assert_single_clk(opp_table))
1733 		goto put_table;
1734 
1735 	mutex_lock(&opp_table->lock);
1736 
1737 	list_for_each_entry(iter, &opp_table->opp_list, node) {
1738 		if (iter->rates[0] == freq) {
1739 			opp = iter;
1740 			break;
1741 		}
1742 	}
1743 
1744 	mutex_unlock(&opp_table->lock);
1745 
1746 	if (opp) {
1747 		dev_pm_opp_put(opp);
1748 
1749 		/* Drop the reference taken by dev_pm_opp_add() */
1750 		dev_pm_opp_put_opp_table(opp_table);
1751 	} else {
1752 		dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1753 			 __func__, freq);
1754 	}
1755 
1756 put_table:
1757 	/* Drop the reference taken by _find_opp_table() */
1758 	dev_pm_opp_put_opp_table(opp_table);
1759 }
1760 EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1761 
1762 static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1763 					bool dynamic)
1764 {
1765 	struct dev_pm_opp *opp = NULL, *temp;
1766 
1767 	mutex_lock(&opp_table->lock);
1768 	list_for_each_entry(temp, &opp_table->opp_list, node) {
1769 		/*
1770 		 * Refcount must be dropped only once for each OPP by OPP core,
1771 		 * do that with help of "removed" flag.
1772 		 */
1773 		if (!temp->removed && dynamic == temp->dynamic) {
1774 			opp = temp;
1775 			break;
1776 		}
1777 	}
1778 
1779 	mutex_unlock(&opp_table->lock);
1780 	return opp;
1781 }
1782 
1783 /*
1784  * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to
1785  * happen lock less to avoid circular dependency issues. This routine must be
1786  * called without the opp_table->lock held.
1787  */
1788 static void _opp_remove_all(struct opp_table *opp_table, bool dynamic)
1789 {
1790 	struct dev_pm_opp *opp;
1791 
1792 	while ((opp = _opp_get_next(opp_table, dynamic))) {
1793 		opp->removed = true;
1794 		dev_pm_opp_put(opp);
1795 
1796 		/* Drop the references taken by dev_pm_opp_add() */
1797 		if (dynamic)
1798 			dev_pm_opp_put_opp_table(opp_table);
1799 	}
1800 }
1801 
1802 bool _opp_remove_all_static(struct opp_table *opp_table)
1803 {
1804 	mutex_lock(&opp_table->lock);
1805 
1806 	if (!opp_table->parsed_static_opps) {
1807 		mutex_unlock(&opp_table->lock);
1808 		return false;
1809 	}
1810 
1811 	if (--opp_table->parsed_static_opps) {
1812 		mutex_unlock(&opp_table->lock);
1813 		return true;
1814 	}
1815 
1816 	mutex_unlock(&opp_table->lock);
1817 
1818 	_opp_remove_all(opp_table, false);
1819 	return true;
1820 }
1821 
1822 /**
1823  * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1824  * @dev:	device for which we do this operation
1825  *
1826  * This function removes all dynamically created OPPs from the opp table.
1827  */
1828 void dev_pm_opp_remove_all_dynamic(struct device *dev)
1829 {
1830 	struct opp_table *opp_table;
1831 
1832 	opp_table = _find_opp_table(dev);
1833 	if (IS_ERR(opp_table))
1834 		return;
1835 
1836 	_opp_remove_all(opp_table, true);
1837 
1838 	/* Drop the reference taken by _find_opp_table() */
1839 	dev_pm_opp_put_opp_table(opp_table);
1840 }
1841 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1842 
1843 struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table)
1844 {
1845 	struct dev_pm_opp *opp;
1846 	int supply_count, supply_size, icc_size, clk_size;
1847 
1848 	/* Allocate space for at least one supply */
1849 	supply_count = opp_table->regulator_count > 0 ?
1850 			opp_table->regulator_count : 1;
1851 	supply_size = sizeof(*opp->supplies) * supply_count;
1852 	clk_size = sizeof(*opp->rates) * opp_table->clk_count;
1853 	icc_size = sizeof(*opp->bandwidth) * opp_table->path_count;
1854 
1855 	/* allocate new OPP node and supplies structures */
1856 	opp = kzalloc(sizeof(*opp) + supply_size + clk_size + icc_size, GFP_KERNEL);
1857 	if (!opp)
1858 		return NULL;
1859 
1860 	/* Put the supplies, bw and clock at the end of the OPP structure */
1861 	opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1862 
1863 	opp->rates = (unsigned long *)(opp->supplies + supply_count);
1864 
1865 	if (icc_size)
1866 		opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->rates + opp_table->clk_count);
1867 
1868 	INIT_LIST_HEAD(&opp->node);
1869 
1870 	return opp;
1871 }
1872 
1873 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1874 					 struct opp_table *opp_table)
1875 {
1876 	struct regulator *reg;
1877 	int i;
1878 
1879 	if (!opp_table->regulators)
1880 		return true;
1881 
1882 	for (i = 0; i < opp_table->regulator_count; i++) {
1883 		reg = opp_table->regulators[i];
1884 
1885 		if (!regulator_is_supported_voltage(reg,
1886 					opp->supplies[i].u_volt_min,
1887 					opp->supplies[i].u_volt_max)) {
1888 			pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1889 				__func__, opp->supplies[i].u_volt_min,
1890 				opp->supplies[i].u_volt_max);
1891 			return false;
1892 		}
1893 	}
1894 
1895 	return true;
1896 }
1897 
1898 static int _opp_compare_rate(struct opp_table *opp_table,
1899 			     struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1900 {
1901 	int i;
1902 
1903 	for (i = 0; i < opp_table->clk_count; i++) {
1904 		if (opp1->rates[i] != opp2->rates[i])
1905 			return opp1->rates[i] < opp2->rates[i] ? -1 : 1;
1906 	}
1907 
1908 	/* Same rates for both OPPs */
1909 	return 0;
1910 }
1911 
1912 static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1913 			   struct dev_pm_opp *opp2)
1914 {
1915 	int i;
1916 
1917 	for (i = 0; i < opp_table->path_count; i++) {
1918 		if (opp1->bandwidth[i].peak != opp2->bandwidth[i].peak)
1919 			return opp1->bandwidth[i].peak < opp2->bandwidth[i].peak ? -1 : 1;
1920 	}
1921 
1922 	/* Same bw for both OPPs */
1923 	return 0;
1924 }
1925 
1926 /*
1927  * Returns
1928  * 0: opp1 == opp2
1929  * 1: opp1 > opp2
1930  * -1: opp1 < opp2
1931  */
1932 int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1933 		     struct dev_pm_opp *opp2)
1934 {
1935 	int ret;
1936 
1937 	ret = _opp_compare_rate(opp_table, opp1, opp2);
1938 	if (ret)
1939 		return ret;
1940 
1941 	ret = _opp_compare_bw(opp_table, opp1, opp2);
1942 	if (ret)
1943 		return ret;
1944 
1945 	if (opp1->level != opp2->level)
1946 		return opp1->level < opp2->level ? -1 : 1;
1947 
1948 	/* Duplicate OPPs */
1949 	return 0;
1950 }
1951 
1952 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1953 			     struct opp_table *opp_table,
1954 			     struct list_head **head)
1955 {
1956 	struct dev_pm_opp *opp;
1957 	int opp_cmp;
1958 
1959 	/*
1960 	 * Insert new OPP in order of increasing frequency and discard if
1961 	 * already present.
1962 	 *
1963 	 * Need to use &opp_table->opp_list in the condition part of the 'for'
1964 	 * loop, don't replace it with head otherwise it will become an infinite
1965 	 * loop.
1966 	 */
1967 	list_for_each_entry(opp, &opp_table->opp_list, node) {
1968 		opp_cmp = _opp_compare_key(opp_table, new_opp, opp);
1969 		if (opp_cmp > 0) {
1970 			*head = &opp->node;
1971 			continue;
1972 		}
1973 
1974 		if (opp_cmp < 0)
1975 			return 0;
1976 
1977 		/* Duplicate OPPs */
1978 		dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1979 			 __func__, opp->rates[0], opp->supplies[0].u_volt,
1980 			 opp->available, new_opp->rates[0],
1981 			 new_opp->supplies[0].u_volt, new_opp->available);
1982 
1983 		/* Should we compare voltages for all regulators here ? */
1984 		return opp->available &&
1985 		       new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1986 	}
1987 
1988 	return 0;
1989 }
1990 
1991 void _required_opps_available(struct dev_pm_opp *opp, int count)
1992 {
1993 	int i;
1994 
1995 	for (i = 0; i < count; i++) {
1996 		if (opp->required_opps[i]->available)
1997 			continue;
1998 
1999 		opp->available = false;
2000 		pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
2001 			 __func__, opp->required_opps[i]->np, opp->rates[0]);
2002 		return;
2003 	}
2004 }
2005 
2006 /*
2007  * Returns:
2008  * 0: On success. And appropriate error message for duplicate OPPs.
2009  * -EBUSY: For OPP with same freq/volt and is available. The callers of
2010  *  _opp_add() must return 0 if they receive -EBUSY from it. This is to make
2011  *  sure we don't print error messages unnecessarily if different parts of
2012  *  kernel try to initialize the OPP table.
2013  * -EEXIST: For OPP with same freq but different volt or is unavailable. This
2014  *  should be considered an error by the callers of _opp_add().
2015  */
2016 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
2017 	     struct opp_table *opp_table)
2018 {
2019 	struct list_head *head;
2020 	int ret;
2021 
2022 	mutex_lock(&opp_table->lock);
2023 	head = &opp_table->opp_list;
2024 
2025 	ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
2026 	if (ret) {
2027 		mutex_unlock(&opp_table->lock);
2028 		return ret;
2029 	}
2030 
2031 	list_add(&new_opp->node, head);
2032 	mutex_unlock(&opp_table->lock);
2033 
2034 	new_opp->opp_table = opp_table;
2035 	kref_init(&new_opp->kref);
2036 
2037 	opp_debug_create_one(new_opp, opp_table);
2038 
2039 	if (!_opp_supported_by_regulators(new_opp, opp_table)) {
2040 		new_opp->available = false;
2041 		dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
2042 			 __func__, new_opp->rates[0]);
2043 	}
2044 
2045 	/* required-opps not fully initialized yet */
2046 	if (lazy_linking_pending(opp_table))
2047 		return 0;
2048 
2049 	_required_opps_available(new_opp, opp_table->required_opp_count);
2050 
2051 	return 0;
2052 }
2053 
2054 /**
2055  * _opp_add_v1() - Allocate a OPP based on v1 bindings.
2056  * @opp_table:	OPP table
2057  * @dev:	device for which we do this operation
2058  * @data:	The OPP data for the OPP to add
2059  * @dynamic:	Dynamically added OPPs.
2060  *
2061  * This function adds an opp definition to the opp table and returns status.
2062  * The opp is made available by default and it can be controlled using
2063  * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
2064  *
2065  * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
2066  * and freed by dev_pm_opp_of_remove_table.
2067  *
2068  * Return:
2069  * 0		On success OR
2070  *		Duplicate OPPs (both freq and volt are same) and opp->available
2071  * -EEXIST	Freq are same and volt are different OR
2072  *		Duplicate OPPs (both freq and volt are same) and !opp->available
2073  * -ENOMEM	Memory allocation failure
2074  */
2075 int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
2076 		struct dev_pm_opp_data *data, bool dynamic)
2077 {
2078 	struct dev_pm_opp *new_opp;
2079 	unsigned long tol, u_volt = data->u_volt;
2080 	int ret;
2081 
2082 	if (!assert_single_clk(opp_table))
2083 		return -EINVAL;
2084 
2085 	new_opp = _opp_allocate(opp_table);
2086 	if (!new_opp)
2087 		return -ENOMEM;
2088 
2089 	/* populate the opp table */
2090 	new_opp->rates[0] = data->freq;
2091 	new_opp->level = data->level;
2092 	tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
2093 	new_opp->supplies[0].u_volt = u_volt;
2094 	new_opp->supplies[0].u_volt_min = u_volt - tol;
2095 	new_opp->supplies[0].u_volt_max = u_volt + tol;
2096 	new_opp->available = true;
2097 	new_opp->dynamic = dynamic;
2098 
2099 	ret = _opp_add(dev, new_opp, opp_table);
2100 	if (ret) {
2101 		/* Don't return error for duplicate OPPs */
2102 		if (ret == -EBUSY)
2103 			ret = 0;
2104 		goto free_opp;
2105 	}
2106 
2107 	/*
2108 	 * Notify the changes in the availability of the operable
2109 	 * frequency/voltage list.
2110 	 */
2111 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
2112 	return 0;
2113 
2114 free_opp:
2115 	_opp_free(new_opp);
2116 
2117 	return ret;
2118 }
2119 
2120 /*
2121  * This is required only for the V2 bindings, and it enables a platform to
2122  * specify the hierarchy of versions it supports. OPP layer will then enable
2123  * OPPs, which are available for those versions, based on its 'opp-supported-hw'
2124  * property.
2125  */
2126 static int _opp_set_supported_hw(struct opp_table *opp_table,
2127 				 const u32 *versions, unsigned int count)
2128 {
2129 	/* Another CPU that shares the OPP table has set the property ? */
2130 	if (opp_table->supported_hw)
2131 		return 0;
2132 
2133 	opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
2134 					GFP_KERNEL);
2135 	if (!opp_table->supported_hw)
2136 		return -ENOMEM;
2137 
2138 	opp_table->supported_hw_count = count;
2139 
2140 	return 0;
2141 }
2142 
2143 static void _opp_put_supported_hw(struct opp_table *opp_table)
2144 {
2145 	if (opp_table->supported_hw) {
2146 		kfree(opp_table->supported_hw);
2147 		opp_table->supported_hw = NULL;
2148 		opp_table->supported_hw_count = 0;
2149 	}
2150 }
2151 
2152 /*
2153  * This is required only for the V2 bindings, and it enables a platform to
2154  * specify the extn to be used for certain property names. The properties to
2155  * which the extension will apply are opp-microvolt and opp-microamp. OPP core
2156  * should postfix the property name with -<name> while looking for them.
2157  */
2158 static int _opp_set_prop_name(struct opp_table *opp_table, const char *name)
2159 {
2160 	/* Another CPU that shares the OPP table has set the property ? */
2161 	if (!opp_table->prop_name) {
2162 		opp_table->prop_name = kstrdup(name, GFP_KERNEL);
2163 		if (!opp_table->prop_name)
2164 			return -ENOMEM;
2165 	}
2166 
2167 	return 0;
2168 }
2169 
2170 static void _opp_put_prop_name(struct opp_table *opp_table)
2171 {
2172 	if (opp_table->prop_name) {
2173 		kfree(opp_table->prop_name);
2174 		opp_table->prop_name = NULL;
2175 	}
2176 }
2177 
2178 /*
2179  * In order to support OPP switching, OPP layer needs to know the name of the
2180  * device's regulators, as the core would be required to switch voltages as
2181  * well.
2182  *
2183  * This must be called before any OPPs are initialized for the device.
2184  */
2185 static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev,
2186 			       const char * const names[])
2187 {
2188 	const char * const *temp = names;
2189 	struct regulator *reg;
2190 	int count = 0, ret, i;
2191 
2192 	/* Count number of regulators */
2193 	while (*temp++)
2194 		count++;
2195 
2196 	if (!count)
2197 		return -EINVAL;
2198 
2199 	/* Another CPU that shares the OPP table has set the regulators ? */
2200 	if (opp_table->regulators)
2201 		return 0;
2202 
2203 	opp_table->regulators = kmalloc_array(count,
2204 					      sizeof(*opp_table->regulators),
2205 					      GFP_KERNEL);
2206 	if (!opp_table->regulators)
2207 		return -ENOMEM;
2208 
2209 	for (i = 0; i < count; i++) {
2210 		reg = regulator_get_optional(dev, names[i]);
2211 		if (IS_ERR(reg)) {
2212 			ret = dev_err_probe(dev, PTR_ERR(reg),
2213 					    "%s: no regulator (%s) found\n",
2214 					    __func__, names[i]);
2215 			goto free_regulators;
2216 		}
2217 
2218 		opp_table->regulators[i] = reg;
2219 	}
2220 
2221 	opp_table->regulator_count = count;
2222 
2223 	/* Set generic config_regulators() for single regulators here */
2224 	if (count == 1)
2225 		opp_table->config_regulators = _opp_config_regulator_single;
2226 
2227 	return 0;
2228 
2229 free_regulators:
2230 	while (i != 0)
2231 		regulator_put(opp_table->regulators[--i]);
2232 
2233 	kfree(opp_table->regulators);
2234 	opp_table->regulators = NULL;
2235 	opp_table->regulator_count = -1;
2236 
2237 	return ret;
2238 }
2239 
2240 static void _opp_put_regulators(struct opp_table *opp_table)
2241 {
2242 	int i;
2243 
2244 	if (!opp_table->regulators)
2245 		return;
2246 
2247 	if (opp_table->enabled) {
2248 		for (i = opp_table->regulator_count - 1; i >= 0; i--)
2249 			regulator_disable(opp_table->regulators[i]);
2250 	}
2251 
2252 	for (i = opp_table->regulator_count - 1; i >= 0; i--)
2253 		regulator_put(opp_table->regulators[i]);
2254 
2255 	kfree(opp_table->regulators);
2256 	opp_table->regulators = NULL;
2257 	opp_table->regulator_count = -1;
2258 }
2259 
2260 static void _put_clks(struct opp_table *opp_table, int count)
2261 {
2262 	int i;
2263 
2264 	for (i = count - 1; i >= 0; i--)
2265 		clk_put(opp_table->clks[i]);
2266 
2267 	kfree(opp_table->clks);
2268 	opp_table->clks = NULL;
2269 }
2270 
2271 /*
2272  * In order to support OPP switching, OPP layer needs to get pointers to the
2273  * clocks for the device. Simple cases work fine without using this routine
2274  * (i.e. by passing connection-id as NULL), but for a device with multiple
2275  * clocks available, the OPP core needs to know the exact names of the clks to
2276  * use.
2277  *
2278  * This must be called before any OPPs are initialized for the device.
2279  */
2280 static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev,
2281 			     const char * const names[],
2282 			     config_clks_t config_clks)
2283 {
2284 	const char * const *temp = names;
2285 	int count = 0, ret, i;
2286 	struct clk *clk;
2287 
2288 	/* Count number of clks */
2289 	while (*temp++)
2290 		count++;
2291 
2292 	/*
2293 	 * This is a special case where we have a single clock, whose connection
2294 	 * id name is NULL, i.e. first two entries are NULL in the array.
2295 	 */
2296 	if (!count && !names[1])
2297 		count = 1;
2298 
2299 	/* Fail early for invalid configurations */
2300 	if (!count || (!config_clks && count > 1))
2301 		return -EINVAL;
2302 
2303 	/* Another CPU that shares the OPP table has set the clkname ? */
2304 	if (opp_table->clks)
2305 		return 0;
2306 
2307 	opp_table->clks = kmalloc_array(count, sizeof(*opp_table->clks),
2308 					GFP_KERNEL);
2309 	if (!opp_table->clks)
2310 		return -ENOMEM;
2311 
2312 	/* Find clks for the device */
2313 	for (i = 0; i < count; i++) {
2314 		clk = clk_get(dev, names[i]);
2315 		if (IS_ERR(clk)) {
2316 			ret = dev_err_probe(dev, PTR_ERR(clk),
2317 					    "%s: Couldn't find clock with name: %s\n",
2318 					    __func__, names[i]);
2319 			goto free_clks;
2320 		}
2321 
2322 		opp_table->clks[i] = clk;
2323 	}
2324 
2325 	opp_table->clk_count = count;
2326 	opp_table->config_clks = config_clks;
2327 
2328 	/* Set generic single clk set here */
2329 	if (count == 1) {
2330 		if (!opp_table->config_clks)
2331 			opp_table->config_clks = _opp_config_clk_single;
2332 
2333 		/*
2334 		 * We could have just dropped the "clk" field and used "clks"
2335 		 * everywhere. Instead we kept the "clk" field around for
2336 		 * following reasons:
2337 		 *
2338 		 * - avoiding clks[0] everywhere else.
2339 		 * - not running single clk helpers for multiple clk usecase by
2340 		 *   mistake.
2341 		 *
2342 		 * Since this is single-clk case, just update the clk pointer
2343 		 * too.
2344 		 */
2345 		opp_table->clk = opp_table->clks[0];
2346 	}
2347 
2348 	return 0;
2349 
2350 free_clks:
2351 	_put_clks(opp_table, i);
2352 	return ret;
2353 }
2354 
2355 static void _opp_put_clknames(struct opp_table *opp_table)
2356 {
2357 	if (!opp_table->clks)
2358 		return;
2359 
2360 	opp_table->config_clks = NULL;
2361 	opp_table->clk = ERR_PTR(-ENODEV);
2362 
2363 	_put_clks(opp_table, opp_table->clk_count);
2364 }
2365 
2366 /*
2367  * This is useful to support platforms with multiple regulators per device.
2368  *
2369  * This must be called before any OPPs are initialized for the device.
2370  */
2371 static int _opp_set_config_regulators_helper(struct opp_table *opp_table,
2372 		struct device *dev, config_regulators_t config_regulators)
2373 {
2374 	/* Another CPU that shares the OPP table has set the helper ? */
2375 	if (!opp_table->config_regulators)
2376 		opp_table->config_regulators = config_regulators;
2377 
2378 	return 0;
2379 }
2380 
2381 static void _opp_put_config_regulators_helper(struct opp_table *opp_table)
2382 {
2383 	if (opp_table->config_regulators)
2384 		opp_table->config_regulators = NULL;
2385 }
2386 
2387 static void _opp_detach_genpd(struct opp_table *opp_table)
2388 {
2389 	int index;
2390 
2391 	if (!opp_table->genpd_virt_devs)
2392 		return;
2393 
2394 	for (index = 0; index < opp_table->required_opp_count; index++) {
2395 		if (!opp_table->genpd_virt_devs[index])
2396 			continue;
2397 
2398 		dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
2399 		opp_table->genpd_virt_devs[index] = NULL;
2400 	}
2401 
2402 	kfree(opp_table->genpd_virt_devs);
2403 	opp_table->genpd_virt_devs = NULL;
2404 }
2405 
2406 /*
2407  * Multiple generic power domains for a device are supported with the help of
2408  * virtual genpd devices, which are created for each consumer device - genpd
2409  * pair. These are the device structures which are attached to the power domain
2410  * and are required by the OPP core to set the performance state of the genpd.
2411  * The same API also works for the case where single genpd is available and so
2412  * we don't need to support that separately.
2413  *
2414  * This helper will normally be called by the consumer driver of the device
2415  * "dev", as only that has details of the genpd names.
2416  *
2417  * This helper needs to be called once with a list of all genpd to attach.
2418  * Otherwise the original device structure will be used instead by the OPP core.
2419  *
2420  * The order of entries in the names array must match the order in which
2421  * "required-opps" are added in DT.
2422  */
2423 static int _opp_attach_genpd(struct opp_table *opp_table, struct device *dev,
2424 			const char * const *names, struct device ***virt_devs)
2425 {
2426 	struct device *virt_dev;
2427 	int index = 0, ret = -EINVAL;
2428 	const char * const *name = names;
2429 
2430 	if (opp_table->genpd_virt_devs)
2431 		return 0;
2432 
2433 	opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
2434 					     sizeof(*opp_table->genpd_virt_devs),
2435 					     GFP_KERNEL);
2436 	if (!opp_table->genpd_virt_devs)
2437 		return -ENOMEM;
2438 
2439 	while (*name) {
2440 		if (index >= opp_table->required_opp_count) {
2441 			dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2442 				*name, opp_table->required_opp_count, index);
2443 			goto err;
2444 		}
2445 
2446 		virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2447 		if (IS_ERR_OR_NULL(virt_dev)) {
2448 			ret = virt_dev ? PTR_ERR(virt_dev) : -ENODEV;
2449 			dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2450 			goto err;
2451 		}
2452 
2453 		opp_table->genpd_virt_devs[index] = virt_dev;
2454 		index++;
2455 		name++;
2456 	}
2457 
2458 	if (virt_devs)
2459 		*virt_devs = opp_table->genpd_virt_devs;
2460 
2461 	return 0;
2462 
2463 err:
2464 	_opp_detach_genpd(opp_table);
2465 	return ret;
2466 
2467 }
2468 
2469 static void _opp_clear_config(struct opp_config_data *data)
2470 {
2471 	if (data->flags & OPP_CONFIG_GENPD)
2472 		_opp_detach_genpd(data->opp_table);
2473 	if (data->flags & OPP_CONFIG_REGULATOR)
2474 		_opp_put_regulators(data->opp_table);
2475 	if (data->flags & OPP_CONFIG_SUPPORTED_HW)
2476 		_opp_put_supported_hw(data->opp_table);
2477 	if (data->flags & OPP_CONFIG_REGULATOR_HELPER)
2478 		_opp_put_config_regulators_helper(data->opp_table);
2479 	if (data->flags & OPP_CONFIG_PROP_NAME)
2480 		_opp_put_prop_name(data->opp_table);
2481 	if (data->flags & OPP_CONFIG_CLK)
2482 		_opp_put_clknames(data->opp_table);
2483 
2484 	dev_pm_opp_put_opp_table(data->opp_table);
2485 	kfree(data);
2486 }
2487 
2488 /**
2489  * dev_pm_opp_set_config() - Set OPP configuration for the device.
2490  * @dev: Device for which configuration is being set.
2491  * @config: OPP configuration.
2492  *
2493  * This allows all device OPP configurations to be performed at once.
2494  *
2495  * This must be called before any OPPs are initialized for the device. This may
2496  * be called multiple times for the same OPP table, for example once for each
2497  * CPU that share the same table. This must be balanced by the same number of
2498  * calls to dev_pm_opp_clear_config() in order to free the OPP table properly.
2499  *
2500  * This returns a token to the caller, which must be passed to
2501  * dev_pm_opp_clear_config() to free the resources later. The value of the
2502  * returned token will be >= 1 for success and negative for errors. The minimum
2503  * value of 1 is chosen here to make it easy for callers to manage the resource.
2504  */
2505 int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2506 {
2507 	struct opp_table *opp_table;
2508 	struct opp_config_data *data;
2509 	unsigned int id;
2510 	int ret;
2511 
2512 	data = kmalloc(sizeof(*data), GFP_KERNEL);
2513 	if (!data)
2514 		return -ENOMEM;
2515 
2516 	opp_table = _add_opp_table(dev, false);
2517 	if (IS_ERR(opp_table)) {
2518 		kfree(data);
2519 		return PTR_ERR(opp_table);
2520 	}
2521 
2522 	data->opp_table = opp_table;
2523 	data->flags = 0;
2524 
2525 	/* This should be called before OPPs are initialized */
2526 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2527 		ret = -EBUSY;
2528 		goto err;
2529 	}
2530 
2531 	/* Configure clocks */
2532 	if (config->clk_names) {
2533 		ret = _opp_set_clknames(opp_table, dev, config->clk_names,
2534 					config->config_clks);
2535 		if (ret)
2536 			goto err;
2537 
2538 		data->flags |= OPP_CONFIG_CLK;
2539 	} else if (config->config_clks) {
2540 		/* Don't allow config callback without clocks */
2541 		ret = -EINVAL;
2542 		goto err;
2543 	}
2544 
2545 	/* Configure property names */
2546 	if (config->prop_name) {
2547 		ret = _opp_set_prop_name(opp_table, config->prop_name);
2548 		if (ret)
2549 			goto err;
2550 
2551 		data->flags |= OPP_CONFIG_PROP_NAME;
2552 	}
2553 
2554 	/* Configure config_regulators helper */
2555 	if (config->config_regulators) {
2556 		ret = _opp_set_config_regulators_helper(opp_table, dev,
2557 						config->config_regulators);
2558 		if (ret)
2559 			goto err;
2560 
2561 		data->flags |= OPP_CONFIG_REGULATOR_HELPER;
2562 	}
2563 
2564 	/* Configure supported hardware */
2565 	if (config->supported_hw) {
2566 		ret = _opp_set_supported_hw(opp_table, config->supported_hw,
2567 					    config->supported_hw_count);
2568 		if (ret)
2569 			goto err;
2570 
2571 		data->flags |= OPP_CONFIG_SUPPORTED_HW;
2572 	}
2573 
2574 	/* Configure supplies */
2575 	if (config->regulator_names) {
2576 		ret = _opp_set_regulators(opp_table, dev,
2577 					  config->regulator_names);
2578 		if (ret)
2579 			goto err;
2580 
2581 		data->flags |= OPP_CONFIG_REGULATOR;
2582 	}
2583 
2584 	/* Attach genpds */
2585 	if (config->genpd_names) {
2586 		ret = _opp_attach_genpd(opp_table, dev, config->genpd_names,
2587 					config->virt_devs);
2588 		if (ret)
2589 			goto err;
2590 
2591 		data->flags |= OPP_CONFIG_GENPD;
2592 	}
2593 
2594 	ret = xa_alloc(&opp_configs, &id, data, XA_LIMIT(1, INT_MAX),
2595 		       GFP_KERNEL);
2596 	if (ret)
2597 		goto err;
2598 
2599 	return id;
2600 
2601 err:
2602 	_opp_clear_config(data);
2603 	return ret;
2604 }
2605 EXPORT_SYMBOL_GPL(dev_pm_opp_set_config);
2606 
2607 /**
2608  * dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration.
2609  * @token: The token returned by dev_pm_opp_set_config() previously.
2610  *
2611  * This allows all device OPP configurations to be cleared at once. This must be
2612  * called once for each call made to dev_pm_opp_set_config(), in order to free
2613  * the OPPs properly.
2614  *
2615  * Currently the first call itself ends up freeing all the OPP configurations,
2616  * while the later ones only drop the OPP table reference. This works well for
2617  * now as we would never want to use an half initialized OPP table and want to
2618  * remove the configurations together.
2619  */
2620 void dev_pm_opp_clear_config(int token)
2621 {
2622 	struct opp_config_data *data;
2623 
2624 	/*
2625 	 * This lets the callers call this unconditionally and keep their code
2626 	 * simple.
2627 	 */
2628 	if (unlikely(token <= 0))
2629 		return;
2630 
2631 	data = xa_erase(&opp_configs, token);
2632 	if (WARN_ON(!data))
2633 		return;
2634 
2635 	_opp_clear_config(data);
2636 }
2637 EXPORT_SYMBOL_GPL(dev_pm_opp_clear_config);
2638 
2639 static void devm_pm_opp_config_release(void *token)
2640 {
2641 	dev_pm_opp_clear_config((unsigned long)token);
2642 }
2643 
2644 /**
2645  * devm_pm_opp_set_config() - Set OPP configuration for the device.
2646  * @dev: Device for which configuration is being set.
2647  * @config: OPP configuration.
2648  *
2649  * This allows all device OPP configurations to be performed at once.
2650  * This is a resource-managed variant of dev_pm_opp_set_config().
2651  *
2652  * Return: 0 on success and errorno otherwise.
2653  */
2654 int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2655 {
2656 	int token = dev_pm_opp_set_config(dev, config);
2657 
2658 	if (token < 0)
2659 		return token;
2660 
2661 	return devm_add_action_or_reset(dev, devm_pm_opp_config_release,
2662 					(void *) ((unsigned long) token));
2663 }
2664 EXPORT_SYMBOL_GPL(devm_pm_opp_set_config);
2665 
2666 /**
2667  * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
2668  * @src_table: OPP table which has @dst_table as one of its required OPP table.
2669  * @dst_table: Required OPP table of the @src_table.
2670  * @src_opp: OPP from the @src_table.
2671  *
2672  * This function returns the OPP (present in @dst_table) pointed out by the
2673  * "required-opps" property of the @src_opp (present in @src_table).
2674  *
2675  * The callers are required to call dev_pm_opp_put() for the returned OPP after
2676  * use.
2677  *
2678  * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
2679  */
2680 struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
2681 						 struct opp_table *dst_table,
2682 						 struct dev_pm_opp *src_opp)
2683 {
2684 	struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV);
2685 	int i;
2686 
2687 	if (!src_table || !dst_table || !src_opp ||
2688 	    !src_table->required_opp_tables)
2689 		return ERR_PTR(-EINVAL);
2690 
2691 	/* required-opps not fully initialized yet */
2692 	if (lazy_linking_pending(src_table))
2693 		return ERR_PTR(-EBUSY);
2694 
2695 	for (i = 0; i < src_table->required_opp_count; i++) {
2696 		if (src_table->required_opp_tables[i] == dst_table) {
2697 			mutex_lock(&src_table->lock);
2698 
2699 			list_for_each_entry(opp, &src_table->opp_list, node) {
2700 				if (opp == src_opp) {
2701 					dest_opp = opp->required_opps[i];
2702 					dev_pm_opp_get(dest_opp);
2703 					break;
2704 				}
2705 			}
2706 
2707 			mutex_unlock(&src_table->lock);
2708 			break;
2709 		}
2710 	}
2711 
2712 	if (IS_ERR(dest_opp)) {
2713 		pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
2714 		       src_table, dst_table);
2715 	}
2716 
2717 	return dest_opp;
2718 }
2719 EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
2720 
2721 /**
2722  * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2723  * @src_table: OPP table which has dst_table as one of its required OPP table.
2724  * @dst_table: Required OPP table of the src_table.
2725  * @pstate: Current performance state of the src_table.
2726  *
2727  * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2728  * "required-opps" property of the OPP (present in @src_table) which has
2729  * performance state set to @pstate.
2730  *
2731  * Return: Zero or positive performance state on success, otherwise negative
2732  * value on errors.
2733  */
2734 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2735 				       struct opp_table *dst_table,
2736 				       unsigned int pstate)
2737 {
2738 	struct dev_pm_opp *opp;
2739 	int dest_pstate = -EINVAL;
2740 	int i;
2741 
2742 	/*
2743 	 * Normally the src_table will have the "required_opps" property set to
2744 	 * point to one of the OPPs in the dst_table, but in some cases the
2745 	 * genpd and its master have one to one mapping of performance states
2746 	 * and so none of them have the "required-opps" property set. Return the
2747 	 * pstate of the src_table as it is in such cases.
2748 	 */
2749 	if (!src_table || !src_table->required_opp_count)
2750 		return pstate;
2751 
2752 	/* Both OPP tables must belong to genpds */
2753 	if (unlikely(!src_table->is_genpd || !dst_table->is_genpd)) {
2754 		pr_err("%s: Performance state is only valid for genpds.\n", __func__);
2755 		return -EINVAL;
2756 	}
2757 
2758 	/* required-opps not fully initialized yet */
2759 	if (lazy_linking_pending(src_table))
2760 		return -EBUSY;
2761 
2762 	for (i = 0; i < src_table->required_opp_count; i++) {
2763 		if (src_table->required_opp_tables[i]->np == dst_table->np)
2764 			break;
2765 	}
2766 
2767 	if (unlikely(i == src_table->required_opp_count)) {
2768 		pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2769 		       __func__, src_table, dst_table);
2770 		return -EINVAL;
2771 	}
2772 
2773 	mutex_lock(&src_table->lock);
2774 
2775 	list_for_each_entry(opp, &src_table->opp_list, node) {
2776 		if (opp->level == pstate) {
2777 			dest_pstate = opp->required_opps[i]->level;
2778 			goto unlock;
2779 		}
2780 	}
2781 
2782 	pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2783 	       dst_table);
2784 
2785 unlock:
2786 	mutex_unlock(&src_table->lock);
2787 
2788 	return dest_pstate;
2789 }
2790 
2791 /**
2792  * dev_pm_opp_add_dynamic()  - Add an OPP table from a table definitions
2793  * @dev:	The device for which we do this operation
2794  * @data:	The OPP data for the OPP to add
2795  *
2796  * This function adds an opp definition to the opp table and returns status.
2797  * The opp is made available by default and it can be controlled using
2798  * dev_pm_opp_enable/disable functions.
2799  *
2800  * Return:
2801  * 0		On success OR
2802  *		Duplicate OPPs (both freq and volt are same) and opp->available
2803  * -EEXIST	Freq are same and volt are different OR
2804  *		Duplicate OPPs (both freq and volt are same) and !opp->available
2805  * -ENOMEM	Memory allocation failure
2806  */
2807 int dev_pm_opp_add_dynamic(struct device *dev, struct dev_pm_opp_data *data)
2808 {
2809 	struct opp_table *opp_table;
2810 	int ret;
2811 
2812 	opp_table = _add_opp_table(dev, true);
2813 	if (IS_ERR(opp_table))
2814 		return PTR_ERR(opp_table);
2815 
2816 	/* Fix regulator count for dynamic OPPs */
2817 	opp_table->regulator_count = 1;
2818 
2819 	ret = _opp_add_v1(opp_table, dev, data, true);
2820 	if (ret)
2821 		dev_pm_opp_put_opp_table(opp_table);
2822 
2823 	return ret;
2824 }
2825 EXPORT_SYMBOL_GPL(dev_pm_opp_add_dynamic);
2826 
2827 /**
2828  * _opp_set_availability() - helper to set the availability of an opp
2829  * @dev:		device for which we do this operation
2830  * @freq:		OPP frequency to modify availability
2831  * @availability_req:	availability status requested for this opp
2832  *
2833  * Set the availability of an OPP, opp_{enable,disable} share a common logic
2834  * which is isolated here.
2835  *
2836  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2837  * copy operation, returns 0 if no modification was done OR modification was
2838  * successful.
2839  */
2840 static int _opp_set_availability(struct device *dev, unsigned long freq,
2841 				 bool availability_req)
2842 {
2843 	struct opp_table *opp_table;
2844 	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2845 	int r = 0;
2846 
2847 	/* Find the opp_table */
2848 	opp_table = _find_opp_table(dev);
2849 	if (IS_ERR(opp_table)) {
2850 		r = PTR_ERR(opp_table);
2851 		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2852 		return r;
2853 	}
2854 
2855 	if (!assert_single_clk(opp_table)) {
2856 		r = -EINVAL;
2857 		goto put_table;
2858 	}
2859 
2860 	mutex_lock(&opp_table->lock);
2861 
2862 	/* Do we have the frequency? */
2863 	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2864 		if (tmp_opp->rates[0] == freq) {
2865 			opp = tmp_opp;
2866 			break;
2867 		}
2868 	}
2869 
2870 	if (IS_ERR(opp)) {
2871 		r = PTR_ERR(opp);
2872 		goto unlock;
2873 	}
2874 
2875 	/* Is update really needed? */
2876 	if (opp->available == availability_req)
2877 		goto unlock;
2878 
2879 	opp->available = availability_req;
2880 
2881 	dev_pm_opp_get(opp);
2882 	mutex_unlock(&opp_table->lock);
2883 
2884 	/* Notify the change of the OPP availability */
2885 	if (availability_req)
2886 		blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2887 					     opp);
2888 	else
2889 		blocking_notifier_call_chain(&opp_table->head,
2890 					     OPP_EVENT_DISABLE, opp);
2891 
2892 	dev_pm_opp_put(opp);
2893 	goto put_table;
2894 
2895 unlock:
2896 	mutex_unlock(&opp_table->lock);
2897 put_table:
2898 	dev_pm_opp_put_opp_table(opp_table);
2899 	return r;
2900 }
2901 
2902 /**
2903  * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2904  * @dev:		device for which we do this operation
2905  * @freq:		OPP frequency to adjust voltage of
2906  * @u_volt:		new OPP target voltage
2907  * @u_volt_min:		new OPP min voltage
2908  * @u_volt_max:		new OPP max voltage
2909  *
2910  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2911  * copy operation, returns 0 if no modifcation was done OR modification was
2912  * successful.
2913  */
2914 int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2915 			      unsigned long u_volt, unsigned long u_volt_min,
2916 			      unsigned long u_volt_max)
2917 
2918 {
2919 	struct opp_table *opp_table;
2920 	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2921 	int r = 0;
2922 
2923 	/* Find the opp_table */
2924 	opp_table = _find_opp_table(dev);
2925 	if (IS_ERR(opp_table)) {
2926 		r = PTR_ERR(opp_table);
2927 		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2928 		return r;
2929 	}
2930 
2931 	if (!assert_single_clk(opp_table)) {
2932 		r = -EINVAL;
2933 		goto put_table;
2934 	}
2935 
2936 	mutex_lock(&opp_table->lock);
2937 
2938 	/* Do we have the frequency? */
2939 	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2940 		if (tmp_opp->rates[0] == freq) {
2941 			opp = tmp_opp;
2942 			break;
2943 		}
2944 	}
2945 
2946 	if (IS_ERR(opp)) {
2947 		r = PTR_ERR(opp);
2948 		goto adjust_unlock;
2949 	}
2950 
2951 	/* Is update really needed? */
2952 	if (opp->supplies->u_volt == u_volt)
2953 		goto adjust_unlock;
2954 
2955 	opp->supplies->u_volt = u_volt;
2956 	opp->supplies->u_volt_min = u_volt_min;
2957 	opp->supplies->u_volt_max = u_volt_max;
2958 
2959 	dev_pm_opp_get(opp);
2960 	mutex_unlock(&opp_table->lock);
2961 
2962 	/* Notify the voltage change of the OPP */
2963 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2964 				     opp);
2965 
2966 	dev_pm_opp_put(opp);
2967 	goto put_table;
2968 
2969 adjust_unlock:
2970 	mutex_unlock(&opp_table->lock);
2971 put_table:
2972 	dev_pm_opp_put_opp_table(opp_table);
2973 	return r;
2974 }
2975 EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
2976 
2977 /**
2978  * dev_pm_opp_enable() - Enable a specific OPP
2979  * @dev:	device for which we do this operation
2980  * @freq:	OPP frequency to enable
2981  *
2982  * Enables a provided opp. If the operation is valid, this returns 0, else the
2983  * corresponding error value. It is meant to be used for users an OPP available
2984  * after being temporarily made unavailable with dev_pm_opp_disable.
2985  *
2986  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2987  * copy operation, returns 0 if no modification was done OR modification was
2988  * successful.
2989  */
2990 int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2991 {
2992 	return _opp_set_availability(dev, freq, true);
2993 }
2994 EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2995 
2996 /**
2997  * dev_pm_opp_disable() - Disable a specific OPP
2998  * @dev:	device for which we do this operation
2999  * @freq:	OPP frequency to disable
3000  *
3001  * Disables a provided opp. If the operation is valid, this returns
3002  * 0, else the corresponding error value. It is meant to be a temporary
3003  * control by users to make this OPP not available until the circumstances are
3004  * right to make it available again (with a call to dev_pm_opp_enable).
3005  *
3006  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3007  * copy operation, returns 0 if no modification was done OR modification was
3008  * successful.
3009  */
3010 int dev_pm_opp_disable(struct device *dev, unsigned long freq)
3011 {
3012 	return _opp_set_availability(dev, freq, false);
3013 }
3014 EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
3015 
3016 /**
3017  * dev_pm_opp_register_notifier() - Register OPP notifier for the device
3018  * @dev:	Device for which notifier needs to be registered
3019  * @nb:		Notifier block to be registered
3020  *
3021  * Return: 0 on success or a negative error value.
3022  */
3023 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
3024 {
3025 	struct opp_table *opp_table;
3026 	int ret;
3027 
3028 	opp_table = _find_opp_table(dev);
3029 	if (IS_ERR(opp_table))
3030 		return PTR_ERR(opp_table);
3031 
3032 	ret = blocking_notifier_chain_register(&opp_table->head, nb);
3033 
3034 	dev_pm_opp_put_opp_table(opp_table);
3035 
3036 	return ret;
3037 }
3038 EXPORT_SYMBOL(dev_pm_opp_register_notifier);
3039 
3040 /**
3041  * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
3042  * @dev:	Device for which notifier needs to be unregistered
3043  * @nb:		Notifier block to be unregistered
3044  *
3045  * Return: 0 on success or a negative error value.
3046  */
3047 int dev_pm_opp_unregister_notifier(struct device *dev,
3048 				   struct notifier_block *nb)
3049 {
3050 	struct opp_table *opp_table;
3051 	int ret;
3052 
3053 	opp_table = _find_opp_table(dev);
3054 	if (IS_ERR(opp_table))
3055 		return PTR_ERR(opp_table);
3056 
3057 	ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
3058 
3059 	dev_pm_opp_put_opp_table(opp_table);
3060 
3061 	return ret;
3062 }
3063 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
3064 
3065 /**
3066  * dev_pm_opp_remove_table() - Free all OPPs associated with the device
3067  * @dev:	device pointer used to lookup OPP table.
3068  *
3069  * Free both OPPs created using static entries present in DT and the
3070  * dynamically added entries.
3071  */
3072 void dev_pm_opp_remove_table(struct device *dev)
3073 {
3074 	struct opp_table *opp_table;
3075 
3076 	/* Check for existing table for 'dev' */
3077 	opp_table = _find_opp_table(dev);
3078 	if (IS_ERR(opp_table)) {
3079 		int error = PTR_ERR(opp_table);
3080 
3081 		if (error != -ENODEV)
3082 			WARN(1, "%s: opp_table: %d\n",
3083 			     IS_ERR_OR_NULL(dev) ?
3084 					"Invalid device" : dev_name(dev),
3085 			     error);
3086 		return;
3087 	}
3088 
3089 	/*
3090 	 * Drop the extra reference only if the OPP table was successfully added
3091 	 * with dev_pm_opp_of_add_table() earlier.
3092 	 **/
3093 	if (_opp_remove_all_static(opp_table))
3094 		dev_pm_opp_put_opp_table(opp_table);
3095 
3096 	/* Drop reference taken by _find_opp_table() */
3097 	dev_pm_opp_put_opp_table(opp_table);
3098 }
3099 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
3100 
3101 /**
3102  * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
3103  * @dev:	device for which we do this operation
3104  *
3105  * Sync voltage state of the OPP table regulators.
3106  *
3107  * Return: 0 on success or a negative error value.
3108  */
3109 int dev_pm_opp_sync_regulators(struct device *dev)
3110 {
3111 	struct opp_table *opp_table;
3112 	struct regulator *reg;
3113 	int i, ret = 0;
3114 
3115 	/* Device may not have OPP table */
3116 	opp_table = _find_opp_table(dev);
3117 	if (IS_ERR(opp_table))
3118 		return 0;
3119 
3120 	/* Regulator may not be required for the device */
3121 	if (unlikely(!opp_table->regulators))
3122 		goto put_table;
3123 
3124 	/* Nothing to sync if voltage wasn't changed */
3125 	if (!opp_table->enabled)
3126 		goto put_table;
3127 
3128 	for (i = 0; i < opp_table->regulator_count; i++) {
3129 		reg = opp_table->regulators[i];
3130 		ret = regulator_sync_voltage(reg);
3131 		if (ret)
3132 			break;
3133 	}
3134 put_table:
3135 	/* Drop reference taken by _find_opp_table() */
3136 	dev_pm_opp_put_opp_table(opp_table);
3137 
3138 	return ret;
3139 }
3140 EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);
3141