1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic OPP Interface 4 * 5 * Copyright (C) 2009-2010 Texas Instruments Incorporated. 6 * Nishanth Menon 7 * Romit Dasgupta 8 * Kevin Hilman 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/clk.h> 14 #include <linux/errno.h> 15 #include <linux/err.h> 16 #include <linux/device.h> 17 #include <linux/export.h> 18 #include <linux/pm_domain.h> 19 #include <linux/regulator/consumer.h> 20 #include <linux/slab.h> 21 #include <linux/xarray.h> 22 23 #include "opp.h" 24 25 /* 26 * The root of the list of all opp-tables. All opp_table structures branch off 27 * from here, with each opp_table containing the list of opps it supports in 28 * various states of availability. 29 */ 30 LIST_HEAD(opp_tables); 31 32 /* Lock to allow exclusive modification to the device and opp lists */ 33 DEFINE_MUTEX(opp_table_lock); 34 /* Flag indicating that opp_tables list is being updated at the moment */ 35 static bool opp_tables_busy; 36 37 /* OPP ID allocator */ 38 static DEFINE_XARRAY_ALLOC1(opp_configs); 39 40 static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table) 41 { 42 struct opp_device *opp_dev; 43 44 guard(mutex)(&opp_table->lock); 45 46 list_for_each_entry(opp_dev, &opp_table->dev_list, node) 47 if (opp_dev->dev == dev) 48 return true; 49 50 return false; 51 } 52 53 static struct opp_table *_find_opp_table_unlocked(struct device *dev) 54 { 55 struct opp_table *opp_table; 56 57 list_for_each_entry(opp_table, &opp_tables, node) { 58 if (_find_opp_dev(dev, opp_table)) 59 return dev_pm_opp_get_opp_table_ref(opp_table); 60 } 61 62 return ERR_PTR(-ENODEV); 63 } 64 65 /** 66 * _find_opp_table() - find opp_table struct using device pointer 67 * @dev: device pointer used to lookup OPP table 68 * 69 * Search OPP table for one containing matching device. 70 * 71 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or 72 * -EINVAL based on type of error. 73 * 74 * The callers must call dev_pm_opp_put_opp_table() after the table is used. 75 */ 76 struct opp_table *_find_opp_table(struct device *dev) 77 { 78 if (IS_ERR_OR_NULL(dev)) { 79 pr_err("%s: Invalid parameters\n", __func__); 80 return ERR_PTR(-EINVAL); 81 } 82 83 guard(mutex)(&opp_table_lock); 84 return _find_opp_table_unlocked(dev); 85 } 86 87 /* 88 * Returns true if multiple clocks aren't there, else returns false with WARN. 89 * 90 * We don't force clk_count == 1 here as there are users who don't have a clock 91 * representation in the OPP table and manage the clock configuration themselves 92 * in an platform specific way. 93 */ 94 static bool assert_single_clk(struct opp_table *opp_table, 95 unsigned int __always_unused index) 96 { 97 return !WARN_ON(opp_table->clk_count > 1); 98 } 99 100 /* 101 * Returns true if clock table is large enough to contain the clock index. 102 */ 103 static bool assert_clk_index(struct opp_table *opp_table, 104 unsigned int index) 105 { 106 return opp_table->clk_count > index; 107 } 108 109 /* 110 * Returns true if bandwidth table is large enough to contain the bandwidth index. 111 */ 112 static bool assert_bandwidth_index(struct opp_table *opp_table, 113 unsigned int index) 114 { 115 return opp_table->path_count > index; 116 } 117 118 /** 119 * dev_pm_opp_get_bw() - Gets the bandwidth corresponding to an opp 120 * @opp: opp for which bandwidth has to be returned for 121 * @peak: select peak or average bandwidth 122 * @index: bandwidth index 123 * 124 * Return: bandwidth in kBps, else return 0 125 */ 126 unsigned long dev_pm_opp_get_bw(struct dev_pm_opp *opp, bool peak, int index) 127 { 128 if (IS_ERR_OR_NULL(opp)) { 129 pr_err("%s: Invalid parameters\n", __func__); 130 return 0; 131 } 132 133 if (index >= opp->opp_table->path_count) 134 return 0; 135 136 if (!opp->bandwidth) 137 return 0; 138 139 return peak ? opp->bandwidth[index].peak : opp->bandwidth[index].avg; 140 } 141 EXPORT_SYMBOL_GPL(dev_pm_opp_get_bw); 142 143 /** 144 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp 145 * @opp: opp for which voltage has to be returned for 146 * 147 * Return: voltage in micro volt corresponding to the opp, else 148 * return 0 149 * 150 * This is useful only for devices with single power supply. 151 */ 152 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp) 153 { 154 if (IS_ERR_OR_NULL(opp)) { 155 pr_err("%s: Invalid parameters\n", __func__); 156 return 0; 157 } 158 159 return opp->supplies[0].u_volt; 160 } 161 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage); 162 163 /** 164 * dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp 165 * @opp: opp for which voltage has to be returned for 166 * @supplies: Placeholder for copying the supply information. 167 * 168 * Return: negative error number on failure, 0 otherwise on success after 169 * setting @supplies. 170 * 171 * This can be used for devices with any number of power supplies. The caller 172 * must ensure the @supplies array must contain space for each regulator. 173 */ 174 int dev_pm_opp_get_supplies(struct dev_pm_opp *opp, 175 struct dev_pm_opp_supply *supplies) 176 { 177 if (IS_ERR_OR_NULL(opp) || !supplies) { 178 pr_err("%s: Invalid parameters\n", __func__); 179 return -EINVAL; 180 } 181 182 memcpy(supplies, opp->supplies, 183 sizeof(*supplies) * opp->opp_table->regulator_count); 184 return 0; 185 } 186 EXPORT_SYMBOL_GPL(dev_pm_opp_get_supplies); 187 188 /** 189 * dev_pm_opp_get_power() - Gets the power corresponding to an opp 190 * @opp: opp for which power has to be returned for 191 * 192 * Return: power in micro watt corresponding to the opp, else 193 * return 0 194 * 195 * This is useful only for devices with single power supply. 196 */ 197 unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp) 198 { 199 unsigned long opp_power = 0; 200 int i; 201 202 if (IS_ERR_OR_NULL(opp)) { 203 pr_err("%s: Invalid parameters\n", __func__); 204 return 0; 205 } 206 for (i = 0; i < opp->opp_table->regulator_count; i++) 207 opp_power += opp->supplies[i].u_watt; 208 209 return opp_power; 210 } 211 EXPORT_SYMBOL_GPL(dev_pm_opp_get_power); 212 213 /** 214 * dev_pm_opp_get_freq_indexed() - Gets the frequency corresponding to an 215 * available opp with specified index 216 * @opp: opp for which frequency has to be returned for 217 * @index: index of the frequency within the required opp 218 * 219 * Return: frequency in hertz corresponding to the opp with specified index, 220 * else return 0 221 */ 222 unsigned long dev_pm_opp_get_freq_indexed(struct dev_pm_opp *opp, u32 index) 223 { 224 if (IS_ERR_OR_NULL(opp) || index >= opp->opp_table->clk_count) { 225 pr_err("%s: Invalid parameters\n", __func__); 226 return 0; 227 } 228 229 return opp->rates[index]; 230 } 231 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq_indexed); 232 233 /** 234 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp 235 * @opp: opp for which level value has to be returned for 236 * 237 * Return: level read from device tree corresponding to the opp, else 238 * return U32_MAX. 239 */ 240 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp) 241 { 242 if (IS_ERR_OR_NULL(opp) || !opp->available) { 243 pr_err("%s: Invalid parameters\n", __func__); 244 return 0; 245 } 246 247 return opp->level; 248 } 249 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level); 250 251 /** 252 * dev_pm_opp_get_required_pstate() - Gets the required performance state 253 * corresponding to an available opp 254 * @opp: opp for which performance state has to be returned for 255 * @index: index of the required opp 256 * 257 * Return: performance state read from device tree corresponding to the 258 * required opp, else return U32_MAX. 259 */ 260 unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp, 261 unsigned int index) 262 { 263 if (IS_ERR_OR_NULL(opp) || !opp->available || 264 index >= opp->opp_table->required_opp_count) { 265 pr_err("%s: Invalid parameters\n", __func__); 266 return 0; 267 } 268 269 /* required-opps not fully initialized yet */ 270 if (lazy_linking_pending(opp->opp_table)) 271 return 0; 272 273 /* The required OPP table must belong to a genpd */ 274 if (unlikely(!opp->opp_table->required_opp_tables[index]->is_genpd)) { 275 pr_err("%s: Performance state is only valid for genpds.\n", __func__); 276 return 0; 277 } 278 279 return opp->required_opps[index]->level; 280 } 281 EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate); 282 283 /** 284 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not 285 * @opp: opp for which turbo mode is being verified 286 * 287 * Turbo OPPs are not for normal use, and can be enabled (under certain 288 * conditions) for short duration of times to finish high throughput work 289 * quickly. Running on them for longer times may overheat the chip. 290 * 291 * Return: true if opp is turbo opp, else false. 292 */ 293 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp) 294 { 295 if (IS_ERR_OR_NULL(opp) || !opp->available) { 296 pr_err("%s: Invalid parameters\n", __func__); 297 return false; 298 } 299 300 return opp->turbo; 301 } 302 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo); 303 304 /** 305 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds 306 * @dev: device for which we do this operation 307 * 308 * Return: This function returns the max clock latency in nanoseconds. 309 */ 310 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev) 311 { 312 struct opp_table *opp_table __free(put_opp_table); 313 314 opp_table = _find_opp_table(dev); 315 if (IS_ERR(opp_table)) 316 return 0; 317 318 return opp_table->clock_latency_ns_max; 319 } 320 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency); 321 322 /** 323 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds 324 * @dev: device for which we do this operation 325 * 326 * Return: This function returns the max voltage latency in nanoseconds. 327 */ 328 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev) 329 { 330 struct opp_table *opp_table __free(put_opp_table); 331 struct dev_pm_opp *opp; 332 struct regulator *reg; 333 unsigned long latency_ns = 0; 334 int ret, i, count; 335 struct { 336 unsigned long min; 337 unsigned long max; 338 } *uV; 339 340 opp_table = _find_opp_table(dev); 341 if (IS_ERR(opp_table)) 342 return 0; 343 344 /* Regulator may not be required for the device */ 345 if (!opp_table->regulators) 346 return 0; 347 348 count = opp_table->regulator_count; 349 350 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL); 351 if (!uV) 352 return 0; 353 354 scoped_guard(mutex, &opp_table->lock) { 355 for (i = 0; i < count; i++) { 356 uV[i].min = ~0; 357 uV[i].max = 0; 358 359 list_for_each_entry(opp, &opp_table->opp_list, node) { 360 if (!opp->available) 361 continue; 362 363 if (opp->supplies[i].u_volt_min < uV[i].min) 364 uV[i].min = opp->supplies[i].u_volt_min; 365 if (opp->supplies[i].u_volt_max > uV[i].max) 366 uV[i].max = opp->supplies[i].u_volt_max; 367 } 368 } 369 } 370 371 /* 372 * The caller needs to ensure that opp_table (and hence the regulator) 373 * isn't freed, while we are executing this routine. 374 */ 375 for (i = 0; i < count; i++) { 376 reg = opp_table->regulators[i]; 377 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max); 378 if (ret > 0) 379 latency_ns += ret * 1000; 380 } 381 382 kfree(uV); 383 384 return latency_ns; 385 } 386 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency); 387 388 /** 389 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in 390 * nanoseconds 391 * @dev: device for which we do this operation 392 * 393 * Return: This function returns the max transition latency, in nanoseconds, to 394 * switch from one OPP to other. 395 */ 396 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev) 397 { 398 return dev_pm_opp_get_max_volt_latency(dev) + 399 dev_pm_opp_get_max_clock_latency(dev); 400 } 401 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency); 402 403 /** 404 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz 405 * @dev: device for which we do this operation 406 * 407 * Return: This function returns the frequency of the OPP marked as suspend_opp 408 * if one is available, else returns 0; 409 */ 410 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev) 411 { 412 struct opp_table *opp_table __free(put_opp_table); 413 unsigned long freq = 0; 414 415 opp_table = _find_opp_table(dev); 416 if (IS_ERR(opp_table)) 417 return 0; 418 419 if (opp_table->suspend_opp && opp_table->suspend_opp->available) 420 freq = dev_pm_opp_get_freq(opp_table->suspend_opp); 421 422 return freq; 423 } 424 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq); 425 426 int _get_opp_count(struct opp_table *opp_table) 427 { 428 struct dev_pm_opp *opp; 429 int count = 0; 430 431 guard(mutex)(&opp_table->lock); 432 433 list_for_each_entry(opp, &opp_table->opp_list, node) { 434 if (opp->available) 435 count++; 436 } 437 438 return count; 439 } 440 441 /** 442 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table 443 * @dev: device for which we do this operation 444 * 445 * Return: This function returns the number of available opps if there are any, 446 * else returns 0 if none or the corresponding error value. 447 */ 448 int dev_pm_opp_get_opp_count(struct device *dev) 449 { 450 struct opp_table *opp_table __free(put_opp_table); 451 452 opp_table = _find_opp_table(dev); 453 if (IS_ERR(opp_table)) { 454 dev_dbg(dev, "%s: OPP table not found (%ld)\n", 455 __func__, PTR_ERR(opp_table)); 456 return PTR_ERR(opp_table); 457 } 458 459 return _get_opp_count(opp_table); 460 } 461 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count); 462 463 /* Helpers to read keys */ 464 static unsigned long _read_freq(struct dev_pm_opp *opp, int index) 465 { 466 return opp->rates[index]; 467 } 468 469 static unsigned long _read_level(struct dev_pm_opp *opp, int index) 470 { 471 return opp->level; 472 } 473 474 static unsigned long _read_bw(struct dev_pm_opp *opp, int index) 475 { 476 return opp->bandwidth[index].peak; 477 } 478 479 static unsigned long _read_opp_key(struct dev_pm_opp *opp, int index, 480 struct dev_pm_opp_key *key) 481 { 482 key->bw = opp->bandwidth ? opp->bandwidth[index].peak : 0; 483 key->freq = opp->rates[index]; 484 key->level = opp->level; 485 486 return true; 487 } 488 489 /* Generic comparison helpers */ 490 static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp, 491 unsigned long opp_key, unsigned long key) 492 { 493 if (opp_key == key) { 494 *opp = temp_opp; 495 return true; 496 } 497 498 return false; 499 } 500 501 static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp, 502 unsigned long opp_key, unsigned long key) 503 { 504 if (opp_key >= key) { 505 *opp = temp_opp; 506 return true; 507 } 508 509 return false; 510 } 511 512 static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp, 513 unsigned long opp_key, unsigned long key) 514 { 515 if (opp_key > key) 516 return true; 517 518 *opp = temp_opp; 519 return false; 520 } 521 522 static bool _compare_opp_key_exact(struct dev_pm_opp **opp, 523 struct dev_pm_opp *temp_opp, struct dev_pm_opp_key *opp_key, 524 struct dev_pm_opp_key *key) 525 { 526 bool level_match = (key->level == OPP_LEVEL_UNSET || opp_key->level == key->level); 527 bool freq_match = (key->freq == 0 || opp_key->freq == key->freq); 528 bool bw_match = (key->bw == 0 || opp_key->bw == key->bw); 529 530 if (freq_match && level_match && bw_match) { 531 *opp = temp_opp; 532 return true; 533 } 534 535 return false; 536 } 537 538 /* Generic key finding helpers */ 539 static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table, 540 unsigned long *key, int index, bool available, 541 unsigned long (*read)(struct dev_pm_opp *opp, int index), 542 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp, 543 unsigned long opp_key, unsigned long key), 544 bool (*assert)(struct opp_table *opp_table, unsigned int index)) 545 { 546 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 547 548 /* Assert that the requirement is met */ 549 if (assert && !assert(opp_table, index)) 550 return ERR_PTR(-EINVAL); 551 552 guard(mutex)(&opp_table->lock); 553 554 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 555 if (temp_opp->available == available) { 556 if (compare(&opp, temp_opp, read(temp_opp, index), *key)) 557 break; 558 } 559 } 560 561 /* Increment the reference count of OPP */ 562 if (!IS_ERR(opp)) { 563 *key = read(opp, index); 564 dev_pm_opp_get(opp); 565 } 566 567 return opp; 568 } 569 570 static struct dev_pm_opp *_opp_table_find_opp_key(struct opp_table *opp_table, 571 struct dev_pm_opp_key *key, bool available, 572 unsigned long (*read)(struct dev_pm_opp *opp, int index, 573 struct dev_pm_opp_key *key), 574 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp, 575 struct dev_pm_opp_key *opp_key, struct dev_pm_opp_key *key), 576 bool (*assert)(struct opp_table *opp_table, unsigned int index)) 577 { 578 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 579 struct dev_pm_opp_key temp_key; 580 581 /* Assert that the requirement is met */ 582 if (!assert(opp_table, 0)) 583 return ERR_PTR(-EINVAL); 584 585 guard(mutex)(&opp_table->lock); 586 587 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 588 if (temp_opp->available == available) { 589 read(temp_opp, 0, &temp_key); 590 if (compare(&opp, temp_opp, &temp_key, key)) { 591 /* Increment the reference count of OPP */ 592 dev_pm_opp_get(opp); 593 break; 594 } 595 } 596 } 597 598 return opp; 599 } 600 601 static struct dev_pm_opp * 602 _find_key(struct device *dev, unsigned long *key, int index, bool available, 603 unsigned long (*read)(struct dev_pm_opp *opp, int index), 604 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp, 605 unsigned long opp_key, unsigned long key), 606 bool (*assert)(struct opp_table *opp_table, unsigned int index)) 607 { 608 struct opp_table *opp_table __free(put_opp_table); 609 610 opp_table = _find_opp_table(dev); 611 if (IS_ERR(opp_table)) { 612 dev_err(dev, "%s: OPP table not found (%ld)\n", __func__, 613 PTR_ERR(opp_table)); 614 return ERR_CAST(opp_table); 615 } 616 617 return _opp_table_find_key(opp_table, key, index, available, read, 618 compare, assert); 619 } 620 621 static struct dev_pm_opp *_find_key_exact(struct device *dev, 622 unsigned long key, int index, bool available, 623 unsigned long (*read)(struct dev_pm_opp *opp, int index), 624 bool (*assert)(struct opp_table *opp_table, unsigned int index)) 625 { 626 /* 627 * The value of key will be updated here, but will be ignored as the 628 * caller doesn't need it. 629 */ 630 return _find_key(dev, &key, index, available, read, _compare_exact, 631 assert); 632 } 633 634 static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table, 635 unsigned long *key, int index, bool available, 636 unsigned long (*read)(struct dev_pm_opp *opp, int index), 637 bool (*assert)(struct opp_table *opp_table, unsigned int index)) 638 { 639 return _opp_table_find_key(opp_table, key, index, available, read, 640 _compare_ceil, assert); 641 } 642 643 static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key, 644 int index, bool available, 645 unsigned long (*read)(struct dev_pm_opp *opp, int index), 646 bool (*assert)(struct opp_table *opp_table, unsigned int index)) 647 { 648 return _find_key(dev, key, index, available, read, _compare_ceil, 649 assert); 650 } 651 652 static struct dev_pm_opp *_find_key_floor(struct device *dev, 653 unsigned long *key, int index, bool available, 654 unsigned long (*read)(struct dev_pm_opp *opp, int index), 655 bool (*assert)(struct opp_table *opp_table, unsigned int index)) 656 { 657 return _find_key(dev, key, index, available, read, _compare_floor, 658 assert); 659 } 660 661 /** 662 * dev_pm_opp_find_freq_exact() - search for an exact frequency 663 * @dev: device for which we do this operation 664 * @freq: frequency to search for 665 * @available: true/false - match for available opp 666 * 667 * Return: Searches for exact match in the opp table and returns pointer to the 668 * matching opp if found, else returns ERR_PTR in case of error and should 669 * be handled using IS_ERR. Error return values can be: 670 * EINVAL: for bad pointer 671 * ERANGE: no match found for search 672 * ENODEV: if device not found in list of registered devices 673 * 674 * Note: available is a modifier for the search. if available=true, then the 675 * match is for exact matching frequency and is available in the stored OPP 676 * table. if false, the match is for exact frequency which is not available. 677 * 678 * This provides a mechanism to enable an opp which is not available currently 679 * or the opposite as well. 680 * 681 * The callers are required to call dev_pm_opp_put() for the returned OPP after 682 * use. 683 */ 684 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev, 685 unsigned long freq, bool available) 686 { 687 return _find_key_exact(dev, freq, 0, available, _read_freq, 688 assert_single_clk); 689 } 690 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact); 691 692 /** 693 * dev_pm_opp_find_key_exact() - Search for an OPP with exact key set 694 * @dev: Device for which the OPP is being searched 695 * @key: OPP key set to match 696 * @available: true/false - match for available OPP 697 * 698 * Search for an exact match of the key set in the OPP table. 699 * 700 * Return: A matching opp on success, else ERR_PTR in case of error. 701 * Possible error values: 702 * EINVAL: for bad pointers 703 * ERANGE: no match found for search 704 * ENODEV: if device not found in list of registered devices 705 * 706 * Note: 'available' is a modifier for the search. If 'available' == true, 707 * then the match is for exact matching key and is available in the stored 708 * OPP table. If false, the match is for exact key which is not available. 709 * 710 * This provides a mechanism to enable an OPP which is not available currently 711 * or the opposite as well. 712 * 713 * The callers are required to call dev_pm_opp_put() for the returned OPP after 714 * use. 715 */ 716 struct dev_pm_opp *dev_pm_opp_find_key_exact(struct device *dev, 717 struct dev_pm_opp_key *key, 718 bool available) 719 { 720 struct opp_table *opp_table __free(put_opp_table) = _find_opp_table(dev); 721 722 if (IS_ERR(opp_table)) { 723 dev_err(dev, "%s: OPP table not found (%ld)\n", __func__, 724 PTR_ERR(opp_table)); 725 return ERR_CAST(opp_table); 726 } 727 728 return _opp_table_find_opp_key(opp_table, key, available, 729 _read_opp_key, _compare_opp_key_exact, 730 assert_single_clk); 731 } 732 EXPORT_SYMBOL_GPL(dev_pm_opp_find_key_exact); 733 734 /** 735 * dev_pm_opp_find_freq_exact_indexed() - Search for an exact freq for the 736 * clock corresponding to the index 737 * @dev: Device for which we do this operation 738 * @freq: frequency to search for 739 * @index: Clock index 740 * @available: true/false - match for available opp 741 * 742 * Search for the matching exact OPP for the clock corresponding to the 743 * specified index from a starting freq for a device. 744 * 745 * Return: matching *opp , else returns ERR_PTR in case of error and should be 746 * handled using IS_ERR. Error return values can be: 747 * EINVAL: for bad pointer 748 * ERANGE: no match found for search 749 * ENODEV: if device not found in list of registered devices 750 * 751 * The callers are required to call dev_pm_opp_put() for the returned OPP after 752 * use. 753 */ 754 struct dev_pm_opp * 755 dev_pm_opp_find_freq_exact_indexed(struct device *dev, unsigned long freq, 756 u32 index, bool available) 757 { 758 return _find_key_exact(dev, freq, index, available, _read_freq, 759 assert_clk_index); 760 } 761 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact_indexed); 762 763 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table, 764 unsigned long *freq) 765 { 766 return _opp_table_find_key_ceil(opp_table, freq, 0, true, _read_freq, 767 assert_single_clk); 768 } 769 770 /** 771 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq 772 * @dev: device for which we do this operation 773 * @freq: Start frequency 774 * 775 * Search for the matching ceil *available* OPP from a starting freq 776 * for a device. 777 * 778 * Return: matching *opp and refreshes *freq accordingly, else returns 779 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 780 * values can be: 781 * EINVAL: for bad pointer 782 * ERANGE: no match found for search 783 * ENODEV: if device not found in list of registered devices 784 * 785 * The callers are required to call dev_pm_opp_put() for the returned OPP after 786 * use. 787 */ 788 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev, 789 unsigned long *freq) 790 { 791 return _find_key_ceil(dev, freq, 0, true, _read_freq, assert_single_clk); 792 } 793 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil); 794 795 /** 796 * dev_pm_opp_find_freq_ceil_indexed() - Search for a rounded ceil freq for the 797 * clock corresponding to the index 798 * @dev: Device for which we do this operation 799 * @freq: Start frequency 800 * @index: Clock index 801 * 802 * Search for the matching ceil *available* OPP for the clock corresponding to 803 * the specified index from a starting freq for a device. 804 * 805 * Return: matching *opp and refreshes *freq accordingly, else returns 806 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 807 * values can be: 808 * EINVAL: for bad pointer 809 * ERANGE: no match found for search 810 * ENODEV: if device not found in list of registered devices 811 * 812 * The callers are required to call dev_pm_opp_put() for the returned OPP after 813 * use. 814 */ 815 struct dev_pm_opp * 816 dev_pm_opp_find_freq_ceil_indexed(struct device *dev, unsigned long *freq, 817 u32 index) 818 { 819 return _find_key_ceil(dev, freq, index, true, _read_freq, 820 assert_clk_index); 821 } 822 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_indexed); 823 824 /** 825 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq 826 * @dev: device for which we do this operation 827 * @freq: Start frequency 828 * 829 * Search for the matching floor *available* OPP from a starting freq 830 * for a device. 831 * 832 * Return: matching *opp and refreshes *freq accordingly, else returns 833 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 834 * values can be: 835 * EINVAL: for bad pointer 836 * ERANGE: no match found for search 837 * ENODEV: if device not found in list of registered devices 838 * 839 * The callers are required to call dev_pm_opp_put() for the returned OPP after 840 * use. 841 */ 842 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev, 843 unsigned long *freq) 844 { 845 return _find_key_floor(dev, freq, 0, true, _read_freq, assert_single_clk); 846 } 847 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor); 848 849 /** 850 * dev_pm_opp_find_freq_floor_indexed() - Search for a rounded floor freq for the 851 * clock corresponding to the index 852 * @dev: Device for which we do this operation 853 * @freq: Start frequency 854 * @index: Clock index 855 * 856 * Search for the matching floor *available* OPP for the clock corresponding to 857 * the specified index from a starting freq for a device. 858 * 859 * Return: matching *opp and refreshes *freq accordingly, else returns 860 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 861 * values can be: 862 * EINVAL: for bad pointer 863 * ERANGE: no match found for search 864 * ENODEV: if device not found in list of registered devices 865 * 866 * The callers are required to call dev_pm_opp_put() for the returned OPP after 867 * use. 868 */ 869 struct dev_pm_opp * 870 dev_pm_opp_find_freq_floor_indexed(struct device *dev, unsigned long *freq, 871 u32 index) 872 { 873 return _find_key_floor(dev, freq, index, true, _read_freq, assert_clk_index); 874 } 875 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor_indexed); 876 877 /** 878 * dev_pm_opp_find_level_exact() - search for an exact level 879 * @dev: device for which we do this operation 880 * @level: level to search for 881 * 882 * Return: Searches for exact match in the opp table and returns pointer to the 883 * matching opp if found, else returns ERR_PTR in case of error and should 884 * be handled using IS_ERR. Error return values can be: 885 * EINVAL: for bad pointer 886 * ERANGE: no match found for search 887 * ENODEV: if device not found in list of registered devices 888 * 889 * The callers are required to call dev_pm_opp_put() for the returned OPP after 890 * use. 891 */ 892 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev, 893 unsigned int level) 894 { 895 return _find_key_exact(dev, level, 0, true, _read_level, NULL); 896 } 897 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact); 898 899 /** 900 * dev_pm_opp_find_level_ceil() - search for an rounded up level 901 * @dev: device for which we do this operation 902 * @level: level to search for 903 * 904 * Return: Searches for rounded up match in the opp table and returns pointer 905 * to the matching opp if found, else returns ERR_PTR in case of error and 906 * should be handled using IS_ERR. Error return values can be: 907 * EINVAL: for bad pointer 908 * ERANGE: no match found for search 909 * ENODEV: if device not found in list of registered devices 910 * 911 * The callers are required to call dev_pm_opp_put() for the returned OPP after 912 * use. 913 */ 914 struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev, 915 unsigned int *level) 916 { 917 unsigned long temp = *level; 918 struct dev_pm_opp *opp; 919 920 opp = _find_key_ceil(dev, &temp, 0, true, _read_level, NULL); 921 if (IS_ERR(opp)) 922 return opp; 923 924 /* False match */ 925 if (temp == OPP_LEVEL_UNSET) { 926 dev_err(dev, "%s: OPP levels aren't available\n", __func__); 927 dev_pm_opp_put(opp); 928 return ERR_PTR(-ENODEV); 929 } 930 931 *level = temp; 932 return opp; 933 } 934 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil); 935 936 /** 937 * dev_pm_opp_find_level_floor() - Search for a rounded floor level 938 * @dev: device for which we do this operation 939 * @level: Start level 940 * 941 * Search for the matching floor *available* OPP from a starting level 942 * for a device. 943 * 944 * Return: matching *opp and refreshes *level accordingly, else returns 945 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 946 * values can be: 947 * EINVAL: for bad pointer 948 * ERANGE: no match found for search 949 * ENODEV: if device not found in list of registered devices 950 * 951 * The callers are required to call dev_pm_opp_put() for the returned OPP after 952 * use. 953 */ 954 struct dev_pm_opp *dev_pm_opp_find_level_floor(struct device *dev, 955 unsigned int *level) 956 { 957 unsigned long temp = *level; 958 struct dev_pm_opp *opp; 959 960 opp = _find_key_floor(dev, &temp, 0, true, _read_level, NULL); 961 *level = temp; 962 return opp; 963 } 964 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_floor); 965 966 /** 967 * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth 968 * @dev: device for which we do this operation 969 * @bw: start bandwidth 970 * @index: which bandwidth to compare, in case of OPPs with several values 971 * 972 * Search for the matching floor *available* OPP from a starting bandwidth 973 * for a device. 974 * 975 * Return: matching *opp and refreshes *bw accordingly, else returns 976 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 977 * values can be: 978 * EINVAL: for bad pointer 979 * ERANGE: no match found for search 980 * ENODEV: if device not found in list of registered devices 981 * 982 * The callers are required to call dev_pm_opp_put() for the returned OPP after 983 * use. 984 */ 985 struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw, 986 int index) 987 { 988 unsigned long temp = *bw; 989 struct dev_pm_opp *opp; 990 991 opp = _find_key_ceil(dev, &temp, index, true, _read_bw, 992 assert_bandwidth_index); 993 *bw = temp; 994 return opp; 995 } 996 EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil); 997 998 /** 999 * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth 1000 * @dev: device for which we do this operation 1001 * @bw: start bandwidth 1002 * @index: which bandwidth to compare, in case of OPPs with several values 1003 * 1004 * Search for the matching floor *available* OPP from a starting bandwidth 1005 * for a device. 1006 * 1007 * Return: matching *opp and refreshes *bw accordingly, else returns 1008 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 1009 * values can be: 1010 * EINVAL: for bad pointer 1011 * ERANGE: no match found for search 1012 * ENODEV: if device not found in list of registered devices 1013 * 1014 * The callers are required to call dev_pm_opp_put() for the returned OPP after 1015 * use. 1016 */ 1017 struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev, 1018 unsigned int *bw, int index) 1019 { 1020 unsigned long temp = *bw; 1021 struct dev_pm_opp *opp; 1022 1023 opp = _find_key_floor(dev, &temp, index, true, _read_bw, 1024 assert_bandwidth_index); 1025 *bw = temp; 1026 return opp; 1027 } 1028 EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor); 1029 1030 static int _set_opp_voltage(struct device *dev, struct regulator *reg, 1031 struct dev_pm_opp_supply *supply) 1032 { 1033 int ret; 1034 1035 /* Regulator not available for device */ 1036 if (IS_ERR(reg)) { 1037 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__, 1038 PTR_ERR(reg)); 1039 return 0; 1040 } 1041 1042 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__, 1043 supply->u_volt_min, supply->u_volt, supply->u_volt_max); 1044 1045 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min, 1046 supply->u_volt, supply->u_volt_max); 1047 if (ret) 1048 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n", 1049 __func__, supply->u_volt_min, supply->u_volt, 1050 supply->u_volt_max, ret); 1051 1052 return ret; 1053 } 1054 1055 static int 1056 _opp_config_clk_single(struct device *dev, struct opp_table *opp_table, 1057 struct dev_pm_opp *opp, void *data, bool scaling_down) 1058 { 1059 unsigned long *target = data; 1060 unsigned long freq; 1061 int ret; 1062 1063 /* One of target and opp must be available */ 1064 if (target) { 1065 freq = *target; 1066 } else if (opp) { 1067 freq = opp->rates[0]; 1068 } else { 1069 WARN_ON(1); 1070 return -EINVAL; 1071 } 1072 1073 ret = clk_set_rate(opp_table->clk, freq); 1074 if (ret) { 1075 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__, 1076 ret); 1077 } else { 1078 opp_table->current_rate_single_clk = freq; 1079 } 1080 1081 return ret; 1082 } 1083 1084 /* 1085 * Simple implementation for configuring multiple clocks. Configure clocks in 1086 * the order in which they are present in the array while scaling up. 1087 */ 1088 int dev_pm_opp_config_clks_simple(struct device *dev, 1089 struct opp_table *opp_table, struct dev_pm_opp *opp, void *data, 1090 bool scaling_down) 1091 { 1092 int ret, i; 1093 1094 if (scaling_down) { 1095 for (i = opp_table->clk_count - 1; i >= 0; i--) { 1096 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]); 1097 if (ret) { 1098 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__, 1099 ret); 1100 return ret; 1101 } 1102 } 1103 } else { 1104 for (i = 0; i < opp_table->clk_count; i++) { 1105 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]); 1106 if (ret) { 1107 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__, 1108 ret); 1109 return ret; 1110 } 1111 } 1112 } 1113 1114 return 0; 1115 } 1116 EXPORT_SYMBOL_GPL(dev_pm_opp_config_clks_simple); 1117 1118 static int _opp_config_regulator_single(struct device *dev, 1119 struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp, 1120 struct regulator **regulators, unsigned int count) 1121 { 1122 struct regulator *reg = regulators[0]; 1123 int ret; 1124 1125 /* This function only supports single regulator per device */ 1126 if (WARN_ON(count > 1)) { 1127 dev_err(dev, "multiple regulators are not supported\n"); 1128 return -EINVAL; 1129 } 1130 1131 ret = _set_opp_voltage(dev, reg, new_opp->supplies); 1132 if (ret) 1133 return ret; 1134 1135 /* 1136 * Enable the regulator after setting its voltages, otherwise it breaks 1137 * some boot-enabled regulators. 1138 */ 1139 if (unlikely(!new_opp->opp_table->enabled)) { 1140 ret = regulator_enable(reg); 1141 if (ret < 0) 1142 dev_warn(dev, "Failed to enable regulator: %d", ret); 1143 } 1144 1145 return 0; 1146 } 1147 1148 static int _set_opp_bw(const struct opp_table *opp_table, 1149 struct dev_pm_opp *opp, struct device *dev) 1150 { 1151 u32 avg, peak; 1152 int i, ret; 1153 1154 if (!opp_table->paths) 1155 return 0; 1156 1157 for (i = 0; i < opp_table->path_count; i++) { 1158 if (!opp) { 1159 avg = 0; 1160 peak = 0; 1161 } else { 1162 avg = opp->bandwidth[i].avg; 1163 peak = opp->bandwidth[i].peak; 1164 } 1165 ret = icc_set_bw(opp_table->paths[i], avg, peak); 1166 if (ret) { 1167 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n", 1168 opp ? "set" : "remove", i, ret); 1169 return ret; 1170 } 1171 } 1172 1173 return 0; 1174 } 1175 1176 static int _set_opp_level(struct device *dev, struct dev_pm_opp *opp) 1177 { 1178 unsigned int level = 0; 1179 int ret = 0; 1180 1181 if (opp) { 1182 if (opp->level == OPP_LEVEL_UNSET) 1183 return 0; 1184 1185 level = opp->level; 1186 } 1187 1188 /* Request a new performance state through the device's PM domain. */ 1189 ret = dev_pm_domain_set_performance_state(dev, level); 1190 if (ret) 1191 dev_err(dev, "Failed to set performance state %u (%d)\n", level, 1192 ret); 1193 1194 return ret; 1195 } 1196 1197 /* This is only called for PM domain for now */ 1198 static int _set_required_opps(struct device *dev, struct opp_table *opp_table, 1199 struct dev_pm_opp *opp, bool up) 1200 { 1201 struct device **devs = opp_table->required_devs; 1202 struct dev_pm_opp *required_opp; 1203 int index, target, delta, ret; 1204 1205 if (!devs) 1206 return 0; 1207 1208 /* required-opps not fully initialized yet */ 1209 if (lazy_linking_pending(opp_table)) 1210 return -EBUSY; 1211 1212 /* Scaling up? Set required OPPs in normal order, else reverse */ 1213 if (up) { 1214 index = 0; 1215 target = opp_table->required_opp_count; 1216 delta = 1; 1217 } else { 1218 index = opp_table->required_opp_count - 1; 1219 target = -1; 1220 delta = -1; 1221 } 1222 1223 while (index != target) { 1224 if (devs[index]) { 1225 required_opp = opp ? opp->required_opps[index] : NULL; 1226 1227 ret = _set_opp_level(devs[index], required_opp); 1228 if (ret) 1229 return ret; 1230 } 1231 1232 index += delta; 1233 } 1234 1235 return 0; 1236 } 1237 1238 static void _find_current_opp(struct device *dev, struct opp_table *opp_table) 1239 { 1240 struct dev_pm_opp *opp = ERR_PTR(-ENODEV); 1241 unsigned long freq; 1242 1243 if (!IS_ERR(opp_table->clk)) { 1244 freq = clk_get_rate(opp_table->clk); 1245 opp = _find_freq_ceil(opp_table, &freq); 1246 } 1247 1248 /* 1249 * Unable to find the current OPP ? Pick the first from the list since 1250 * it is in ascending order, otherwise rest of the code will need to 1251 * make special checks to validate current_opp. 1252 */ 1253 if (IS_ERR(opp)) { 1254 guard(mutex)(&opp_table->lock); 1255 opp = dev_pm_opp_get(list_first_entry(&opp_table->opp_list, 1256 struct dev_pm_opp, node)); 1257 } 1258 1259 opp_table->current_opp = opp; 1260 } 1261 1262 static int _disable_opp_table(struct device *dev, struct opp_table *opp_table) 1263 { 1264 int ret; 1265 1266 if (!opp_table->enabled) 1267 return 0; 1268 1269 /* 1270 * Some drivers need to support cases where some platforms may 1271 * have OPP table for the device, while others don't and 1272 * opp_set_rate() just needs to behave like clk_set_rate(). 1273 */ 1274 if (!_get_opp_count(opp_table)) 1275 return 0; 1276 1277 ret = _set_opp_bw(opp_table, NULL, dev); 1278 if (ret) 1279 return ret; 1280 1281 if (opp_table->regulators) 1282 regulator_disable(opp_table->regulators[0]); 1283 1284 ret = _set_opp_level(dev, NULL); 1285 if (ret) 1286 goto out; 1287 1288 ret = _set_required_opps(dev, opp_table, NULL, false); 1289 1290 out: 1291 opp_table->enabled = false; 1292 return ret; 1293 } 1294 1295 static int _set_opp(struct device *dev, struct opp_table *opp_table, 1296 struct dev_pm_opp *opp, void *clk_data, bool forced) 1297 { 1298 struct dev_pm_opp *old_opp; 1299 int scaling_down, ret; 1300 1301 if (unlikely(!opp)) 1302 return _disable_opp_table(dev, opp_table); 1303 1304 /* Find the currently set OPP if we don't know already */ 1305 if (unlikely(!opp_table->current_opp)) 1306 _find_current_opp(dev, opp_table); 1307 1308 old_opp = opp_table->current_opp; 1309 1310 /* Return early if nothing to do */ 1311 if (!forced && old_opp == opp && opp_table->enabled) { 1312 dev_dbg_ratelimited(dev, "%s: OPPs are same, nothing to do\n", __func__); 1313 return 0; 1314 } 1315 1316 dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n", 1317 __func__, old_opp->rates[0], opp->rates[0], old_opp->level, 1318 opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0, 1319 opp->bandwidth ? opp->bandwidth[0].peak : 0); 1320 1321 scaling_down = _opp_compare_key(opp_table, old_opp, opp); 1322 if (scaling_down == -1) 1323 scaling_down = 0; 1324 1325 /* Scaling up? Configure required OPPs before frequency */ 1326 if (!scaling_down) { 1327 ret = _set_required_opps(dev, opp_table, opp, true); 1328 if (ret) { 1329 dev_err(dev, "Failed to set required opps: %d\n", ret); 1330 return ret; 1331 } 1332 1333 ret = _set_opp_level(dev, opp); 1334 if (ret) 1335 return ret; 1336 1337 ret = _set_opp_bw(opp_table, opp, dev); 1338 if (ret) { 1339 dev_err(dev, "Failed to set bw: %d\n", ret); 1340 return ret; 1341 } 1342 1343 if (opp_table->config_regulators) { 1344 ret = opp_table->config_regulators(dev, old_opp, opp, 1345 opp_table->regulators, 1346 opp_table->regulator_count); 1347 if (ret) { 1348 dev_err(dev, "Failed to set regulator voltages: %d\n", 1349 ret); 1350 return ret; 1351 } 1352 } 1353 } 1354 1355 if (opp_table->config_clks) { 1356 ret = opp_table->config_clks(dev, opp_table, opp, clk_data, scaling_down); 1357 if (ret) 1358 return ret; 1359 } 1360 1361 /* Scaling down? Configure required OPPs after frequency */ 1362 if (scaling_down) { 1363 if (opp_table->config_regulators) { 1364 ret = opp_table->config_regulators(dev, old_opp, opp, 1365 opp_table->regulators, 1366 opp_table->regulator_count); 1367 if (ret) { 1368 dev_err(dev, "Failed to set regulator voltages: %d\n", 1369 ret); 1370 return ret; 1371 } 1372 } 1373 1374 ret = _set_opp_bw(opp_table, opp, dev); 1375 if (ret) { 1376 dev_err(dev, "Failed to set bw: %d\n", ret); 1377 return ret; 1378 } 1379 1380 ret = _set_opp_level(dev, opp); 1381 if (ret) 1382 return ret; 1383 1384 ret = _set_required_opps(dev, opp_table, opp, false); 1385 if (ret) { 1386 dev_err(dev, "Failed to set required opps: %d\n", ret); 1387 return ret; 1388 } 1389 } 1390 1391 opp_table->enabled = true; 1392 dev_pm_opp_put(old_opp); 1393 1394 /* Make sure current_opp doesn't get freed */ 1395 opp_table->current_opp = dev_pm_opp_get(opp); 1396 1397 return ret; 1398 } 1399 1400 /** 1401 * dev_pm_opp_set_rate() - Configure new OPP based on frequency 1402 * @dev: device for which we do this operation 1403 * @target_freq: frequency to achieve 1404 * 1405 * This configures the power-supplies to the levels specified by the OPP 1406 * corresponding to the target_freq, and programs the clock to a value <= 1407 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax 1408 * provided by the opp, should have already rounded to the target OPP's 1409 * frequency. 1410 */ 1411 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq) 1412 { 1413 struct opp_table *opp_table __free(put_opp_table); 1414 struct dev_pm_opp *opp __free(put_opp) = NULL; 1415 unsigned long freq = 0, temp_freq; 1416 bool forced = false; 1417 1418 opp_table = _find_opp_table(dev); 1419 if (IS_ERR(opp_table)) { 1420 dev_err(dev, "%s: device's opp table doesn't exist\n", __func__); 1421 return PTR_ERR(opp_table); 1422 } 1423 1424 if (target_freq) { 1425 /* 1426 * For IO devices which require an OPP on some platforms/SoCs 1427 * while just needing to scale the clock on some others 1428 * we look for empty OPP tables with just a clock handle and 1429 * scale only the clk. This makes dev_pm_opp_set_rate() 1430 * equivalent to a clk_set_rate() 1431 */ 1432 if (!_get_opp_count(opp_table)) { 1433 return opp_table->config_clks(dev, opp_table, NULL, 1434 &target_freq, false); 1435 } 1436 1437 freq = clk_round_rate(opp_table->clk, target_freq); 1438 if ((long)freq <= 0) 1439 freq = target_freq; 1440 1441 /* 1442 * The clock driver may support finer resolution of the 1443 * frequencies than the OPP table, don't update the frequency we 1444 * pass to clk_set_rate() here. 1445 */ 1446 temp_freq = freq; 1447 opp = _find_freq_ceil(opp_table, &temp_freq); 1448 if (IS_ERR(opp)) { 1449 dev_err(dev, "%s: failed to find OPP for freq %lu (%ld)\n", 1450 __func__, freq, PTR_ERR(opp)); 1451 return PTR_ERR(opp); 1452 } 1453 1454 /* 1455 * An OPP entry specifies the highest frequency at which other 1456 * properties of the OPP entry apply. Even if the new OPP is 1457 * same as the old one, we may still reach here for a different 1458 * value of the frequency. In such a case, do not abort but 1459 * configure the hardware to the desired frequency forcefully. 1460 */ 1461 forced = opp_table->current_rate_single_clk != freq; 1462 } 1463 1464 return _set_opp(dev, opp_table, opp, &freq, forced); 1465 } 1466 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate); 1467 1468 /** 1469 * dev_pm_opp_set_opp() - Configure device for OPP 1470 * @dev: device for which we do this operation 1471 * @opp: OPP to set to 1472 * 1473 * This configures the device based on the properties of the OPP passed to this 1474 * routine. 1475 * 1476 * Return: 0 on success, a negative error number otherwise. 1477 */ 1478 int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp) 1479 { 1480 struct opp_table *opp_table __free(put_opp_table); 1481 1482 opp_table = _find_opp_table(dev); 1483 if (IS_ERR(opp_table)) { 1484 dev_err(dev, "%s: device opp doesn't exist\n", __func__); 1485 return PTR_ERR(opp_table); 1486 } 1487 1488 return _set_opp(dev, opp_table, opp, NULL, false); 1489 } 1490 EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp); 1491 1492 /* OPP-dev Helpers */ 1493 static void _remove_opp_dev(struct opp_device *opp_dev, 1494 struct opp_table *opp_table) 1495 { 1496 opp_debug_unregister(opp_dev, opp_table); 1497 list_del(&opp_dev->node); 1498 kfree(opp_dev); 1499 } 1500 1501 struct opp_device *_add_opp_dev(const struct device *dev, 1502 struct opp_table *opp_table) 1503 { 1504 struct opp_device *opp_dev; 1505 1506 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL); 1507 if (!opp_dev) 1508 return NULL; 1509 1510 /* Initialize opp-dev */ 1511 opp_dev->dev = dev; 1512 1513 scoped_guard(mutex, &opp_table->lock) 1514 list_add(&opp_dev->node, &opp_table->dev_list); 1515 1516 /* Create debugfs entries for the opp_table */ 1517 opp_debug_register(opp_dev, opp_table); 1518 1519 return opp_dev; 1520 } 1521 1522 static struct opp_table *_allocate_opp_table(struct device *dev, int index) 1523 { 1524 struct opp_table *opp_table; 1525 struct opp_device *opp_dev; 1526 int ret; 1527 1528 /* 1529 * Allocate a new OPP table. In the infrequent case where a new 1530 * device is needed to be added, we pay this penalty. 1531 */ 1532 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL); 1533 if (!opp_table) 1534 return ERR_PTR(-ENOMEM); 1535 1536 mutex_init(&opp_table->lock); 1537 INIT_LIST_HEAD(&opp_table->dev_list); 1538 INIT_LIST_HEAD(&opp_table->lazy); 1539 1540 opp_table->clk = ERR_PTR(-ENODEV); 1541 1542 /* Mark regulator count uninitialized */ 1543 opp_table->regulator_count = -1; 1544 1545 opp_dev = _add_opp_dev(dev, opp_table); 1546 if (!opp_dev) { 1547 ret = -ENOMEM; 1548 goto err; 1549 } 1550 1551 _of_init_opp_table(opp_table, dev, index); 1552 1553 /* Find interconnect path(s) for the device */ 1554 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table); 1555 if (ret) { 1556 if (ret == -EPROBE_DEFER) 1557 goto remove_opp_dev; 1558 1559 dev_warn(dev, "%s: Error finding interconnect paths: %d\n", 1560 __func__, ret); 1561 } 1562 1563 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head); 1564 INIT_LIST_HEAD(&opp_table->opp_list); 1565 kref_init(&opp_table->kref); 1566 1567 return opp_table; 1568 1569 remove_opp_dev: 1570 _of_clear_opp_table(opp_table); 1571 _remove_opp_dev(opp_dev, opp_table); 1572 mutex_destroy(&opp_table->lock); 1573 err: 1574 kfree(opp_table); 1575 return ERR_PTR(ret); 1576 } 1577 1578 static struct opp_table *_update_opp_table_clk(struct device *dev, 1579 struct opp_table *opp_table, 1580 bool getclk) 1581 { 1582 int ret; 1583 1584 /* 1585 * Return early if we don't need to get clk or we have already done it 1586 * earlier. 1587 */ 1588 if (!getclk || IS_ERR(opp_table) || !IS_ERR(opp_table->clk) || 1589 opp_table->clks) 1590 return opp_table; 1591 1592 /* Find clk for the device */ 1593 opp_table->clk = clk_get(dev, NULL); 1594 1595 ret = PTR_ERR_OR_ZERO(opp_table->clk); 1596 if (!ret) { 1597 opp_table->config_clks = _opp_config_clk_single; 1598 opp_table->clk_count = 1; 1599 return opp_table; 1600 } 1601 1602 if (ret == -ENOENT) { 1603 /* 1604 * There are few platforms which don't want the OPP core to 1605 * manage device's clock settings. In such cases neither the 1606 * platform provides the clks explicitly to us, nor the DT 1607 * contains a valid clk entry. The OPP nodes in DT may still 1608 * contain "opp-hz" property though, which we need to parse and 1609 * allow the platform to find an OPP based on freq later on. 1610 * 1611 * This is a simple solution to take care of such corner cases, 1612 * i.e. make the clk_count 1, which lets us allocate space for 1613 * frequency in opp->rates and also parse the entries in DT. 1614 */ 1615 opp_table->clk_count = 1; 1616 1617 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret); 1618 return opp_table; 1619 } 1620 1621 dev_pm_opp_put_opp_table(opp_table); 1622 dev_err_probe(dev, ret, "Couldn't find clock\n"); 1623 1624 return ERR_PTR(ret); 1625 } 1626 1627 /* 1628 * We need to make sure that the OPP table for a device doesn't get added twice, 1629 * if this routine gets called in parallel with the same device pointer. 1630 * 1631 * The simplest way to enforce that is to perform everything (find existing 1632 * table and if not found, create a new one) under the opp_table_lock, so only 1633 * one creator gets access to the same. But that expands the critical section 1634 * under the lock and may end up causing circular dependencies with frameworks 1635 * like debugfs, interconnect or clock framework as they may be direct or 1636 * indirect users of OPP core. 1637 * 1638 * And for that reason we have to go for a bit tricky implementation here, which 1639 * uses the opp_tables_busy flag to indicate if another creator is in the middle 1640 * of adding an OPP table and others should wait for it to finish. 1641 */ 1642 struct opp_table *_add_opp_table_indexed(struct device *dev, int index, 1643 bool getclk) 1644 { 1645 struct opp_table *opp_table; 1646 1647 again: 1648 mutex_lock(&opp_table_lock); 1649 1650 opp_table = _find_opp_table_unlocked(dev); 1651 if (!IS_ERR(opp_table)) 1652 goto unlock; 1653 1654 /* 1655 * The opp_tables list or an OPP table's dev_list is getting updated by 1656 * another user, wait for it to finish. 1657 */ 1658 if (unlikely(opp_tables_busy)) { 1659 mutex_unlock(&opp_table_lock); 1660 cpu_relax(); 1661 goto again; 1662 } 1663 1664 opp_tables_busy = true; 1665 opp_table = _managed_opp(dev, index); 1666 1667 /* Drop the lock to reduce the size of critical section */ 1668 mutex_unlock(&opp_table_lock); 1669 1670 if (opp_table) { 1671 if (!_add_opp_dev(dev, opp_table)) { 1672 dev_pm_opp_put_opp_table(opp_table); 1673 opp_table = ERR_PTR(-ENOMEM); 1674 } 1675 1676 mutex_lock(&opp_table_lock); 1677 } else { 1678 opp_table = _allocate_opp_table(dev, index); 1679 1680 mutex_lock(&opp_table_lock); 1681 if (!IS_ERR(opp_table)) 1682 list_add(&opp_table->node, &opp_tables); 1683 } 1684 1685 opp_tables_busy = false; 1686 1687 unlock: 1688 mutex_unlock(&opp_table_lock); 1689 1690 return _update_opp_table_clk(dev, opp_table, getclk); 1691 } 1692 1693 static struct opp_table *_add_opp_table(struct device *dev, bool getclk) 1694 { 1695 return _add_opp_table_indexed(dev, 0, getclk); 1696 } 1697 1698 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev) 1699 { 1700 return _find_opp_table(dev); 1701 } 1702 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table); 1703 1704 static void _opp_table_kref_release(struct kref *kref) 1705 { 1706 struct opp_table *opp_table = container_of(kref, struct opp_table, kref); 1707 struct opp_device *opp_dev, *temp; 1708 int i; 1709 1710 /* Drop the lock as soon as we can */ 1711 list_del(&opp_table->node); 1712 mutex_unlock(&opp_table_lock); 1713 1714 if (opp_table->current_opp) 1715 dev_pm_opp_put(opp_table->current_opp); 1716 1717 _of_clear_opp_table(opp_table); 1718 1719 /* Release automatically acquired single clk */ 1720 if (!IS_ERR(opp_table->clk)) 1721 clk_put(opp_table->clk); 1722 1723 if (opp_table->paths) { 1724 for (i = 0; i < opp_table->path_count; i++) 1725 icc_put(opp_table->paths[i]); 1726 kfree(opp_table->paths); 1727 } 1728 1729 WARN_ON(!list_empty(&opp_table->opp_list)); 1730 1731 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) 1732 _remove_opp_dev(opp_dev, opp_table); 1733 1734 mutex_destroy(&opp_table->lock); 1735 kfree(opp_table); 1736 } 1737 1738 struct opp_table *dev_pm_opp_get_opp_table_ref(struct opp_table *opp_table) 1739 { 1740 kref_get(&opp_table->kref); 1741 return opp_table; 1742 } 1743 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table_ref); 1744 1745 void dev_pm_opp_put_opp_table(struct opp_table *opp_table) 1746 { 1747 kref_put_mutex(&opp_table->kref, _opp_table_kref_release, 1748 &opp_table_lock); 1749 } 1750 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table); 1751 1752 void _opp_free(struct dev_pm_opp *opp) 1753 { 1754 kfree(opp); 1755 } 1756 1757 static void _opp_kref_release(struct kref *kref) 1758 { 1759 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref); 1760 struct opp_table *opp_table = opp->opp_table; 1761 1762 list_del(&opp->node); 1763 mutex_unlock(&opp_table->lock); 1764 1765 /* 1766 * Notify the changes in the availability of the operable 1767 * frequency/voltage list. 1768 */ 1769 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp); 1770 _of_clear_opp(opp_table, opp); 1771 opp_debug_remove_one(opp); 1772 kfree(opp); 1773 } 1774 1775 struct dev_pm_opp *dev_pm_opp_get(struct dev_pm_opp *opp) 1776 { 1777 kref_get(&opp->kref); 1778 return opp; 1779 } 1780 EXPORT_SYMBOL_GPL(dev_pm_opp_get); 1781 1782 void dev_pm_opp_put(struct dev_pm_opp *opp) 1783 { 1784 kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock); 1785 } 1786 EXPORT_SYMBOL_GPL(dev_pm_opp_put); 1787 1788 /** 1789 * dev_pm_opp_remove() - Remove an OPP from OPP table 1790 * @dev: device for which we do this operation 1791 * @freq: OPP to remove with matching 'freq' 1792 * 1793 * This function removes an opp from the opp table. 1794 */ 1795 void dev_pm_opp_remove(struct device *dev, unsigned long freq) 1796 { 1797 struct opp_table *opp_table __free(put_opp_table); 1798 struct dev_pm_opp *opp = NULL, *iter; 1799 1800 opp_table = _find_opp_table(dev); 1801 if (IS_ERR(opp_table)) 1802 return; 1803 1804 if (!assert_single_clk(opp_table, 0)) 1805 return; 1806 1807 scoped_guard(mutex, &opp_table->lock) { 1808 list_for_each_entry(iter, &opp_table->opp_list, node) { 1809 if (iter->rates[0] == freq) { 1810 opp = iter; 1811 break; 1812 } 1813 } 1814 } 1815 1816 if (opp) { 1817 dev_pm_opp_put(opp); 1818 1819 /* Drop the reference taken by dev_pm_opp_add() */ 1820 dev_pm_opp_put_opp_table(opp_table); 1821 } else { 1822 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n", 1823 __func__, freq); 1824 } 1825 } 1826 EXPORT_SYMBOL_GPL(dev_pm_opp_remove); 1827 1828 static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table, 1829 bool dynamic) 1830 { 1831 struct dev_pm_opp *opp; 1832 1833 guard(mutex)(&opp_table->lock); 1834 1835 list_for_each_entry(opp, &opp_table->opp_list, node) { 1836 /* 1837 * Refcount must be dropped only once for each OPP by OPP core, 1838 * do that with help of "removed" flag. 1839 */ 1840 if (!opp->removed && dynamic == opp->dynamic) 1841 return opp; 1842 } 1843 1844 return NULL; 1845 } 1846 1847 /* 1848 * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to 1849 * happen lock less to avoid circular dependency issues. This routine must be 1850 * called without the opp_table->lock held. 1851 */ 1852 static void _opp_remove_all(struct opp_table *opp_table, bool dynamic) 1853 { 1854 struct dev_pm_opp *opp; 1855 1856 while ((opp = _opp_get_next(opp_table, dynamic))) { 1857 opp->removed = true; 1858 dev_pm_opp_put(opp); 1859 1860 /* Drop the references taken by dev_pm_opp_add() */ 1861 if (dynamic) 1862 dev_pm_opp_put_opp_table(opp_table); 1863 } 1864 } 1865 1866 bool _opp_remove_all_static(struct opp_table *opp_table) 1867 { 1868 scoped_guard(mutex, &opp_table->lock) { 1869 if (!opp_table->parsed_static_opps) 1870 return false; 1871 1872 if (--opp_table->parsed_static_opps) 1873 return true; 1874 } 1875 1876 _opp_remove_all(opp_table, false); 1877 return true; 1878 } 1879 1880 /** 1881 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs 1882 * @dev: device for which we do this operation 1883 * 1884 * This function removes all dynamically created OPPs from the opp table. 1885 */ 1886 void dev_pm_opp_remove_all_dynamic(struct device *dev) 1887 { 1888 struct opp_table *opp_table __free(put_opp_table); 1889 1890 opp_table = _find_opp_table(dev); 1891 if (IS_ERR(opp_table)) 1892 return; 1893 1894 _opp_remove_all(opp_table, true); 1895 } 1896 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic); 1897 1898 struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table) 1899 { 1900 struct dev_pm_opp *opp; 1901 int supply_count, supply_size, icc_size, clk_size; 1902 1903 /* Allocate space for at least one supply */ 1904 supply_count = opp_table->regulator_count > 0 ? 1905 opp_table->regulator_count : 1; 1906 supply_size = sizeof(*opp->supplies) * supply_count; 1907 clk_size = sizeof(*opp->rates) * opp_table->clk_count; 1908 icc_size = sizeof(*opp->bandwidth) * opp_table->path_count; 1909 1910 /* allocate new OPP node and supplies structures */ 1911 opp = kzalloc(sizeof(*opp) + supply_size + clk_size + icc_size, GFP_KERNEL); 1912 if (!opp) 1913 return NULL; 1914 1915 /* Put the supplies, bw and clock at the end of the OPP structure */ 1916 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1); 1917 1918 opp->rates = (unsigned long *)(opp->supplies + supply_count); 1919 1920 if (icc_size) 1921 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->rates + opp_table->clk_count); 1922 1923 INIT_LIST_HEAD(&opp->node); 1924 1925 opp->level = OPP_LEVEL_UNSET; 1926 1927 return opp; 1928 } 1929 1930 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp, 1931 struct opp_table *opp_table) 1932 { 1933 struct regulator *reg; 1934 int i; 1935 1936 if (!opp_table->regulators) 1937 return true; 1938 1939 for (i = 0; i < opp_table->regulator_count; i++) { 1940 reg = opp_table->regulators[i]; 1941 1942 if (!regulator_is_supported_voltage(reg, 1943 opp->supplies[i].u_volt_min, 1944 opp->supplies[i].u_volt_max)) { 1945 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n", 1946 __func__, opp->supplies[i].u_volt_min, 1947 opp->supplies[i].u_volt_max); 1948 return false; 1949 } 1950 } 1951 1952 return true; 1953 } 1954 1955 static int _opp_compare_rate(struct opp_table *opp_table, 1956 struct dev_pm_opp *opp1, struct dev_pm_opp *opp2) 1957 { 1958 int i; 1959 1960 for (i = 0; i < opp_table->clk_count; i++) { 1961 if (opp1->rates[i] != opp2->rates[i]) 1962 return opp1->rates[i] < opp2->rates[i] ? -1 : 1; 1963 } 1964 1965 /* Same rates for both OPPs */ 1966 return 0; 1967 } 1968 1969 static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1, 1970 struct dev_pm_opp *opp2) 1971 { 1972 int i; 1973 1974 for (i = 0; i < opp_table->path_count; i++) { 1975 if (opp1->bandwidth[i].peak != opp2->bandwidth[i].peak) 1976 return opp1->bandwidth[i].peak < opp2->bandwidth[i].peak ? -1 : 1; 1977 } 1978 1979 /* Same bw for both OPPs */ 1980 return 0; 1981 } 1982 1983 /* 1984 * Returns 1985 * 0: opp1 == opp2 1986 * 1: opp1 > opp2 1987 * -1: opp1 < opp2 1988 */ 1989 int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1, 1990 struct dev_pm_opp *opp2) 1991 { 1992 int ret; 1993 1994 ret = _opp_compare_rate(opp_table, opp1, opp2); 1995 if (ret) 1996 return ret; 1997 1998 ret = _opp_compare_bw(opp_table, opp1, opp2); 1999 if (ret) 2000 return ret; 2001 2002 if (opp1->level != opp2->level) 2003 return opp1->level < opp2->level ? -1 : 1; 2004 2005 /* Duplicate OPPs */ 2006 return 0; 2007 } 2008 2009 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp, 2010 struct opp_table *opp_table, 2011 struct list_head **head) 2012 { 2013 struct dev_pm_opp *opp; 2014 int opp_cmp; 2015 2016 /* 2017 * Insert new OPP in order of increasing frequency and discard if 2018 * already present. 2019 * 2020 * Need to use &opp_table->opp_list in the condition part of the 'for' 2021 * loop, don't replace it with head otherwise it will become an infinite 2022 * loop. 2023 */ 2024 list_for_each_entry(opp, &opp_table->opp_list, node) { 2025 opp_cmp = _opp_compare_key(opp_table, new_opp, opp); 2026 if (opp_cmp > 0) { 2027 *head = &opp->node; 2028 continue; 2029 } 2030 2031 if (opp_cmp < 0) 2032 return 0; 2033 2034 /* Duplicate OPPs */ 2035 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n", 2036 __func__, opp->rates[0], opp->supplies[0].u_volt, 2037 opp->available, new_opp->rates[0], 2038 new_opp->supplies[0].u_volt, new_opp->available); 2039 2040 /* Should we compare voltages for all regulators here ? */ 2041 return opp->available && 2042 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST; 2043 } 2044 2045 return 0; 2046 } 2047 2048 void _required_opps_available(struct dev_pm_opp *opp, int count) 2049 { 2050 int i; 2051 2052 for (i = 0; i < count; i++) { 2053 if (opp->required_opps[i]->available) 2054 continue; 2055 2056 opp->available = false; 2057 pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n", 2058 __func__, opp->required_opps[i]->np, opp->rates[0]); 2059 return; 2060 } 2061 } 2062 2063 /* 2064 * Returns: 2065 * 0: On success. And appropriate error message for duplicate OPPs. 2066 * -EBUSY: For OPP with same freq/volt and is available. The callers of 2067 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make 2068 * sure we don't print error messages unnecessarily if different parts of 2069 * kernel try to initialize the OPP table. 2070 * -EEXIST: For OPP with same freq but different volt or is unavailable. This 2071 * should be considered an error by the callers of _opp_add(). 2072 */ 2073 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp, 2074 struct opp_table *opp_table) 2075 { 2076 struct list_head *head; 2077 int ret; 2078 2079 scoped_guard(mutex, &opp_table->lock) { 2080 head = &opp_table->opp_list; 2081 2082 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head); 2083 if (ret) 2084 return ret; 2085 2086 list_add(&new_opp->node, head); 2087 } 2088 2089 new_opp->opp_table = opp_table; 2090 kref_init(&new_opp->kref); 2091 2092 opp_debug_create_one(new_opp, opp_table); 2093 2094 if (!_opp_supported_by_regulators(new_opp, opp_table)) { 2095 new_opp->available = false; 2096 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n", 2097 __func__, new_opp->rates[0]); 2098 } 2099 2100 /* required-opps not fully initialized yet */ 2101 if (lazy_linking_pending(opp_table)) 2102 return 0; 2103 2104 _required_opps_available(new_opp, opp_table->required_opp_count); 2105 2106 return 0; 2107 } 2108 2109 /** 2110 * _opp_add_v1() - Allocate a OPP based on v1 bindings. 2111 * @opp_table: OPP table 2112 * @dev: device for which we do this operation 2113 * @data: The OPP data for the OPP to add 2114 * @dynamic: Dynamically added OPPs. 2115 * 2116 * This function adds an opp definition to the opp table and returns status. 2117 * The opp is made available by default and it can be controlled using 2118 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove. 2119 * 2120 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table 2121 * and freed by dev_pm_opp_of_remove_table. 2122 * 2123 * Return: 2124 * 0 On success OR 2125 * Duplicate OPPs (both freq and volt are same) and opp->available 2126 * -EEXIST Freq are same and volt are different OR 2127 * Duplicate OPPs (both freq and volt are same) and !opp->available 2128 * -ENOMEM Memory allocation failure 2129 */ 2130 int _opp_add_v1(struct opp_table *opp_table, struct device *dev, 2131 struct dev_pm_opp_data *data, bool dynamic) 2132 { 2133 struct dev_pm_opp *new_opp; 2134 unsigned long tol, u_volt = data->u_volt; 2135 int ret; 2136 2137 if (!assert_single_clk(opp_table, 0)) 2138 return -EINVAL; 2139 2140 new_opp = _opp_allocate(opp_table); 2141 if (!new_opp) 2142 return -ENOMEM; 2143 2144 /* populate the opp table */ 2145 new_opp->rates[0] = data->freq; 2146 new_opp->level = data->level; 2147 new_opp->turbo = data->turbo; 2148 tol = u_volt * opp_table->voltage_tolerance_v1 / 100; 2149 new_opp->supplies[0].u_volt = u_volt; 2150 new_opp->supplies[0].u_volt_min = u_volt - tol; 2151 new_opp->supplies[0].u_volt_max = u_volt + tol; 2152 new_opp->available = true; 2153 new_opp->dynamic = dynamic; 2154 2155 ret = _opp_add(dev, new_opp, opp_table); 2156 if (ret) { 2157 /* Don't return error for duplicate OPPs */ 2158 if (ret == -EBUSY) 2159 ret = 0; 2160 goto free_opp; 2161 } 2162 2163 /* 2164 * Notify the changes in the availability of the operable 2165 * frequency/voltage list. 2166 */ 2167 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp); 2168 return 0; 2169 2170 free_opp: 2171 _opp_free(new_opp); 2172 2173 return ret; 2174 } 2175 2176 /* 2177 * This is required only for the V2 bindings, and it enables a platform to 2178 * specify the hierarchy of versions it supports. OPP layer will then enable 2179 * OPPs, which are available for those versions, based on its 'opp-supported-hw' 2180 * property. 2181 */ 2182 static int _opp_set_supported_hw(struct opp_table *opp_table, 2183 const u32 *versions, unsigned int count) 2184 { 2185 /* Another CPU that shares the OPP table has set the property ? */ 2186 if (opp_table->supported_hw) 2187 return 0; 2188 2189 opp_table->supported_hw = kmemdup_array(versions, count, 2190 sizeof(*versions), GFP_KERNEL); 2191 if (!opp_table->supported_hw) 2192 return -ENOMEM; 2193 2194 opp_table->supported_hw_count = count; 2195 2196 return 0; 2197 } 2198 2199 static void _opp_put_supported_hw(struct opp_table *opp_table) 2200 { 2201 if (opp_table->supported_hw) { 2202 kfree(opp_table->supported_hw); 2203 opp_table->supported_hw = NULL; 2204 opp_table->supported_hw_count = 0; 2205 } 2206 } 2207 2208 /* 2209 * This is required only for the V2 bindings, and it enables a platform to 2210 * specify the extn to be used for certain property names. The properties to 2211 * which the extension will apply are opp-microvolt and opp-microamp. OPP core 2212 * should postfix the property name with -<name> while looking for them. 2213 */ 2214 static int _opp_set_prop_name(struct opp_table *opp_table, const char *name) 2215 { 2216 /* Another CPU that shares the OPP table has set the property ? */ 2217 if (!opp_table->prop_name) { 2218 opp_table->prop_name = kstrdup(name, GFP_KERNEL); 2219 if (!opp_table->prop_name) 2220 return -ENOMEM; 2221 } 2222 2223 return 0; 2224 } 2225 2226 static void _opp_put_prop_name(struct opp_table *opp_table) 2227 { 2228 if (opp_table->prop_name) { 2229 kfree(opp_table->prop_name); 2230 opp_table->prop_name = NULL; 2231 } 2232 } 2233 2234 /* 2235 * In order to support OPP switching, OPP layer needs to know the name of the 2236 * device's regulators, as the core would be required to switch voltages as 2237 * well. 2238 * 2239 * This must be called before any OPPs are initialized for the device. 2240 */ 2241 static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev, 2242 const char * const names[]) 2243 { 2244 const char * const *temp = names; 2245 struct regulator *reg; 2246 int count = 0, ret, i; 2247 2248 /* Count number of regulators */ 2249 while (*temp++) 2250 count++; 2251 2252 if (!count) 2253 return -EINVAL; 2254 2255 /* Another CPU that shares the OPP table has set the regulators ? */ 2256 if (opp_table->regulators) 2257 return 0; 2258 2259 opp_table->regulators = kmalloc_array(count, 2260 sizeof(*opp_table->regulators), 2261 GFP_KERNEL); 2262 if (!opp_table->regulators) 2263 return -ENOMEM; 2264 2265 for (i = 0; i < count; i++) { 2266 reg = regulator_get_optional(dev, names[i]); 2267 if (IS_ERR(reg)) { 2268 ret = dev_err_probe(dev, PTR_ERR(reg), 2269 "%s: no regulator (%s) found\n", 2270 __func__, names[i]); 2271 goto free_regulators; 2272 } 2273 2274 opp_table->regulators[i] = reg; 2275 } 2276 2277 opp_table->regulator_count = count; 2278 2279 /* Set generic config_regulators() for single regulators here */ 2280 if (count == 1) 2281 opp_table->config_regulators = _opp_config_regulator_single; 2282 2283 return 0; 2284 2285 free_regulators: 2286 while (i != 0) 2287 regulator_put(opp_table->regulators[--i]); 2288 2289 kfree(opp_table->regulators); 2290 opp_table->regulators = NULL; 2291 opp_table->regulator_count = -1; 2292 2293 return ret; 2294 } 2295 2296 static void _opp_put_regulators(struct opp_table *opp_table) 2297 { 2298 int i; 2299 2300 if (!opp_table->regulators) 2301 return; 2302 2303 if (opp_table->enabled) { 2304 for (i = opp_table->regulator_count - 1; i >= 0; i--) 2305 regulator_disable(opp_table->regulators[i]); 2306 } 2307 2308 for (i = opp_table->regulator_count - 1; i >= 0; i--) 2309 regulator_put(opp_table->regulators[i]); 2310 2311 kfree(opp_table->regulators); 2312 opp_table->regulators = NULL; 2313 opp_table->regulator_count = -1; 2314 } 2315 2316 static void _put_clks(struct opp_table *opp_table, int count) 2317 { 2318 int i; 2319 2320 for (i = count - 1; i >= 0; i--) 2321 clk_put(opp_table->clks[i]); 2322 2323 kfree(opp_table->clks); 2324 opp_table->clks = NULL; 2325 } 2326 2327 /* 2328 * In order to support OPP switching, OPP layer needs to get pointers to the 2329 * clocks for the device. Simple cases work fine without using this routine 2330 * (i.e. by passing connection-id as NULL), but for a device with multiple 2331 * clocks available, the OPP core needs to know the exact names of the clks to 2332 * use. 2333 * 2334 * This must be called before any OPPs are initialized for the device. 2335 */ 2336 static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev, 2337 const char * const names[], 2338 config_clks_t config_clks) 2339 { 2340 const char * const *temp = names; 2341 int count = 0, ret, i; 2342 struct clk *clk; 2343 2344 /* Count number of clks */ 2345 while (*temp++) 2346 count++; 2347 2348 /* 2349 * This is a special case where we have a single clock, whose connection 2350 * id name is NULL, i.e. first two entries are NULL in the array. 2351 */ 2352 if (!count && !names[1]) 2353 count = 1; 2354 2355 /* Fail early for invalid configurations */ 2356 if (!count || (!config_clks && count > 1)) 2357 return -EINVAL; 2358 2359 /* Another CPU that shares the OPP table has set the clkname ? */ 2360 if (opp_table->clks) 2361 return 0; 2362 2363 opp_table->clks = kmalloc_array(count, sizeof(*opp_table->clks), 2364 GFP_KERNEL); 2365 if (!opp_table->clks) 2366 return -ENOMEM; 2367 2368 /* Find clks for the device */ 2369 for (i = 0; i < count; i++) { 2370 clk = clk_get(dev, names[i]); 2371 if (IS_ERR(clk)) { 2372 ret = dev_err_probe(dev, PTR_ERR(clk), 2373 "%s: Couldn't find clock with name: %s\n", 2374 __func__, names[i]); 2375 goto free_clks; 2376 } 2377 2378 opp_table->clks[i] = clk; 2379 } 2380 2381 opp_table->clk_count = count; 2382 opp_table->config_clks = config_clks; 2383 2384 /* Set generic single clk set here */ 2385 if (count == 1) { 2386 if (!opp_table->config_clks) 2387 opp_table->config_clks = _opp_config_clk_single; 2388 2389 /* 2390 * We could have just dropped the "clk" field and used "clks" 2391 * everywhere. Instead we kept the "clk" field around for 2392 * following reasons: 2393 * 2394 * - avoiding clks[0] everywhere else. 2395 * - not running single clk helpers for multiple clk usecase by 2396 * mistake. 2397 * 2398 * Since this is single-clk case, just update the clk pointer 2399 * too. 2400 */ 2401 opp_table->clk = opp_table->clks[0]; 2402 } 2403 2404 return 0; 2405 2406 free_clks: 2407 _put_clks(opp_table, i); 2408 return ret; 2409 } 2410 2411 static void _opp_put_clknames(struct opp_table *opp_table) 2412 { 2413 if (!opp_table->clks) 2414 return; 2415 2416 opp_table->config_clks = NULL; 2417 opp_table->clk = ERR_PTR(-ENODEV); 2418 2419 _put_clks(opp_table, opp_table->clk_count); 2420 } 2421 2422 /* 2423 * This is useful to support platforms with multiple regulators per device. 2424 * 2425 * This must be called before any OPPs are initialized for the device. 2426 */ 2427 static int _opp_set_config_regulators_helper(struct opp_table *opp_table, 2428 struct device *dev, config_regulators_t config_regulators) 2429 { 2430 /* Another CPU that shares the OPP table has set the helper ? */ 2431 if (!opp_table->config_regulators) 2432 opp_table->config_regulators = config_regulators; 2433 2434 return 0; 2435 } 2436 2437 static void _opp_put_config_regulators_helper(struct opp_table *opp_table) 2438 { 2439 if (opp_table->config_regulators) 2440 opp_table->config_regulators = NULL; 2441 } 2442 2443 static int _opp_set_required_dev(struct opp_table *opp_table, 2444 struct device *dev, 2445 struct device *required_dev, 2446 unsigned int index) 2447 { 2448 struct opp_table *required_table, *pd_table; 2449 struct device *gdev; 2450 2451 /* Genpd core takes care of propagation to parent genpd */ 2452 if (opp_table->is_genpd) { 2453 dev_err(dev, "%s: Operation not supported for genpds\n", __func__); 2454 return -EOPNOTSUPP; 2455 } 2456 2457 if (index >= opp_table->required_opp_count) { 2458 dev_err(dev, "Required OPPs not available, can't set required devs\n"); 2459 return -EINVAL; 2460 } 2461 2462 required_table = opp_table->required_opp_tables[index]; 2463 if (IS_ERR(required_table)) { 2464 dev_err(dev, "Missing OPP table, unable to set the required devs\n"); 2465 return -ENODEV; 2466 } 2467 2468 /* 2469 * The required_opp_tables parsing is not perfect, as the OPP core does 2470 * the parsing solely based on the DT node pointers. The core sets the 2471 * required_opp_tables entry to the first OPP table in the "opp_tables" 2472 * list, that matches with the node pointer. 2473 * 2474 * If the target DT OPP table is used by multiple devices and they all 2475 * create separate instances of 'struct opp_table' from it, then it is 2476 * possible that the required_opp_tables entry may be set to the 2477 * incorrect sibling device. 2478 * 2479 * Cross check it again and fix if required. 2480 */ 2481 gdev = dev_to_genpd_dev(required_dev); 2482 if (IS_ERR(gdev)) 2483 return PTR_ERR(gdev); 2484 2485 pd_table = _find_opp_table(gdev); 2486 if (!IS_ERR(pd_table)) { 2487 if (pd_table != required_table) { 2488 dev_pm_opp_put_opp_table(required_table); 2489 opp_table->required_opp_tables[index] = pd_table; 2490 } else { 2491 dev_pm_opp_put_opp_table(pd_table); 2492 } 2493 } 2494 2495 opp_table->required_devs[index] = required_dev; 2496 return 0; 2497 } 2498 2499 static void _opp_put_required_dev(struct opp_table *opp_table, 2500 unsigned int index) 2501 { 2502 opp_table->required_devs[index] = NULL; 2503 } 2504 2505 static void _opp_clear_config(struct opp_config_data *data) 2506 { 2507 if (data->flags & OPP_CONFIG_REQUIRED_DEV) 2508 _opp_put_required_dev(data->opp_table, 2509 data->required_dev_index); 2510 if (data->flags & OPP_CONFIG_REGULATOR) 2511 _opp_put_regulators(data->opp_table); 2512 if (data->flags & OPP_CONFIG_SUPPORTED_HW) 2513 _opp_put_supported_hw(data->opp_table); 2514 if (data->flags & OPP_CONFIG_REGULATOR_HELPER) 2515 _opp_put_config_regulators_helper(data->opp_table); 2516 if (data->flags & OPP_CONFIG_PROP_NAME) 2517 _opp_put_prop_name(data->opp_table); 2518 if (data->flags & OPP_CONFIG_CLK) 2519 _opp_put_clknames(data->opp_table); 2520 2521 dev_pm_opp_put_opp_table(data->opp_table); 2522 kfree(data); 2523 } 2524 2525 /** 2526 * dev_pm_opp_set_config() - Set OPP configuration for the device. 2527 * @dev: Device for which configuration is being set. 2528 * @config: OPP configuration. 2529 * 2530 * This allows all device OPP configurations to be performed at once. 2531 * 2532 * This must be called before any OPPs are initialized for the device. This may 2533 * be called multiple times for the same OPP table, for example once for each 2534 * CPU that share the same table. This must be balanced by the same number of 2535 * calls to dev_pm_opp_clear_config() in order to free the OPP table properly. 2536 * 2537 * This returns a token to the caller, which must be passed to 2538 * dev_pm_opp_clear_config() to free the resources later. The value of the 2539 * returned token will be >= 1 for success and negative for errors. The minimum 2540 * value of 1 is chosen here to make it easy for callers to manage the resource. 2541 */ 2542 int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config) 2543 { 2544 struct opp_table *opp_table; 2545 struct opp_config_data *data; 2546 unsigned int id; 2547 int ret; 2548 2549 data = kmalloc(sizeof(*data), GFP_KERNEL); 2550 if (!data) 2551 return -ENOMEM; 2552 2553 opp_table = _add_opp_table(dev, false); 2554 if (IS_ERR(opp_table)) { 2555 kfree(data); 2556 return PTR_ERR(opp_table); 2557 } 2558 2559 data->opp_table = opp_table; 2560 data->flags = 0; 2561 2562 /* This should be called before OPPs are initialized */ 2563 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 2564 ret = -EBUSY; 2565 goto err; 2566 } 2567 2568 /* Configure clocks */ 2569 if (config->clk_names) { 2570 ret = _opp_set_clknames(opp_table, dev, config->clk_names, 2571 config->config_clks); 2572 if (ret) 2573 goto err; 2574 2575 data->flags |= OPP_CONFIG_CLK; 2576 } else if (config->config_clks) { 2577 /* Don't allow config callback without clocks */ 2578 ret = -EINVAL; 2579 goto err; 2580 } 2581 2582 /* Configure property names */ 2583 if (config->prop_name) { 2584 ret = _opp_set_prop_name(opp_table, config->prop_name); 2585 if (ret) 2586 goto err; 2587 2588 data->flags |= OPP_CONFIG_PROP_NAME; 2589 } 2590 2591 /* Configure config_regulators helper */ 2592 if (config->config_regulators) { 2593 ret = _opp_set_config_regulators_helper(opp_table, dev, 2594 config->config_regulators); 2595 if (ret) 2596 goto err; 2597 2598 data->flags |= OPP_CONFIG_REGULATOR_HELPER; 2599 } 2600 2601 /* Configure supported hardware */ 2602 if (config->supported_hw) { 2603 ret = _opp_set_supported_hw(opp_table, config->supported_hw, 2604 config->supported_hw_count); 2605 if (ret) 2606 goto err; 2607 2608 data->flags |= OPP_CONFIG_SUPPORTED_HW; 2609 } 2610 2611 /* Configure supplies */ 2612 if (config->regulator_names) { 2613 ret = _opp_set_regulators(opp_table, dev, 2614 config->regulator_names); 2615 if (ret) 2616 goto err; 2617 2618 data->flags |= OPP_CONFIG_REGULATOR; 2619 } 2620 2621 if (config->required_dev) { 2622 ret = _opp_set_required_dev(opp_table, dev, 2623 config->required_dev, 2624 config->required_dev_index); 2625 if (ret) 2626 goto err; 2627 2628 data->required_dev_index = config->required_dev_index; 2629 data->flags |= OPP_CONFIG_REQUIRED_DEV; 2630 } 2631 2632 ret = xa_alloc(&opp_configs, &id, data, XA_LIMIT(1, INT_MAX), 2633 GFP_KERNEL); 2634 if (ret) 2635 goto err; 2636 2637 return id; 2638 2639 err: 2640 _opp_clear_config(data); 2641 return ret; 2642 } 2643 EXPORT_SYMBOL_GPL(dev_pm_opp_set_config); 2644 2645 /** 2646 * dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration. 2647 * @token: The token returned by dev_pm_opp_set_config() previously. 2648 * 2649 * This allows all device OPP configurations to be cleared at once. This must be 2650 * called once for each call made to dev_pm_opp_set_config(), in order to free 2651 * the OPPs properly. 2652 * 2653 * Currently the first call itself ends up freeing all the OPP configurations, 2654 * while the later ones only drop the OPP table reference. This works well for 2655 * now as we would never want to use an half initialized OPP table and want to 2656 * remove the configurations together. 2657 */ 2658 void dev_pm_opp_clear_config(int token) 2659 { 2660 struct opp_config_data *data; 2661 2662 /* 2663 * This lets the callers call this unconditionally and keep their code 2664 * simple. 2665 */ 2666 if (unlikely(token <= 0)) 2667 return; 2668 2669 data = xa_erase(&opp_configs, token); 2670 if (WARN_ON(!data)) 2671 return; 2672 2673 _opp_clear_config(data); 2674 } 2675 EXPORT_SYMBOL_GPL(dev_pm_opp_clear_config); 2676 2677 static void devm_pm_opp_config_release(void *token) 2678 { 2679 dev_pm_opp_clear_config((unsigned long)token); 2680 } 2681 2682 /** 2683 * devm_pm_opp_set_config() - Set OPP configuration for the device. 2684 * @dev: Device for which configuration is being set. 2685 * @config: OPP configuration. 2686 * 2687 * This allows all device OPP configurations to be performed at once. 2688 * This is a resource-managed variant of dev_pm_opp_set_config(). 2689 * 2690 * Return: 0 on success and errorno otherwise. 2691 */ 2692 int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config) 2693 { 2694 int token = dev_pm_opp_set_config(dev, config); 2695 2696 if (token < 0) 2697 return token; 2698 2699 return devm_add_action_or_reset(dev, devm_pm_opp_config_release, 2700 (void *) ((unsigned long) token)); 2701 } 2702 EXPORT_SYMBOL_GPL(devm_pm_opp_set_config); 2703 2704 /** 2705 * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP. 2706 * @src_table: OPP table which has @dst_table as one of its required OPP table. 2707 * @dst_table: Required OPP table of the @src_table. 2708 * @src_opp: OPP from the @src_table. 2709 * 2710 * This function returns the OPP (present in @dst_table) pointed out by the 2711 * "required-opps" property of the @src_opp (present in @src_table). 2712 * 2713 * The callers are required to call dev_pm_opp_put() for the returned OPP after 2714 * use. 2715 * 2716 * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise. 2717 */ 2718 struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table, 2719 struct opp_table *dst_table, 2720 struct dev_pm_opp *src_opp) 2721 { 2722 struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV); 2723 int i; 2724 2725 if (!src_table || !dst_table || !src_opp || 2726 !src_table->required_opp_tables) 2727 return ERR_PTR(-EINVAL); 2728 2729 /* required-opps not fully initialized yet */ 2730 if (lazy_linking_pending(src_table)) 2731 return ERR_PTR(-EBUSY); 2732 2733 for (i = 0; i < src_table->required_opp_count; i++) { 2734 if (src_table->required_opp_tables[i] != dst_table) 2735 continue; 2736 2737 scoped_guard(mutex, &src_table->lock) { 2738 list_for_each_entry(opp, &src_table->opp_list, node) { 2739 if (opp == src_opp) { 2740 dest_opp = dev_pm_opp_get(opp->required_opps[i]); 2741 break; 2742 } 2743 } 2744 break; 2745 } 2746 } 2747 2748 if (IS_ERR(dest_opp)) { 2749 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, 2750 src_table, dst_table); 2751 } 2752 2753 return dest_opp; 2754 } 2755 EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp); 2756 2757 /** 2758 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table. 2759 * @src_table: OPP table which has dst_table as one of its required OPP table. 2760 * @dst_table: Required OPP table of the src_table. 2761 * @pstate: Current performance state of the src_table. 2762 * 2763 * This Returns pstate of the OPP (present in @dst_table) pointed out by the 2764 * "required-opps" property of the OPP (present in @src_table) which has 2765 * performance state set to @pstate. 2766 * 2767 * Return: Zero or positive performance state on success, otherwise negative 2768 * value on errors. 2769 */ 2770 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table, 2771 struct opp_table *dst_table, 2772 unsigned int pstate) 2773 { 2774 struct dev_pm_opp *opp; 2775 int i; 2776 2777 /* 2778 * Normally the src_table will have the "required_opps" property set to 2779 * point to one of the OPPs in the dst_table, but in some cases the 2780 * genpd and its master have one to one mapping of performance states 2781 * and so none of them have the "required-opps" property set. Return the 2782 * pstate of the src_table as it is in such cases. 2783 */ 2784 if (!src_table || !src_table->required_opp_count) 2785 return pstate; 2786 2787 /* Both OPP tables must belong to genpds */ 2788 if (unlikely(!src_table->is_genpd || !dst_table->is_genpd)) { 2789 pr_err("%s: Performance state is only valid for genpds.\n", __func__); 2790 return -EINVAL; 2791 } 2792 2793 /* required-opps not fully initialized yet */ 2794 if (lazy_linking_pending(src_table)) 2795 return -EBUSY; 2796 2797 for (i = 0; i < src_table->required_opp_count; i++) { 2798 if (src_table->required_opp_tables[i]->np == dst_table->np) 2799 break; 2800 } 2801 2802 if (unlikely(i == src_table->required_opp_count)) { 2803 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n", 2804 __func__, src_table, dst_table); 2805 return -EINVAL; 2806 } 2807 2808 guard(mutex)(&src_table->lock); 2809 2810 list_for_each_entry(opp, &src_table->opp_list, node) { 2811 if (opp->level == pstate) 2812 return opp->required_opps[i]->level; 2813 } 2814 2815 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table, 2816 dst_table); 2817 2818 return -EINVAL; 2819 } 2820 2821 /** 2822 * dev_pm_opp_add_dynamic() - Add an OPP table from a table definitions 2823 * @dev: The device for which we do this operation 2824 * @data: The OPP data for the OPP to add 2825 * 2826 * This function adds an opp definition to the opp table and returns status. 2827 * The opp is made available by default and it can be controlled using 2828 * dev_pm_opp_enable/disable functions. 2829 * 2830 * Return: 2831 * 0 On success OR 2832 * Duplicate OPPs (both freq and volt are same) and opp->available 2833 * -EEXIST Freq are same and volt are different OR 2834 * Duplicate OPPs (both freq and volt are same) and !opp->available 2835 * -ENOMEM Memory allocation failure 2836 */ 2837 int dev_pm_opp_add_dynamic(struct device *dev, struct dev_pm_opp_data *data) 2838 { 2839 struct opp_table *opp_table; 2840 int ret; 2841 2842 opp_table = _add_opp_table(dev, true); 2843 if (IS_ERR(opp_table)) 2844 return PTR_ERR(opp_table); 2845 2846 /* Fix regulator count for dynamic OPPs */ 2847 opp_table->regulator_count = 1; 2848 2849 ret = _opp_add_v1(opp_table, dev, data, true); 2850 if (ret) 2851 dev_pm_opp_put_opp_table(opp_table); 2852 2853 return ret; 2854 } 2855 EXPORT_SYMBOL_GPL(dev_pm_opp_add_dynamic); 2856 2857 /** 2858 * _opp_set_availability() - helper to set the availability of an opp 2859 * @dev: device for which we do this operation 2860 * @freq: OPP frequency to modify availability 2861 * @availability_req: availability status requested for this opp 2862 * 2863 * Set the availability of an OPP, opp_{enable,disable} share a common logic 2864 * which is isolated here. 2865 * 2866 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2867 * copy operation, returns 0 if no modification was done OR modification was 2868 * successful. 2869 */ 2870 static int _opp_set_availability(struct device *dev, unsigned long freq, 2871 bool availability_req) 2872 { 2873 struct dev_pm_opp *opp __free(put_opp) = ERR_PTR(-ENODEV), *tmp_opp; 2874 struct opp_table *opp_table __free(put_opp_table); 2875 2876 /* Find the opp_table */ 2877 opp_table = _find_opp_table(dev); 2878 if (IS_ERR(opp_table)) { 2879 dev_warn(dev, "%s: Device OPP not found (%ld)\n", __func__, 2880 PTR_ERR(opp_table)); 2881 return PTR_ERR(opp_table); 2882 } 2883 2884 if (!assert_single_clk(opp_table, 0)) 2885 return -EINVAL; 2886 2887 scoped_guard(mutex, &opp_table->lock) { 2888 /* Do we have the frequency? */ 2889 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) { 2890 if (tmp_opp->rates[0] == freq) { 2891 opp = dev_pm_opp_get(tmp_opp); 2892 2893 /* Is update really needed? */ 2894 if (opp->available == availability_req) 2895 return 0; 2896 2897 opp->available = availability_req; 2898 break; 2899 } 2900 } 2901 } 2902 2903 if (IS_ERR(opp)) 2904 return PTR_ERR(opp); 2905 2906 /* Notify the change of the OPP availability */ 2907 if (availability_req) 2908 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE, 2909 opp); 2910 else 2911 blocking_notifier_call_chain(&opp_table->head, 2912 OPP_EVENT_DISABLE, opp); 2913 2914 return 0; 2915 } 2916 2917 /** 2918 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP 2919 * @dev: device for which we do this operation 2920 * @freq: OPP frequency to adjust voltage of 2921 * @u_volt: new OPP target voltage 2922 * @u_volt_min: new OPP min voltage 2923 * @u_volt_max: new OPP max voltage 2924 * 2925 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2926 * copy operation, returns 0 if no modifcation was done OR modification was 2927 * successful. 2928 */ 2929 int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq, 2930 unsigned long u_volt, unsigned long u_volt_min, 2931 unsigned long u_volt_max) 2932 2933 { 2934 struct dev_pm_opp *opp __free(put_opp) = ERR_PTR(-ENODEV), *tmp_opp; 2935 struct opp_table *opp_table __free(put_opp_table); 2936 int r; 2937 2938 /* Find the opp_table */ 2939 opp_table = _find_opp_table(dev); 2940 if (IS_ERR(opp_table)) { 2941 r = PTR_ERR(opp_table); 2942 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r); 2943 return r; 2944 } 2945 2946 if (!assert_single_clk(opp_table, 0)) 2947 return -EINVAL; 2948 2949 scoped_guard(mutex, &opp_table->lock) { 2950 /* Do we have the frequency? */ 2951 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) { 2952 if (tmp_opp->rates[0] == freq) { 2953 opp = dev_pm_opp_get(tmp_opp); 2954 2955 /* Is update really needed? */ 2956 if (opp->supplies->u_volt == u_volt) 2957 return 0; 2958 2959 opp->supplies->u_volt = u_volt; 2960 opp->supplies->u_volt_min = u_volt_min; 2961 opp->supplies->u_volt_max = u_volt_max; 2962 2963 break; 2964 } 2965 } 2966 } 2967 2968 if (IS_ERR(opp)) 2969 return PTR_ERR(opp); 2970 2971 /* Notify the voltage change of the OPP */ 2972 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE, 2973 opp); 2974 2975 return 0; 2976 } 2977 EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage); 2978 2979 /** 2980 * dev_pm_opp_sync_regulators() - Sync state of voltage regulators 2981 * @dev: device for which we do this operation 2982 * 2983 * Sync voltage state of the OPP table regulators. 2984 * 2985 * Return: 0 on success or a negative error value. 2986 */ 2987 int dev_pm_opp_sync_regulators(struct device *dev) 2988 { 2989 struct opp_table *opp_table __free(put_opp_table); 2990 struct regulator *reg; 2991 int ret, i; 2992 2993 /* Device may not have OPP table */ 2994 opp_table = _find_opp_table(dev); 2995 if (IS_ERR(opp_table)) 2996 return 0; 2997 2998 /* Regulator may not be required for the device */ 2999 if (unlikely(!opp_table->regulators)) 3000 return 0; 3001 3002 /* Nothing to sync if voltage wasn't changed */ 3003 if (!opp_table->enabled) 3004 return 0; 3005 3006 for (i = 0; i < opp_table->regulator_count; i++) { 3007 reg = opp_table->regulators[i]; 3008 ret = regulator_sync_voltage(reg); 3009 if (ret) 3010 return ret; 3011 } 3012 3013 return 0; 3014 } 3015 EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators); 3016 3017 /** 3018 * dev_pm_opp_enable() - Enable a specific OPP 3019 * @dev: device for which we do this operation 3020 * @freq: OPP frequency to enable 3021 * 3022 * Enables a provided opp. If the operation is valid, this returns 0, else the 3023 * corresponding error value. It is meant to be used for users an OPP available 3024 * after being temporarily made unavailable with dev_pm_opp_disable. 3025 * 3026 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 3027 * copy operation, returns 0 if no modification was done OR modification was 3028 * successful. 3029 */ 3030 int dev_pm_opp_enable(struct device *dev, unsigned long freq) 3031 { 3032 return _opp_set_availability(dev, freq, true); 3033 } 3034 EXPORT_SYMBOL_GPL(dev_pm_opp_enable); 3035 3036 /** 3037 * dev_pm_opp_disable() - Disable a specific OPP 3038 * @dev: device for which we do this operation 3039 * @freq: OPP frequency to disable 3040 * 3041 * Disables a provided opp. If the operation is valid, this returns 3042 * 0, else the corresponding error value. It is meant to be a temporary 3043 * control by users to make this OPP not available until the circumstances are 3044 * right to make it available again (with a call to dev_pm_opp_enable). 3045 * 3046 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 3047 * copy operation, returns 0 if no modification was done OR modification was 3048 * successful. 3049 */ 3050 int dev_pm_opp_disable(struct device *dev, unsigned long freq) 3051 { 3052 return _opp_set_availability(dev, freq, false); 3053 } 3054 EXPORT_SYMBOL_GPL(dev_pm_opp_disable); 3055 3056 /** 3057 * dev_pm_opp_register_notifier() - Register OPP notifier for the device 3058 * @dev: Device for which notifier needs to be registered 3059 * @nb: Notifier block to be registered 3060 * 3061 * Return: 0 on success or a negative error value. 3062 */ 3063 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb) 3064 { 3065 struct opp_table *opp_table __free(put_opp_table); 3066 3067 opp_table = _find_opp_table(dev); 3068 if (IS_ERR(opp_table)) 3069 return PTR_ERR(opp_table); 3070 3071 return blocking_notifier_chain_register(&opp_table->head, nb); 3072 } 3073 EXPORT_SYMBOL(dev_pm_opp_register_notifier); 3074 3075 /** 3076 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device 3077 * @dev: Device for which notifier needs to be unregistered 3078 * @nb: Notifier block to be unregistered 3079 * 3080 * Return: 0 on success or a negative error value. 3081 */ 3082 int dev_pm_opp_unregister_notifier(struct device *dev, 3083 struct notifier_block *nb) 3084 { 3085 struct opp_table *opp_table __free(put_opp_table); 3086 3087 opp_table = _find_opp_table(dev); 3088 if (IS_ERR(opp_table)) 3089 return PTR_ERR(opp_table); 3090 3091 return blocking_notifier_chain_unregister(&opp_table->head, nb); 3092 } 3093 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier); 3094 3095 /** 3096 * dev_pm_opp_remove_table() - Free all OPPs associated with the device 3097 * @dev: device pointer used to lookup OPP table. 3098 * 3099 * Free both OPPs created using static entries present in DT and the 3100 * dynamically added entries. 3101 */ 3102 void dev_pm_opp_remove_table(struct device *dev) 3103 { 3104 struct opp_table *opp_table __free(put_opp_table); 3105 3106 /* Check for existing table for 'dev' */ 3107 opp_table = _find_opp_table(dev); 3108 if (IS_ERR(opp_table)) { 3109 int error = PTR_ERR(opp_table); 3110 3111 if (error != -ENODEV) 3112 WARN(1, "%s: opp_table: %d\n", 3113 IS_ERR_OR_NULL(dev) ? 3114 "Invalid device" : dev_name(dev), 3115 error); 3116 return; 3117 } 3118 3119 /* 3120 * Drop the extra reference only if the OPP table was successfully added 3121 * with dev_pm_opp_of_add_table() earlier. 3122 **/ 3123 if (_opp_remove_all_static(opp_table)) 3124 dev_pm_opp_put_opp_table(opp_table); 3125 } 3126 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table); 3127