1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * drivers/of/property.c - Procedures for accessing and interpreting 4 * Devicetree properties and graphs. 5 * 6 * Initially created by copying procedures from drivers/of/base.c. This 7 * file contains the OF property as well as the OF graph interface 8 * functions. 9 * 10 * Paul Mackerras August 1996. 11 * Copyright (C) 1996-2005 Paul Mackerras. 12 * 13 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 14 * {engebret|bergner}@us.ibm.com 15 * 16 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 17 * 18 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 19 * Grant Likely. 20 */ 21 22 #define pr_fmt(fmt) "OF: " fmt 23 24 #include <linux/of.h> 25 #include <linux/of_address.h> 26 #include <linux/of_device.h> 27 #include <linux/of_graph.h> 28 #include <linux/of_irq.h> 29 #include <linux/string.h> 30 #include <linux/moduleparam.h> 31 32 #include "of_private.h" 33 34 /** 35 * of_graph_is_present() - check graph's presence 36 * @node: pointer to device_node containing graph port 37 * 38 * Return: True if @node has a port or ports (with a port) sub-node, 39 * false otherwise. 40 */ 41 bool of_graph_is_present(const struct device_node *node) 42 { 43 struct device_node *ports __free(device_node) = of_get_child_by_name(node, "ports"); 44 45 if (ports) 46 node = ports; 47 48 struct device_node *port __free(device_node) = of_get_child_by_name(node, "port"); 49 50 return !!port; 51 } 52 EXPORT_SYMBOL(of_graph_is_present); 53 54 /** 55 * of_property_count_elems_of_size - Count the number of elements in a property 56 * 57 * @np: device node from which the property value is to be read. 58 * @propname: name of the property to be searched. 59 * @elem_size: size of the individual element 60 * 61 * Search for a property in a device node and count the number of elements of 62 * size elem_size in it. 63 * 64 * Return: The number of elements on sucess, -EINVAL if the property does not 65 * exist or its length does not match a multiple of elem_size and -ENODATA if 66 * the property does not have a value. 67 */ 68 int of_property_count_elems_of_size(const struct device_node *np, 69 const char *propname, int elem_size) 70 { 71 struct property *prop = of_find_property(np, propname, NULL); 72 73 if (!prop) 74 return -EINVAL; 75 if (!prop->value) 76 return -ENODATA; 77 78 if (prop->length % elem_size != 0) { 79 pr_err("size of %s in node %pOF is not a multiple of %d\n", 80 propname, np, elem_size); 81 return -EINVAL; 82 } 83 84 return prop->length / elem_size; 85 } 86 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size); 87 88 /** 89 * of_find_property_value_of_size 90 * 91 * @np: device node from which the property value is to be read. 92 * @propname: name of the property to be searched. 93 * @min: minimum allowed length of property value 94 * @max: maximum allowed length of property value (0 means unlimited) 95 * @len: if !=NULL, actual length is written to here 96 * 97 * Search for a property in a device node and valid the requested size. 98 * 99 * Return: The property value on success, -EINVAL if the property does not 100 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the 101 * property data is too small or too large. 102 * 103 */ 104 static void *of_find_property_value_of_size(const struct device_node *np, 105 const char *propname, u32 min, u32 max, size_t *len) 106 { 107 struct property *prop = of_find_property(np, propname, NULL); 108 109 if (!prop) 110 return ERR_PTR(-EINVAL); 111 if (!prop->value) 112 return ERR_PTR(-ENODATA); 113 if (prop->length < min) 114 return ERR_PTR(-EOVERFLOW); 115 if (max && prop->length > max) 116 return ERR_PTR(-EOVERFLOW); 117 118 if (len) 119 *len = prop->length; 120 121 return prop->value; 122 } 123 124 /** 125 * of_property_read_u32_index - Find and read a u32 from a multi-value property. 126 * 127 * @np: device node from which the property value is to be read. 128 * @propname: name of the property to be searched. 129 * @index: index of the u32 in the list of values 130 * @out_value: pointer to return value, modified only if no error. 131 * 132 * Search for a property in a device node and read nth 32-bit value from 133 * it. 134 * 135 * Return: 0 on success, -EINVAL if the property does not exist, 136 * -ENODATA if property does not have a value, and -EOVERFLOW if the 137 * property data isn't large enough. 138 * 139 * The out_value is modified only if a valid u32 value can be decoded. 140 */ 141 int of_property_read_u32_index(const struct device_node *np, 142 const char *propname, 143 u32 index, u32 *out_value) 144 { 145 const u32 *val = of_find_property_value_of_size(np, propname, 146 ((index + 1) * sizeof(*out_value)), 147 0, 148 NULL); 149 150 if (IS_ERR(val)) 151 return PTR_ERR(val); 152 153 *out_value = be32_to_cpup(((__be32 *)val) + index); 154 return 0; 155 } 156 EXPORT_SYMBOL_GPL(of_property_read_u32_index); 157 158 /** 159 * of_property_read_u64_index - Find and read a u64 from a multi-value property. 160 * 161 * @np: device node from which the property value is to be read. 162 * @propname: name of the property to be searched. 163 * @index: index of the u64 in the list of values 164 * @out_value: pointer to return value, modified only if no error. 165 * 166 * Search for a property in a device node and read nth 64-bit value from 167 * it. 168 * 169 * Return: 0 on success, -EINVAL if the property does not exist, 170 * -ENODATA if property does not have a value, and -EOVERFLOW if the 171 * property data isn't large enough. 172 * 173 * The out_value is modified only if a valid u64 value can be decoded. 174 */ 175 int of_property_read_u64_index(const struct device_node *np, 176 const char *propname, 177 u32 index, u64 *out_value) 178 { 179 const u64 *val = of_find_property_value_of_size(np, propname, 180 ((index + 1) * sizeof(*out_value)), 181 0, NULL); 182 183 if (IS_ERR(val)) 184 return PTR_ERR(val); 185 186 *out_value = be64_to_cpup(((__be64 *)val) + index); 187 return 0; 188 } 189 EXPORT_SYMBOL_GPL(of_property_read_u64_index); 190 191 /** 192 * of_property_read_variable_u8_array - Find and read an array of u8 from a 193 * property, with bounds on the minimum and maximum array size. 194 * 195 * @np: device node from which the property value is to be read. 196 * @propname: name of the property to be searched. 197 * @out_values: pointer to found values. 198 * @sz_min: minimum number of array elements to read 199 * @sz_max: maximum number of array elements to read, if zero there is no 200 * upper limit on the number of elements in the dts entry but only 201 * sz_min will be read. 202 * 203 * Search for a property in a device node and read 8-bit value(s) from 204 * it. 205 * 206 * dts entry of array should be like: 207 * ``property = /bits/ 8 <0x50 0x60 0x70>;`` 208 * 209 * Return: The number of elements read on success, -EINVAL if the property 210 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 211 * if the property data is smaller than sz_min or longer than sz_max. 212 * 213 * The out_values is modified only if a valid u8 value can be decoded. 214 */ 215 int of_property_read_variable_u8_array(const struct device_node *np, 216 const char *propname, u8 *out_values, 217 size_t sz_min, size_t sz_max) 218 { 219 size_t sz, count; 220 const u8 *val = of_find_property_value_of_size(np, propname, 221 (sz_min * sizeof(*out_values)), 222 (sz_max * sizeof(*out_values)), 223 &sz); 224 225 if (IS_ERR(val)) 226 return PTR_ERR(val); 227 228 if (!sz_max) 229 sz = sz_min; 230 else 231 sz /= sizeof(*out_values); 232 233 count = sz; 234 while (count--) 235 *out_values++ = *val++; 236 237 return sz; 238 } 239 EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array); 240 241 /** 242 * of_property_read_variable_u16_array - Find and read an array of u16 from a 243 * property, with bounds on the minimum and maximum array size. 244 * 245 * @np: device node from which the property value is to be read. 246 * @propname: name of the property to be searched. 247 * @out_values: pointer to found values. 248 * @sz_min: minimum number of array elements to read 249 * @sz_max: maximum number of array elements to read, if zero there is no 250 * upper limit on the number of elements in the dts entry but only 251 * sz_min will be read. 252 * 253 * Search for a property in a device node and read 16-bit value(s) from 254 * it. 255 * 256 * dts entry of array should be like: 257 * ``property = /bits/ 16 <0x5000 0x6000 0x7000>;`` 258 * 259 * Return: The number of elements read on success, -EINVAL if the property 260 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 261 * if the property data is smaller than sz_min or longer than sz_max. 262 * 263 * The out_values is modified only if a valid u16 value can be decoded. 264 */ 265 int of_property_read_variable_u16_array(const struct device_node *np, 266 const char *propname, u16 *out_values, 267 size_t sz_min, size_t sz_max) 268 { 269 size_t sz, count; 270 const __be16 *val = of_find_property_value_of_size(np, propname, 271 (sz_min * sizeof(*out_values)), 272 (sz_max * sizeof(*out_values)), 273 &sz); 274 275 if (IS_ERR(val)) 276 return PTR_ERR(val); 277 278 if (!sz_max) 279 sz = sz_min; 280 else 281 sz /= sizeof(*out_values); 282 283 count = sz; 284 while (count--) 285 *out_values++ = be16_to_cpup(val++); 286 287 return sz; 288 } 289 EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array); 290 291 /** 292 * of_property_read_variable_u32_array - Find and read an array of 32 bit 293 * integers from a property, with bounds on the minimum and maximum array size. 294 * 295 * @np: device node from which the property value is to be read. 296 * @propname: name of the property to be searched. 297 * @out_values: pointer to return found values. 298 * @sz_min: minimum number of array elements to read 299 * @sz_max: maximum number of array elements to read, if zero there is no 300 * upper limit on the number of elements in the dts entry but only 301 * sz_min will be read. 302 * 303 * Search for a property in a device node and read 32-bit value(s) from 304 * it. 305 * 306 * Return: The number of elements read on success, -EINVAL if the property 307 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 308 * if the property data is smaller than sz_min or longer than sz_max. 309 * 310 * The out_values is modified only if a valid u32 value can be decoded. 311 */ 312 int of_property_read_variable_u32_array(const struct device_node *np, 313 const char *propname, u32 *out_values, 314 size_t sz_min, size_t sz_max) 315 { 316 size_t sz, count; 317 const __be32 *val = of_find_property_value_of_size(np, propname, 318 (sz_min * sizeof(*out_values)), 319 (sz_max * sizeof(*out_values)), 320 &sz); 321 322 if (IS_ERR(val)) 323 return PTR_ERR(val); 324 325 if (!sz_max) 326 sz = sz_min; 327 else 328 sz /= sizeof(*out_values); 329 330 count = sz; 331 while (count--) 332 *out_values++ = be32_to_cpup(val++); 333 334 return sz; 335 } 336 EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array); 337 338 /** 339 * of_property_read_u64 - Find and read a 64 bit integer from a property 340 * @np: device node from which the property value is to be read. 341 * @propname: name of the property to be searched. 342 * @out_value: pointer to return value, modified only if return value is 0. 343 * 344 * Search for a property in a device node and read a 64-bit value from 345 * it. 346 * 347 * Return: 0 on success, -EINVAL if the property does not exist, 348 * -ENODATA if property does not have a value, and -EOVERFLOW if the 349 * property data isn't large enough. 350 * 351 * The out_value is modified only if a valid u64 value can be decoded. 352 */ 353 int of_property_read_u64(const struct device_node *np, const char *propname, 354 u64 *out_value) 355 { 356 const __be32 *val = of_find_property_value_of_size(np, propname, 357 sizeof(*out_value), 358 0, 359 NULL); 360 361 if (IS_ERR(val)) 362 return PTR_ERR(val); 363 364 *out_value = of_read_number(val, 2); 365 return 0; 366 } 367 EXPORT_SYMBOL_GPL(of_property_read_u64); 368 369 /** 370 * of_property_read_variable_u64_array - Find and read an array of 64 bit 371 * integers from a property, with bounds on the minimum and maximum array size. 372 * 373 * @np: device node from which the property value is to be read. 374 * @propname: name of the property to be searched. 375 * @out_values: pointer to found values. 376 * @sz_min: minimum number of array elements to read 377 * @sz_max: maximum number of array elements to read, if zero there is no 378 * upper limit on the number of elements in the dts entry but only 379 * sz_min will be read. 380 * 381 * Search for a property in a device node and read 64-bit value(s) from 382 * it. 383 * 384 * Return: The number of elements read on success, -EINVAL if the property 385 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 386 * if the property data is smaller than sz_min or longer than sz_max. 387 * 388 * The out_values is modified only if a valid u64 value can be decoded. 389 */ 390 int of_property_read_variable_u64_array(const struct device_node *np, 391 const char *propname, u64 *out_values, 392 size_t sz_min, size_t sz_max) 393 { 394 size_t sz, count; 395 const __be32 *val = of_find_property_value_of_size(np, propname, 396 (sz_min * sizeof(*out_values)), 397 (sz_max * sizeof(*out_values)), 398 &sz); 399 400 if (IS_ERR(val)) 401 return PTR_ERR(val); 402 403 if (!sz_max) 404 sz = sz_min; 405 else 406 sz /= sizeof(*out_values); 407 408 count = sz; 409 while (count--) { 410 *out_values++ = of_read_number(val, 2); 411 val += 2; 412 } 413 414 return sz; 415 } 416 EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array); 417 418 /** 419 * of_property_read_string - Find and read a string from a property 420 * @np: device node from which the property value is to be read. 421 * @propname: name of the property to be searched. 422 * @out_string: pointer to null terminated return string, modified only if 423 * return value is 0. 424 * 425 * Search for a property in a device tree node and retrieve a null 426 * terminated string value (pointer to data, not a copy). 427 * 428 * Return: 0 on success, -EINVAL if the property does not exist, -ENODATA if 429 * property does not have a value, and -EILSEQ if the string is not 430 * null-terminated within the length of the property data. 431 * 432 * Note that the empty string "" has length of 1, thus -ENODATA cannot 433 * be interpreted as an empty string. 434 * 435 * The out_string pointer is modified only if a valid string can be decoded. 436 */ 437 int of_property_read_string(const struct device_node *np, const char *propname, 438 const char **out_string) 439 { 440 const struct property *prop = of_find_property(np, propname, NULL); 441 442 if (!prop) 443 return -EINVAL; 444 if (!prop->length) 445 return -ENODATA; 446 if (strnlen(prop->value, prop->length) >= prop->length) 447 return -EILSEQ; 448 *out_string = prop->value; 449 return 0; 450 } 451 EXPORT_SYMBOL_GPL(of_property_read_string); 452 453 /** 454 * of_property_match_string() - Find string in a list and return index 455 * @np: pointer to node containing string list property 456 * @propname: string list property name 457 * @string: pointer to string to search for in string list 458 * 459 * This function searches a string list property and returns the index 460 * of a specific string value. 461 */ 462 int of_property_match_string(const struct device_node *np, const char *propname, 463 const char *string) 464 { 465 const struct property *prop = of_find_property(np, propname, NULL); 466 size_t l; 467 int i; 468 const char *p, *end; 469 470 if (!prop) 471 return -EINVAL; 472 if (!prop->value) 473 return -ENODATA; 474 475 p = prop->value; 476 end = p + prop->length; 477 478 for (i = 0; p < end; i++, p += l) { 479 l = strnlen(p, end - p) + 1; 480 if (p + l > end) 481 return -EILSEQ; 482 pr_debug("comparing %s with %s\n", string, p); 483 if (strcmp(string, p) == 0) 484 return i; /* Found it; return index */ 485 } 486 return -ENODATA; 487 } 488 EXPORT_SYMBOL_GPL(of_property_match_string); 489 490 /** 491 * of_property_read_string_helper() - Utility helper for parsing string properties 492 * @np: device node from which the property value is to be read. 493 * @propname: name of the property to be searched. 494 * @out_strs: output array of string pointers. 495 * @sz: number of array elements to read. 496 * @skip: Number of strings to skip over at beginning of list. 497 * 498 * Don't call this function directly. It is a utility helper for the 499 * of_property_read_string*() family of functions. 500 */ 501 int of_property_read_string_helper(const struct device_node *np, 502 const char *propname, const char **out_strs, 503 size_t sz, int skip) 504 { 505 const struct property *prop = of_find_property(np, propname, NULL); 506 int l = 0, i = 0; 507 const char *p, *end; 508 509 if (!prop) 510 return -EINVAL; 511 if (!prop->value) 512 return -ENODATA; 513 p = prop->value; 514 end = p + prop->length; 515 516 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) { 517 l = strnlen(p, end - p) + 1; 518 if (p + l > end) 519 return -EILSEQ; 520 if (out_strs && i >= skip) 521 *out_strs++ = p; 522 } 523 i -= skip; 524 return i <= 0 ? -ENODATA : i; 525 } 526 EXPORT_SYMBOL_GPL(of_property_read_string_helper); 527 528 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur, 529 u32 *pu) 530 { 531 const void *curv = cur; 532 533 if (!prop) 534 return NULL; 535 536 if (!cur) { 537 curv = prop->value; 538 goto out_val; 539 } 540 541 curv += sizeof(*cur); 542 if (curv >= prop->value + prop->length) 543 return NULL; 544 545 out_val: 546 *pu = be32_to_cpup(curv); 547 return curv; 548 } 549 EXPORT_SYMBOL_GPL(of_prop_next_u32); 550 551 const char *of_prop_next_string(struct property *prop, const char *cur) 552 { 553 const void *curv = cur; 554 555 if (!prop) 556 return NULL; 557 558 if (!cur) 559 return prop->value; 560 561 curv += strlen(cur) + 1; 562 if (curv >= prop->value + prop->length) 563 return NULL; 564 565 return curv; 566 } 567 EXPORT_SYMBOL_GPL(of_prop_next_string); 568 569 /** 570 * of_graph_parse_endpoint() - parse common endpoint node properties 571 * @node: pointer to endpoint device_node 572 * @endpoint: pointer to the OF endpoint data structure 573 * 574 * The caller should hold a reference to @node. 575 */ 576 int of_graph_parse_endpoint(const struct device_node *node, 577 struct of_endpoint *endpoint) 578 { 579 struct device_node *port_node __free(device_node) = 580 of_get_parent(node); 581 582 WARN_ONCE(!port_node, "%s(): endpoint %pOF has no parent node\n", 583 __func__, node); 584 585 memset(endpoint, 0, sizeof(*endpoint)); 586 587 endpoint->local_node = node; 588 /* 589 * It doesn't matter whether the two calls below succeed. 590 * If they don't then the default value 0 is used. 591 */ 592 of_property_read_u32(port_node, "reg", &endpoint->port); 593 of_property_read_u32(node, "reg", &endpoint->id); 594 595 return 0; 596 } 597 EXPORT_SYMBOL(of_graph_parse_endpoint); 598 599 /** 600 * of_graph_get_port_by_id() - get the port matching a given id 601 * @parent: pointer to the parent device node 602 * @id: id of the port 603 * 604 * Return: A 'port' node pointer with refcount incremented. The caller 605 * has to use of_node_put() on it when done. 606 */ 607 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id) 608 { 609 struct device_node *node __free(device_node) = of_get_child_by_name(parent, "ports"); 610 611 if (node) 612 parent = node; 613 614 for_each_child_of_node_scoped(parent, port) { 615 u32 port_id = 0; 616 617 if (!of_node_name_eq(port, "port")) 618 continue; 619 of_property_read_u32(port, "reg", &port_id); 620 if (id == port_id) 621 return_ptr(port); 622 } 623 624 return NULL; 625 } 626 EXPORT_SYMBOL(of_graph_get_port_by_id); 627 628 /** 629 * of_graph_get_next_endpoint() - get next endpoint node 630 * @parent: pointer to the parent device node 631 * @prev: previous endpoint node, or NULL to get first 632 * 633 * Return: An 'endpoint' node pointer with refcount incremented. Refcount 634 * of the passed @prev node is decremented. 635 */ 636 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent, 637 struct device_node *prev) 638 { 639 struct device_node *endpoint; 640 struct device_node *port; 641 642 if (!parent) 643 return NULL; 644 645 /* 646 * Start by locating the port node. If no previous endpoint is specified 647 * search for the first port node, otherwise get the previous endpoint 648 * parent port node. 649 */ 650 if (!prev) { 651 struct device_node *node __free(device_node) = 652 of_get_child_by_name(parent, "ports"); 653 654 if (node) 655 parent = node; 656 657 port = of_get_child_by_name(parent, "port"); 658 if (!port) { 659 pr_debug("graph: no port node found in %pOF\n", parent); 660 return NULL; 661 } 662 } else { 663 port = of_get_parent(prev); 664 if (WARN_ONCE(!port, "%s(): endpoint %pOF has no parent node\n", 665 __func__, prev)) 666 return NULL; 667 } 668 669 while (1) { 670 /* 671 * Now that we have a port node, get the next endpoint by 672 * getting the next child. If the previous endpoint is NULL this 673 * will return the first child. 674 */ 675 endpoint = of_get_next_child(port, prev); 676 if (endpoint) { 677 of_node_put(port); 678 return endpoint; 679 } 680 681 /* No more endpoints under this port, try the next one. */ 682 prev = NULL; 683 684 do { 685 port = of_get_next_child(parent, port); 686 if (!port) 687 return NULL; 688 } while (!of_node_name_eq(port, "port")); 689 } 690 } 691 EXPORT_SYMBOL(of_graph_get_next_endpoint); 692 693 /** 694 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers 695 * @parent: pointer to the parent device node 696 * @port_reg: identifier (value of reg property) of the parent port node 697 * @reg: identifier (value of reg property) of the endpoint node 698 * 699 * Return: An 'endpoint' node pointer which is identified by reg and at the same 700 * is the child of a port node identified by port_reg. reg and port_reg are 701 * ignored when they are -1. Use of_node_put() on the pointer when done. 702 */ 703 struct device_node *of_graph_get_endpoint_by_regs( 704 const struct device_node *parent, int port_reg, int reg) 705 { 706 struct of_endpoint endpoint; 707 struct device_node *node = NULL; 708 709 for_each_endpoint_of_node(parent, node) { 710 of_graph_parse_endpoint(node, &endpoint); 711 if (((port_reg == -1) || (endpoint.port == port_reg)) && 712 ((reg == -1) || (endpoint.id == reg))) 713 return node; 714 } 715 716 return NULL; 717 } 718 EXPORT_SYMBOL(of_graph_get_endpoint_by_regs); 719 720 /** 721 * of_graph_get_remote_endpoint() - get remote endpoint node 722 * @node: pointer to a local endpoint device_node 723 * 724 * Return: Remote endpoint node associated with remote endpoint node linked 725 * to @node. Use of_node_put() on it when done. 726 */ 727 struct device_node *of_graph_get_remote_endpoint(const struct device_node *node) 728 { 729 /* Get remote endpoint node. */ 730 return of_parse_phandle(node, "remote-endpoint", 0); 731 } 732 EXPORT_SYMBOL(of_graph_get_remote_endpoint); 733 734 /** 735 * of_graph_get_port_parent() - get port's parent node 736 * @node: pointer to a local endpoint device_node 737 * 738 * Return: device node associated with endpoint node linked 739 * to @node. Use of_node_put() on it when done. 740 */ 741 struct device_node *of_graph_get_port_parent(struct device_node *node) 742 { 743 unsigned int depth; 744 745 if (!node) 746 return NULL; 747 748 /* 749 * Preserve usecount for passed in node as of_get_next_parent() 750 * will do of_node_put() on it. 751 */ 752 of_node_get(node); 753 754 /* Walk 3 levels up only if there is 'ports' node. */ 755 for (depth = 3; depth && node; depth--) { 756 node = of_get_next_parent(node); 757 if (depth == 2 && !of_node_name_eq(node, "ports") && 758 !of_node_name_eq(node, "in-ports") && 759 !of_node_name_eq(node, "out-ports")) 760 break; 761 } 762 return node; 763 } 764 EXPORT_SYMBOL(of_graph_get_port_parent); 765 766 /** 767 * of_graph_get_remote_port_parent() - get remote port's parent node 768 * @node: pointer to a local endpoint device_node 769 * 770 * Return: Remote device node associated with remote endpoint node linked 771 * to @node. Use of_node_put() on it when done. 772 */ 773 struct device_node *of_graph_get_remote_port_parent( 774 const struct device_node *node) 775 { 776 struct device_node *np, *pp; 777 778 /* Get remote endpoint node. */ 779 np = of_graph_get_remote_endpoint(node); 780 781 pp = of_graph_get_port_parent(np); 782 783 of_node_put(np); 784 785 return pp; 786 } 787 EXPORT_SYMBOL(of_graph_get_remote_port_parent); 788 789 /** 790 * of_graph_get_remote_port() - get remote port node 791 * @node: pointer to a local endpoint device_node 792 * 793 * Return: Remote port node associated with remote endpoint node linked 794 * to @node. Use of_node_put() on it when done. 795 */ 796 struct device_node *of_graph_get_remote_port(const struct device_node *node) 797 { 798 struct device_node *np; 799 800 /* Get remote endpoint node. */ 801 np = of_graph_get_remote_endpoint(node); 802 if (!np) 803 return NULL; 804 return of_get_next_parent(np); 805 } 806 EXPORT_SYMBOL(of_graph_get_remote_port); 807 808 /** 809 * of_graph_get_endpoint_count() - get the number of endpoints in a device node 810 * @np: parent device node containing ports and endpoints 811 * 812 * Return: count of endpoint of this device node 813 */ 814 unsigned int of_graph_get_endpoint_count(const struct device_node *np) 815 { 816 struct device_node *endpoint; 817 unsigned int num = 0; 818 819 for_each_endpoint_of_node(np, endpoint) 820 num++; 821 822 return num; 823 } 824 EXPORT_SYMBOL(of_graph_get_endpoint_count); 825 826 /** 827 * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint 828 * @node: pointer to parent device_node containing graph port/endpoint 829 * @port: identifier (value of reg property) of the parent port node 830 * @endpoint: identifier (value of reg property) of the endpoint node 831 * 832 * Return: Remote device node associated with remote endpoint node linked 833 * to @node. Use of_node_put() on it when done. 834 */ 835 struct device_node *of_graph_get_remote_node(const struct device_node *node, 836 u32 port, u32 endpoint) 837 { 838 struct device_node *endpoint_node, *remote; 839 840 endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint); 841 if (!endpoint_node) { 842 pr_debug("no valid endpoint (%d, %d) for node %pOF\n", 843 port, endpoint, node); 844 return NULL; 845 } 846 847 remote = of_graph_get_remote_port_parent(endpoint_node); 848 of_node_put(endpoint_node); 849 if (!remote) { 850 pr_debug("no valid remote node\n"); 851 return NULL; 852 } 853 854 if (!of_device_is_available(remote)) { 855 pr_debug("not available for remote node\n"); 856 of_node_put(remote); 857 return NULL; 858 } 859 860 return remote; 861 } 862 EXPORT_SYMBOL(of_graph_get_remote_node); 863 864 static struct fwnode_handle *of_fwnode_get(struct fwnode_handle *fwnode) 865 { 866 return of_fwnode_handle(of_node_get(to_of_node(fwnode))); 867 } 868 869 static void of_fwnode_put(struct fwnode_handle *fwnode) 870 { 871 of_node_put(to_of_node(fwnode)); 872 } 873 874 static bool of_fwnode_device_is_available(const struct fwnode_handle *fwnode) 875 { 876 return of_device_is_available(to_of_node(fwnode)); 877 } 878 879 static bool of_fwnode_device_dma_supported(const struct fwnode_handle *fwnode) 880 { 881 return true; 882 } 883 884 static enum dev_dma_attr 885 of_fwnode_device_get_dma_attr(const struct fwnode_handle *fwnode) 886 { 887 if (of_dma_is_coherent(to_of_node(fwnode))) 888 return DEV_DMA_COHERENT; 889 else 890 return DEV_DMA_NON_COHERENT; 891 } 892 893 static bool of_fwnode_property_present(const struct fwnode_handle *fwnode, 894 const char *propname) 895 { 896 return of_property_read_bool(to_of_node(fwnode), propname); 897 } 898 899 static int of_fwnode_property_read_int_array(const struct fwnode_handle *fwnode, 900 const char *propname, 901 unsigned int elem_size, void *val, 902 size_t nval) 903 { 904 const struct device_node *node = to_of_node(fwnode); 905 906 if (!val) 907 return of_property_count_elems_of_size(node, propname, 908 elem_size); 909 910 switch (elem_size) { 911 case sizeof(u8): 912 return of_property_read_u8_array(node, propname, val, nval); 913 case sizeof(u16): 914 return of_property_read_u16_array(node, propname, val, nval); 915 case sizeof(u32): 916 return of_property_read_u32_array(node, propname, val, nval); 917 case sizeof(u64): 918 return of_property_read_u64_array(node, propname, val, nval); 919 } 920 921 return -ENXIO; 922 } 923 924 static int 925 of_fwnode_property_read_string_array(const struct fwnode_handle *fwnode, 926 const char *propname, const char **val, 927 size_t nval) 928 { 929 const struct device_node *node = to_of_node(fwnode); 930 931 return val ? 932 of_property_read_string_array(node, propname, val, nval) : 933 of_property_count_strings(node, propname); 934 } 935 936 static const char *of_fwnode_get_name(const struct fwnode_handle *fwnode) 937 { 938 return kbasename(to_of_node(fwnode)->full_name); 939 } 940 941 static const char *of_fwnode_get_name_prefix(const struct fwnode_handle *fwnode) 942 { 943 /* Root needs no prefix here (its name is "/"). */ 944 if (!to_of_node(fwnode)->parent) 945 return ""; 946 947 return "/"; 948 } 949 950 static struct fwnode_handle * 951 of_fwnode_get_parent(const struct fwnode_handle *fwnode) 952 { 953 return of_fwnode_handle(of_get_parent(to_of_node(fwnode))); 954 } 955 956 static struct fwnode_handle * 957 of_fwnode_get_next_child_node(const struct fwnode_handle *fwnode, 958 struct fwnode_handle *child) 959 { 960 return of_fwnode_handle(of_get_next_available_child(to_of_node(fwnode), 961 to_of_node(child))); 962 } 963 964 static struct fwnode_handle * 965 of_fwnode_get_named_child_node(const struct fwnode_handle *fwnode, 966 const char *childname) 967 { 968 const struct device_node *node = to_of_node(fwnode); 969 struct device_node *child; 970 971 for_each_available_child_of_node(node, child) 972 if (of_node_name_eq(child, childname)) 973 return of_fwnode_handle(child); 974 975 return NULL; 976 } 977 978 static int 979 of_fwnode_get_reference_args(const struct fwnode_handle *fwnode, 980 const char *prop, const char *nargs_prop, 981 unsigned int nargs, unsigned int index, 982 struct fwnode_reference_args *args) 983 { 984 struct of_phandle_args of_args; 985 unsigned int i; 986 int ret; 987 988 if (nargs_prop) 989 ret = of_parse_phandle_with_args(to_of_node(fwnode), prop, 990 nargs_prop, index, &of_args); 991 else 992 ret = of_parse_phandle_with_fixed_args(to_of_node(fwnode), prop, 993 nargs, index, &of_args); 994 if (ret < 0) 995 return ret; 996 if (!args) { 997 of_node_put(of_args.np); 998 return 0; 999 } 1000 1001 args->nargs = of_args.args_count; 1002 args->fwnode = of_fwnode_handle(of_args.np); 1003 1004 for (i = 0; i < NR_FWNODE_REFERENCE_ARGS; i++) 1005 args->args[i] = i < of_args.args_count ? of_args.args[i] : 0; 1006 1007 return 0; 1008 } 1009 1010 static struct fwnode_handle * 1011 of_fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode, 1012 struct fwnode_handle *prev) 1013 { 1014 return of_fwnode_handle(of_graph_get_next_endpoint(to_of_node(fwnode), 1015 to_of_node(prev))); 1016 } 1017 1018 static struct fwnode_handle * 1019 of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode) 1020 { 1021 return of_fwnode_handle( 1022 of_graph_get_remote_endpoint(to_of_node(fwnode))); 1023 } 1024 1025 static struct fwnode_handle * 1026 of_fwnode_graph_get_port_parent(struct fwnode_handle *fwnode) 1027 { 1028 struct device_node *np; 1029 1030 /* Get the parent of the port */ 1031 np = of_get_parent(to_of_node(fwnode)); 1032 if (!np) 1033 return NULL; 1034 1035 /* Is this the "ports" node? If not, it's the port parent. */ 1036 if (!of_node_name_eq(np, "ports")) 1037 return of_fwnode_handle(np); 1038 1039 return of_fwnode_handle(of_get_next_parent(np)); 1040 } 1041 1042 static int of_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode, 1043 struct fwnode_endpoint *endpoint) 1044 { 1045 const struct device_node *node = to_of_node(fwnode); 1046 struct device_node *port_node __free(device_node) = of_get_parent(node); 1047 1048 endpoint->local_fwnode = fwnode; 1049 1050 of_property_read_u32(port_node, "reg", &endpoint->port); 1051 of_property_read_u32(node, "reg", &endpoint->id); 1052 1053 return 0; 1054 } 1055 1056 static const void * 1057 of_fwnode_device_get_match_data(const struct fwnode_handle *fwnode, 1058 const struct device *dev) 1059 { 1060 return of_device_get_match_data(dev); 1061 } 1062 1063 static void of_link_to_phandle(struct device_node *con_np, 1064 struct device_node *sup_np, 1065 u8 flags) 1066 { 1067 struct device_node *tmp_np = of_node_get(sup_np); 1068 1069 /* Check that sup_np and its ancestors are available. */ 1070 while (tmp_np) { 1071 if (of_fwnode_handle(tmp_np)->dev) { 1072 of_node_put(tmp_np); 1073 break; 1074 } 1075 1076 if (!of_device_is_available(tmp_np)) { 1077 of_node_put(tmp_np); 1078 return; 1079 } 1080 1081 tmp_np = of_get_next_parent(tmp_np); 1082 } 1083 1084 fwnode_link_add(of_fwnode_handle(con_np), of_fwnode_handle(sup_np), flags); 1085 } 1086 1087 /** 1088 * parse_prop_cells - Property parsing function for suppliers 1089 * 1090 * @np: Pointer to device tree node containing a list 1091 * @prop_name: Name of property to be parsed. Expected to hold phandle values 1092 * @index: For properties holding a list of phandles, this is the index 1093 * into the list. 1094 * @list_name: Property name that is known to contain list of phandle(s) to 1095 * supplier(s) 1096 * @cells_name: property name that specifies phandles' arguments count 1097 * 1098 * This is a helper function to parse properties that have a known fixed name 1099 * and are a list of phandles and phandle arguments. 1100 * 1101 * Returns: 1102 * - phandle node pointer with refcount incremented. Caller must of_node_put() 1103 * on it when done. 1104 * - NULL if no phandle found at index 1105 */ 1106 static struct device_node *parse_prop_cells(struct device_node *np, 1107 const char *prop_name, int index, 1108 const char *list_name, 1109 const char *cells_name) 1110 { 1111 struct of_phandle_args sup_args; 1112 1113 if (strcmp(prop_name, list_name)) 1114 return NULL; 1115 1116 if (__of_parse_phandle_with_args(np, list_name, cells_name, 0, index, 1117 &sup_args)) 1118 return NULL; 1119 1120 return sup_args.np; 1121 } 1122 1123 #define DEFINE_SIMPLE_PROP(fname, name, cells) \ 1124 static struct device_node *parse_##fname(struct device_node *np, \ 1125 const char *prop_name, int index) \ 1126 { \ 1127 return parse_prop_cells(np, prop_name, index, name, cells); \ 1128 } 1129 1130 static int strcmp_suffix(const char *str, const char *suffix) 1131 { 1132 unsigned int len, suffix_len; 1133 1134 len = strlen(str); 1135 suffix_len = strlen(suffix); 1136 if (len <= suffix_len) 1137 return -1; 1138 return strcmp(str + len - suffix_len, suffix); 1139 } 1140 1141 /** 1142 * parse_suffix_prop_cells - Suffix property parsing function for suppliers 1143 * 1144 * @np: Pointer to device tree node containing a list 1145 * @prop_name: Name of property to be parsed. Expected to hold phandle values 1146 * @index: For properties holding a list of phandles, this is the index 1147 * into the list. 1148 * @suffix: Property suffix that is known to contain list of phandle(s) to 1149 * supplier(s) 1150 * @cells_name: property name that specifies phandles' arguments count 1151 * 1152 * This is a helper function to parse properties that have a known fixed suffix 1153 * and are a list of phandles and phandle arguments. 1154 * 1155 * Returns: 1156 * - phandle node pointer with refcount incremented. Caller must of_node_put() 1157 * on it when done. 1158 * - NULL if no phandle found at index 1159 */ 1160 static struct device_node *parse_suffix_prop_cells(struct device_node *np, 1161 const char *prop_name, int index, 1162 const char *suffix, 1163 const char *cells_name) 1164 { 1165 struct of_phandle_args sup_args; 1166 1167 if (strcmp_suffix(prop_name, suffix)) 1168 return NULL; 1169 1170 if (of_parse_phandle_with_args(np, prop_name, cells_name, index, 1171 &sup_args)) 1172 return NULL; 1173 1174 return sup_args.np; 1175 } 1176 1177 #define DEFINE_SUFFIX_PROP(fname, suffix, cells) \ 1178 static struct device_node *parse_##fname(struct device_node *np, \ 1179 const char *prop_name, int index) \ 1180 { \ 1181 return parse_suffix_prop_cells(np, prop_name, index, suffix, cells); \ 1182 } 1183 1184 /** 1185 * struct supplier_bindings - Property parsing functions for suppliers 1186 * 1187 * @parse_prop: function name 1188 * parse_prop() finds the node corresponding to a supplier phandle 1189 * parse_prop.np: Pointer to device node holding supplier phandle property 1190 * parse_prop.prop_name: Name of property holding a phandle value 1191 * parse_prop.index: For properties holding a list of phandles, this is the 1192 * index into the list 1193 * @get_con_dev: If the consumer node containing the property is never converted 1194 * to a struct device, implement this ops so fw_devlink can use it 1195 * to find the true consumer. 1196 * @optional: Describes whether a supplier is mandatory or not 1197 * @fwlink_flags: Optional fwnode link flags to use when creating a fwnode link 1198 * for this property. 1199 * 1200 * Returns: 1201 * parse_prop() return values are 1202 * - phandle node pointer with refcount incremented. Caller must of_node_put() 1203 * on it when done. 1204 * - NULL if no phandle found at index 1205 */ 1206 struct supplier_bindings { 1207 struct device_node *(*parse_prop)(struct device_node *np, 1208 const char *prop_name, int index); 1209 struct device_node *(*get_con_dev)(struct device_node *np); 1210 bool optional; 1211 u8 fwlink_flags; 1212 }; 1213 1214 DEFINE_SIMPLE_PROP(clocks, "clocks", "#clock-cells") 1215 DEFINE_SIMPLE_PROP(interconnects, "interconnects", "#interconnect-cells") 1216 DEFINE_SIMPLE_PROP(iommus, "iommus", "#iommu-cells") 1217 DEFINE_SIMPLE_PROP(mboxes, "mboxes", "#mbox-cells") 1218 DEFINE_SIMPLE_PROP(io_channels, "io-channels", "#io-channel-cells") 1219 DEFINE_SIMPLE_PROP(io_backends, "io-backends", "#io-backend-cells") 1220 DEFINE_SIMPLE_PROP(interrupt_parent, "interrupt-parent", NULL) 1221 DEFINE_SIMPLE_PROP(dmas, "dmas", "#dma-cells") 1222 DEFINE_SIMPLE_PROP(power_domains, "power-domains", "#power-domain-cells") 1223 DEFINE_SIMPLE_PROP(hwlocks, "hwlocks", "#hwlock-cells") 1224 DEFINE_SIMPLE_PROP(extcon, "extcon", NULL) 1225 DEFINE_SIMPLE_PROP(nvmem_cells, "nvmem-cells", "#nvmem-cell-cells") 1226 DEFINE_SIMPLE_PROP(phys, "phys", "#phy-cells") 1227 DEFINE_SIMPLE_PROP(wakeup_parent, "wakeup-parent", NULL) 1228 DEFINE_SIMPLE_PROP(pinctrl0, "pinctrl-0", NULL) 1229 DEFINE_SIMPLE_PROP(pinctrl1, "pinctrl-1", NULL) 1230 DEFINE_SIMPLE_PROP(pinctrl2, "pinctrl-2", NULL) 1231 DEFINE_SIMPLE_PROP(pinctrl3, "pinctrl-3", NULL) 1232 DEFINE_SIMPLE_PROP(pinctrl4, "pinctrl-4", NULL) 1233 DEFINE_SIMPLE_PROP(pinctrl5, "pinctrl-5", NULL) 1234 DEFINE_SIMPLE_PROP(pinctrl6, "pinctrl-6", NULL) 1235 DEFINE_SIMPLE_PROP(pinctrl7, "pinctrl-7", NULL) 1236 DEFINE_SIMPLE_PROP(pinctrl8, "pinctrl-8", NULL) 1237 DEFINE_SIMPLE_PROP(pwms, "pwms", "#pwm-cells") 1238 DEFINE_SIMPLE_PROP(resets, "resets", "#reset-cells") 1239 DEFINE_SIMPLE_PROP(leds, "leds", NULL) 1240 DEFINE_SIMPLE_PROP(backlight, "backlight", NULL) 1241 DEFINE_SIMPLE_PROP(panel, "panel", NULL) 1242 DEFINE_SIMPLE_PROP(msi_parent, "msi-parent", "#msi-cells") 1243 DEFINE_SIMPLE_PROP(post_init_providers, "post-init-providers", NULL) 1244 DEFINE_SIMPLE_PROP(access_controllers, "access-controllers", "#access-controller-cells") 1245 DEFINE_SIMPLE_PROP(pses, "pses", "#pse-cells") 1246 DEFINE_SIMPLE_PROP(power_supplies, "power-supplies", NULL) 1247 DEFINE_SUFFIX_PROP(regulators, "-supply", NULL) 1248 DEFINE_SUFFIX_PROP(gpio, "-gpio", "#gpio-cells") 1249 1250 static struct device_node *parse_gpios(struct device_node *np, 1251 const char *prop_name, int index) 1252 { 1253 if (!strcmp_suffix(prop_name, ",nr-gpios")) 1254 return NULL; 1255 1256 return parse_suffix_prop_cells(np, prop_name, index, "-gpios", 1257 "#gpio-cells"); 1258 } 1259 1260 static struct device_node *parse_iommu_maps(struct device_node *np, 1261 const char *prop_name, int index) 1262 { 1263 if (strcmp(prop_name, "iommu-map")) 1264 return NULL; 1265 1266 return of_parse_phandle(np, prop_name, (index * 4) + 1); 1267 } 1268 1269 static struct device_node *parse_gpio_compat(struct device_node *np, 1270 const char *prop_name, int index) 1271 { 1272 struct of_phandle_args sup_args; 1273 1274 if (strcmp(prop_name, "gpio") && strcmp(prop_name, "gpios")) 1275 return NULL; 1276 1277 /* 1278 * Ignore node with gpio-hog property since its gpios are all provided 1279 * by its parent. 1280 */ 1281 if (of_property_read_bool(np, "gpio-hog")) 1282 return NULL; 1283 1284 if (of_parse_phandle_with_args(np, prop_name, "#gpio-cells", index, 1285 &sup_args)) 1286 return NULL; 1287 1288 return sup_args.np; 1289 } 1290 1291 static struct device_node *parse_interrupts(struct device_node *np, 1292 const char *prop_name, int index) 1293 { 1294 struct of_phandle_args sup_args; 1295 1296 if (!IS_ENABLED(CONFIG_OF_IRQ) || IS_ENABLED(CONFIG_PPC)) 1297 return NULL; 1298 1299 if (strcmp(prop_name, "interrupts") && 1300 strcmp(prop_name, "interrupts-extended")) 1301 return NULL; 1302 1303 return of_irq_parse_one(np, index, &sup_args) ? NULL : sup_args.np; 1304 } 1305 1306 static struct device_node *parse_interrupt_map(struct device_node *np, 1307 const char *prop_name, int index) 1308 { 1309 const __be32 *imap, *imap_end, *addr; 1310 struct of_phandle_args sup_args; 1311 u32 addrcells, intcells; 1312 int i, imaplen; 1313 1314 if (!IS_ENABLED(CONFIG_OF_IRQ)) 1315 return NULL; 1316 1317 if (strcmp(prop_name, "interrupt-map")) 1318 return NULL; 1319 1320 if (of_property_read_u32(np, "#interrupt-cells", &intcells)) 1321 return NULL; 1322 addrcells = of_bus_n_addr_cells(np); 1323 1324 imap = of_get_property(np, "interrupt-map", &imaplen); 1325 if (!imap || imaplen <= (addrcells + intcells)) 1326 return NULL; 1327 imap_end = imap + imaplen; 1328 1329 while (imap < imap_end) { 1330 addr = imap; 1331 imap += addrcells; 1332 1333 sup_args.np = np; 1334 sup_args.args_count = intcells; 1335 for (i = 0; i < intcells; i++) 1336 sup_args.args[i] = be32_to_cpu(imap[i]); 1337 imap += intcells; 1338 1339 /* 1340 * Upon success, the function of_irq_parse_raw() returns 1341 * interrupt controller DT node pointer in sup_args.np. 1342 */ 1343 if (of_irq_parse_raw(addr, &sup_args)) 1344 return NULL; 1345 1346 if (!index) 1347 return sup_args.np; 1348 1349 of_node_put(sup_args.np); 1350 imap += sup_args.args_count + 1; 1351 index--; 1352 } 1353 1354 return NULL; 1355 } 1356 1357 static struct device_node *parse_remote_endpoint(struct device_node *np, 1358 const char *prop_name, 1359 int index) 1360 { 1361 /* Return NULL for index > 0 to signify end of remote-endpoints. */ 1362 if (index > 0 || strcmp(prop_name, "remote-endpoint")) 1363 return NULL; 1364 1365 return of_graph_get_remote_port_parent(np); 1366 } 1367 1368 static const struct supplier_bindings of_supplier_bindings[] = { 1369 { .parse_prop = parse_clocks, }, 1370 { .parse_prop = parse_interconnects, }, 1371 { .parse_prop = parse_iommus, .optional = true, }, 1372 { .parse_prop = parse_iommu_maps, .optional = true, }, 1373 { .parse_prop = parse_mboxes, }, 1374 { .parse_prop = parse_io_channels, }, 1375 { .parse_prop = parse_io_backends, }, 1376 { .parse_prop = parse_interrupt_parent, }, 1377 { .parse_prop = parse_dmas, .optional = true, }, 1378 { .parse_prop = parse_power_domains, }, 1379 { .parse_prop = parse_hwlocks, }, 1380 { .parse_prop = parse_extcon, }, 1381 { .parse_prop = parse_nvmem_cells, }, 1382 { .parse_prop = parse_phys, }, 1383 { .parse_prop = parse_wakeup_parent, }, 1384 { .parse_prop = parse_pinctrl0, }, 1385 { .parse_prop = parse_pinctrl1, }, 1386 { .parse_prop = parse_pinctrl2, }, 1387 { .parse_prop = parse_pinctrl3, }, 1388 { .parse_prop = parse_pinctrl4, }, 1389 { .parse_prop = parse_pinctrl5, }, 1390 { .parse_prop = parse_pinctrl6, }, 1391 { .parse_prop = parse_pinctrl7, }, 1392 { .parse_prop = parse_pinctrl8, }, 1393 { 1394 .parse_prop = parse_remote_endpoint, 1395 .get_con_dev = of_graph_get_port_parent, 1396 }, 1397 { .parse_prop = parse_pwms, }, 1398 { .parse_prop = parse_resets, }, 1399 { .parse_prop = parse_leds, }, 1400 { .parse_prop = parse_backlight, }, 1401 { .parse_prop = parse_panel, }, 1402 { .parse_prop = parse_msi_parent, }, 1403 { .parse_prop = parse_pses, }, 1404 { .parse_prop = parse_power_supplies, }, 1405 { .parse_prop = parse_gpio_compat, }, 1406 { .parse_prop = parse_interrupts, }, 1407 { .parse_prop = parse_interrupt_map, }, 1408 { .parse_prop = parse_access_controllers, }, 1409 { .parse_prop = parse_regulators, }, 1410 { .parse_prop = parse_gpio, }, 1411 { .parse_prop = parse_gpios, }, 1412 { 1413 .parse_prop = parse_post_init_providers, 1414 .fwlink_flags = FWLINK_FLAG_IGNORE, 1415 }, 1416 {} 1417 }; 1418 1419 /** 1420 * of_link_property - Create device links to suppliers listed in a property 1421 * @con_np: The consumer device tree node which contains the property 1422 * @prop_name: Name of property to be parsed 1423 * 1424 * This function checks if the property @prop_name that is present in the 1425 * @con_np device tree node is one of the known common device tree bindings 1426 * that list phandles to suppliers. If @prop_name isn't one, this function 1427 * doesn't do anything. 1428 * 1429 * If @prop_name is one, this function attempts to create fwnode links from the 1430 * consumer device tree node @con_np to all the suppliers device tree nodes 1431 * listed in @prop_name. 1432 * 1433 * Any failed attempt to create a fwnode link will NOT result in an immediate 1434 * return. of_link_property() must create links to all the available supplier 1435 * device tree nodes even when attempts to create a link to one or more 1436 * suppliers fail. 1437 */ 1438 static int of_link_property(struct device_node *con_np, const char *prop_name) 1439 { 1440 struct device_node *phandle; 1441 const struct supplier_bindings *s = of_supplier_bindings; 1442 unsigned int i = 0; 1443 bool matched = false; 1444 1445 /* Do not stop at first failed link, link all available suppliers. */ 1446 while (!matched && s->parse_prop) { 1447 if (s->optional && !fw_devlink_is_strict()) { 1448 s++; 1449 continue; 1450 } 1451 1452 while ((phandle = s->parse_prop(con_np, prop_name, i))) { 1453 struct device_node *con_dev_np; 1454 1455 con_dev_np = s->get_con_dev 1456 ? s->get_con_dev(con_np) 1457 : of_node_get(con_np); 1458 matched = true; 1459 i++; 1460 of_link_to_phandle(con_dev_np, phandle, s->fwlink_flags); 1461 of_node_put(phandle); 1462 of_node_put(con_dev_np); 1463 } 1464 s++; 1465 } 1466 return 0; 1467 } 1468 1469 static void __iomem *of_fwnode_iomap(struct fwnode_handle *fwnode, int index) 1470 { 1471 #ifdef CONFIG_OF_ADDRESS 1472 return of_iomap(to_of_node(fwnode), index); 1473 #else 1474 return NULL; 1475 #endif 1476 } 1477 1478 static int of_fwnode_irq_get(const struct fwnode_handle *fwnode, 1479 unsigned int index) 1480 { 1481 return of_irq_get(to_of_node(fwnode), index); 1482 } 1483 1484 static int of_fwnode_add_links(struct fwnode_handle *fwnode) 1485 { 1486 struct property *p; 1487 struct device_node *con_np = to_of_node(fwnode); 1488 1489 if (IS_ENABLED(CONFIG_X86)) 1490 return 0; 1491 1492 if (!con_np) 1493 return -EINVAL; 1494 1495 for_each_property_of_node(con_np, p) 1496 of_link_property(con_np, p->name); 1497 1498 return 0; 1499 } 1500 1501 const struct fwnode_operations of_fwnode_ops = { 1502 .get = of_fwnode_get, 1503 .put = of_fwnode_put, 1504 .device_is_available = of_fwnode_device_is_available, 1505 .device_get_match_data = of_fwnode_device_get_match_data, 1506 .device_dma_supported = of_fwnode_device_dma_supported, 1507 .device_get_dma_attr = of_fwnode_device_get_dma_attr, 1508 .property_present = of_fwnode_property_present, 1509 .property_read_int_array = of_fwnode_property_read_int_array, 1510 .property_read_string_array = of_fwnode_property_read_string_array, 1511 .get_name = of_fwnode_get_name, 1512 .get_name_prefix = of_fwnode_get_name_prefix, 1513 .get_parent = of_fwnode_get_parent, 1514 .get_next_child_node = of_fwnode_get_next_child_node, 1515 .get_named_child_node = of_fwnode_get_named_child_node, 1516 .get_reference_args = of_fwnode_get_reference_args, 1517 .graph_get_next_endpoint = of_fwnode_graph_get_next_endpoint, 1518 .graph_get_remote_endpoint = of_fwnode_graph_get_remote_endpoint, 1519 .graph_get_port_parent = of_fwnode_graph_get_port_parent, 1520 .graph_parse_endpoint = of_fwnode_graph_parse_endpoint, 1521 .iomap = of_fwnode_iomap, 1522 .irq_get = of_fwnode_irq_get, 1523 .add_links = of_fwnode_add_links, 1524 }; 1525 EXPORT_SYMBOL_GPL(of_fwnode_ops); 1526