xref: /linux/drivers/opp/core.c (revision 067012974c8ae31a8886046df082aeba93592972)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic OPP Interface
4  *
5  * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6  *	Nishanth Menon
7  *	Romit Dasgupta
8  *	Kevin Hilman
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/clk.h>
14 #include <linux/errno.h>
15 #include <linux/err.h>
16 #include <linux/slab.h>
17 #include <linux/device.h>
18 #include <linux/export.h>
19 #include <linux/pm_domain.h>
20 #include <linux/regulator/consumer.h>
21 
22 #include "opp.h"
23 
24 /*
25  * The root of the list of all opp-tables. All opp_table structures branch off
26  * from here, with each opp_table containing the list of opps it supports in
27  * various states of availability.
28  */
29 LIST_HEAD(opp_tables);
30 /* Lock to allow exclusive modification to the device and opp lists */
31 DEFINE_MUTEX(opp_table_lock);
32 /* Flag indicating that opp_tables list is being updated at the moment */
33 static bool opp_tables_busy;
34 
35 static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
36 {
37 	struct opp_device *opp_dev;
38 	bool found = false;
39 
40 	mutex_lock(&opp_table->lock);
41 	list_for_each_entry(opp_dev, &opp_table->dev_list, node)
42 		if (opp_dev->dev == dev) {
43 			found = true;
44 			break;
45 		}
46 
47 	mutex_unlock(&opp_table->lock);
48 	return found;
49 }
50 
51 static struct opp_table *_find_opp_table_unlocked(struct device *dev)
52 {
53 	struct opp_table *opp_table;
54 
55 	list_for_each_entry(opp_table, &opp_tables, node) {
56 		if (_find_opp_dev(dev, opp_table)) {
57 			_get_opp_table_kref(opp_table);
58 			return opp_table;
59 		}
60 	}
61 
62 	return ERR_PTR(-ENODEV);
63 }
64 
65 /**
66  * _find_opp_table() - find opp_table struct using device pointer
67  * @dev:	device pointer used to lookup OPP table
68  *
69  * Search OPP table for one containing matching device.
70  *
71  * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
72  * -EINVAL based on type of error.
73  *
74  * The callers must call dev_pm_opp_put_opp_table() after the table is used.
75  */
76 struct opp_table *_find_opp_table(struct device *dev)
77 {
78 	struct opp_table *opp_table;
79 
80 	if (IS_ERR_OR_NULL(dev)) {
81 		pr_err("%s: Invalid parameters\n", __func__);
82 		return ERR_PTR(-EINVAL);
83 	}
84 
85 	mutex_lock(&opp_table_lock);
86 	opp_table = _find_opp_table_unlocked(dev);
87 	mutex_unlock(&opp_table_lock);
88 
89 	return opp_table;
90 }
91 
92 /**
93  * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
94  * @opp:	opp for which voltage has to be returned for
95  *
96  * Return: voltage in micro volt corresponding to the opp, else
97  * return 0
98  *
99  * This is useful only for devices with single power supply.
100  */
101 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
102 {
103 	if (IS_ERR_OR_NULL(opp)) {
104 		pr_err("%s: Invalid parameters\n", __func__);
105 		return 0;
106 	}
107 
108 	return opp->supplies[0].u_volt;
109 }
110 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
111 
112 /**
113  * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
114  * @opp:	opp for which frequency has to be returned for
115  *
116  * Return: frequency in hertz corresponding to the opp, else
117  * return 0
118  */
119 unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
120 {
121 	if (IS_ERR_OR_NULL(opp)) {
122 		pr_err("%s: Invalid parameters\n", __func__);
123 		return 0;
124 	}
125 
126 	return opp->rate;
127 }
128 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
129 
130 /**
131  * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
132  * @opp:	opp for which level value has to be returned for
133  *
134  * Return: level read from device tree corresponding to the opp, else
135  * return 0.
136  */
137 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
138 {
139 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
140 		pr_err("%s: Invalid parameters\n", __func__);
141 		return 0;
142 	}
143 
144 	return opp->level;
145 }
146 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
147 
148 /**
149  * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
150  * @opp: opp for which turbo mode is being verified
151  *
152  * Turbo OPPs are not for normal use, and can be enabled (under certain
153  * conditions) for short duration of times to finish high throughput work
154  * quickly. Running on them for longer times may overheat the chip.
155  *
156  * Return: true if opp is turbo opp, else false.
157  */
158 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
159 {
160 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
161 		pr_err("%s: Invalid parameters\n", __func__);
162 		return false;
163 	}
164 
165 	return opp->turbo;
166 }
167 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
168 
169 /**
170  * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
171  * @dev:	device for which we do this operation
172  *
173  * Return: This function returns the max clock latency in nanoseconds.
174  */
175 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
176 {
177 	struct opp_table *opp_table;
178 	unsigned long clock_latency_ns;
179 
180 	opp_table = _find_opp_table(dev);
181 	if (IS_ERR(opp_table))
182 		return 0;
183 
184 	clock_latency_ns = opp_table->clock_latency_ns_max;
185 
186 	dev_pm_opp_put_opp_table(opp_table);
187 
188 	return clock_latency_ns;
189 }
190 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
191 
192 /**
193  * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
194  * @dev: device for which we do this operation
195  *
196  * Return: This function returns the max voltage latency in nanoseconds.
197  */
198 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
199 {
200 	struct opp_table *opp_table;
201 	struct dev_pm_opp *opp;
202 	struct regulator *reg;
203 	unsigned long latency_ns = 0;
204 	int ret, i, count;
205 	struct {
206 		unsigned long min;
207 		unsigned long max;
208 	} *uV;
209 
210 	opp_table = _find_opp_table(dev);
211 	if (IS_ERR(opp_table))
212 		return 0;
213 
214 	/* Regulator may not be required for the device */
215 	if (!opp_table->regulators)
216 		goto put_opp_table;
217 
218 	count = opp_table->regulator_count;
219 
220 	uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
221 	if (!uV)
222 		goto put_opp_table;
223 
224 	mutex_lock(&opp_table->lock);
225 
226 	for (i = 0; i < count; i++) {
227 		uV[i].min = ~0;
228 		uV[i].max = 0;
229 
230 		list_for_each_entry(opp, &opp_table->opp_list, node) {
231 			if (!opp->available)
232 				continue;
233 
234 			if (opp->supplies[i].u_volt_min < uV[i].min)
235 				uV[i].min = opp->supplies[i].u_volt_min;
236 			if (opp->supplies[i].u_volt_max > uV[i].max)
237 				uV[i].max = opp->supplies[i].u_volt_max;
238 		}
239 	}
240 
241 	mutex_unlock(&opp_table->lock);
242 
243 	/*
244 	 * The caller needs to ensure that opp_table (and hence the regulator)
245 	 * isn't freed, while we are executing this routine.
246 	 */
247 	for (i = 0; i < count; i++) {
248 		reg = opp_table->regulators[i];
249 		ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
250 		if (ret > 0)
251 			latency_ns += ret * 1000;
252 	}
253 
254 	kfree(uV);
255 put_opp_table:
256 	dev_pm_opp_put_opp_table(opp_table);
257 
258 	return latency_ns;
259 }
260 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
261 
262 /**
263  * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
264  *					     nanoseconds
265  * @dev: device for which we do this operation
266  *
267  * Return: This function returns the max transition latency, in nanoseconds, to
268  * switch from one OPP to other.
269  */
270 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
271 {
272 	return dev_pm_opp_get_max_volt_latency(dev) +
273 		dev_pm_opp_get_max_clock_latency(dev);
274 }
275 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
276 
277 /**
278  * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
279  * @dev:	device for which we do this operation
280  *
281  * Return: This function returns the frequency of the OPP marked as suspend_opp
282  * if one is available, else returns 0;
283  */
284 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
285 {
286 	struct opp_table *opp_table;
287 	unsigned long freq = 0;
288 
289 	opp_table = _find_opp_table(dev);
290 	if (IS_ERR(opp_table))
291 		return 0;
292 
293 	if (opp_table->suspend_opp && opp_table->suspend_opp->available)
294 		freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
295 
296 	dev_pm_opp_put_opp_table(opp_table);
297 
298 	return freq;
299 }
300 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
301 
302 int _get_opp_count(struct opp_table *opp_table)
303 {
304 	struct dev_pm_opp *opp;
305 	int count = 0;
306 
307 	mutex_lock(&opp_table->lock);
308 
309 	list_for_each_entry(opp, &opp_table->opp_list, node) {
310 		if (opp->available)
311 			count++;
312 	}
313 
314 	mutex_unlock(&opp_table->lock);
315 
316 	return count;
317 }
318 
319 /**
320  * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
321  * @dev:	device for which we do this operation
322  *
323  * Return: This function returns the number of available opps if there are any,
324  * else returns 0 if none or the corresponding error value.
325  */
326 int dev_pm_opp_get_opp_count(struct device *dev)
327 {
328 	struct opp_table *opp_table;
329 	int count;
330 
331 	opp_table = _find_opp_table(dev);
332 	if (IS_ERR(opp_table)) {
333 		count = PTR_ERR(opp_table);
334 		dev_dbg(dev, "%s: OPP table not found (%d)\n",
335 			__func__, count);
336 		return count;
337 	}
338 
339 	count = _get_opp_count(opp_table);
340 	dev_pm_opp_put_opp_table(opp_table);
341 
342 	return count;
343 }
344 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
345 
346 /**
347  * dev_pm_opp_find_freq_exact() - search for an exact frequency
348  * @dev:		device for which we do this operation
349  * @freq:		frequency to search for
350  * @available:		true/false - match for available opp
351  *
352  * Return: Searches for exact match in the opp table and returns pointer to the
353  * matching opp if found, else returns ERR_PTR in case of error and should
354  * be handled using IS_ERR. Error return values can be:
355  * EINVAL:	for bad pointer
356  * ERANGE:	no match found for search
357  * ENODEV:	if device not found in list of registered devices
358  *
359  * Note: available is a modifier for the search. if available=true, then the
360  * match is for exact matching frequency and is available in the stored OPP
361  * table. if false, the match is for exact frequency which is not available.
362  *
363  * This provides a mechanism to enable an opp which is not available currently
364  * or the opposite as well.
365  *
366  * The callers are required to call dev_pm_opp_put() for the returned OPP after
367  * use.
368  */
369 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
370 					      unsigned long freq,
371 					      bool available)
372 {
373 	struct opp_table *opp_table;
374 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
375 
376 	opp_table = _find_opp_table(dev);
377 	if (IS_ERR(opp_table)) {
378 		int r = PTR_ERR(opp_table);
379 
380 		dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
381 		return ERR_PTR(r);
382 	}
383 
384 	mutex_lock(&opp_table->lock);
385 
386 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
387 		if (temp_opp->available == available &&
388 				temp_opp->rate == freq) {
389 			opp = temp_opp;
390 
391 			/* Increment the reference count of OPP */
392 			dev_pm_opp_get(opp);
393 			break;
394 		}
395 	}
396 
397 	mutex_unlock(&opp_table->lock);
398 	dev_pm_opp_put_opp_table(opp_table);
399 
400 	return opp;
401 }
402 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
403 
404 /**
405  * dev_pm_opp_find_level_exact() - search for an exact level
406  * @dev:		device for which we do this operation
407  * @level:		level to search for
408  *
409  * Return: Searches for exact match in the opp table and returns pointer to the
410  * matching opp if found, else returns ERR_PTR in case of error and should
411  * be handled using IS_ERR. Error return values can be:
412  * EINVAL:	for bad pointer
413  * ERANGE:	no match found for search
414  * ENODEV:	if device not found in list of registered devices
415  *
416  * The callers are required to call dev_pm_opp_put() for the returned OPP after
417  * use.
418  */
419 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
420 					       unsigned int level)
421 {
422 	struct opp_table *opp_table;
423 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
424 
425 	opp_table = _find_opp_table(dev);
426 	if (IS_ERR(opp_table)) {
427 		int r = PTR_ERR(opp_table);
428 
429 		dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
430 		return ERR_PTR(r);
431 	}
432 
433 	mutex_lock(&opp_table->lock);
434 
435 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
436 		if (temp_opp->level == level) {
437 			opp = temp_opp;
438 
439 			/* Increment the reference count of OPP */
440 			dev_pm_opp_get(opp);
441 			break;
442 		}
443 	}
444 
445 	mutex_unlock(&opp_table->lock);
446 	dev_pm_opp_put_opp_table(opp_table);
447 
448 	return opp;
449 }
450 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
451 
452 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
453 						   unsigned long *freq)
454 {
455 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
456 
457 	mutex_lock(&opp_table->lock);
458 
459 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
460 		if (temp_opp->available && temp_opp->rate >= *freq) {
461 			opp = temp_opp;
462 			*freq = opp->rate;
463 
464 			/* Increment the reference count of OPP */
465 			dev_pm_opp_get(opp);
466 			break;
467 		}
468 	}
469 
470 	mutex_unlock(&opp_table->lock);
471 
472 	return opp;
473 }
474 
475 /**
476  * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
477  * @dev:	device for which we do this operation
478  * @freq:	Start frequency
479  *
480  * Search for the matching ceil *available* OPP from a starting freq
481  * for a device.
482  *
483  * Return: matching *opp and refreshes *freq accordingly, else returns
484  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
485  * values can be:
486  * EINVAL:	for bad pointer
487  * ERANGE:	no match found for search
488  * ENODEV:	if device not found in list of registered devices
489  *
490  * The callers are required to call dev_pm_opp_put() for the returned OPP after
491  * use.
492  */
493 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
494 					     unsigned long *freq)
495 {
496 	struct opp_table *opp_table;
497 	struct dev_pm_opp *opp;
498 
499 	if (!dev || !freq) {
500 		dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
501 		return ERR_PTR(-EINVAL);
502 	}
503 
504 	opp_table = _find_opp_table(dev);
505 	if (IS_ERR(opp_table))
506 		return ERR_CAST(opp_table);
507 
508 	opp = _find_freq_ceil(opp_table, freq);
509 
510 	dev_pm_opp_put_opp_table(opp_table);
511 
512 	return opp;
513 }
514 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
515 
516 /**
517  * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
518  * @dev:	device for which we do this operation
519  * @freq:	Start frequency
520  *
521  * Search for the matching floor *available* OPP from a starting freq
522  * for a device.
523  *
524  * Return: matching *opp and refreshes *freq accordingly, else returns
525  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
526  * values can be:
527  * EINVAL:	for bad pointer
528  * ERANGE:	no match found for search
529  * ENODEV:	if device not found in list of registered devices
530  *
531  * The callers are required to call dev_pm_opp_put() for the returned OPP after
532  * use.
533  */
534 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
535 					      unsigned long *freq)
536 {
537 	struct opp_table *opp_table;
538 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
539 
540 	if (!dev || !freq) {
541 		dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
542 		return ERR_PTR(-EINVAL);
543 	}
544 
545 	opp_table = _find_opp_table(dev);
546 	if (IS_ERR(opp_table))
547 		return ERR_CAST(opp_table);
548 
549 	mutex_lock(&opp_table->lock);
550 
551 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
552 		if (temp_opp->available) {
553 			/* go to the next node, before choosing prev */
554 			if (temp_opp->rate > *freq)
555 				break;
556 			else
557 				opp = temp_opp;
558 		}
559 	}
560 
561 	/* Increment the reference count of OPP */
562 	if (!IS_ERR(opp))
563 		dev_pm_opp_get(opp);
564 	mutex_unlock(&opp_table->lock);
565 	dev_pm_opp_put_opp_table(opp_table);
566 
567 	if (!IS_ERR(opp))
568 		*freq = opp->rate;
569 
570 	return opp;
571 }
572 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
573 
574 /**
575  * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for
576  *					 target voltage.
577  * @dev:	Device for which we do this operation.
578  * @u_volt:	Target voltage.
579  *
580  * Search for OPP with highest (ceil) frequency and has voltage <= u_volt.
581  *
582  * Return: matching *opp, else returns ERR_PTR in case of error which should be
583  * handled using IS_ERR.
584  *
585  * Error return values can be:
586  * EINVAL:	bad parameters
587  *
588  * The callers are required to call dev_pm_opp_put() for the returned OPP after
589  * use.
590  */
591 struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev,
592 						     unsigned long u_volt)
593 {
594 	struct opp_table *opp_table;
595 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
596 
597 	if (!dev || !u_volt) {
598 		dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__,
599 			u_volt);
600 		return ERR_PTR(-EINVAL);
601 	}
602 
603 	opp_table = _find_opp_table(dev);
604 	if (IS_ERR(opp_table))
605 		return ERR_CAST(opp_table);
606 
607 	mutex_lock(&opp_table->lock);
608 
609 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
610 		if (temp_opp->available) {
611 			if (temp_opp->supplies[0].u_volt > u_volt)
612 				break;
613 			opp = temp_opp;
614 		}
615 	}
616 
617 	/* Increment the reference count of OPP */
618 	if (!IS_ERR(opp))
619 		dev_pm_opp_get(opp);
620 
621 	mutex_unlock(&opp_table->lock);
622 	dev_pm_opp_put_opp_table(opp_table);
623 
624 	return opp;
625 }
626 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt);
627 
628 static int _set_opp_voltage(struct device *dev, struct regulator *reg,
629 			    struct dev_pm_opp_supply *supply)
630 {
631 	int ret;
632 
633 	/* Regulator not available for device */
634 	if (IS_ERR(reg)) {
635 		dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
636 			PTR_ERR(reg));
637 		return 0;
638 	}
639 
640 	dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
641 		supply->u_volt_min, supply->u_volt, supply->u_volt_max);
642 
643 	ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
644 					    supply->u_volt, supply->u_volt_max);
645 	if (ret)
646 		dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
647 			__func__, supply->u_volt_min, supply->u_volt,
648 			supply->u_volt_max, ret);
649 
650 	return ret;
651 }
652 
653 static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk,
654 					    unsigned long freq)
655 {
656 	int ret;
657 
658 	ret = clk_set_rate(clk, freq);
659 	if (ret) {
660 		dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
661 			ret);
662 	}
663 
664 	return ret;
665 }
666 
667 static int _generic_set_opp_regulator(struct opp_table *opp_table,
668 				      struct device *dev,
669 				      unsigned long old_freq,
670 				      unsigned long freq,
671 				      struct dev_pm_opp_supply *old_supply,
672 				      struct dev_pm_opp_supply *new_supply)
673 {
674 	struct regulator *reg = opp_table->regulators[0];
675 	int ret;
676 
677 	/* This function only supports single regulator per device */
678 	if (WARN_ON(opp_table->regulator_count > 1)) {
679 		dev_err(dev, "multiple regulators are not supported\n");
680 		return -EINVAL;
681 	}
682 
683 	/* Scaling up? Scale voltage before frequency */
684 	if (freq >= old_freq) {
685 		ret = _set_opp_voltage(dev, reg, new_supply);
686 		if (ret)
687 			goto restore_voltage;
688 	}
689 
690 	/* Change frequency */
691 	ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
692 	if (ret)
693 		goto restore_voltage;
694 
695 	/* Scaling down? Scale voltage after frequency */
696 	if (freq < old_freq) {
697 		ret = _set_opp_voltage(dev, reg, new_supply);
698 		if (ret)
699 			goto restore_freq;
700 	}
701 
702 	/*
703 	 * Enable the regulator after setting its voltages, otherwise it breaks
704 	 * some boot-enabled regulators.
705 	 */
706 	if (unlikely(!opp_table->enabled)) {
707 		ret = regulator_enable(reg);
708 		if (ret < 0)
709 			dev_warn(dev, "Failed to enable regulator: %d", ret);
710 	}
711 
712 	return 0;
713 
714 restore_freq:
715 	if (_generic_set_opp_clk_only(dev, opp_table->clk, old_freq))
716 		dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
717 			__func__, old_freq);
718 restore_voltage:
719 	/* This shouldn't harm even if the voltages weren't updated earlier */
720 	if (old_supply)
721 		_set_opp_voltage(dev, reg, old_supply);
722 
723 	return ret;
724 }
725 
726 static int _set_opp_bw(const struct opp_table *opp_table,
727 		       struct dev_pm_opp *opp, struct device *dev, bool remove)
728 {
729 	u32 avg, peak;
730 	int i, ret;
731 
732 	if (!opp_table->paths)
733 		return 0;
734 
735 	for (i = 0; i < opp_table->path_count; i++) {
736 		if (remove) {
737 			avg = 0;
738 			peak = 0;
739 		} else {
740 			avg = opp->bandwidth[i].avg;
741 			peak = opp->bandwidth[i].peak;
742 		}
743 		ret = icc_set_bw(opp_table->paths[i], avg, peak);
744 		if (ret) {
745 			dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
746 				remove ? "remove" : "set", i, ret);
747 			return ret;
748 		}
749 	}
750 
751 	return 0;
752 }
753 
754 static int _set_opp_custom(const struct opp_table *opp_table,
755 			   struct device *dev, unsigned long old_freq,
756 			   unsigned long freq,
757 			   struct dev_pm_opp_supply *old_supply,
758 			   struct dev_pm_opp_supply *new_supply)
759 {
760 	struct dev_pm_set_opp_data *data;
761 	int size;
762 
763 	data = opp_table->set_opp_data;
764 	data->regulators = opp_table->regulators;
765 	data->regulator_count = opp_table->regulator_count;
766 	data->clk = opp_table->clk;
767 	data->dev = dev;
768 
769 	data->old_opp.rate = old_freq;
770 	size = sizeof(*old_supply) * opp_table->regulator_count;
771 	if (!old_supply)
772 		memset(data->old_opp.supplies, 0, size);
773 	else
774 		memcpy(data->old_opp.supplies, old_supply, size);
775 
776 	data->new_opp.rate = freq;
777 	memcpy(data->new_opp.supplies, new_supply, size);
778 
779 	return opp_table->set_opp(data);
780 }
781 
782 static int _set_required_opp(struct device *dev, struct device *pd_dev,
783 			     struct dev_pm_opp *opp, int i)
784 {
785 	unsigned int pstate = likely(opp) ? opp->required_opps[i]->pstate : 0;
786 	int ret;
787 
788 	if (!pd_dev)
789 		return 0;
790 
791 	ret = dev_pm_genpd_set_performance_state(pd_dev, pstate);
792 	if (ret) {
793 		dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n",
794 			dev_name(pd_dev), pstate, ret);
795 	}
796 
797 	return ret;
798 }
799 
800 /* This is only called for PM domain for now */
801 static int _set_required_opps(struct device *dev,
802 			      struct opp_table *opp_table,
803 			      struct dev_pm_opp *opp, bool up)
804 {
805 	struct opp_table **required_opp_tables = opp_table->required_opp_tables;
806 	struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
807 	int i, ret = 0;
808 
809 	if (!required_opp_tables)
810 		return 0;
811 
812 	/* Single genpd case */
813 	if (!genpd_virt_devs)
814 		return _set_required_opp(dev, dev, opp, 0);
815 
816 	/* Multiple genpd case */
817 
818 	/*
819 	 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
820 	 * after it is freed from another thread.
821 	 */
822 	mutex_lock(&opp_table->genpd_virt_dev_lock);
823 
824 	/* Scaling up? Set required OPPs in normal order, else reverse */
825 	if (up) {
826 		for (i = 0; i < opp_table->required_opp_count; i++) {
827 			ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
828 			if (ret)
829 				break;
830 		}
831 	} else {
832 		for (i = opp_table->required_opp_count - 1; i >= 0; i--) {
833 			ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
834 			if (ret)
835 				break;
836 		}
837 	}
838 
839 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
840 
841 	return ret;
842 }
843 
844 /**
845  * dev_pm_opp_set_bw() - sets bandwidth levels corresponding to an opp
846  * @dev:	device for which we do this operation
847  * @opp:	opp based on which the bandwidth levels are to be configured
848  *
849  * This configures the bandwidth to the levels specified by the OPP. However
850  * if the OPP specified is NULL the bandwidth levels are cleared out.
851  *
852  * Return: 0 on success or a negative error value.
853  */
854 int dev_pm_opp_set_bw(struct device *dev, struct dev_pm_opp *opp)
855 {
856 	struct opp_table *opp_table;
857 	int ret;
858 
859 	opp_table = _find_opp_table(dev);
860 	if (IS_ERR(opp_table)) {
861 		dev_err(dev, "%s: device opp table doesn't exist\n", __func__);
862 		return PTR_ERR(opp_table);
863 	}
864 
865 	if (opp)
866 		ret = _set_opp_bw(opp_table, opp, dev, false);
867 	else
868 		ret = _set_opp_bw(opp_table, NULL, dev, true);
869 
870 	dev_pm_opp_put_opp_table(opp_table);
871 	return ret;
872 }
873 EXPORT_SYMBOL_GPL(dev_pm_opp_set_bw);
874 
875 static int _opp_set_rate_zero(struct device *dev, struct opp_table *opp_table)
876 {
877 	int ret;
878 
879 	if (!opp_table->enabled)
880 		return 0;
881 
882 	/*
883 	 * Some drivers need to support cases where some platforms may
884 	 * have OPP table for the device, while others don't and
885 	 * opp_set_rate() just needs to behave like clk_set_rate().
886 	 */
887 	if (!_get_opp_count(opp_table))
888 		return 0;
889 
890 	ret = _set_opp_bw(opp_table, NULL, dev, true);
891 	if (ret)
892 		return ret;
893 
894 	if (opp_table->regulators)
895 		regulator_disable(opp_table->regulators[0]);
896 
897 	ret = _set_required_opps(dev, opp_table, NULL, false);
898 
899 	opp_table->enabled = false;
900 	return ret;
901 }
902 
903 /**
904  * dev_pm_opp_set_rate() - Configure new OPP based on frequency
905  * @dev:	 device for which we do this operation
906  * @target_freq: frequency to achieve
907  *
908  * This configures the power-supplies to the levels specified by the OPP
909  * corresponding to the target_freq, and programs the clock to a value <=
910  * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
911  * provided by the opp, should have already rounded to the target OPP's
912  * frequency.
913  */
914 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
915 {
916 	struct opp_table *opp_table;
917 	unsigned long freq, old_freq, temp_freq;
918 	struct dev_pm_opp *old_opp, *opp;
919 	struct clk *clk;
920 	int ret;
921 
922 	opp_table = _find_opp_table(dev);
923 	if (IS_ERR(opp_table)) {
924 		dev_err(dev, "%s: device opp doesn't exist\n", __func__);
925 		return PTR_ERR(opp_table);
926 	}
927 
928 	if (unlikely(!target_freq)) {
929 		ret = _opp_set_rate_zero(dev, opp_table);
930 		goto put_opp_table;
931 	}
932 
933 	clk = opp_table->clk;
934 	if (IS_ERR(clk)) {
935 		dev_err(dev, "%s: No clock available for the device\n",
936 			__func__);
937 		ret = PTR_ERR(clk);
938 		goto put_opp_table;
939 	}
940 
941 	freq = clk_round_rate(clk, target_freq);
942 	if ((long)freq <= 0)
943 		freq = target_freq;
944 
945 	old_freq = clk_get_rate(clk);
946 
947 	/* Return early if nothing to do */
948 	if (opp_table->enabled && old_freq == freq) {
949 		dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n",
950 			__func__, freq);
951 		ret = 0;
952 		goto put_opp_table;
953 	}
954 
955 	/*
956 	 * For IO devices which require an OPP on some platforms/SoCs
957 	 * while just needing to scale the clock on some others
958 	 * we look for empty OPP tables with just a clock handle and
959 	 * scale only the clk. This makes dev_pm_opp_set_rate()
960 	 * equivalent to a clk_set_rate()
961 	 */
962 	if (!_get_opp_count(opp_table)) {
963 		ret = _generic_set_opp_clk_only(dev, clk, freq);
964 		goto put_opp_table;
965 	}
966 
967 	temp_freq = old_freq;
968 	old_opp = _find_freq_ceil(opp_table, &temp_freq);
969 	if (IS_ERR(old_opp)) {
970 		dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n",
971 			__func__, old_freq, PTR_ERR(old_opp));
972 	}
973 
974 	temp_freq = freq;
975 	opp = _find_freq_ceil(opp_table, &temp_freq);
976 	if (IS_ERR(opp)) {
977 		ret = PTR_ERR(opp);
978 		dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
979 			__func__, freq, ret);
980 		goto put_old_opp;
981 	}
982 
983 	dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__,
984 		old_freq, freq);
985 
986 	/* Scaling up? Configure required OPPs before frequency */
987 	if (freq >= old_freq) {
988 		ret = _set_required_opps(dev, opp_table, opp, true);
989 		if (ret)
990 			goto put_opp;
991 	}
992 
993 	if (opp_table->set_opp) {
994 		ret = _set_opp_custom(opp_table, dev, old_freq, freq,
995 				      IS_ERR(old_opp) ? NULL : old_opp->supplies,
996 				      opp->supplies);
997 	} else if (opp_table->regulators) {
998 		ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq,
999 						 IS_ERR(old_opp) ? NULL : old_opp->supplies,
1000 						 opp->supplies);
1001 	} else {
1002 		/* Only frequency scaling */
1003 		ret = _generic_set_opp_clk_only(dev, clk, freq);
1004 	}
1005 
1006 	/* Scaling down? Configure required OPPs after frequency */
1007 	if (!ret && freq < old_freq) {
1008 		ret = _set_required_opps(dev, opp_table, opp, false);
1009 		if (ret)
1010 			dev_err(dev, "Failed to set required opps: %d\n", ret);
1011 	}
1012 
1013 	if (!ret) {
1014 		ret = _set_opp_bw(opp_table, opp, dev, false);
1015 		if (!ret)
1016 			opp_table->enabled = true;
1017 	}
1018 
1019 put_opp:
1020 	dev_pm_opp_put(opp);
1021 put_old_opp:
1022 	if (!IS_ERR(old_opp))
1023 		dev_pm_opp_put(old_opp);
1024 put_opp_table:
1025 	dev_pm_opp_put_opp_table(opp_table);
1026 	return ret;
1027 }
1028 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1029 
1030 /* OPP-dev Helpers */
1031 static void _remove_opp_dev(struct opp_device *opp_dev,
1032 			    struct opp_table *opp_table)
1033 {
1034 	opp_debug_unregister(opp_dev, opp_table);
1035 	list_del(&opp_dev->node);
1036 	kfree(opp_dev);
1037 }
1038 
1039 struct opp_device *_add_opp_dev(const struct device *dev,
1040 				struct opp_table *opp_table)
1041 {
1042 	struct opp_device *opp_dev;
1043 
1044 	opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1045 	if (!opp_dev)
1046 		return NULL;
1047 
1048 	/* Initialize opp-dev */
1049 	opp_dev->dev = dev;
1050 
1051 	mutex_lock(&opp_table->lock);
1052 	list_add(&opp_dev->node, &opp_table->dev_list);
1053 	mutex_unlock(&opp_table->lock);
1054 
1055 	/* Create debugfs entries for the opp_table */
1056 	opp_debug_register(opp_dev, opp_table);
1057 
1058 	return opp_dev;
1059 }
1060 
1061 static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1062 {
1063 	struct opp_table *opp_table;
1064 	struct opp_device *opp_dev;
1065 	int ret;
1066 
1067 	/*
1068 	 * Allocate a new OPP table. In the infrequent case where a new
1069 	 * device is needed to be added, we pay this penalty.
1070 	 */
1071 	opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1072 	if (!opp_table)
1073 		return ERR_PTR(-ENOMEM);
1074 
1075 	mutex_init(&opp_table->lock);
1076 	mutex_init(&opp_table->genpd_virt_dev_lock);
1077 	INIT_LIST_HEAD(&opp_table->dev_list);
1078 
1079 	/* Mark regulator count uninitialized */
1080 	opp_table->regulator_count = -1;
1081 
1082 	opp_dev = _add_opp_dev(dev, opp_table);
1083 	if (!opp_dev) {
1084 		ret = -ENOMEM;
1085 		goto err;
1086 	}
1087 
1088 	_of_init_opp_table(opp_table, dev, index);
1089 
1090 	/* Find clk for the device */
1091 	opp_table->clk = clk_get(dev, NULL);
1092 	if (IS_ERR(opp_table->clk)) {
1093 		ret = PTR_ERR(opp_table->clk);
1094 		if (ret == -EPROBE_DEFER)
1095 			goto remove_opp_dev;
1096 
1097 		dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1098 	}
1099 
1100 	/* Find interconnect path(s) for the device */
1101 	ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1102 	if (ret) {
1103 		if (ret == -EPROBE_DEFER)
1104 			goto put_clk;
1105 
1106 		dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1107 			 __func__, ret);
1108 	}
1109 
1110 	BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1111 	INIT_LIST_HEAD(&opp_table->opp_list);
1112 	kref_init(&opp_table->kref);
1113 
1114 	return opp_table;
1115 
1116 put_clk:
1117 	if (!IS_ERR(opp_table->clk))
1118 		clk_put(opp_table->clk);
1119 remove_opp_dev:
1120 	_remove_opp_dev(opp_dev, opp_table);
1121 err:
1122 	kfree(opp_table);
1123 	return ERR_PTR(ret);
1124 }
1125 
1126 void _get_opp_table_kref(struct opp_table *opp_table)
1127 {
1128 	kref_get(&opp_table->kref);
1129 }
1130 
1131 /*
1132  * We need to make sure that the OPP table for a device doesn't get added twice,
1133  * if this routine gets called in parallel with the same device pointer.
1134  *
1135  * The simplest way to enforce that is to perform everything (find existing
1136  * table and if not found, create a new one) under the opp_table_lock, so only
1137  * one creator gets access to the same. But that expands the critical section
1138  * under the lock and may end up causing circular dependencies with frameworks
1139  * like debugfs, interconnect or clock framework as they may be direct or
1140  * indirect users of OPP core.
1141  *
1142  * And for that reason we have to go for a bit tricky implementation here, which
1143  * uses the opp_tables_busy flag to indicate if another creator is in the middle
1144  * of adding an OPP table and others should wait for it to finish.
1145  */
1146 struct opp_table *_add_opp_table_indexed(struct device *dev, int index)
1147 {
1148 	struct opp_table *opp_table;
1149 
1150 again:
1151 	mutex_lock(&opp_table_lock);
1152 
1153 	opp_table = _find_opp_table_unlocked(dev);
1154 	if (!IS_ERR(opp_table))
1155 		goto unlock;
1156 
1157 	/*
1158 	 * The opp_tables list or an OPP table's dev_list is getting updated by
1159 	 * another user, wait for it to finish.
1160 	 */
1161 	if (unlikely(opp_tables_busy)) {
1162 		mutex_unlock(&opp_table_lock);
1163 		cpu_relax();
1164 		goto again;
1165 	}
1166 
1167 	opp_tables_busy = true;
1168 	opp_table = _managed_opp(dev, index);
1169 
1170 	/* Drop the lock to reduce the size of critical section */
1171 	mutex_unlock(&opp_table_lock);
1172 
1173 	if (opp_table) {
1174 		if (!_add_opp_dev(dev, opp_table)) {
1175 			dev_pm_opp_put_opp_table(opp_table);
1176 			opp_table = ERR_PTR(-ENOMEM);
1177 		}
1178 
1179 		mutex_lock(&opp_table_lock);
1180 	} else {
1181 		opp_table = _allocate_opp_table(dev, index);
1182 
1183 		mutex_lock(&opp_table_lock);
1184 		if (!IS_ERR(opp_table))
1185 			list_add(&opp_table->node, &opp_tables);
1186 	}
1187 
1188 	opp_tables_busy = false;
1189 
1190 unlock:
1191 	mutex_unlock(&opp_table_lock);
1192 
1193 	return opp_table;
1194 }
1195 
1196 struct opp_table *_add_opp_table(struct device *dev)
1197 {
1198 	return _add_opp_table_indexed(dev, 0);
1199 }
1200 
1201 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1202 {
1203 	return _find_opp_table(dev);
1204 }
1205 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1206 
1207 static void _opp_table_kref_release(struct kref *kref)
1208 {
1209 	struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1210 	struct opp_device *opp_dev, *temp;
1211 	int i;
1212 
1213 	/* Drop the lock as soon as we can */
1214 	list_del(&opp_table->node);
1215 	mutex_unlock(&opp_table_lock);
1216 
1217 	_of_clear_opp_table(opp_table);
1218 
1219 	/* Release clk */
1220 	if (!IS_ERR(opp_table->clk))
1221 		clk_put(opp_table->clk);
1222 
1223 	if (opp_table->paths) {
1224 		for (i = 0; i < opp_table->path_count; i++)
1225 			icc_put(opp_table->paths[i]);
1226 		kfree(opp_table->paths);
1227 	}
1228 
1229 	WARN_ON(!list_empty(&opp_table->opp_list));
1230 
1231 	list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
1232 		/*
1233 		 * The OPP table is getting removed, drop the performance state
1234 		 * constraints.
1235 		 */
1236 		if (opp_table->genpd_performance_state)
1237 			dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1238 
1239 		_remove_opp_dev(opp_dev, opp_table);
1240 	}
1241 
1242 	mutex_destroy(&opp_table->genpd_virt_dev_lock);
1243 	mutex_destroy(&opp_table->lock);
1244 	kfree(opp_table);
1245 }
1246 
1247 void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1248 {
1249 	kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1250 		       &opp_table_lock);
1251 }
1252 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1253 
1254 void _opp_free(struct dev_pm_opp *opp)
1255 {
1256 	kfree(opp);
1257 }
1258 
1259 static void _opp_kref_release(struct kref *kref)
1260 {
1261 	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1262 	struct opp_table *opp_table = opp->opp_table;
1263 
1264 	list_del(&opp->node);
1265 	mutex_unlock(&opp_table->lock);
1266 
1267 	/*
1268 	 * Notify the changes in the availability of the operable
1269 	 * frequency/voltage list.
1270 	 */
1271 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1272 	_of_opp_free_required_opps(opp_table, opp);
1273 	opp_debug_remove_one(opp);
1274 	kfree(opp);
1275 }
1276 
1277 void dev_pm_opp_get(struct dev_pm_opp *opp)
1278 {
1279 	kref_get(&opp->kref);
1280 }
1281 
1282 void dev_pm_opp_put(struct dev_pm_opp *opp)
1283 {
1284 	kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1285 }
1286 EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1287 
1288 /**
1289  * dev_pm_opp_remove()  - Remove an OPP from OPP table
1290  * @dev:	device for which we do this operation
1291  * @freq:	OPP to remove with matching 'freq'
1292  *
1293  * This function removes an opp from the opp table.
1294  */
1295 void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1296 {
1297 	struct dev_pm_opp *opp;
1298 	struct opp_table *opp_table;
1299 	bool found = false;
1300 
1301 	opp_table = _find_opp_table(dev);
1302 	if (IS_ERR(opp_table))
1303 		return;
1304 
1305 	mutex_lock(&opp_table->lock);
1306 
1307 	list_for_each_entry(opp, &opp_table->opp_list, node) {
1308 		if (opp->rate == freq) {
1309 			found = true;
1310 			break;
1311 		}
1312 	}
1313 
1314 	mutex_unlock(&opp_table->lock);
1315 
1316 	if (found) {
1317 		dev_pm_opp_put(opp);
1318 
1319 		/* Drop the reference taken by dev_pm_opp_add() */
1320 		dev_pm_opp_put_opp_table(opp_table);
1321 	} else {
1322 		dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1323 			 __func__, freq);
1324 	}
1325 
1326 	/* Drop the reference taken by _find_opp_table() */
1327 	dev_pm_opp_put_opp_table(opp_table);
1328 }
1329 EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1330 
1331 static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1332 					bool dynamic)
1333 {
1334 	struct dev_pm_opp *opp = NULL, *temp;
1335 
1336 	mutex_lock(&opp_table->lock);
1337 	list_for_each_entry(temp, &opp_table->opp_list, node) {
1338 		if (dynamic == temp->dynamic) {
1339 			opp = temp;
1340 			break;
1341 		}
1342 	}
1343 
1344 	mutex_unlock(&opp_table->lock);
1345 	return opp;
1346 }
1347 
1348 bool _opp_remove_all_static(struct opp_table *opp_table)
1349 {
1350 	struct dev_pm_opp *opp;
1351 
1352 	mutex_lock(&opp_table->lock);
1353 
1354 	if (!opp_table->parsed_static_opps) {
1355 		mutex_unlock(&opp_table->lock);
1356 		return false;
1357 	}
1358 
1359 	if (--opp_table->parsed_static_opps) {
1360 		mutex_unlock(&opp_table->lock);
1361 		return true;
1362 	}
1363 
1364 	mutex_unlock(&opp_table->lock);
1365 
1366 	/*
1367 	 * Can't remove the OPP from under the lock, debugfs removal needs to
1368 	 * happen lock less to avoid circular dependency issues.
1369 	 */
1370 	while ((opp = _opp_get_next(opp_table, false)))
1371 		dev_pm_opp_put(opp);
1372 
1373 	return true;
1374 }
1375 
1376 /**
1377  * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1378  * @dev:	device for which we do this operation
1379  *
1380  * This function removes all dynamically created OPPs from the opp table.
1381  */
1382 void dev_pm_opp_remove_all_dynamic(struct device *dev)
1383 {
1384 	struct opp_table *opp_table;
1385 	struct dev_pm_opp *opp;
1386 	int count = 0;
1387 
1388 	opp_table = _find_opp_table(dev);
1389 	if (IS_ERR(opp_table))
1390 		return;
1391 
1392 	/*
1393 	 * Can't remove the OPP from under the lock, debugfs removal needs to
1394 	 * happen lock less to avoid circular dependency issues.
1395 	 */
1396 	while ((opp = _opp_get_next(opp_table, true))) {
1397 		dev_pm_opp_put(opp);
1398 		count++;
1399 	}
1400 
1401 	/* Drop the references taken by dev_pm_opp_add() */
1402 	while (count--)
1403 		dev_pm_opp_put_opp_table(opp_table);
1404 
1405 	/* Drop the reference taken by _find_opp_table() */
1406 	dev_pm_opp_put_opp_table(opp_table);
1407 }
1408 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1409 
1410 struct dev_pm_opp *_opp_allocate(struct opp_table *table)
1411 {
1412 	struct dev_pm_opp *opp;
1413 	int supply_count, supply_size, icc_size;
1414 
1415 	/* Allocate space for at least one supply */
1416 	supply_count = table->regulator_count > 0 ? table->regulator_count : 1;
1417 	supply_size = sizeof(*opp->supplies) * supply_count;
1418 	icc_size = sizeof(*opp->bandwidth) * table->path_count;
1419 
1420 	/* allocate new OPP node and supplies structures */
1421 	opp = kzalloc(sizeof(*opp) + supply_size + icc_size, GFP_KERNEL);
1422 
1423 	if (!opp)
1424 		return NULL;
1425 
1426 	/* Put the supplies at the end of the OPP structure as an empty array */
1427 	opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1428 	if (icc_size)
1429 		opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->supplies + supply_count);
1430 	INIT_LIST_HEAD(&opp->node);
1431 
1432 	return opp;
1433 }
1434 
1435 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1436 					 struct opp_table *opp_table)
1437 {
1438 	struct regulator *reg;
1439 	int i;
1440 
1441 	if (!opp_table->regulators)
1442 		return true;
1443 
1444 	for (i = 0; i < opp_table->regulator_count; i++) {
1445 		reg = opp_table->regulators[i];
1446 
1447 		if (!regulator_is_supported_voltage(reg,
1448 					opp->supplies[i].u_volt_min,
1449 					opp->supplies[i].u_volt_max)) {
1450 			pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1451 				__func__, opp->supplies[i].u_volt_min,
1452 				opp->supplies[i].u_volt_max);
1453 			return false;
1454 		}
1455 	}
1456 
1457 	return true;
1458 }
1459 
1460 int _opp_compare_key(struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1461 {
1462 	if (opp1->rate != opp2->rate)
1463 		return opp1->rate < opp2->rate ? -1 : 1;
1464 	if (opp1->bandwidth && opp2->bandwidth &&
1465 	    opp1->bandwidth[0].peak != opp2->bandwidth[0].peak)
1466 		return opp1->bandwidth[0].peak < opp2->bandwidth[0].peak ? -1 : 1;
1467 	if (opp1->level != opp2->level)
1468 		return opp1->level < opp2->level ? -1 : 1;
1469 	return 0;
1470 }
1471 
1472 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1473 			     struct opp_table *opp_table,
1474 			     struct list_head **head)
1475 {
1476 	struct dev_pm_opp *opp;
1477 	int opp_cmp;
1478 
1479 	/*
1480 	 * Insert new OPP in order of increasing frequency and discard if
1481 	 * already present.
1482 	 *
1483 	 * Need to use &opp_table->opp_list in the condition part of the 'for'
1484 	 * loop, don't replace it with head otherwise it will become an infinite
1485 	 * loop.
1486 	 */
1487 	list_for_each_entry(opp, &opp_table->opp_list, node) {
1488 		opp_cmp = _opp_compare_key(new_opp, opp);
1489 		if (opp_cmp > 0) {
1490 			*head = &opp->node;
1491 			continue;
1492 		}
1493 
1494 		if (opp_cmp < 0)
1495 			return 0;
1496 
1497 		/* Duplicate OPPs */
1498 		dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1499 			 __func__, opp->rate, opp->supplies[0].u_volt,
1500 			 opp->available, new_opp->rate,
1501 			 new_opp->supplies[0].u_volt, new_opp->available);
1502 
1503 		/* Should we compare voltages for all regulators here ? */
1504 		return opp->available &&
1505 		       new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1506 	}
1507 
1508 	return 0;
1509 }
1510 
1511 /*
1512  * Returns:
1513  * 0: On success. And appropriate error message for duplicate OPPs.
1514  * -EBUSY: For OPP with same freq/volt and is available. The callers of
1515  *  _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1516  *  sure we don't print error messages unnecessarily if different parts of
1517  *  kernel try to initialize the OPP table.
1518  * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1519  *  should be considered an error by the callers of _opp_add().
1520  */
1521 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1522 	     struct opp_table *opp_table, bool rate_not_available)
1523 {
1524 	struct list_head *head;
1525 	int ret;
1526 
1527 	mutex_lock(&opp_table->lock);
1528 	head = &opp_table->opp_list;
1529 
1530 	if (likely(!rate_not_available)) {
1531 		ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1532 		if (ret) {
1533 			mutex_unlock(&opp_table->lock);
1534 			return ret;
1535 		}
1536 	}
1537 
1538 	list_add(&new_opp->node, head);
1539 	mutex_unlock(&opp_table->lock);
1540 
1541 	new_opp->opp_table = opp_table;
1542 	kref_init(&new_opp->kref);
1543 
1544 	opp_debug_create_one(new_opp, opp_table);
1545 
1546 	if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1547 		new_opp->available = false;
1548 		dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1549 			 __func__, new_opp->rate);
1550 	}
1551 
1552 	return 0;
1553 }
1554 
1555 /**
1556  * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1557  * @opp_table:	OPP table
1558  * @dev:	device for which we do this operation
1559  * @freq:	Frequency in Hz for this OPP
1560  * @u_volt:	Voltage in uVolts for this OPP
1561  * @dynamic:	Dynamically added OPPs.
1562  *
1563  * This function adds an opp definition to the opp table and returns status.
1564  * The opp is made available by default and it can be controlled using
1565  * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1566  *
1567  * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1568  * and freed by dev_pm_opp_of_remove_table.
1569  *
1570  * Return:
1571  * 0		On success OR
1572  *		Duplicate OPPs (both freq and volt are same) and opp->available
1573  * -EEXIST	Freq are same and volt are different OR
1574  *		Duplicate OPPs (both freq and volt are same) and !opp->available
1575  * -ENOMEM	Memory allocation failure
1576  */
1577 int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1578 		unsigned long freq, long u_volt, bool dynamic)
1579 {
1580 	struct dev_pm_opp *new_opp;
1581 	unsigned long tol;
1582 	int ret;
1583 
1584 	new_opp = _opp_allocate(opp_table);
1585 	if (!new_opp)
1586 		return -ENOMEM;
1587 
1588 	/* populate the opp table */
1589 	new_opp->rate = freq;
1590 	tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1591 	new_opp->supplies[0].u_volt = u_volt;
1592 	new_opp->supplies[0].u_volt_min = u_volt - tol;
1593 	new_opp->supplies[0].u_volt_max = u_volt + tol;
1594 	new_opp->available = true;
1595 	new_opp->dynamic = dynamic;
1596 
1597 	ret = _opp_add(dev, new_opp, opp_table, false);
1598 	if (ret) {
1599 		/* Don't return error for duplicate OPPs */
1600 		if (ret == -EBUSY)
1601 			ret = 0;
1602 		goto free_opp;
1603 	}
1604 
1605 	/*
1606 	 * Notify the changes in the availability of the operable
1607 	 * frequency/voltage list.
1608 	 */
1609 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1610 	return 0;
1611 
1612 free_opp:
1613 	_opp_free(new_opp);
1614 
1615 	return ret;
1616 }
1617 
1618 /**
1619  * dev_pm_opp_set_supported_hw() - Set supported platforms
1620  * @dev: Device for which supported-hw has to be set.
1621  * @versions: Array of hierarchy of versions to match.
1622  * @count: Number of elements in the array.
1623  *
1624  * This is required only for the V2 bindings, and it enables a platform to
1625  * specify the hierarchy of versions it supports. OPP layer will then enable
1626  * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1627  * property.
1628  */
1629 struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev,
1630 			const u32 *versions, unsigned int count)
1631 {
1632 	struct opp_table *opp_table;
1633 
1634 	opp_table = _add_opp_table(dev);
1635 	if (IS_ERR(opp_table))
1636 		return opp_table;
1637 
1638 	/* Make sure there are no concurrent readers while updating opp_table */
1639 	WARN_ON(!list_empty(&opp_table->opp_list));
1640 
1641 	/* Another CPU that shares the OPP table has set the property ? */
1642 	if (opp_table->supported_hw)
1643 		return opp_table;
1644 
1645 	opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1646 					GFP_KERNEL);
1647 	if (!opp_table->supported_hw) {
1648 		dev_pm_opp_put_opp_table(opp_table);
1649 		return ERR_PTR(-ENOMEM);
1650 	}
1651 
1652 	opp_table->supported_hw_count = count;
1653 
1654 	return opp_table;
1655 }
1656 EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw);
1657 
1658 /**
1659  * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw
1660  * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw().
1661  *
1662  * This is required only for the V2 bindings, and is called for a matching
1663  * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure
1664  * will not be freed.
1665  */
1666 void dev_pm_opp_put_supported_hw(struct opp_table *opp_table)
1667 {
1668 	if (unlikely(!opp_table))
1669 		return;
1670 
1671 	/* Make sure there are no concurrent readers while updating opp_table */
1672 	WARN_ON(!list_empty(&opp_table->opp_list));
1673 
1674 	kfree(opp_table->supported_hw);
1675 	opp_table->supported_hw = NULL;
1676 	opp_table->supported_hw_count = 0;
1677 
1678 	dev_pm_opp_put_opp_table(opp_table);
1679 }
1680 EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw);
1681 
1682 /**
1683  * dev_pm_opp_set_prop_name() - Set prop-extn name
1684  * @dev: Device for which the prop-name has to be set.
1685  * @name: name to postfix to properties.
1686  *
1687  * This is required only for the V2 bindings, and it enables a platform to
1688  * specify the extn to be used for certain property names. The properties to
1689  * which the extension will apply are opp-microvolt and opp-microamp. OPP core
1690  * should postfix the property name with -<name> while looking for them.
1691  */
1692 struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name)
1693 {
1694 	struct opp_table *opp_table;
1695 
1696 	opp_table = _add_opp_table(dev);
1697 	if (IS_ERR(opp_table))
1698 		return opp_table;
1699 
1700 	/* Make sure there are no concurrent readers while updating opp_table */
1701 	WARN_ON(!list_empty(&opp_table->opp_list));
1702 
1703 	/* Another CPU that shares the OPP table has set the property ? */
1704 	if (opp_table->prop_name)
1705 		return opp_table;
1706 
1707 	opp_table->prop_name = kstrdup(name, GFP_KERNEL);
1708 	if (!opp_table->prop_name) {
1709 		dev_pm_opp_put_opp_table(opp_table);
1710 		return ERR_PTR(-ENOMEM);
1711 	}
1712 
1713 	return opp_table;
1714 }
1715 EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name);
1716 
1717 /**
1718  * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name
1719  * @opp_table: OPP table returned by dev_pm_opp_set_prop_name().
1720  *
1721  * This is required only for the V2 bindings, and is called for a matching
1722  * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure
1723  * will not be freed.
1724  */
1725 void dev_pm_opp_put_prop_name(struct opp_table *opp_table)
1726 {
1727 	if (unlikely(!opp_table))
1728 		return;
1729 
1730 	/* Make sure there are no concurrent readers while updating opp_table */
1731 	WARN_ON(!list_empty(&opp_table->opp_list));
1732 
1733 	kfree(opp_table->prop_name);
1734 	opp_table->prop_name = NULL;
1735 
1736 	dev_pm_opp_put_opp_table(opp_table);
1737 }
1738 EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name);
1739 
1740 static int _allocate_set_opp_data(struct opp_table *opp_table)
1741 {
1742 	struct dev_pm_set_opp_data *data;
1743 	int len, count = opp_table->regulator_count;
1744 
1745 	if (WARN_ON(!opp_table->regulators))
1746 		return -EINVAL;
1747 
1748 	/* space for set_opp_data */
1749 	len = sizeof(*data);
1750 
1751 	/* space for old_opp.supplies and new_opp.supplies */
1752 	len += 2 * sizeof(struct dev_pm_opp_supply) * count;
1753 
1754 	data = kzalloc(len, GFP_KERNEL);
1755 	if (!data)
1756 		return -ENOMEM;
1757 
1758 	data->old_opp.supplies = (void *)(data + 1);
1759 	data->new_opp.supplies = data->old_opp.supplies + count;
1760 
1761 	opp_table->set_opp_data = data;
1762 
1763 	return 0;
1764 }
1765 
1766 static void _free_set_opp_data(struct opp_table *opp_table)
1767 {
1768 	kfree(opp_table->set_opp_data);
1769 	opp_table->set_opp_data = NULL;
1770 }
1771 
1772 /**
1773  * dev_pm_opp_set_regulators() - Set regulator names for the device
1774  * @dev: Device for which regulator name is being set.
1775  * @names: Array of pointers to the names of the regulator.
1776  * @count: Number of regulators.
1777  *
1778  * In order to support OPP switching, OPP layer needs to know the name of the
1779  * device's regulators, as the core would be required to switch voltages as
1780  * well.
1781  *
1782  * This must be called before any OPPs are initialized for the device.
1783  */
1784 struct opp_table *dev_pm_opp_set_regulators(struct device *dev,
1785 					    const char * const names[],
1786 					    unsigned int count)
1787 {
1788 	struct opp_table *opp_table;
1789 	struct regulator *reg;
1790 	int ret, i;
1791 
1792 	opp_table = _add_opp_table(dev);
1793 	if (IS_ERR(opp_table))
1794 		return opp_table;
1795 
1796 	/* This should be called before OPPs are initialized */
1797 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1798 		ret = -EBUSY;
1799 		goto err;
1800 	}
1801 
1802 	/* Another CPU that shares the OPP table has set the regulators ? */
1803 	if (opp_table->regulators)
1804 		return opp_table;
1805 
1806 	opp_table->regulators = kmalloc_array(count,
1807 					      sizeof(*opp_table->regulators),
1808 					      GFP_KERNEL);
1809 	if (!opp_table->regulators) {
1810 		ret = -ENOMEM;
1811 		goto err;
1812 	}
1813 
1814 	for (i = 0; i < count; i++) {
1815 		reg = regulator_get_optional(dev, names[i]);
1816 		if (IS_ERR(reg)) {
1817 			ret = PTR_ERR(reg);
1818 			if (ret != -EPROBE_DEFER)
1819 				dev_err(dev, "%s: no regulator (%s) found: %d\n",
1820 					__func__, names[i], ret);
1821 			goto free_regulators;
1822 		}
1823 
1824 		opp_table->regulators[i] = reg;
1825 	}
1826 
1827 	opp_table->regulator_count = count;
1828 
1829 	/* Allocate block only once to pass to set_opp() routines */
1830 	ret = _allocate_set_opp_data(opp_table);
1831 	if (ret)
1832 		goto free_regulators;
1833 
1834 	return opp_table;
1835 
1836 free_regulators:
1837 	while (i != 0)
1838 		regulator_put(opp_table->regulators[--i]);
1839 
1840 	kfree(opp_table->regulators);
1841 	opp_table->regulators = NULL;
1842 	opp_table->regulator_count = -1;
1843 err:
1844 	dev_pm_opp_put_opp_table(opp_table);
1845 
1846 	return ERR_PTR(ret);
1847 }
1848 EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators);
1849 
1850 /**
1851  * dev_pm_opp_put_regulators() - Releases resources blocked for regulator
1852  * @opp_table: OPP table returned from dev_pm_opp_set_regulators().
1853  */
1854 void dev_pm_opp_put_regulators(struct opp_table *opp_table)
1855 {
1856 	int i;
1857 
1858 	if (unlikely(!opp_table))
1859 		return;
1860 
1861 	if (!opp_table->regulators)
1862 		goto put_opp_table;
1863 
1864 	/* Make sure there are no concurrent readers while updating opp_table */
1865 	WARN_ON(!list_empty(&opp_table->opp_list));
1866 
1867 	if (opp_table->enabled) {
1868 		for (i = opp_table->regulator_count - 1; i >= 0; i--)
1869 			regulator_disable(opp_table->regulators[i]);
1870 	}
1871 
1872 	for (i = opp_table->regulator_count - 1; i >= 0; i--)
1873 		regulator_put(opp_table->regulators[i]);
1874 
1875 	_free_set_opp_data(opp_table);
1876 
1877 	kfree(opp_table->regulators);
1878 	opp_table->regulators = NULL;
1879 	opp_table->regulator_count = -1;
1880 
1881 put_opp_table:
1882 	dev_pm_opp_put_opp_table(opp_table);
1883 }
1884 EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators);
1885 
1886 /**
1887  * dev_pm_opp_set_clkname() - Set clk name for the device
1888  * @dev: Device for which clk name is being set.
1889  * @name: Clk name.
1890  *
1891  * In order to support OPP switching, OPP layer needs to get pointer to the
1892  * clock for the device. Simple cases work fine without using this routine (i.e.
1893  * by passing connection-id as NULL), but for a device with multiple clocks
1894  * available, the OPP core needs to know the exact name of the clk to use.
1895  *
1896  * This must be called before any OPPs are initialized for the device.
1897  */
1898 struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name)
1899 {
1900 	struct opp_table *opp_table;
1901 	int ret;
1902 
1903 	opp_table = _add_opp_table(dev);
1904 	if (IS_ERR(opp_table))
1905 		return opp_table;
1906 
1907 	/* This should be called before OPPs are initialized */
1908 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1909 		ret = -EBUSY;
1910 		goto err;
1911 	}
1912 
1913 	/* Already have default clk set, free it */
1914 	if (!IS_ERR(opp_table->clk))
1915 		clk_put(opp_table->clk);
1916 
1917 	/* Find clk for the device */
1918 	opp_table->clk = clk_get(dev, name);
1919 	if (IS_ERR(opp_table->clk)) {
1920 		ret = PTR_ERR(opp_table->clk);
1921 		if (ret != -EPROBE_DEFER) {
1922 			dev_err(dev, "%s: Couldn't find clock: %d\n", __func__,
1923 				ret);
1924 		}
1925 		goto err;
1926 	}
1927 
1928 	return opp_table;
1929 
1930 err:
1931 	dev_pm_opp_put_opp_table(opp_table);
1932 
1933 	return ERR_PTR(ret);
1934 }
1935 EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname);
1936 
1937 /**
1938  * dev_pm_opp_put_clkname() - Releases resources blocked for clk.
1939  * @opp_table: OPP table returned from dev_pm_opp_set_clkname().
1940  */
1941 void dev_pm_opp_put_clkname(struct opp_table *opp_table)
1942 {
1943 	if (unlikely(!opp_table))
1944 		return;
1945 
1946 	/* Make sure there are no concurrent readers while updating opp_table */
1947 	WARN_ON(!list_empty(&opp_table->opp_list));
1948 
1949 	clk_put(opp_table->clk);
1950 	opp_table->clk = ERR_PTR(-EINVAL);
1951 
1952 	dev_pm_opp_put_opp_table(opp_table);
1953 }
1954 EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname);
1955 
1956 /**
1957  * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper
1958  * @dev: Device for which the helper is getting registered.
1959  * @set_opp: Custom set OPP helper.
1960  *
1961  * This is useful to support complex platforms (like platforms with multiple
1962  * regulators per device), instead of the generic OPP set rate helper.
1963  *
1964  * This must be called before any OPPs are initialized for the device.
1965  */
1966 struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev,
1967 			int (*set_opp)(struct dev_pm_set_opp_data *data))
1968 {
1969 	struct opp_table *opp_table;
1970 
1971 	if (!set_opp)
1972 		return ERR_PTR(-EINVAL);
1973 
1974 	opp_table = _add_opp_table(dev);
1975 	if (IS_ERR(opp_table))
1976 		return opp_table;
1977 
1978 	/* This should be called before OPPs are initialized */
1979 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1980 		dev_pm_opp_put_opp_table(opp_table);
1981 		return ERR_PTR(-EBUSY);
1982 	}
1983 
1984 	/* Another CPU that shares the OPP table has set the helper ? */
1985 	if (!opp_table->set_opp)
1986 		opp_table->set_opp = set_opp;
1987 
1988 	return opp_table;
1989 }
1990 EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper);
1991 
1992 /**
1993  * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for
1994  *					   set_opp helper
1995  * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper().
1996  *
1997  * Release resources blocked for platform specific set_opp helper.
1998  */
1999 void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table)
2000 {
2001 	if (unlikely(!opp_table))
2002 		return;
2003 
2004 	/* Make sure there are no concurrent readers while updating opp_table */
2005 	WARN_ON(!list_empty(&opp_table->opp_list));
2006 
2007 	opp_table->set_opp = NULL;
2008 	dev_pm_opp_put_opp_table(opp_table);
2009 }
2010 EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper);
2011 
2012 static void _opp_detach_genpd(struct opp_table *opp_table)
2013 {
2014 	int index;
2015 
2016 	if (!opp_table->genpd_virt_devs)
2017 		return;
2018 
2019 	for (index = 0; index < opp_table->required_opp_count; index++) {
2020 		if (!opp_table->genpd_virt_devs[index])
2021 			continue;
2022 
2023 		dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
2024 		opp_table->genpd_virt_devs[index] = NULL;
2025 	}
2026 
2027 	kfree(opp_table->genpd_virt_devs);
2028 	opp_table->genpd_virt_devs = NULL;
2029 }
2030 
2031 /**
2032  * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
2033  * @dev: Consumer device for which the genpd is getting attached.
2034  * @names: Null terminated array of pointers containing names of genpd to attach.
2035  * @virt_devs: Pointer to return the array of virtual devices.
2036  *
2037  * Multiple generic power domains for a device are supported with the help of
2038  * virtual genpd devices, which are created for each consumer device - genpd
2039  * pair. These are the device structures which are attached to the power domain
2040  * and are required by the OPP core to set the performance state of the genpd.
2041  * The same API also works for the case where single genpd is available and so
2042  * we don't need to support that separately.
2043  *
2044  * This helper will normally be called by the consumer driver of the device
2045  * "dev", as only that has details of the genpd names.
2046  *
2047  * This helper needs to be called once with a list of all genpd to attach.
2048  * Otherwise the original device structure will be used instead by the OPP core.
2049  *
2050  * The order of entries in the names array must match the order in which
2051  * "required-opps" are added in DT.
2052  */
2053 struct opp_table *dev_pm_opp_attach_genpd(struct device *dev,
2054 		const char **names, struct device ***virt_devs)
2055 {
2056 	struct opp_table *opp_table;
2057 	struct device *virt_dev;
2058 	int index = 0, ret = -EINVAL;
2059 	const char **name = names;
2060 
2061 	opp_table = _add_opp_table(dev);
2062 	if (IS_ERR(opp_table))
2063 		return opp_table;
2064 
2065 	if (opp_table->genpd_virt_devs)
2066 		return opp_table;
2067 
2068 	/*
2069 	 * If the genpd's OPP table isn't already initialized, parsing of the
2070 	 * required-opps fail for dev. We should retry this after genpd's OPP
2071 	 * table is added.
2072 	 */
2073 	if (!opp_table->required_opp_count) {
2074 		ret = -EPROBE_DEFER;
2075 		goto put_table;
2076 	}
2077 
2078 	mutex_lock(&opp_table->genpd_virt_dev_lock);
2079 
2080 	opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
2081 					     sizeof(*opp_table->genpd_virt_devs),
2082 					     GFP_KERNEL);
2083 	if (!opp_table->genpd_virt_devs)
2084 		goto unlock;
2085 
2086 	while (*name) {
2087 		if (index >= opp_table->required_opp_count) {
2088 			dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2089 				*name, opp_table->required_opp_count, index);
2090 			goto err;
2091 		}
2092 
2093 		virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2094 		if (IS_ERR(virt_dev)) {
2095 			ret = PTR_ERR(virt_dev);
2096 			dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2097 			goto err;
2098 		}
2099 
2100 		opp_table->genpd_virt_devs[index] = virt_dev;
2101 		index++;
2102 		name++;
2103 	}
2104 
2105 	if (virt_devs)
2106 		*virt_devs = opp_table->genpd_virt_devs;
2107 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2108 
2109 	return opp_table;
2110 
2111 err:
2112 	_opp_detach_genpd(opp_table);
2113 unlock:
2114 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2115 
2116 put_table:
2117 	dev_pm_opp_put_opp_table(opp_table);
2118 
2119 	return ERR_PTR(ret);
2120 }
2121 EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd);
2122 
2123 /**
2124  * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device.
2125  * @opp_table: OPP table returned by dev_pm_opp_attach_genpd().
2126  *
2127  * This detaches the genpd(s), resets the virtual device pointers, and puts the
2128  * OPP table.
2129  */
2130 void dev_pm_opp_detach_genpd(struct opp_table *opp_table)
2131 {
2132 	if (unlikely(!opp_table))
2133 		return;
2134 
2135 	/*
2136 	 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
2137 	 * used in parallel.
2138 	 */
2139 	mutex_lock(&opp_table->genpd_virt_dev_lock);
2140 	_opp_detach_genpd(opp_table);
2141 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2142 
2143 	dev_pm_opp_put_opp_table(opp_table);
2144 }
2145 EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd);
2146 
2147 /**
2148  * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2149  * @src_table: OPP table which has dst_table as one of its required OPP table.
2150  * @dst_table: Required OPP table of the src_table.
2151  * @pstate: Current performance state of the src_table.
2152  *
2153  * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2154  * "required-opps" property of the OPP (present in @src_table) which has
2155  * performance state set to @pstate.
2156  *
2157  * Return: Zero or positive performance state on success, otherwise negative
2158  * value on errors.
2159  */
2160 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2161 				       struct opp_table *dst_table,
2162 				       unsigned int pstate)
2163 {
2164 	struct dev_pm_opp *opp;
2165 	int dest_pstate = -EINVAL;
2166 	int i;
2167 
2168 	/*
2169 	 * Normally the src_table will have the "required_opps" property set to
2170 	 * point to one of the OPPs in the dst_table, but in some cases the
2171 	 * genpd and its master have one to one mapping of performance states
2172 	 * and so none of them have the "required-opps" property set. Return the
2173 	 * pstate of the src_table as it is in such cases.
2174 	 */
2175 	if (!src_table->required_opp_count)
2176 		return pstate;
2177 
2178 	for (i = 0; i < src_table->required_opp_count; i++) {
2179 		if (src_table->required_opp_tables[i]->np == dst_table->np)
2180 			break;
2181 	}
2182 
2183 	if (unlikely(i == src_table->required_opp_count)) {
2184 		pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2185 		       __func__, src_table, dst_table);
2186 		return -EINVAL;
2187 	}
2188 
2189 	mutex_lock(&src_table->lock);
2190 
2191 	list_for_each_entry(opp, &src_table->opp_list, node) {
2192 		if (opp->pstate == pstate) {
2193 			dest_pstate = opp->required_opps[i]->pstate;
2194 			goto unlock;
2195 		}
2196 	}
2197 
2198 	pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2199 	       dst_table);
2200 
2201 unlock:
2202 	mutex_unlock(&src_table->lock);
2203 
2204 	return dest_pstate;
2205 }
2206 
2207 /**
2208  * dev_pm_opp_add()  - Add an OPP table from a table definitions
2209  * @dev:	device for which we do this operation
2210  * @freq:	Frequency in Hz for this OPP
2211  * @u_volt:	Voltage in uVolts for this OPP
2212  *
2213  * This function adds an opp definition to the opp table and returns status.
2214  * The opp is made available by default and it can be controlled using
2215  * dev_pm_opp_enable/disable functions.
2216  *
2217  * Return:
2218  * 0		On success OR
2219  *		Duplicate OPPs (both freq and volt are same) and opp->available
2220  * -EEXIST	Freq are same and volt are different OR
2221  *		Duplicate OPPs (both freq and volt are same) and !opp->available
2222  * -ENOMEM	Memory allocation failure
2223  */
2224 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2225 {
2226 	struct opp_table *opp_table;
2227 	int ret;
2228 
2229 	opp_table = _add_opp_table(dev);
2230 	if (IS_ERR(opp_table))
2231 		return PTR_ERR(opp_table);
2232 
2233 	/* Fix regulator count for dynamic OPPs */
2234 	opp_table->regulator_count = 1;
2235 
2236 	ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2237 	if (ret)
2238 		dev_pm_opp_put_opp_table(opp_table);
2239 
2240 	return ret;
2241 }
2242 EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2243 
2244 /**
2245  * _opp_set_availability() - helper to set the availability of an opp
2246  * @dev:		device for which we do this operation
2247  * @freq:		OPP frequency to modify availability
2248  * @availability_req:	availability status requested for this opp
2249  *
2250  * Set the availability of an OPP, opp_{enable,disable} share a common logic
2251  * which is isolated here.
2252  *
2253  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2254  * copy operation, returns 0 if no modification was done OR modification was
2255  * successful.
2256  */
2257 static int _opp_set_availability(struct device *dev, unsigned long freq,
2258 				 bool availability_req)
2259 {
2260 	struct opp_table *opp_table;
2261 	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2262 	int r = 0;
2263 
2264 	/* Find the opp_table */
2265 	opp_table = _find_opp_table(dev);
2266 	if (IS_ERR(opp_table)) {
2267 		r = PTR_ERR(opp_table);
2268 		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2269 		return r;
2270 	}
2271 
2272 	mutex_lock(&opp_table->lock);
2273 
2274 	/* Do we have the frequency? */
2275 	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2276 		if (tmp_opp->rate == freq) {
2277 			opp = tmp_opp;
2278 			break;
2279 		}
2280 	}
2281 
2282 	if (IS_ERR(opp)) {
2283 		r = PTR_ERR(opp);
2284 		goto unlock;
2285 	}
2286 
2287 	/* Is update really needed? */
2288 	if (opp->available == availability_req)
2289 		goto unlock;
2290 
2291 	opp->available = availability_req;
2292 
2293 	dev_pm_opp_get(opp);
2294 	mutex_unlock(&opp_table->lock);
2295 
2296 	/* Notify the change of the OPP availability */
2297 	if (availability_req)
2298 		blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2299 					     opp);
2300 	else
2301 		blocking_notifier_call_chain(&opp_table->head,
2302 					     OPP_EVENT_DISABLE, opp);
2303 
2304 	dev_pm_opp_put(opp);
2305 	goto put_table;
2306 
2307 unlock:
2308 	mutex_unlock(&opp_table->lock);
2309 put_table:
2310 	dev_pm_opp_put_opp_table(opp_table);
2311 	return r;
2312 }
2313 
2314 /**
2315  * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2316  * @dev:		device for which we do this operation
2317  * @freq:		OPP frequency to adjust voltage of
2318  * @u_volt:		new OPP target voltage
2319  * @u_volt_min:		new OPP min voltage
2320  * @u_volt_max:		new OPP max voltage
2321  *
2322  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2323  * copy operation, returns 0 if no modifcation was done OR modification was
2324  * successful.
2325  */
2326 int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2327 			      unsigned long u_volt, unsigned long u_volt_min,
2328 			      unsigned long u_volt_max)
2329 
2330 {
2331 	struct opp_table *opp_table;
2332 	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2333 	int r = 0;
2334 
2335 	/* Find the opp_table */
2336 	opp_table = _find_opp_table(dev);
2337 	if (IS_ERR(opp_table)) {
2338 		r = PTR_ERR(opp_table);
2339 		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2340 		return r;
2341 	}
2342 
2343 	mutex_lock(&opp_table->lock);
2344 
2345 	/* Do we have the frequency? */
2346 	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2347 		if (tmp_opp->rate == freq) {
2348 			opp = tmp_opp;
2349 			break;
2350 		}
2351 	}
2352 
2353 	if (IS_ERR(opp)) {
2354 		r = PTR_ERR(opp);
2355 		goto adjust_unlock;
2356 	}
2357 
2358 	/* Is update really needed? */
2359 	if (opp->supplies->u_volt == u_volt)
2360 		goto adjust_unlock;
2361 
2362 	opp->supplies->u_volt = u_volt;
2363 	opp->supplies->u_volt_min = u_volt_min;
2364 	opp->supplies->u_volt_max = u_volt_max;
2365 
2366 	dev_pm_opp_get(opp);
2367 	mutex_unlock(&opp_table->lock);
2368 
2369 	/* Notify the voltage change of the OPP */
2370 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2371 				     opp);
2372 
2373 	dev_pm_opp_put(opp);
2374 	goto adjust_put_table;
2375 
2376 adjust_unlock:
2377 	mutex_unlock(&opp_table->lock);
2378 adjust_put_table:
2379 	dev_pm_opp_put_opp_table(opp_table);
2380 	return r;
2381 }
2382 EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
2383 
2384 /**
2385  * dev_pm_opp_enable() - Enable a specific OPP
2386  * @dev:	device for which we do this operation
2387  * @freq:	OPP frequency to enable
2388  *
2389  * Enables a provided opp. If the operation is valid, this returns 0, else the
2390  * corresponding error value. It is meant to be used for users an OPP available
2391  * after being temporarily made unavailable with dev_pm_opp_disable.
2392  *
2393  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2394  * copy operation, returns 0 if no modification was done OR modification was
2395  * successful.
2396  */
2397 int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2398 {
2399 	return _opp_set_availability(dev, freq, true);
2400 }
2401 EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2402 
2403 /**
2404  * dev_pm_opp_disable() - Disable a specific OPP
2405  * @dev:	device for which we do this operation
2406  * @freq:	OPP frequency to disable
2407  *
2408  * Disables a provided opp. If the operation is valid, this returns
2409  * 0, else the corresponding error value. It is meant to be a temporary
2410  * control by users to make this OPP not available until the circumstances are
2411  * right to make it available again (with a call to dev_pm_opp_enable).
2412  *
2413  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2414  * copy operation, returns 0 if no modification was done OR modification was
2415  * successful.
2416  */
2417 int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2418 {
2419 	return _opp_set_availability(dev, freq, false);
2420 }
2421 EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2422 
2423 /**
2424  * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2425  * @dev:	Device for which notifier needs to be registered
2426  * @nb:		Notifier block to be registered
2427  *
2428  * Return: 0 on success or a negative error value.
2429  */
2430 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2431 {
2432 	struct opp_table *opp_table;
2433 	int ret;
2434 
2435 	opp_table = _find_opp_table(dev);
2436 	if (IS_ERR(opp_table))
2437 		return PTR_ERR(opp_table);
2438 
2439 	ret = blocking_notifier_chain_register(&opp_table->head, nb);
2440 
2441 	dev_pm_opp_put_opp_table(opp_table);
2442 
2443 	return ret;
2444 }
2445 EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2446 
2447 /**
2448  * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2449  * @dev:	Device for which notifier needs to be unregistered
2450  * @nb:		Notifier block to be unregistered
2451  *
2452  * Return: 0 on success or a negative error value.
2453  */
2454 int dev_pm_opp_unregister_notifier(struct device *dev,
2455 				   struct notifier_block *nb)
2456 {
2457 	struct opp_table *opp_table;
2458 	int ret;
2459 
2460 	opp_table = _find_opp_table(dev);
2461 	if (IS_ERR(opp_table))
2462 		return PTR_ERR(opp_table);
2463 
2464 	ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
2465 
2466 	dev_pm_opp_put_opp_table(opp_table);
2467 
2468 	return ret;
2469 }
2470 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
2471 
2472 /**
2473  * dev_pm_opp_remove_table() - Free all OPPs associated with the device
2474  * @dev:	device pointer used to lookup OPP table.
2475  *
2476  * Free both OPPs created using static entries present in DT and the
2477  * dynamically added entries.
2478  */
2479 void dev_pm_opp_remove_table(struct device *dev)
2480 {
2481 	struct opp_table *opp_table;
2482 
2483 	/* Check for existing table for 'dev' */
2484 	opp_table = _find_opp_table(dev);
2485 	if (IS_ERR(opp_table)) {
2486 		int error = PTR_ERR(opp_table);
2487 
2488 		if (error != -ENODEV)
2489 			WARN(1, "%s: opp_table: %d\n",
2490 			     IS_ERR_OR_NULL(dev) ?
2491 					"Invalid device" : dev_name(dev),
2492 			     error);
2493 		return;
2494 	}
2495 
2496 	/*
2497 	 * Drop the extra reference only if the OPP table was successfully added
2498 	 * with dev_pm_opp_of_add_table() earlier.
2499 	 **/
2500 	if (_opp_remove_all_static(opp_table))
2501 		dev_pm_opp_put_opp_table(opp_table);
2502 
2503 	/* Drop reference taken by _find_opp_table() */
2504 	dev_pm_opp_put_opp_table(opp_table);
2505 }
2506 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
2507