xref: /linux/drivers/of/property.c (revision fdaf9a5840acaab18694a19e0eb0aa51162eeeed)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * drivers/of/property.c - Procedures for accessing and interpreting
4  *			   Devicetree properties and graphs.
5  *
6  * Initially created by copying procedures from drivers/of/base.c. This
7  * file contains the OF property as well as the OF graph interface
8  * functions.
9  *
10  * Paul Mackerras	August 1996.
11  * Copyright (C) 1996-2005 Paul Mackerras.
12  *
13  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
14  *    {engebret|bergner}@us.ibm.com
15  *
16  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
17  *
18  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
19  *  Grant Likely.
20  */
21 
22 #define pr_fmt(fmt)	"OF: " fmt
23 
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_device.h>
27 #include <linux/of_graph.h>
28 #include <linux/of_irq.h>
29 #include <linux/string.h>
30 #include <linux/moduleparam.h>
31 
32 #include "of_private.h"
33 
34 /**
35  * of_graph_is_present() - check graph's presence
36  * @node: pointer to device_node containing graph port
37  *
38  * Return: True if @node has a port or ports (with a port) sub-node,
39  * false otherwise.
40  */
41 bool of_graph_is_present(const struct device_node *node)
42 {
43 	struct device_node *ports, *port;
44 
45 	ports = of_get_child_by_name(node, "ports");
46 	if (ports)
47 		node = ports;
48 
49 	port = of_get_child_by_name(node, "port");
50 	of_node_put(ports);
51 	of_node_put(port);
52 
53 	return !!port;
54 }
55 EXPORT_SYMBOL(of_graph_is_present);
56 
57 /**
58  * of_property_count_elems_of_size - Count the number of elements in a property
59  *
60  * @np:		device node from which the property value is to be read.
61  * @propname:	name of the property to be searched.
62  * @elem_size:	size of the individual element
63  *
64  * Search for a property in a device node and count the number of elements of
65  * size elem_size in it.
66  *
67  * Return: The number of elements on sucess, -EINVAL if the property does not
68  * exist or its length does not match a multiple of elem_size and -ENODATA if
69  * the property does not have a value.
70  */
71 int of_property_count_elems_of_size(const struct device_node *np,
72 				const char *propname, int elem_size)
73 {
74 	struct property *prop = of_find_property(np, propname, NULL);
75 
76 	if (!prop)
77 		return -EINVAL;
78 	if (!prop->value)
79 		return -ENODATA;
80 
81 	if (prop->length % elem_size != 0) {
82 		pr_err("size of %s in node %pOF is not a multiple of %d\n",
83 		       propname, np, elem_size);
84 		return -EINVAL;
85 	}
86 
87 	return prop->length / elem_size;
88 }
89 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
90 
91 /**
92  * of_find_property_value_of_size
93  *
94  * @np:		device node from which the property value is to be read.
95  * @propname:	name of the property to be searched.
96  * @min:	minimum allowed length of property value
97  * @max:	maximum allowed length of property value (0 means unlimited)
98  * @len:	if !=NULL, actual length is written to here
99  *
100  * Search for a property in a device node and valid the requested size.
101  *
102  * Return: The property value on success, -EINVAL if the property does not
103  * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
104  * property data is too small or too large.
105  *
106  */
107 static void *of_find_property_value_of_size(const struct device_node *np,
108 			const char *propname, u32 min, u32 max, size_t *len)
109 {
110 	struct property *prop = of_find_property(np, propname, NULL);
111 
112 	if (!prop)
113 		return ERR_PTR(-EINVAL);
114 	if (!prop->value)
115 		return ERR_PTR(-ENODATA);
116 	if (prop->length < min)
117 		return ERR_PTR(-EOVERFLOW);
118 	if (max && prop->length > max)
119 		return ERR_PTR(-EOVERFLOW);
120 
121 	if (len)
122 		*len = prop->length;
123 
124 	return prop->value;
125 }
126 
127 /**
128  * of_property_read_u32_index - Find and read a u32 from a multi-value property.
129  *
130  * @np:		device node from which the property value is to be read.
131  * @propname:	name of the property to be searched.
132  * @index:	index of the u32 in the list of values
133  * @out_value:	pointer to return value, modified only if no error.
134  *
135  * Search for a property in a device node and read nth 32-bit value from
136  * it.
137  *
138  * Return: 0 on success, -EINVAL if the property does not exist,
139  * -ENODATA if property does not have a value, and -EOVERFLOW if the
140  * property data isn't large enough.
141  *
142  * The out_value is modified only if a valid u32 value can be decoded.
143  */
144 int of_property_read_u32_index(const struct device_node *np,
145 				       const char *propname,
146 				       u32 index, u32 *out_value)
147 {
148 	const u32 *val = of_find_property_value_of_size(np, propname,
149 					((index + 1) * sizeof(*out_value)),
150 					0,
151 					NULL);
152 
153 	if (IS_ERR(val))
154 		return PTR_ERR(val);
155 
156 	*out_value = be32_to_cpup(((__be32 *)val) + index);
157 	return 0;
158 }
159 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
160 
161 /**
162  * of_property_read_u64_index - Find and read a u64 from a multi-value property.
163  *
164  * @np:		device node from which the property value is to be read.
165  * @propname:	name of the property to be searched.
166  * @index:	index of the u64 in the list of values
167  * @out_value:	pointer to return value, modified only if no error.
168  *
169  * Search for a property in a device node and read nth 64-bit value from
170  * it.
171  *
172  * Return: 0 on success, -EINVAL if the property does not exist,
173  * -ENODATA if property does not have a value, and -EOVERFLOW if the
174  * property data isn't large enough.
175  *
176  * The out_value is modified only if a valid u64 value can be decoded.
177  */
178 int of_property_read_u64_index(const struct device_node *np,
179 				       const char *propname,
180 				       u32 index, u64 *out_value)
181 {
182 	const u64 *val = of_find_property_value_of_size(np, propname,
183 					((index + 1) * sizeof(*out_value)),
184 					0, NULL);
185 
186 	if (IS_ERR(val))
187 		return PTR_ERR(val);
188 
189 	*out_value = be64_to_cpup(((__be64 *)val) + index);
190 	return 0;
191 }
192 EXPORT_SYMBOL_GPL(of_property_read_u64_index);
193 
194 /**
195  * of_property_read_variable_u8_array - Find and read an array of u8 from a
196  * property, with bounds on the minimum and maximum array size.
197  *
198  * @np:		device node from which the property value is to be read.
199  * @propname:	name of the property to be searched.
200  * @out_values:	pointer to found values.
201  * @sz_min:	minimum number of array elements to read
202  * @sz_max:	maximum number of array elements to read, if zero there is no
203  *		upper limit on the number of elements in the dts entry but only
204  *		sz_min will be read.
205  *
206  * Search for a property in a device node and read 8-bit value(s) from
207  * it.
208  *
209  * dts entry of array should be like:
210  *  ``property = /bits/ 8 <0x50 0x60 0x70>;``
211  *
212  * Return: The number of elements read on success, -EINVAL if the property
213  * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
214  * if the property data is smaller than sz_min or longer than sz_max.
215  *
216  * The out_values is modified only if a valid u8 value can be decoded.
217  */
218 int of_property_read_variable_u8_array(const struct device_node *np,
219 					const char *propname, u8 *out_values,
220 					size_t sz_min, size_t sz_max)
221 {
222 	size_t sz, count;
223 	const u8 *val = of_find_property_value_of_size(np, propname,
224 						(sz_min * sizeof(*out_values)),
225 						(sz_max * sizeof(*out_values)),
226 						&sz);
227 
228 	if (IS_ERR(val))
229 		return PTR_ERR(val);
230 
231 	if (!sz_max)
232 		sz = sz_min;
233 	else
234 		sz /= sizeof(*out_values);
235 
236 	count = sz;
237 	while (count--)
238 		*out_values++ = *val++;
239 
240 	return sz;
241 }
242 EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array);
243 
244 /**
245  * of_property_read_variable_u16_array - Find and read an array of u16 from a
246  * property, with bounds on the minimum and maximum array size.
247  *
248  * @np:		device node from which the property value is to be read.
249  * @propname:	name of the property to be searched.
250  * @out_values:	pointer to found values.
251  * @sz_min:	minimum number of array elements to read
252  * @sz_max:	maximum number of array elements to read, if zero there is no
253  *		upper limit on the number of elements in the dts entry but only
254  *		sz_min will be read.
255  *
256  * Search for a property in a device node and read 16-bit value(s) from
257  * it.
258  *
259  * dts entry of array should be like:
260  *  ``property = /bits/ 16 <0x5000 0x6000 0x7000>;``
261  *
262  * Return: The number of elements read on success, -EINVAL if the property
263  * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
264  * if the property data is smaller than sz_min or longer than sz_max.
265  *
266  * The out_values is modified only if a valid u16 value can be decoded.
267  */
268 int of_property_read_variable_u16_array(const struct device_node *np,
269 					const char *propname, u16 *out_values,
270 					size_t sz_min, size_t sz_max)
271 {
272 	size_t sz, count;
273 	const __be16 *val = of_find_property_value_of_size(np, propname,
274 						(sz_min * sizeof(*out_values)),
275 						(sz_max * sizeof(*out_values)),
276 						&sz);
277 
278 	if (IS_ERR(val))
279 		return PTR_ERR(val);
280 
281 	if (!sz_max)
282 		sz = sz_min;
283 	else
284 		sz /= sizeof(*out_values);
285 
286 	count = sz;
287 	while (count--)
288 		*out_values++ = be16_to_cpup(val++);
289 
290 	return sz;
291 }
292 EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array);
293 
294 /**
295  * of_property_read_variable_u32_array - Find and read an array of 32 bit
296  * integers from a property, with bounds on the minimum and maximum array size.
297  *
298  * @np:		device node from which the property value is to be read.
299  * @propname:	name of the property to be searched.
300  * @out_values:	pointer to return found values.
301  * @sz_min:	minimum number of array elements to read
302  * @sz_max:	maximum number of array elements to read, if zero there is no
303  *		upper limit on the number of elements in the dts entry but only
304  *		sz_min will be read.
305  *
306  * Search for a property in a device node and read 32-bit value(s) from
307  * it.
308  *
309  * Return: The number of elements read on success, -EINVAL if the property
310  * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
311  * if the property data is smaller than sz_min or longer than sz_max.
312  *
313  * The out_values is modified only if a valid u32 value can be decoded.
314  */
315 int of_property_read_variable_u32_array(const struct device_node *np,
316 			       const char *propname, u32 *out_values,
317 			       size_t sz_min, size_t sz_max)
318 {
319 	size_t sz, count;
320 	const __be32 *val = of_find_property_value_of_size(np, propname,
321 						(sz_min * sizeof(*out_values)),
322 						(sz_max * sizeof(*out_values)),
323 						&sz);
324 
325 	if (IS_ERR(val))
326 		return PTR_ERR(val);
327 
328 	if (!sz_max)
329 		sz = sz_min;
330 	else
331 		sz /= sizeof(*out_values);
332 
333 	count = sz;
334 	while (count--)
335 		*out_values++ = be32_to_cpup(val++);
336 
337 	return sz;
338 }
339 EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array);
340 
341 /**
342  * of_property_read_u64 - Find and read a 64 bit integer from a property
343  * @np:		device node from which the property value is to be read.
344  * @propname:	name of the property to be searched.
345  * @out_value:	pointer to return value, modified only if return value is 0.
346  *
347  * Search for a property in a device node and read a 64-bit value from
348  * it.
349  *
350  * Return: 0 on success, -EINVAL if the property does not exist,
351  * -ENODATA if property does not have a value, and -EOVERFLOW if the
352  * property data isn't large enough.
353  *
354  * The out_value is modified only if a valid u64 value can be decoded.
355  */
356 int of_property_read_u64(const struct device_node *np, const char *propname,
357 			 u64 *out_value)
358 {
359 	const __be32 *val = of_find_property_value_of_size(np, propname,
360 						sizeof(*out_value),
361 						0,
362 						NULL);
363 
364 	if (IS_ERR(val))
365 		return PTR_ERR(val);
366 
367 	*out_value = of_read_number(val, 2);
368 	return 0;
369 }
370 EXPORT_SYMBOL_GPL(of_property_read_u64);
371 
372 /**
373  * of_property_read_variable_u64_array - Find and read an array of 64 bit
374  * integers from a property, with bounds on the minimum and maximum array size.
375  *
376  * @np:		device node from which the property value is to be read.
377  * @propname:	name of the property to be searched.
378  * @out_values:	pointer to found values.
379  * @sz_min:	minimum number of array elements to read
380  * @sz_max:	maximum number of array elements to read, if zero there is no
381  *		upper limit on the number of elements in the dts entry but only
382  *		sz_min will be read.
383  *
384  * Search for a property in a device node and read 64-bit value(s) from
385  * it.
386  *
387  * Return: The number of elements read on success, -EINVAL if the property
388  * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
389  * if the property data is smaller than sz_min or longer than sz_max.
390  *
391  * The out_values is modified only if a valid u64 value can be decoded.
392  */
393 int of_property_read_variable_u64_array(const struct device_node *np,
394 			       const char *propname, u64 *out_values,
395 			       size_t sz_min, size_t sz_max)
396 {
397 	size_t sz, count;
398 	const __be32 *val = of_find_property_value_of_size(np, propname,
399 						(sz_min * sizeof(*out_values)),
400 						(sz_max * sizeof(*out_values)),
401 						&sz);
402 
403 	if (IS_ERR(val))
404 		return PTR_ERR(val);
405 
406 	if (!sz_max)
407 		sz = sz_min;
408 	else
409 		sz /= sizeof(*out_values);
410 
411 	count = sz;
412 	while (count--) {
413 		*out_values++ = of_read_number(val, 2);
414 		val += 2;
415 	}
416 
417 	return sz;
418 }
419 EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array);
420 
421 /**
422  * of_property_read_string - Find and read a string from a property
423  * @np:		device node from which the property value is to be read.
424  * @propname:	name of the property to be searched.
425  * @out_string:	pointer to null terminated return string, modified only if
426  *		return value is 0.
427  *
428  * Search for a property in a device tree node and retrieve a null
429  * terminated string value (pointer to data, not a copy).
430  *
431  * Return: 0 on success, -EINVAL if the property does not exist, -ENODATA if
432  * property does not have a value, and -EILSEQ if the string is not
433  * null-terminated within the length of the property data.
434  *
435  * The out_string pointer is modified only if a valid string can be decoded.
436  */
437 int of_property_read_string(const struct device_node *np, const char *propname,
438 				const char **out_string)
439 {
440 	const struct property *prop = of_find_property(np, propname, NULL);
441 	if (!prop)
442 		return -EINVAL;
443 	if (!prop->value)
444 		return -ENODATA;
445 	if (strnlen(prop->value, prop->length) >= prop->length)
446 		return -EILSEQ;
447 	*out_string = prop->value;
448 	return 0;
449 }
450 EXPORT_SYMBOL_GPL(of_property_read_string);
451 
452 /**
453  * of_property_match_string() - Find string in a list and return index
454  * @np: pointer to node containing string list property
455  * @propname: string list property name
456  * @string: pointer to string to search for in string list
457  *
458  * This function searches a string list property and returns the index
459  * of a specific string value.
460  */
461 int of_property_match_string(const struct device_node *np, const char *propname,
462 			     const char *string)
463 {
464 	const struct property *prop = of_find_property(np, propname, NULL);
465 	size_t l;
466 	int i;
467 	const char *p, *end;
468 
469 	if (!prop)
470 		return -EINVAL;
471 	if (!prop->value)
472 		return -ENODATA;
473 
474 	p = prop->value;
475 	end = p + prop->length;
476 
477 	for (i = 0; p < end; i++, p += l) {
478 		l = strnlen(p, end - p) + 1;
479 		if (p + l > end)
480 			return -EILSEQ;
481 		pr_debug("comparing %s with %s\n", string, p);
482 		if (strcmp(string, p) == 0)
483 			return i; /* Found it; return index */
484 	}
485 	return -ENODATA;
486 }
487 EXPORT_SYMBOL_GPL(of_property_match_string);
488 
489 /**
490  * of_property_read_string_helper() - Utility helper for parsing string properties
491  * @np:		device node from which the property value is to be read.
492  * @propname:	name of the property to be searched.
493  * @out_strs:	output array of string pointers.
494  * @sz:		number of array elements to read.
495  * @skip:	Number of strings to skip over at beginning of list.
496  *
497  * Don't call this function directly. It is a utility helper for the
498  * of_property_read_string*() family of functions.
499  */
500 int of_property_read_string_helper(const struct device_node *np,
501 				   const char *propname, const char **out_strs,
502 				   size_t sz, int skip)
503 {
504 	const struct property *prop = of_find_property(np, propname, NULL);
505 	int l = 0, i = 0;
506 	const char *p, *end;
507 
508 	if (!prop)
509 		return -EINVAL;
510 	if (!prop->value)
511 		return -ENODATA;
512 	p = prop->value;
513 	end = p + prop->length;
514 
515 	for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
516 		l = strnlen(p, end - p) + 1;
517 		if (p + l > end)
518 			return -EILSEQ;
519 		if (out_strs && i >= skip)
520 			*out_strs++ = p;
521 	}
522 	i -= skip;
523 	return i <= 0 ? -ENODATA : i;
524 }
525 EXPORT_SYMBOL_GPL(of_property_read_string_helper);
526 
527 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
528 			       u32 *pu)
529 {
530 	const void *curv = cur;
531 
532 	if (!prop)
533 		return NULL;
534 
535 	if (!cur) {
536 		curv = prop->value;
537 		goto out_val;
538 	}
539 
540 	curv += sizeof(*cur);
541 	if (curv >= prop->value + prop->length)
542 		return NULL;
543 
544 out_val:
545 	*pu = be32_to_cpup(curv);
546 	return curv;
547 }
548 EXPORT_SYMBOL_GPL(of_prop_next_u32);
549 
550 const char *of_prop_next_string(struct property *prop, const char *cur)
551 {
552 	const void *curv = cur;
553 
554 	if (!prop)
555 		return NULL;
556 
557 	if (!cur)
558 		return prop->value;
559 
560 	curv += strlen(cur) + 1;
561 	if (curv >= prop->value + prop->length)
562 		return NULL;
563 
564 	return curv;
565 }
566 EXPORT_SYMBOL_GPL(of_prop_next_string);
567 
568 /**
569  * of_graph_parse_endpoint() - parse common endpoint node properties
570  * @node: pointer to endpoint device_node
571  * @endpoint: pointer to the OF endpoint data structure
572  *
573  * The caller should hold a reference to @node.
574  */
575 int of_graph_parse_endpoint(const struct device_node *node,
576 			    struct of_endpoint *endpoint)
577 {
578 	struct device_node *port_node = of_get_parent(node);
579 
580 	WARN_ONCE(!port_node, "%s(): endpoint %pOF has no parent node\n",
581 		  __func__, node);
582 
583 	memset(endpoint, 0, sizeof(*endpoint));
584 
585 	endpoint->local_node = node;
586 	/*
587 	 * It doesn't matter whether the two calls below succeed.
588 	 * If they don't then the default value 0 is used.
589 	 */
590 	of_property_read_u32(port_node, "reg", &endpoint->port);
591 	of_property_read_u32(node, "reg", &endpoint->id);
592 
593 	of_node_put(port_node);
594 
595 	return 0;
596 }
597 EXPORT_SYMBOL(of_graph_parse_endpoint);
598 
599 /**
600  * of_graph_get_port_by_id() - get the port matching a given id
601  * @parent: pointer to the parent device node
602  * @id: id of the port
603  *
604  * Return: A 'port' node pointer with refcount incremented. The caller
605  * has to use of_node_put() on it when done.
606  */
607 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
608 {
609 	struct device_node *node, *port;
610 
611 	node = of_get_child_by_name(parent, "ports");
612 	if (node)
613 		parent = node;
614 
615 	for_each_child_of_node(parent, port) {
616 		u32 port_id = 0;
617 
618 		if (!of_node_name_eq(port, "port"))
619 			continue;
620 		of_property_read_u32(port, "reg", &port_id);
621 		if (id == port_id)
622 			break;
623 	}
624 
625 	of_node_put(node);
626 
627 	return port;
628 }
629 EXPORT_SYMBOL(of_graph_get_port_by_id);
630 
631 /**
632  * of_graph_get_next_endpoint() - get next endpoint node
633  * @parent: pointer to the parent device node
634  * @prev: previous endpoint node, or NULL to get first
635  *
636  * Return: An 'endpoint' node pointer with refcount incremented. Refcount
637  * of the passed @prev node is decremented.
638  */
639 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
640 					struct device_node *prev)
641 {
642 	struct device_node *endpoint;
643 	struct device_node *port;
644 
645 	if (!parent)
646 		return NULL;
647 
648 	/*
649 	 * Start by locating the port node. If no previous endpoint is specified
650 	 * search for the first port node, otherwise get the previous endpoint
651 	 * parent port node.
652 	 */
653 	if (!prev) {
654 		struct device_node *node;
655 
656 		node = of_get_child_by_name(parent, "ports");
657 		if (node)
658 			parent = node;
659 
660 		port = of_get_child_by_name(parent, "port");
661 		of_node_put(node);
662 
663 		if (!port) {
664 			pr_err("graph: no port node found in %pOF\n", parent);
665 			return NULL;
666 		}
667 	} else {
668 		port = of_get_parent(prev);
669 		if (WARN_ONCE(!port, "%s(): endpoint %pOF has no parent node\n",
670 			      __func__, prev))
671 			return NULL;
672 	}
673 
674 	while (1) {
675 		/*
676 		 * Now that we have a port node, get the next endpoint by
677 		 * getting the next child. If the previous endpoint is NULL this
678 		 * will return the first child.
679 		 */
680 		endpoint = of_get_next_child(port, prev);
681 		if (endpoint) {
682 			of_node_put(port);
683 			return endpoint;
684 		}
685 
686 		/* No more endpoints under this port, try the next one. */
687 		prev = NULL;
688 
689 		do {
690 			port = of_get_next_child(parent, port);
691 			if (!port)
692 				return NULL;
693 		} while (!of_node_name_eq(port, "port"));
694 	}
695 }
696 EXPORT_SYMBOL(of_graph_get_next_endpoint);
697 
698 /**
699  * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
700  * @parent: pointer to the parent device node
701  * @port_reg: identifier (value of reg property) of the parent port node
702  * @reg: identifier (value of reg property) of the endpoint node
703  *
704  * Return: An 'endpoint' node pointer which is identified by reg and at the same
705  * is the child of a port node identified by port_reg. reg and port_reg are
706  * ignored when they are -1. Use of_node_put() on the pointer when done.
707  */
708 struct device_node *of_graph_get_endpoint_by_regs(
709 	const struct device_node *parent, int port_reg, int reg)
710 {
711 	struct of_endpoint endpoint;
712 	struct device_node *node = NULL;
713 
714 	for_each_endpoint_of_node(parent, node) {
715 		of_graph_parse_endpoint(node, &endpoint);
716 		if (((port_reg == -1) || (endpoint.port == port_reg)) &&
717 			((reg == -1) || (endpoint.id == reg)))
718 			return node;
719 	}
720 
721 	return NULL;
722 }
723 EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
724 
725 /**
726  * of_graph_get_remote_endpoint() - get remote endpoint node
727  * @node: pointer to a local endpoint device_node
728  *
729  * Return: Remote endpoint node associated with remote endpoint node linked
730  *	   to @node. Use of_node_put() on it when done.
731  */
732 struct device_node *of_graph_get_remote_endpoint(const struct device_node *node)
733 {
734 	/* Get remote endpoint node. */
735 	return of_parse_phandle(node, "remote-endpoint", 0);
736 }
737 EXPORT_SYMBOL(of_graph_get_remote_endpoint);
738 
739 /**
740  * of_graph_get_port_parent() - get port's parent node
741  * @node: pointer to a local endpoint device_node
742  *
743  * Return: device node associated with endpoint node linked
744  *	   to @node. Use of_node_put() on it when done.
745  */
746 struct device_node *of_graph_get_port_parent(struct device_node *node)
747 {
748 	unsigned int depth;
749 
750 	if (!node)
751 		return NULL;
752 
753 	/*
754 	 * Preserve usecount for passed in node as of_get_next_parent()
755 	 * will do of_node_put() on it.
756 	 */
757 	of_node_get(node);
758 
759 	/* Walk 3 levels up only if there is 'ports' node. */
760 	for (depth = 3; depth && node; depth--) {
761 		node = of_get_next_parent(node);
762 		if (depth == 2 && !of_node_name_eq(node, "ports"))
763 			break;
764 	}
765 	return node;
766 }
767 EXPORT_SYMBOL(of_graph_get_port_parent);
768 
769 /**
770  * of_graph_get_remote_port_parent() - get remote port's parent node
771  * @node: pointer to a local endpoint device_node
772  *
773  * Return: Remote device node associated with remote endpoint node linked
774  *	   to @node. Use of_node_put() on it when done.
775  */
776 struct device_node *of_graph_get_remote_port_parent(
777 			       const struct device_node *node)
778 {
779 	struct device_node *np, *pp;
780 
781 	/* Get remote endpoint node. */
782 	np = of_graph_get_remote_endpoint(node);
783 
784 	pp = of_graph_get_port_parent(np);
785 
786 	of_node_put(np);
787 
788 	return pp;
789 }
790 EXPORT_SYMBOL(of_graph_get_remote_port_parent);
791 
792 /**
793  * of_graph_get_remote_port() - get remote port node
794  * @node: pointer to a local endpoint device_node
795  *
796  * Return: Remote port node associated with remote endpoint node linked
797  * to @node. Use of_node_put() on it when done.
798  */
799 struct device_node *of_graph_get_remote_port(const struct device_node *node)
800 {
801 	struct device_node *np;
802 
803 	/* Get remote endpoint node. */
804 	np = of_graph_get_remote_endpoint(node);
805 	if (!np)
806 		return NULL;
807 	return of_get_next_parent(np);
808 }
809 EXPORT_SYMBOL(of_graph_get_remote_port);
810 
811 int of_graph_get_endpoint_count(const struct device_node *np)
812 {
813 	struct device_node *endpoint;
814 	int num = 0;
815 
816 	for_each_endpoint_of_node(np, endpoint)
817 		num++;
818 
819 	return num;
820 }
821 EXPORT_SYMBOL(of_graph_get_endpoint_count);
822 
823 /**
824  * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint
825  * @node: pointer to parent device_node containing graph port/endpoint
826  * @port: identifier (value of reg property) of the parent port node
827  * @endpoint: identifier (value of reg property) of the endpoint node
828  *
829  * Return: Remote device node associated with remote endpoint node linked
830  * to @node. Use of_node_put() on it when done.
831  */
832 struct device_node *of_graph_get_remote_node(const struct device_node *node,
833 					     u32 port, u32 endpoint)
834 {
835 	struct device_node *endpoint_node, *remote;
836 
837 	endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint);
838 	if (!endpoint_node) {
839 		pr_debug("no valid endpoint (%d, %d) for node %pOF\n",
840 			 port, endpoint, node);
841 		return NULL;
842 	}
843 
844 	remote = of_graph_get_remote_port_parent(endpoint_node);
845 	of_node_put(endpoint_node);
846 	if (!remote) {
847 		pr_debug("no valid remote node\n");
848 		return NULL;
849 	}
850 
851 	if (!of_device_is_available(remote)) {
852 		pr_debug("not available for remote node\n");
853 		of_node_put(remote);
854 		return NULL;
855 	}
856 
857 	return remote;
858 }
859 EXPORT_SYMBOL(of_graph_get_remote_node);
860 
861 static struct fwnode_handle *of_fwnode_get(struct fwnode_handle *fwnode)
862 {
863 	return of_fwnode_handle(of_node_get(to_of_node(fwnode)));
864 }
865 
866 static void of_fwnode_put(struct fwnode_handle *fwnode)
867 {
868 	of_node_put(to_of_node(fwnode));
869 }
870 
871 static bool of_fwnode_device_is_available(const struct fwnode_handle *fwnode)
872 {
873 	return of_device_is_available(to_of_node(fwnode));
874 }
875 
876 static bool of_fwnode_device_dma_supported(const struct fwnode_handle *fwnode)
877 {
878 	return true;
879 }
880 
881 static enum dev_dma_attr
882 of_fwnode_device_get_dma_attr(const struct fwnode_handle *fwnode)
883 {
884 	if (of_dma_is_coherent(to_of_node(fwnode)))
885 		return DEV_DMA_COHERENT;
886 	else
887 		return DEV_DMA_NON_COHERENT;
888 }
889 
890 static bool of_fwnode_property_present(const struct fwnode_handle *fwnode,
891 				       const char *propname)
892 {
893 	return of_property_read_bool(to_of_node(fwnode), propname);
894 }
895 
896 static int of_fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
897 					     const char *propname,
898 					     unsigned int elem_size, void *val,
899 					     size_t nval)
900 {
901 	const struct device_node *node = to_of_node(fwnode);
902 
903 	if (!val)
904 		return of_property_count_elems_of_size(node, propname,
905 						       elem_size);
906 
907 	switch (elem_size) {
908 	case sizeof(u8):
909 		return of_property_read_u8_array(node, propname, val, nval);
910 	case sizeof(u16):
911 		return of_property_read_u16_array(node, propname, val, nval);
912 	case sizeof(u32):
913 		return of_property_read_u32_array(node, propname, val, nval);
914 	case sizeof(u64):
915 		return of_property_read_u64_array(node, propname, val, nval);
916 	}
917 
918 	return -ENXIO;
919 }
920 
921 static int
922 of_fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
923 				     const char *propname, const char **val,
924 				     size_t nval)
925 {
926 	const struct device_node *node = to_of_node(fwnode);
927 
928 	return val ?
929 		of_property_read_string_array(node, propname, val, nval) :
930 		of_property_count_strings(node, propname);
931 }
932 
933 static const char *of_fwnode_get_name(const struct fwnode_handle *fwnode)
934 {
935 	return kbasename(to_of_node(fwnode)->full_name);
936 }
937 
938 static const char *of_fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
939 {
940 	/* Root needs no prefix here (its name is "/"). */
941 	if (!to_of_node(fwnode)->parent)
942 		return "";
943 
944 	return "/";
945 }
946 
947 static struct fwnode_handle *
948 of_fwnode_get_parent(const struct fwnode_handle *fwnode)
949 {
950 	return of_fwnode_handle(of_get_parent(to_of_node(fwnode)));
951 }
952 
953 static struct fwnode_handle *
954 of_fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
955 			      struct fwnode_handle *child)
956 {
957 	return of_fwnode_handle(of_get_next_available_child(to_of_node(fwnode),
958 							    to_of_node(child)));
959 }
960 
961 static struct fwnode_handle *
962 of_fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
963 			       const char *childname)
964 {
965 	const struct device_node *node = to_of_node(fwnode);
966 	struct device_node *child;
967 
968 	for_each_available_child_of_node(node, child)
969 		if (of_node_name_eq(child, childname))
970 			return of_fwnode_handle(child);
971 
972 	return NULL;
973 }
974 
975 static int
976 of_fwnode_get_reference_args(const struct fwnode_handle *fwnode,
977 			     const char *prop, const char *nargs_prop,
978 			     unsigned int nargs, unsigned int index,
979 			     struct fwnode_reference_args *args)
980 {
981 	struct of_phandle_args of_args;
982 	unsigned int i;
983 	int ret;
984 
985 	if (nargs_prop)
986 		ret = of_parse_phandle_with_args(to_of_node(fwnode), prop,
987 						 nargs_prop, index, &of_args);
988 	else
989 		ret = of_parse_phandle_with_fixed_args(to_of_node(fwnode), prop,
990 						       nargs, index, &of_args);
991 	if (ret < 0)
992 		return ret;
993 	if (!args)
994 		return 0;
995 
996 	args->nargs = of_args.args_count;
997 	args->fwnode = of_fwnode_handle(of_args.np);
998 
999 	for (i = 0; i < NR_FWNODE_REFERENCE_ARGS; i++)
1000 		args->args[i] = i < of_args.args_count ? of_args.args[i] : 0;
1001 
1002 	return 0;
1003 }
1004 
1005 static struct fwnode_handle *
1006 of_fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1007 				  struct fwnode_handle *prev)
1008 {
1009 	return of_fwnode_handle(of_graph_get_next_endpoint(to_of_node(fwnode),
1010 							   to_of_node(prev)));
1011 }
1012 
1013 static struct fwnode_handle *
1014 of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1015 {
1016 	return of_fwnode_handle(
1017 		of_graph_get_remote_endpoint(to_of_node(fwnode)));
1018 }
1019 
1020 static struct fwnode_handle *
1021 of_fwnode_graph_get_port_parent(struct fwnode_handle *fwnode)
1022 {
1023 	struct device_node *np;
1024 
1025 	/* Get the parent of the port */
1026 	np = of_get_parent(to_of_node(fwnode));
1027 	if (!np)
1028 		return NULL;
1029 
1030 	/* Is this the "ports" node? If not, it's the port parent. */
1031 	if (!of_node_name_eq(np, "ports"))
1032 		return of_fwnode_handle(np);
1033 
1034 	return of_fwnode_handle(of_get_next_parent(np));
1035 }
1036 
1037 static int of_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1038 					  struct fwnode_endpoint *endpoint)
1039 {
1040 	const struct device_node *node = to_of_node(fwnode);
1041 	struct device_node *port_node = of_get_parent(node);
1042 
1043 	endpoint->local_fwnode = fwnode;
1044 
1045 	of_property_read_u32(port_node, "reg", &endpoint->port);
1046 	of_property_read_u32(node, "reg", &endpoint->id);
1047 
1048 	of_node_put(port_node);
1049 
1050 	return 0;
1051 }
1052 
1053 static const void *
1054 of_fwnode_device_get_match_data(const struct fwnode_handle *fwnode,
1055 				const struct device *dev)
1056 {
1057 	return of_device_get_match_data(dev);
1058 }
1059 
1060 static bool of_is_ancestor_of(struct device_node *test_ancestor,
1061 			      struct device_node *child)
1062 {
1063 	of_node_get(child);
1064 	while (child) {
1065 		if (child == test_ancestor) {
1066 			of_node_put(child);
1067 			return true;
1068 		}
1069 		child = of_get_next_parent(child);
1070 	}
1071 	return false;
1072 }
1073 
1074 static struct device_node *of_get_compat_node(struct device_node *np)
1075 {
1076 	of_node_get(np);
1077 
1078 	while (np) {
1079 		if (!of_device_is_available(np)) {
1080 			of_node_put(np);
1081 			np = NULL;
1082 		}
1083 
1084 		if (of_find_property(np, "compatible", NULL))
1085 			break;
1086 
1087 		np = of_get_next_parent(np);
1088 	}
1089 
1090 	return np;
1091 }
1092 
1093 static struct device_node *of_get_compat_node_parent(struct device_node *np)
1094 {
1095 	struct device_node *parent, *node;
1096 
1097 	parent = of_get_parent(np);
1098 	node = of_get_compat_node(parent);
1099 	of_node_put(parent);
1100 
1101 	return node;
1102 }
1103 
1104 /**
1105  * of_link_to_phandle - Add fwnode link to supplier from supplier phandle
1106  * @con_np: consumer device tree node
1107  * @sup_np: supplier device tree node
1108  *
1109  * Given a phandle to a supplier device tree node (@sup_np), this function
1110  * finds the device that owns the supplier device tree node and creates a
1111  * device link from @dev consumer device to the supplier device. This function
1112  * doesn't create device links for invalid scenarios such as trying to create a
1113  * link with a parent device as the consumer of its child device. In such
1114  * cases, it returns an error.
1115  *
1116  * Returns:
1117  * - 0 if fwnode link successfully created to supplier
1118  * - -EINVAL if the supplier link is invalid and should not be created
1119  * - -ENODEV if struct device will never be create for supplier
1120  */
1121 static int of_link_to_phandle(struct device_node *con_np,
1122 			      struct device_node *sup_np)
1123 {
1124 	struct device *sup_dev;
1125 	struct device_node *tmp_np = sup_np;
1126 
1127 	/*
1128 	 * Find the device node that contains the supplier phandle.  It may be
1129 	 * @sup_np or it may be an ancestor of @sup_np.
1130 	 */
1131 	sup_np = of_get_compat_node(sup_np);
1132 	if (!sup_np) {
1133 		pr_debug("Not linking %pOFP to %pOFP - No device\n",
1134 			 con_np, tmp_np);
1135 		return -ENODEV;
1136 	}
1137 
1138 	/*
1139 	 * Don't allow linking a device node as a consumer of one of its
1140 	 * descendant nodes. By definition, a child node can't be a functional
1141 	 * dependency for the parent node.
1142 	 */
1143 	if (of_is_ancestor_of(con_np, sup_np)) {
1144 		pr_debug("Not linking %pOFP to %pOFP - is descendant\n",
1145 			 con_np, sup_np);
1146 		of_node_put(sup_np);
1147 		return -EINVAL;
1148 	}
1149 
1150 	/*
1151 	 * Don't create links to "early devices" that won't have struct devices
1152 	 * created for them.
1153 	 */
1154 	sup_dev = get_dev_from_fwnode(&sup_np->fwnode);
1155 	if (!sup_dev &&
1156 	    (of_node_check_flag(sup_np, OF_POPULATED) ||
1157 	     sup_np->fwnode.flags & FWNODE_FLAG_NOT_DEVICE)) {
1158 		pr_debug("Not linking %pOFP to %pOFP - No struct device\n",
1159 			 con_np, sup_np);
1160 		of_node_put(sup_np);
1161 		return -ENODEV;
1162 	}
1163 	put_device(sup_dev);
1164 
1165 	fwnode_link_add(of_fwnode_handle(con_np), of_fwnode_handle(sup_np));
1166 	of_node_put(sup_np);
1167 
1168 	return 0;
1169 }
1170 
1171 /**
1172  * parse_prop_cells - Property parsing function for suppliers
1173  *
1174  * @np:		Pointer to device tree node containing a list
1175  * @prop_name:	Name of property to be parsed. Expected to hold phandle values
1176  * @index:	For properties holding a list of phandles, this is the index
1177  *		into the list.
1178  * @list_name:	Property name that is known to contain list of phandle(s) to
1179  *		supplier(s)
1180  * @cells_name:	property name that specifies phandles' arguments count
1181  *
1182  * This is a helper function to parse properties that have a known fixed name
1183  * and are a list of phandles and phandle arguments.
1184  *
1185  * Returns:
1186  * - phandle node pointer with refcount incremented. Caller must of_node_put()
1187  *   on it when done.
1188  * - NULL if no phandle found at index
1189  */
1190 static struct device_node *parse_prop_cells(struct device_node *np,
1191 					    const char *prop_name, int index,
1192 					    const char *list_name,
1193 					    const char *cells_name)
1194 {
1195 	struct of_phandle_args sup_args;
1196 
1197 	if (strcmp(prop_name, list_name))
1198 		return NULL;
1199 
1200 	if (of_parse_phandle_with_args(np, list_name, cells_name, index,
1201 				       &sup_args))
1202 		return NULL;
1203 
1204 	return sup_args.np;
1205 }
1206 
1207 #define DEFINE_SIMPLE_PROP(fname, name, cells)				  \
1208 static struct device_node *parse_##fname(struct device_node *np,	  \
1209 					const char *prop_name, int index) \
1210 {									  \
1211 	return parse_prop_cells(np, prop_name, index, name, cells);	  \
1212 }
1213 
1214 static int strcmp_suffix(const char *str, const char *suffix)
1215 {
1216 	unsigned int len, suffix_len;
1217 
1218 	len = strlen(str);
1219 	suffix_len = strlen(suffix);
1220 	if (len <= suffix_len)
1221 		return -1;
1222 	return strcmp(str + len - suffix_len, suffix);
1223 }
1224 
1225 /**
1226  * parse_suffix_prop_cells - Suffix property parsing function for suppliers
1227  *
1228  * @np:		Pointer to device tree node containing a list
1229  * @prop_name:	Name of property to be parsed. Expected to hold phandle values
1230  * @index:	For properties holding a list of phandles, this is the index
1231  *		into the list.
1232  * @suffix:	Property suffix that is known to contain list of phandle(s) to
1233  *		supplier(s)
1234  * @cells_name:	property name that specifies phandles' arguments count
1235  *
1236  * This is a helper function to parse properties that have a known fixed suffix
1237  * and are a list of phandles and phandle arguments.
1238  *
1239  * Returns:
1240  * - phandle node pointer with refcount incremented. Caller must of_node_put()
1241  *   on it when done.
1242  * - NULL if no phandle found at index
1243  */
1244 static struct device_node *parse_suffix_prop_cells(struct device_node *np,
1245 					    const char *prop_name, int index,
1246 					    const char *suffix,
1247 					    const char *cells_name)
1248 {
1249 	struct of_phandle_args sup_args;
1250 
1251 	if (strcmp_suffix(prop_name, suffix))
1252 		return NULL;
1253 
1254 	if (of_parse_phandle_with_args(np, prop_name, cells_name, index,
1255 				       &sup_args))
1256 		return NULL;
1257 
1258 	return sup_args.np;
1259 }
1260 
1261 #define DEFINE_SUFFIX_PROP(fname, suffix, cells)			     \
1262 static struct device_node *parse_##fname(struct device_node *np,	     \
1263 					const char *prop_name, int index)    \
1264 {									     \
1265 	return parse_suffix_prop_cells(np, prop_name, index, suffix, cells); \
1266 }
1267 
1268 /**
1269  * struct supplier_bindings - Property parsing functions for suppliers
1270  *
1271  * @parse_prop: function name
1272  *	parse_prop() finds the node corresponding to a supplier phandle
1273  * @parse_prop.np: Pointer to device node holding supplier phandle property
1274  * @parse_prop.prop_name: Name of property holding a phandle value
1275  * @parse_prop.index: For properties holding a list of phandles, this is the
1276  *		      index into the list
1277  * @optional: Describes whether a supplier is mandatory or not
1278  * @node_not_dev: The consumer node containing the property is never converted
1279  *		  to a struct device. Instead, parse ancestor nodes for the
1280  *		  compatible property to find a node corresponding to a device.
1281  *
1282  * Returns:
1283  * parse_prop() return values are
1284  * - phandle node pointer with refcount incremented. Caller must of_node_put()
1285  *   on it when done.
1286  * - NULL if no phandle found at index
1287  */
1288 struct supplier_bindings {
1289 	struct device_node *(*parse_prop)(struct device_node *np,
1290 					  const char *prop_name, int index);
1291 	bool optional;
1292 	bool node_not_dev;
1293 };
1294 
1295 DEFINE_SIMPLE_PROP(clocks, "clocks", "#clock-cells")
1296 DEFINE_SIMPLE_PROP(interconnects, "interconnects", "#interconnect-cells")
1297 DEFINE_SIMPLE_PROP(iommus, "iommus", "#iommu-cells")
1298 DEFINE_SIMPLE_PROP(mboxes, "mboxes", "#mbox-cells")
1299 DEFINE_SIMPLE_PROP(io_channels, "io-channel", "#io-channel-cells")
1300 DEFINE_SIMPLE_PROP(interrupt_parent, "interrupt-parent", NULL)
1301 DEFINE_SIMPLE_PROP(dmas, "dmas", "#dma-cells")
1302 DEFINE_SIMPLE_PROP(power_domains, "power-domains", "#power-domain-cells")
1303 DEFINE_SIMPLE_PROP(hwlocks, "hwlocks", "#hwlock-cells")
1304 DEFINE_SIMPLE_PROP(extcon, "extcon", NULL)
1305 DEFINE_SIMPLE_PROP(nvmem_cells, "nvmem-cells", NULL)
1306 DEFINE_SIMPLE_PROP(phys, "phys", "#phy-cells")
1307 DEFINE_SIMPLE_PROP(wakeup_parent, "wakeup-parent", NULL)
1308 DEFINE_SIMPLE_PROP(pinctrl0, "pinctrl-0", NULL)
1309 DEFINE_SIMPLE_PROP(pinctrl1, "pinctrl-1", NULL)
1310 DEFINE_SIMPLE_PROP(pinctrl2, "pinctrl-2", NULL)
1311 DEFINE_SIMPLE_PROP(pinctrl3, "pinctrl-3", NULL)
1312 DEFINE_SIMPLE_PROP(pinctrl4, "pinctrl-4", NULL)
1313 DEFINE_SIMPLE_PROP(pinctrl5, "pinctrl-5", NULL)
1314 DEFINE_SIMPLE_PROP(pinctrl6, "pinctrl-6", NULL)
1315 DEFINE_SIMPLE_PROP(pinctrl7, "pinctrl-7", NULL)
1316 DEFINE_SIMPLE_PROP(pinctrl8, "pinctrl-8", NULL)
1317 DEFINE_SIMPLE_PROP(remote_endpoint, "remote-endpoint", NULL)
1318 DEFINE_SIMPLE_PROP(pwms, "pwms", "#pwm-cells")
1319 DEFINE_SIMPLE_PROP(resets, "resets", "#reset-cells")
1320 DEFINE_SIMPLE_PROP(leds, "leds", NULL)
1321 DEFINE_SIMPLE_PROP(backlight, "backlight", NULL)
1322 DEFINE_SUFFIX_PROP(regulators, "-supply", NULL)
1323 DEFINE_SUFFIX_PROP(gpio, "-gpio", "#gpio-cells")
1324 
1325 static struct device_node *parse_gpios(struct device_node *np,
1326 				       const char *prop_name, int index)
1327 {
1328 	if (!strcmp_suffix(prop_name, ",nr-gpios"))
1329 		return NULL;
1330 
1331 	return parse_suffix_prop_cells(np, prop_name, index, "-gpios",
1332 				       "#gpio-cells");
1333 }
1334 
1335 static struct device_node *parse_iommu_maps(struct device_node *np,
1336 					    const char *prop_name, int index)
1337 {
1338 	if (strcmp(prop_name, "iommu-map"))
1339 		return NULL;
1340 
1341 	return of_parse_phandle(np, prop_name, (index * 4) + 1);
1342 }
1343 
1344 static struct device_node *parse_gpio_compat(struct device_node *np,
1345 					     const char *prop_name, int index)
1346 {
1347 	struct of_phandle_args sup_args;
1348 
1349 	if (strcmp(prop_name, "gpio") && strcmp(prop_name, "gpios"))
1350 		return NULL;
1351 
1352 	/*
1353 	 * Ignore node with gpio-hog property since its gpios are all provided
1354 	 * by its parent.
1355 	 */
1356 	if (of_find_property(np, "gpio-hog", NULL))
1357 		return NULL;
1358 
1359 	if (of_parse_phandle_with_args(np, prop_name, "#gpio-cells", index,
1360 				       &sup_args))
1361 		return NULL;
1362 
1363 	return sup_args.np;
1364 }
1365 
1366 static struct device_node *parse_interrupts(struct device_node *np,
1367 					    const char *prop_name, int index)
1368 {
1369 	struct of_phandle_args sup_args;
1370 
1371 	if (!IS_ENABLED(CONFIG_OF_IRQ) || IS_ENABLED(CONFIG_PPC))
1372 		return NULL;
1373 
1374 	if (strcmp(prop_name, "interrupts") &&
1375 	    strcmp(prop_name, "interrupts-extended"))
1376 		return NULL;
1377 
1378 	return of_irq_parse_one(np, index, &sup_args) ? NULL : sup_args.np;
1379 }
1380 
1381 static const struct supplier_bindings of_supplier_bindings[] = {
1382 	{ .parse_prop = parse_clocks, },
1383 	{ .parse_prop = parse_interconnects, },
1384 	{ .parse_prop = parse_iommus, .optional = true, },
1385 	{ .parse_prop = parse_iommu_maps, .optional = true, },
1386 	{ .parse_prop = parse_mboxes, },
1387 	{ .parse_prop = parse_io_channels, },
1388 	{ .parse_prop = parse_interrupt_parent, },
1389 	{ .parse_prop = parse_dmas, .optional = true, },
1390 	{ .parse_prop = parse_power_domains, },
1391 	{ .parse_prop = parse_hwlocks, },
1392 	{ .parse_prop = parse_extcon, },
1393 	{ .parse_prop = parse_nvmem_cells, },
1394 	{ .parse_prop = parse_phys, },
1395 	{ .parse_prop = parse_wakeup_parent, },
1396 	{ .parse_prop = parse_pinctrl0, },
1397 	{ .parse_prop = parse_pinctrl1, },
1398 	{ .parse_prop = parse_pinctrl2, },
1399 	{ .parse_prop = parse_pinctrl3, },
1400 	{ .parse_prop = parse_pinctrl4, },
1401 	{ .parse_prop = parse_pinctrl5, },
1402 	{ .parse_prop = parse_pinctrl6, },
1403 	{ .parse_prop = parse_pinctrl7, },
1404 	{ .parse_prop = parse_pinctrl8, },
1405 	{ .parse_prop = parse_remote_endpoint, .node_not_dev = true, },
1406 	{ .parse_prop = parse_pwms, },
1407 	{ .parse_prop = parse_resets, },
1408 	{ .parse_prop = parse_leds, },
1409 	{ .parse_prop = parse_backlight, },
1410 	{ .parse_prop = parse_gpio_compat, },
1411 	{ .parse_prop = parse_interrupts, },
1412 	{ .parse_prop = parse_regulators, },
1413 	{ .parse_prop = parse_gpio, },
1414 	{ .parse_prop = parse_gpios, },
1415 	{}
1416 };
1417 
1418 /**
1419  * of_link_property - Create device links to suppliers listed in a property
1420  * @con_np: The consumer device tree node which contains the property
1421  * @prop_name: Name of property to be parsed
1422  *
1423  * This function checks if the property @prop_name that is present in the
1424  * @con_np device tree node is one of the known common device tree bindings
1425  * that list phandles to suppliers. If @prop_name isn't one, this function
1426  * doesn't do anything.
1427  *
1428  * If @prop_name is one, this function attempts to create fwnode links from the
1429  * consumer device tree node @con_np to all the suppliers device tree nodes
1430  * listed in @prop_name.
1431  *
1432  * Any failed attempt to create a fwnode link will NOT result in an immediate
1433  * return.  of_link_property() must create links to all the available supplier
1434  * device tree nodes even when attempts to create a link to one or more
1435  * suppliers fail.
1436  */
1437 static int of_link_property(struct device_node *con_np, const char *prop_name)
1438 {
1439 	struct device_node *phandle;
1440 	const struct supplier_bindings *s = of_supplier_bindings;
1441 	unsigned int i = 0;
1442 	bool matched = false;
1443 
1444 	/* Do not stop at first failed link, link all available suppliers. */
1445 	while (!matched && s->parse_prop) {
1446 		if (s->optional && !fw_devlink_is_strict()) {
1447 			s++;
1448 			continue;
1449 		}
1450 
1451 		while ((phandle = s->parse_prop(con_np, prop_name, i))) {
1452 			struct device_node *con_dev_np;
1453 
1454 			con_dev_np = s->node_not_dev
1455 					? of_get_compat_node_parent(con_np)
1456 					: of_node_get(con_np);
1457 			matched = true;
1458 			i++;
1459 			of_link_to_phandle(con_dev_np, phandle);
1460 			of_node_put(phandle);
1461 			of_node_put(con_dev_np);
1462 		}
1463 		s++;
1464 	}
1465 	return 0;
1466 }
1467 
1468 static void __iomem *of_fwnode_iomap(struct fwnode_handle *fwnode, int index)
1469 {
1470 #ifdef CONFIG_OF_ADDRESS
1471 	return of_iomap(to_of_node(fwnode), index);
1472 #else
1473 	return NULL;
1474 #endif
1475 }
1476 
1477 static int of_fwnode_irq_get(const struct fwnode_handle *fwnode,
1478 			     unsigned int index)
1479 {
1480 	return of_irq_get(to_of_node(fwnode), index);
1481 }
1482 
1483 static int of_fwnode_add_links(struct fwnode_handle *fwnode)
1484 {
1485 	struct property *p;
1486 	struct device_node *con_np = to_of_node(fwnode);
1487 
1488 	if (IS_ENABLED(CONFIG_X86))
1489 		return 0;
1490 
1491 	if (!con_np)
1492 		return -EINVAL;
1493 
1494 	for_each_property_of_node(con_np, p)
1495 		of_link_property(con_np, p->name);
1496 
1497 	return 0;
1498 }
1499 
1500 const struct fwnode_operations of_fwnode_ops = {
1501 	.get = of_fwnode_get,
1502 	.put = of_fwnode_put,
1503 	.device_is_available = of_fwnode_device_is_available,
1504 	.device_get_match_data = of_fwnode_device_get_match_data,
1505 	.device_dma_supported = of_fwnode_device_dma_supported,
1506 	.device_get_dma_attr = of_fwnode_device_get_dma_attr,
1507 	.property_present = of_fwnode_property_present,
1508 	.property_read_int_array = of_fwnode_property_read_int_array,
1509 	.property_read_string_array = of_fwnode_property_read_string_array,
1510 	.get_name = of_fwnode_get_name,
1511 	.get_name_prefix = of_fwnode_get_name_prefix,
1512 	.get_parent = of_fwnode_get_parent,
1513 	.get_next_child_node = of_fwnode_get_next_child_node,
1514 	.get_named_child_node = of_fwnode_get_named_child_node,
1515 	.get_reference_args = of_fwnode_get_reference_args,
1516 	.graph_get_next_endpoint = of_fwnode_graph_get_next_endpoint,
1517 	.graph_get_remote_endpoint = of_fwnode_graph_get_remote_endpoint,
1518 	.graph_get_port_parent = of_fwnode_graph_get_port_parent,
1519 	.graph_parse_endpoint = of_fwnode_graph_parse_endpoint,
1520 	.iomap = of_fwnode_iomap,
1521 	.irq_get = of_fwnode_irq_get,
1522 	.add_links = of_fwnode_add_links,
1523 };
1524 EXPORT_SYMBOL_GPL(of_fwnode_ops);
1525