1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * drivers/of/property.c - Procedures for accessing and interpreting 4 * Devicetree properties and graphs. 5 * 6 * Initially created by copying procedures from drivers/of/base.c. This 7 * file contains the OF property as well as the OF graph interface 8 * functions. 9 * 10 * Paul Mackerras August 1996. 11 * Copyright (C) 1996-2005 Paul Mackerras. 12 * 13 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 14 * {engebret|bergner}@us.ibm.com 15 * 16 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 17 * 18 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 19 * Grant Likely. 20 */ 21 22 #define pr_fmt(fmt) "OF: " fmt 23 24 #include <linux/of.h> 25 #include <linux/of_address.h> 26 #include <linux/of_device.h> 27 #include <linux/of_graph.h> 28 #include <linux/of_irq.h> 29 #include <linux/string.h> 30 #include <linux/moduleparam.h> 31 32 #include "of_private.h" 33 34 /** 35 * of_graph_is_present() - check graph's presence 36 * @node: pointer to device_node containing graph port 37 * 38 * Return: True if @node has a port or ports (with a port) sub-node, 39 * false otherwise. 40 */ 41 bool of_graph_is_present(const struct device_node *node) 42 { 43 struct device_node *ports __free(device_node) = of_get_child_by_name(node, "ports"); 44 45 if (ports) 46 node = ports; 47 48 struct device_node *port __free(device_node) = of_get_child_by_name(node, "port"); 49 50 return !!port; 51 } 52 EXPORT_SYMBOL(of_graph_is_present); 53 54 /** 55 * of_property_count_elems_of_size - Count the number of elements in a property 56 * 57 * @np: device node from which the property value is to be read. 58 * @propname: name of the property to be searched. 59 * @elem_size: size of the individual element 60 * 61 * Search for a property in a device node and count the number of elements of 62 * size elem_size in it. 63 * 64 * Return: The number of elements on sucess, -EINVAL if the property does not 65 * exist or its length does not match a multiple of elem_size and -ENODATA if 66 * the property does not have a value. 67 */ 68 int of_property_count_elems_of_size(const struct device_node *np, 69 const char *propname, int elem_size) 70 { 71 struct property *prop = of_find_property(np, propname, NULL); 72 73 if (!prop) 74 return -EINVAL; 75 if (!prop->value) 76 return -ENODATA; 77 78 if (prop->length % elem_size != 0) { 79 pr_err("size of %s in node %pOF is not a multiple of %d\n", 80 propname, np, elem_size); 81 return -EINVAL; 82 } 83 84 return prop->length / elem_size; 85 } 86 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size); 87 88 /** 89 * of_find_property_value_of_size 90 * 91 * @np: device node from which the property value is to be read. 92 * @propname: name of the property to be searched. 93 * @min: minimum allowed length of property value 94 * @max: maximum allowed length of property value (0 means unlimited) 95 * @len: if !=NULL, actual length is written to here 96 * 97 * Search for a property in a device node and valid the requested size. 98 * 99 * Return: The property value on success, -EINVAL if the property does not 100 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the 101 * property data is too small or too large. 102 * 103 */ 104 static void *of_find_property_value_of_size(const struct device_node *np, 105 const char *propname, u32 min, u32 max, size_t *len) 106 { 107 struct property *prop = of_find_property(np, propname, NULL); 108 109 if (!prop) 110 return ERR_PTR(-EINVAL); 111 if (!prop->value) 112 return ERR_PTR(-ENODATA); 113 if (prop->length < min) 114 return ERR_PTR(-EOVERFLOW); 115 if (max && prop->length > max) 116 return ERR_PTR(-EOVERFLOW); 117 118 if (len) 119 *len = prop->length; 120 121 return prop->value; 122 } 123 124 /** 125 * of_property_read_u32_index - Find and read a u32 from a multi-value property. 126 * 127 * @np: device node from which the property value is to be read. 128 * @propname: name of the property to be searched. 129 * @index: index of the u32 in the list of values 130 * @out_value: pointer to return value, modified only if no error. 131 * 132 * Search for a property in a device node and read nth 32-bit value from 133 * it. 134 * 135 * Return: 0 on success, -EINVAL if the property does not exist, 136 * -ENODATA if property does not have a value, and -EOVERFLOW if the 137 * property data isn't large enough. 138 * 139 * The out_value is modified only if a valid u32 value can be decoded. 140 */ 141 int of_property_read_u32_index(const struct device_node *np, 142 const char *propname, 143 u32 index, u32 *out_value) 144 { 145 const u32 *val = of_find_property_value_of_size(np, propname, 146 ((index + 1) * sizeof(*out_value)), 147 0, 148 NULL); 149 150 if (IS_ERR(val)) 151 return PTR_ERR(val); 152 153 *out_value = be32_to_cpup(((__be32 *)val) + index); 154 return 0; 155 } 156 EXPORT_SYMBOL_GPL(of_property_read_u32_index); 157 158 /** 159 * of_property_read_u64_index - Find and read a u64 from a multi-value property. 160 * 161 * @np: device node from which the property value is to be read. 162 * @propname: name of the property to be searched. 163 * @index: index of the u64 in the list of values 164 * @out_value: pointer to return value, modified only if no error. 165 * 166 * Search for a property in a device node and read nth 64-bit value from 167 * it. 168 * 169 * Return: 0 on success, -EINVAL if the property does not exist, 170 * -ENODATA if property does not have a value, and -EOVERFLOW if the 171 * property data isn't large enough. 172 * 173 * The out_value is modified only if a valid u64 value can be decoded. 174 */ 175 int of_property_read_u64_index(const struct device_node *np, 176 const char *propname, 177 u32 index, u64 *out_value) 178 { 179 const u64 *val = of_find_property_value_of_size(np, propname, 180 ((index + 1) * sizeof(*out_value)), 181 0, NULL); 182 183 if (IS_ERR(val)) 184 return PTR_ERR(val); 185 186 *out_value = be64_to_cpup(((__be64 *)val) + index); 187 return 0; 188 } 189 EXPORT_SYMBOL_GPL(of_property_read_u64_index); 190 191 /** 192 * of_property_read_variable_u8_array - Find and read an array of u8 from a 193 * property, with bounds on the minimum and maximum array size. 194 * 195 * @np: device node from which the property value is to be read. 196 * @propname: name of the property to be searched. 197 * @out_values: pointer to found values. 198 * @sz_min: minimum number of array elements to read 199 * @sz_max: maximum number of array elements to read, if zero there is no 200 * upper limit on the number of elements in the dts entry but only 201 * sz_min will be read. 202 * 203 * Search for a property in a device node and read 8-bit value(s) from 204 * it. 205 * 206 * dts entry of array should be like: 207 * ``property = /bits/ 8 <0x50 0x60 0x70>;`` 208 * 209 * Return: The number of elements read on success, -EINVAL if the property 210 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 211 * if the property data is smaller than sz_min or longer than sz_max. 212 * 213 * The out_values is modified only if a valid u8 value can be decoded. 214 */ 215 int of_property_read_variable_u8_array(const struct device_node *np, 216 const char *propname, u8 *out_values, 217 size_t sz_min, size_t sz_max) 218 { 219 size_t sz, count; 220 const u8 *val = of_find_property_value_of_size(np, propname, 221 (sz_min * sizeof(*out_values)), 222 (sz_max * sizeof(*out_values)), 223 &sz); 224 225 if (IS_ERR(val)) 226 return PTR_ERR(val); 227 228 if (!sz_max) 229 sz = sz_min; 230 else 231 sz /= sizeof(*out_values); 232 233 count = sz; 234 while (count--) 235 *out_values++ = *val++; 236 237 return sz; 238 } 239 EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array); 240 241 /** 242 * of_property_read_variable_u16_array - Find and read an array of u16 from a 243 * property, with bounds on the minimum and maximum array size. 244 * 245 * @np: device node from which the property value is to be read. 246 * @propname: name of the property to be searched. 247 * @out_values: pointer to found values. 248 * @sz_min: minimum number of array elements to read 249 * @sz_max: maximum number of array elements to read, if zero there is no 250 * upper limit on the number of elements in the dts entry but only 251 * sz_min will be read. 252 * 253 * Search for a property in a device node and read 16-bit value(s) from 254 * it. 255 * 256 * dts entry of array should be like: 257 * ``property = /bits/ 16 <0x5000 0x6000 0x7000>;`` 258 * 259 * Return: The number of elements read on success, -EINVAL if the property 260 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 261 * if the property data is smaller than sz_min or longer than sz_max. 262 * 263 * The out_values is modified only if a valid u16 value can be decoded. 264 */ 265 int of_property_read_variable_u16_array(const struct device_node *np, 266 const char *propname, u16 *out_values, 267 size_t sz_min, size_t sz_max) 268 { 269 size_t sz, count; 270 const __be16 *val = of_find_property_value_of_size(np, propname, 271 (sz_min * sizeof(*out_values)), 272 (sz_max * sizeof(*out_values)), 273 &sz); 274 275 if (IS_ERR(val)) 276 return PTR_ERR(val); 277 278 if (!sz_max) 279 sz = sz_min; 280 else 281 sz /= sizeof(*out_values); 282 283 count = sz; 284 while (count--) 285 *out_values++ = be16_to_cpup(val++); 286 287 return sz; 288 } 289 EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array); 290 291 /** 292 * of_property_read_variable_u32_array - Find and read an array of 32 bit 293 * integers from a property, with bounds on the minimum and maximum array size. 294 * 295 * @np: device node from which the property value is to be read. 296 * @propname: name of the property to be searched. 297 * @out_values: pointer to return found values. 298 * @sz_min: minimum number of array elements to read 299 * @sz_max: maximum number of array elements to read, if zero there is no 300 * upper limit on the number of elements in the dts entry but only 301 * sz_min will be read. 302 * 303 * Search for a property in a device node and read 32-bit value(s) from 304 * it. 305 * 306 * Return: The number of elements read on success, -EINVAL if the property 307 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 308 * if the property data is smaller than sz_min or longer than sz_max. 309 * 310 * The out_values is modified only if a valid u32 value can be decoded. 311 */ 312 int of_property_read_variable_u32_array(const struct device_node *np, 313 const char *propname, u32 *out_values, 314 size_t sz_min, size_t sz_max) 315 { 316 size_t sz, count; 317 const __be32 *val = of_find_property_value_of_size(np, propname, 318 (sz_min * sizeof(*out_values)), 319 (sz_max * sizeof(*out_values)), 320 &sz); 321 322 if (IS_ERR(val)) 323 return PTR_ERR(val); 324 325 if (!sz_max) 326 sz = sz_min; 327 else 328 sz /= sizeof(*out_values); 329 330 count = sz; 331 while (count--) 332 *out_values++ = be32_to_cpup(val++); 333 334 return sz; 335 } 336 EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array); 337 338 /** 339 * of_property_read_u64 - Find and read a 64 bit integer from a property 340 * @np: device node from which the property value is to be read. 341 * @propname: name of the property to be searched. 342 * @out_value: pointer to return value, modified only if return value is 0. 343 * 344 * Search for a property in a device node and read a 64-bit value from 345 * it. 346 * 347 * Return: 0 on success, -EINVAL if the property does not exist, 348 * -ENODATA if property does not have a value, and -EOVERFLOW if the 349 * property data isn't large enough. 350 * 351 * The out_value is modified only if a valid u64 value can be decoded. 352 */ 353 int of_property_read_u64(const struct device_node *np, const char *propname, 354 u64 *out_value) 355 { 356 const __be32 *val = of_find_property_value_of_size(np, propname, 357 sizeof(*out_value), 358 0, 359 NULL); 360 361 if (IS_ERR(val)) 362 return PTR_ERR(val); 363 364 *out_value = of_read_number(val, 2); 365 return 0; 366 } 367 EXPORT_SYMBOL_GPL(of_property_read_u64); 368 369 /** 370 * of_property_read_variable_u64_array - Find and read an array of 64 bit 371 * integers from a property, with bounds on the minimum and maximum array size. 372 * 373 * @np: device node from which the property value is to be read. 374 * @propname: name of the property to be searched. 375 * @out_values: pointer to found values. 376 * @sz_min: minimum number of array elements to read 377 * @sz_max: maximum number of array elements to read, if zero there is no 378 * upper limit on the number of elements in the dts entry but only 379 * sz_min will be read. 380 * 381 * Search for a property in a device node and read 64-bit value(s) from 382 * it. 383 * 384 * Return: The number of elements read on success, -EINVAL if the property 385 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 386 * if the property data is smaller than sz_min or longer than sz_max. 387 * 388 * The out_values is modified only if a valid u64 value can be decoded. 389 */ 390 int of_property_read_variable_u64_array(const struct device_node *np, 391 const char *propname, u64 *out_values, 392 size_t sz_min, size_t sz_max) 393 { 394 size_t sz, count; 395 const __be32 *val = of_find_property_value_of_size(np, propname, 396 (sz_min * sizeof(*out_values)), 397 (sz_max * sizeof(*out_values)), 398 &sz); 399 400 if (IS_ERR(val)) 401 return PTR_ERR(val); 402 403 if (!sz_max) 404 sz = sz_min; 405 else 406 sz /= sizeof(*out_values); 407 408 count = sz; 409 while (count--) { 410 *out_values++ = of_read_number(val, 2); 411 val += 2; 412 } 413 414 return sz; 415 } 416 EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array); 417 418 /** 419 * of_property_read_string - Find and read a string from a property 420 * @np: device node from which the property value is to be read. 421 * @propname: name of the property to be searched. 422 * @out_string: pointer to null terminated return string, modified only if 423 * return value is 0. 424 * 425 * Search for a property in a device tree node and retrieve a null 426 * terminated string value (pointer to data, not a copy). 427 * 428 * Return: 0 on success, -EINVAL if the property does not exist, -ENODATA if 429 * property does not have a value, and -EILSEQ if the string is not 430 * null-terminated within the length of the property data. 431 * 432 * Note that the empty string "" has length of 1, thus -ENODATA cannot 433 * be interpreted as an empty string. 434 * 435 * The out_string pointer is modified only if a valid string can be decoded. 436 */ 437 int of_property_read_string(const struct device_node *np, const char *propname, 438 const char **out_string) 439 { 440 const struct property *prop = of_find_property(np, propname, NULL); 441 442 if (!prop) 443 return -EINVAL; 444 if (!prop->length) 445 return -ENODATA; 446 if (strnlen(prop->value, prop->length) >= prop->length) 447 return -EILSEQ; 448 *out_string = prop->value; 449 return 0; 450 } 451 EXPORT_SYMBOL_GPL(of_property_read_string); 452 453 /** 454 * of_property_match_string() - Find string in a list and return index 455 * @np: pointer to the node containing the string list property 456 * @propname: string list property name 457 * @string: pointer to the string to search for in the string list 458 * 459 * Search for an exact match of string in a device node property which is a 460 * string of lists. 461 * 462 * Return: the index of the first occurrence of the string on success, -EINVAL 463 * if the property does not exist, -ENODATA if the property does not have a 464 * value, and -EILSEQ if the string is not null-terminated within the length of 465 * the property data. 466 */ 467 int of_property_match_string(const struct device_node *np, const char *propname, 468 const char *string) 469 { 470 const struct property *prop = of_find_property(np, propname, NULL); 471 size_t l; 472 int i; 473 const char *p, *end; 474 475 if (!prop) 476 return -EINVAL; 477 if (!prop->value) 478 return -ENODATA; 479 480 p = prop->value; 481 end = p + prop->length; 482 483 for (i = 0; p < end; i++, p += l) { 484 l = strnlen(p, end - p) + 1; 485 if (p + l > end) 486 return -EILSEQ; 487 pr_debug("comparing %s with %s\n", string, p); 488 if (strcmp(string, p) == 0) 489 return i; /* Found it; return index */ 490 } 491 return -ENODATA; 492 } 493 EXPORT_SYMBOL_GPL(of_property_match_string); 494 495 /** 496 * of_property_read_string_helper() - Utility helper for parsing string properties 497 * @np: device node from which the property value is to be read. 498 * @propname: name of the property to be searched. 499 * @out_strs: output array of string pointers. 500 * @sz: number of array elements to read. 501 * @skip: Number of strings to skip over at beginning of list. 502 * 503 * Don't call this function directly. It is a utility helper for the 504 * of_property_read_string*() family of functions. 505 */ 506 int of_property_read_string_helper(const struct device_node *np, 507 const char *propname, const char **out_strs, 508 size_t sz, int skip) 509 { 510 const struct property *prop = of_find_property(np, propname, NULL); 511 int l = 0, i = 0; 512 const char *p, *end; 513 514 if (!prop) 515 return -EINVAL; 516 if (!prop->value) 517 return -ENODATA; 518 p = prop->value; 519 end = p + prop->length; 520 521 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) { 522 l = strnlen(p, end - p) + 1; 523 if (p + l > end) 524 return -EILSEQ; 525 if (out_strs && i >= skip) 526 *out_strs++ = p; 527 } 528 i -= skip; 529 return i <= 0 ? -ENODATA : i; 530 } 531 EXPORT_SYMBOL_GPL(of_property_read_string_helper); 532 533 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur, 534 u32 *pu) 535 { 536 const void *curv = cur; 537 538 if (!prop) 539 return NULL; 540 541 if (!cur) { 542 curv = prop->value; 543 goto out_val; 544 } 545 546 curv += sizeof(*cur); 547 if (curv >= prop->value + prop->length) 548 return NULL; 549 550 out_val: 551 *pu = be32_to_cpup(curv); 552 return curv; 553 } 554 EXPORT_SYMBOL_GPL(of_prop_next_u32); 555 556 const char *of_prop_next_string(struct property *prop, const char *cur) 557 { 558 const void *curv = cur; 559 560 if (!prop) 561 return NULL; 562 563 if (!cur) 564 return prop->value; 565 566 curv += strlen(cur) + 1; 567 if (curv >= prop->value + prop->length) 568 return NULL; 569 570 return curv; 571 } 572 EXPORT_SYMBOL_GPL(of_prop_next_string); 573 574 /** 575 * of_graph_parse_endpoint() - parse common endpoint node properties 576 * @node: pointer to endpoint device_node 577 * @endpoint: pointer to the OF endpoint data structure 578 * 579 * The caller should hold a reference to @node. 580 */ 581 int of_graph_parse_endpoint(const struct device_node *node, 582 struct of_endpoint *endpoint) 583 { 584 struct device_node *port_node __free(device_node) = 585 of_get_parent(node); 586 587 WARN_ONCE(!port_node, "%s(): endpoint %pOF has no parent node\n", 588 __func__, node); 589 590 memset(endpoint, 0, sizeof(*endpoint)); 591 592 endpoint->local_node = node; 593 /* 594 * It doesn't matter whether the two calls below succeed. 595 * If they don't then the default value 0 is used. 596 */ 597 of_property_read_u32(port_node, "reg", &endpoint->port); 598 of_property_read_u32(node, "reg", &endpoint->id); 599 600 return 0; 601 } 602 EXPORT_SYMBOL(of_graph_parse_endpoint); 603 604 /** 605 * of_graph_get_port_by_id() - get the port matching a given id 606 * @parent: pointer to the parent device node 607 * @id: id of the port 608 * 609 * Return: A 'port' node pointer with refcount incremented. The caller 610 * has to use of_node_put() on it when done. 611 */ 612 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id) 613 { 614 struct device_node *node __free(device_node) = of_get_child_by_name(parent, "ports"); 615 616 if (node) 617 parent = node; 618 619 for_each_child_of_node_scoped(parent, port) { 620 u32 port_id = 0; 621 622 if (!of_node_name_eq(port, "port")) 623 continue; 624 of_property_read_u32(port, "reg", &port_id); 625 if (id == port_id) 626 return_ptr(port); 627 } 628 629 return NULL; 630 } 631 EXPORT_SYMBOL(of_graph_get_port_by_id); 632 633 /** 634 * of_graph_get_next_endpoint() - get next endpoint node 635 * @parent: pointer to the parent device node 636 * @prev: previous endpoint node, or NULL to get first 637 * 638 * Return: An 'endpoint' node pointer with refcount incremented. Refcount 639 * of the passed @prev node is decremented. 640 */ 641 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent, 642 struct device_node *prev) 643 { 644 struct device_node *endpoint; 645 struct device_node *port; 646 647 if (!parent) 648 return NULL; 649 650 /* 651 * Start by locating the port node. If no previous endpoint is specified 652 * search for the first port node, otherwise get the previous endpoint 653 * parent port node. 654 */ 655 if (!prev) { 656 struct device_node *node __free(device_node) = 657 of_get_child_by_name(parent, "ports"); 658 659 if (node) 660 parent = node; 661 662 port = of_get_child_by_name(parent, "port"); 663 if (!port) { 664 pr_debug("graph: no port node found in %pOF\n", parent); 665 return NULL; 666 } 667 } else { 668 port = of_get_parent(prev); 669 if (WARN_ONCE(!port, "%s(): endpoint %pOF has no parent node\n", 670 __func__, prev)) 671 return NULL; 672 } 673 674 while (1) { 675 /* 676 * Now that we have a port node, get the next endpoint by 677 * getting the next child. If the previous endpoint is NULL this 678 * will return the first child. 679 */ 680 endpoint = of_get_next_child(port, prev); 681 if (endpoint) { 682 of_node_put(port); 683 return endpoint; 684 } 685 686 /* No more endpoints under this port, try the next one. */ 687 prev = NULL; 688 689 do { 690 port = of_get_next_child(parent, port); 691 if (!port) 692 return NULL; 693 } while (!of_node_name_eq(port, "port")); 694 } 695 } 696 EXPORT_SYMBOL(of_graph_get_next_endpoint); 697 698 /** 699 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers 700 * @parent: pointer to the parent device node 701 * @port_reg: identifier (value of reg property) of the parent port node 702 * @reg: identifier (value of reg property) of the endpoint node 703 * 704 * Return: An 'endpoint' node pointer which is identified by reg and at the same 705 * is the child of a port node identified by port_reg. reg and port_reg are 706 * ignored when they are -1. Use of_node_put() on the pointer when done. 707 */ 708 struct device_node *of_graph_get_endpoint_by_regs( 709 const struct device_node *parent, int port_reg, int reg) 710 { 711 struct of_endpoint endpoint; 712 struct device_node *node = NULL; 713 714 for_each_endpoint_of_node(parent, node) { 715 of_graph_parse_endpoint(node, &endpoint); 716 if (((port_reg == -1) || (endpoint.port == port_reg)) && 717 ((reg == -1) || (endpoint.id == reg))) 718 return node; 719 } 720 721 return NULL; 722 } 723 EXPORT_SYMBOL(of_graph_get_endpoint_by_regs); 724 725 /** 726 * of_graph_get_remote_endpoint() - get remote endpoint node 727 * @node: pointer to a local endpoint device_node 728 * 729 * Return: Remote endpoint node associated with remote endpoint node linked 730 * to @node. Use of_node_put() on it when done. 731 */ 732 struct device_node *of_graph_get_remote_endpoint(const struct device_node *node) 733 { 734 /* Get remote endpoint node. */ 735 return of_parse_phandle(node, "remote-endpoint", 0); 736 } 737 EXPORT_SYMBOL(of_graph_get_remote_endpoint); 738 739 /** 740 * of_graph_get_port_parent() - get port's parent node 741 * @node: pointer to a local endpoint device_node 742 * 743 * Return: device node associated with endpoint node linked 744 * to @node. Use of_node_put() on it when done. 745 */ 746 struct device_node *of_graph_get_port_parent(struct device_node *node) 747 { 748 unsigned int depth; 749 750 if (!node) 751 return NULL; 752 753 /* 754 * Preserve usecount for passed in node as of_get_next_parent() 755 * will do of_node_put() on it. 756 */ 757 of_node_get(node); 758 759 /* Walk 3 levels up only if there is 'ports' node. */ 760 for (depth = 3; depth && node; depth--) { 761 node = of_get_next_parent(node); 762 if (depth == 2 && !of_node_name_eq(node, "ports") && 763 !of_node_name_eq(node, "in-ports") && 764 !of_node_name_eq(node, "out-ports")) 765 break; 766 } 767 return node; 768 } 769 EXPORT_SYMBOL(of_graph_get_port_parent); 770 771 /** 772 * of_graph_get_remote_port_parent() - get remote port's parent node 773 * @node: pointer to a local endpoint device_node 774 * 775 * Return: Remote device node associated with remote endpoint node linked 776 * to @node. Use of_node_put() on it when done. 777 */ 778 struct device_node *of_graph_get_remote_port_parent( 779 const struct device_node *node) 780 { 781 /* Get remote endpoint node. */ 782 struct device_node *np __free(device_node) = 783 of_graph_get_remote_endpoint(node); 784 785 return of_graph_get_port_parent(np); 786 } 787 EXPORT_SYMBOL(of_graph_get_remote_port_parent); 788 789 /** 790 * of_graph_get_remote_port() - get remote port node 791 * @node: pointer to a local endpoint device_node 792 * 793 * Return: Remote port node associated with remote endpoint node linked 794 * to @node. Use of_node_put() on it when done. 795 */ 796 struct device_node *of_graph_get_remote_port(const struct device_node *node) 797 { 798 struct device_node *np; 799 800 /* Get remote endpoint node. */ 801 np = of_graph_get_remote_endpoint(node); 802 if (!np) 803 return NULL; 804 return of_get_next_parent(np); 805 } 806 EXPORT_SYMBOL(of_graph_get_remote_port); 807 808 /** 809 * of_graph_get_endpoint_count() - get the number of endpoints in a device node 810 * @np: parent device node containing ports and endpoints 811 * 812 * Return: count of endpoint of this device node 813 */ 814 unsigned int of_graph_get_endpoint_count(const struct device_node *np) 815 { 816 struct device_node *endpoint; 817 unsigned int num = 0; 818 819 for_each_endpoint_of_node(np, endpoint) 820 num++; 821 822 return num; 823 } 824 EXPORT_SYMBOL(of_graph_get_endpoint_count); 825 826 /** 827 * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint 828 * @node: pointer to parent device_node containing graph port/endpoint 829 * @port: identifier (value of reg property) of the parent port node 830 * @endpoint: identifier (value of reg property) of the endpoint node 831 * 832 * Return: Remote device node associated with remote endpoint node linked 833 * to @node. Use of_node_put() on it when done. 834 */ 835 struct device_node *of_graph_get_remote_node(const struct device_node *node, 836 u32 port, u32 endpoint) 837 { 838 struct device_node *endpoint_node, *remote; 839 840 endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint); 841 if (!endpoint_node) { 842 pr_debug("no valid endpoint (%d, %d) for node %pOF\n", 843 port, endpoint, node); 844 return NULL; 845 } 846 847 remote = of_graph_get_remote_port_parent(endpoint_node); 848 of_node_put(endpoint_node); 849 if (!remote) { 850 pr_debug("no valid remote node\n"); 851 return NULL; 852 } 853 854 if (!of_device_is_available(remote)) { 855 pr_debug("not available for remote node\n"); 856 of_node_put(remote); 857 return NULL; 858 } 859 860 return remote; 861 } 862 EXPORT_SYMBOL(of_graph_get_remote_node); 863 864 static struct fwnode_handle *of_fwnode_get(struct fwnode_handle *fwnode) 865 { 866 return of_fwnode_handle(of_node_get(to_of_node(fwnode))); 867 } 868 869 static void of_fwnode_put(struct fwnode_handle *fwnode) 870 { 871 of_node_put(to_of_node(fwnode)); 872 } 873 874 static bool of_fwnode_device_is_available(const struct fwnode_handle *fwnode) 875 { 876 return of_device_is_available(to_of_node(fwnode)); 877 } 878 879 static bool of_fwnode_device_dma_supported(const struct fwnode_handle *fwnode) 880 { 881 return true; 882 } 883 884 static enum dev_dma_attr 885 of_fwnode_device_get_dma_attr(const struct fwnode_handle *fwnode) 886 { 887 if (of_dma_is_coherent(to_of_node(fwnode))) 888 return DEV_DMA_COHERENT; 889 else 890 return DEV_DMA_NON_COHERENT; 891 } 892 893 static bool of_fwnode_property_present(const struct fwnode_handle *fwnode, 894 const char *propname) 895 { 896 return of_property_read_bool(to_of_node(fwnode), propname); 897 } 898 899 static int of_fwnode_property_read_int_array(const struct fwnode_handle *fwnode, 900 const char *propname, 901 unsigned int elem_size, void *val, 902 size_t nval) 903 { 904 const struct device_node *node = to_of_node(fwnode); 905 906 if (!val) 907 return of_property_count_elems_of_size(node, propname, 908 elem_size); 909 910 switch (elem_size) { 911 case sizeof(u8): 912 return of_property_read_u8_array(node, propname, val, nval); 913 case sizeof(u16): 914 return of_property_read_u16_array(node, propname, val, nval); 915 case sizeof(u32): 916 return of_property_read_u32_array(node, propname, val, nval); 917 case sizeof(u64): 918 return of_property_read_u64_array(node, propname, val, nval); 919 } 920 921 return -ENXIO; 922 } 923 924 static int 925 of_fwnode_property_read_string_array(const struct fwnode_handle *fwnode, 926 const char *propname, const char **val, 927 size_t nval) 928 { 929 const struct device_node *node = to_of_node(fwnode); 930 931 return val ? 932 of_property_read_string_array(node, propname, val, nval) : 933 of_property_count_strings(node, propname); 934 } 935 936 static const char *of_fwnode_get_name(const struct fwnode_handle *fwnode) 937 { 938 return kbasename(to_of_node(fwnode)->full_name); 939 } 940 941 static const char *of_fwnode_get_name_prefix(const struct fwnode_handle *fwnode) 942 { 943 /* Root needs no prefix here (its name is "/"). */ 944 if (!to_of_node(fwnode)->parent) 945 return ""; 946 947 return "/"; 948 } 949 950 static struct fwnode_handle * 951 of_fwnode_get_parent(const struct fwnode_handle *fwnode) 952 { 953 return of_fwnode_handle(of_get_parent(to_of_node(fwnode))); 954 } 955 956 static struct fwnode_handle * 957 of_fwnode_get_next_child_node(const struct fwnode_handle *fwnode, 958 struct fwnode_handle *child) 959 { 960 return of_fwnode_handle(of_get_next_available_child(to_of_node(fwnode), 961 to_of_node(child))); 962 } 963 964 static struct fwnode_handle * 965 of_fwnode_get_named_child_node(const struct fwnode_handle *fwnode, 966 const char *childname) 967 { 968 const struct device_node *node = to_of_node(fwnode); 969 struct device_node *child; 970 971 for_each_available_child_of_node(node, child) 972 if (of_node_name_eq(child, childname)) 973 return of_fwnode_handle(child); 974 975 return NULL; 976 } 977 978 static int 979 of_fwnode_get_reference_args(const struct fwnode_handle *fwnode, 980 const char *prop, const char *nargs_prop, 981 unsigned int nargs, unsigned int index, 982 struct fwnode_reference_args *args) 983 { 984 struct of_phandle_args of_args; 985 unsigned int i; 986 int ret; 987 988 if (nargs_prop) 989 ret = of_parse_phandle_with_args(to_of_node(fwnode), prop, 990 nargs_prop, index, &of_args); 991 else 992 ret = of_parse_phandle_with_fixed_args(to_of_node(fwnode), prop, 993 nargs, index, &of_args); 994 if (ret < 0) 995 return ret; 996 if (!args) { 997 of_node_put(of_args.np); 998 return 0; 999 } 1000 1001 args->nargs = of_args.args_count; 1002 args->fwnode = of_fwnode_handle(of_args.np); 1003 1004 for (i = 0; i < NR_FWNODE_REFERENCE_ARGS; i++) 1005 args->args[i] = i < of_args.args_count ? of_args.args[i] : 0; 1006 1007 return 0; 1008 } 1009 1010 static struct fwnode_handle * 1011 of_fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode, 1012 struct fwnode_handle *prev) 1013 { 1014 return of_fwnode_handle(of_graph_get_next_endpoint(to_of_node(fwnode), 1015 to_of_node(prev))); 1016 } 1017 1018 static struct fwnode_handle * 1019 of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode) 1020 { 1021 return of_fwnode_handle( 1022 of_graph_get_remote_endpoint(to_of_node(fwnode))); 1023 } 1024 1025 static struct fwnode_handle * 1026 of_fwnode_graph_get_port_parent(struct fwnode_handle *fwnode) 1027 { 1028 struct device_node *np; 1029 1030 /* Get the parent of the port */ 1031 np = of_get_parent(to_of_node(fwnode)); 1032 if (!np) 1033 return NULL; 1034 1035 /* Is this the "ports" node? If not, it's the port parent. */ 1036 if (!of_node_name_eq(np, "ports")) 1037 return of_fwnode_handle(np); 1038 1039 return of_fwnode_handle(of_get_next_parent(np)); 1040 } 1041 1042 static int of_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode, 1043 struct fwnode_endpoint *endpoint) 1044 { 1045 const struct device_node *node = to_of_node(fwnode); 1046 struct device_node *port_node __free(device_node) = of_get_parent(node); 1047 1048 endpoint->local_fwnode = fwnode; 1049 1050 of_property_read_u32(port_node, "reg", &endpoint->port); 1051 of_property_read_u32(node, "reg", &endpoint->id); 1052 1053 return 0; 1054 } 1055 1056 static const void * 1057 of_fwnode_device_get_match_data(const struct fwnode_handle *fwnode, 1058 const struct device *dev) 1059 { 1060 return of_device_get_match_data(dev); 1061 } 1062 1063 static void of_link_to_phandle(struct device_node *con_np, 1064 struct device_node *sup_np, 1065 u8 flags) 1066 { 1067 struct device_node *tmp_np __free(device_node) = of_node_get(sup_np); 1068 1069 /* Check that sup_np and its ancestors are available. */ 1070 while (tmp_np) { 1071 if (of_fwnode_handle(tmp_np)->dev) 1072 break; 1073 1074 if (!of_device_is_available(tmp_np)) 1075 return; 1076 1077 tmp_np = of_get_next_parent(tmp_np); 1078 } 1079 1080 fwnode_link_add(of_fwnode_handle(con_np), of_fwnode_handle(sup_np), flags); 1081 } 1082 1083 /** 1084 * parse_prop_cells - Property parsing function for suppliers 1085 * 1086 * @np: Pointer to device tree node containing a list 1087 * @prop_name: Name of property to be parsed. Expected to hold phandle values 1088 * @index: For properties holding a list of phandles, this is the index 1089 * into the list. 1090 * @list_name: Property name that is known to contain list of phandle(s) to 1091 * supplier(s) 1092 * @cells_name: property name that specifies phandles' arguments count 1093 * 1094 * This is a helper function to parse properties that have a known fixed name 1095 * and are a list of phandles and phandle arguments. 1096 * 1097 * Returns: 1098 * - phandle node pointer with refcount incremented. Caller must of_node_put() 1099 * on it when done. 1100 * - NULL if no phandle found at index 1101 */ 1102 static struct device_node *parse_prop_cells(struct device_node *np, 1103 const char *prop_name, int index, 1104 const char *list_name, 1105 const char *cells_name) 1106 { 1107 struct of_phandle_args sup_args; 1108 1109 if (strcmp(prop_name, list_name)) 1110 return NULL; 1111 1112 if (__of_parse_phandle_with_args(np, list_name, cells_name, 0, index, 1113 &sup_args)) 1114 return NULL; 1115 1116 return sup_args.np; 1117 } 1118 1119 #define DEFINE_SIMPLE_PROP(fname, name, cells) \ 1120 static struct device_node *parse_##fname(struct device_node *np, \ 1121 const char *prop_name, int index) \ 1122 { \ 1123 return parse_prop_cells(np, prop_name, index, name, cells); \ 1124 } 1125 1126 static int strcmp_suffix(const char *str, const char *suffix) 1127 { 1128 unsigned int len, suffix_len; 1129 1130 len = strlen(str); 1131 suffix_len = strlen(suffix); 1132 if (len <= suffix_len) 1133 return -1; 1134 return strcmp(str + len - suffix_len, suffix); 1135 } 1136 1137 /** 1138 * parse_suffix_prop_cells - Suffix property parsing function for suppliers 1139 * 1140 * @np: Pointer to device tree node containing a list 1141 * @prop_name: Name of property to be parsed. Expected to hold phandle values 1142 * @index: For properties holding a list of phandles, this is the index 1143 * into the list. 1144 * @suffix: Property suffix that is known to contain list of phandle(s) to 1145 * supplier(s) 1146 * @cells_name: property name that specifies phandles' arguments count 1147 * 1148 * This is a helper function to parse properties that have a known fixed suffix 1149 * and are a list of phandles and phandle arguments. 1150 * 1151 * Returns: 1152 * - phandle node pointer with refcount incremented. Caller must of_node_put() 1153 * on it when done. 1154 * - NULL if no phandle found at index 1155 */ 1156 static struct device_node *parse_suffix_prop_cells(struct device_node *np, 1157 const char *prop_name, int index, 1158 const char *suffix, 1159 const char *cells_name) 1160 { 1161 struct of_phandle_args sup_args; 1162 1163 if (strcmp_suffix(prop_name, suffix)) 1164 return NULL; 1165 1166 if (of_parse_phandle_with_args(np, prop_name, cells_name, index, 1167 &sup_args)) 1168 return NULL; 1169 1170 return sup_args.np; 1171 } 1172 1173 #define DEFINE_SUFFIX_PROP(fname, suffix, cells) \ 1174 static struct device_node *parse_##fname(struct device_node *np, \ 1175 const char *prop_name, int index) \ 1176 { \ 1177 return parse_suffix_prop_cells(np, prop_name, index, suffix, cells); \ 1178 } 1179 1180 /** 1181 * struct supplier_bindings - Property parsing functions for suppliers 1182 * 1183 * @parse_prop: function name 1184 * parse_prop() finds the node corresponding to a supplier phandle 1185 * parse_prop.np: Pointer to device node holding supplier phandle property 1186 * parse_prop.prop_name: Name of property holding a phandle value 1187 * parse_prop.index: For properties holding a list of phandles, this is the 1188 * index into the list 1189 * @get_con_dev: If the consumer node containing the property is never converted 1190 * to a struct device, implement this ops so fw_devlink can use it 1191 * to find the true consumer. 1192 * @optional: Describes whether a supplier is mandatory or not 1193 * @fwlink_flags: Optional fwnode link flags to use when creating a fwnode link 1194 * for this property. 1195 * 1196 * Returns: 1197 * parse_prop() return values are 1198 * - phandle node pointer with refcount incremented. Caller must of_node_put() 1199 * on it when done. 1200 * - NULL if no phandle found at index 1201 */ 1202 struct supplier_bindings { 1203 struct device_node *(*parse_prop)(struct device_node *np, 1204 const char *prop_name, int index); 1205 struct device_node *(*get_con_dev)(struct device_node *np); 1206 bool optional; 1207 u8 fwlink_flags; 1208 }; 1209 1210 DEFINE_SIMPLE_PROP(clocks, "clocks", "#clock-cells") 1211 DEFINE_SIMPLE_PROP(interconnects, "interconnects", "#interconnect-cells") 1212 DEFINE_SIMPLE_PROP(iommus, "iommus", "#iommu-cells") 1213 DEFINE_SIMPLE_PROP(mboxes, "mboxes", "#mbox-cells") 1214 DEFINE_SIMPLE_PROP(io_channels, "io-channels", "#io-channel-cells") 1215 DEFINE_SIMPLE_PROP(io_backends, "io-backends", "#io-backend-cells") 1216 DEFINE_SIMPLE_PROP(interrupt_parent, "interrupt-parent", NULL) 1217 DEFINE_SIMPLE_PROP(dmas, "dmas", "#dma-cells") 1218 DEFINE_SIMPLE_PROP(power_domains, "power-domains", "#power-domain-cells") 1219 DEFINE_SIMPLE_PROP(hwlocks, "hwlocks", "#hwlock-cells") 1220 DEFINE_SIMPLE_PROP(extcon, "extcon", NULL) 1221 DEFINE_SIMPLE_PROP(nvmem_cells, "nvmem-cells", "#nvmem-cell-cells") 1222 DEFINE_SIMPLE_PROP(phys, "phys", "#phy-cells") 1223 DEFINE_SIMPLE_PROP(wakeup_parent, "wakeup-parent", NULL) 1224 DEFINE_SIMPLE_PROP(pinctrl0, "pinctrl-0", NULL) 1225 DEFINE_SIMPLE_PROP(pinctrl1, "pinctrl-1", NULL) 1226 DEFINE_SIMPLE_PROP(pinctrl2, "pinctrl-2", NULL) 1227 DEFINE_SIMPLE_PROP(pinctrl3, "pinctrl-3", NULL) 1228 DEFINE_SIMPLE_PROP(pinctrl4, "pinctrl-4", NULL) 1229 DEFINE_SIMPLE_PROP(pinctrl5, "pinctrl-5", NULL) 1230 DEFINE_SIMPLE_PROP(pinctrl6, "pinctrl-6", NULL) 1231 DEFINE_SIMPLE_PROP(pinctrl7, "pinctrl-7", NULL) 1232 DEFINE_SIMPLE_PROP(pinctrl8, "pinctrl-8", NULL) 1233 DEFINE_SIMPLE_PROP(pwms, "pwms", "#pwm-cells") 1234 DEFINE_SIMPLE_PROP(resets, "resets", "#reset-cells") 1235 DEFINE_SIMPLE_PROP(leds, "leds", NULL) 1236 DEFINE_SIMPLE_PROP(backlight, "backlight", NULL) 1237 DEFINE_SIMPLE_PROP(panel, "panel", NULL) 1238 DEFINE_SIMPLE_PROP(msi_parent, "msi-parent", "#msi-cells") 1239 DEFINE_SIMPLE_PROP(post_init_providers, "post-init-providers", NULL) 1240 DEFINE_SIMPLE_PROP(access_controllers, "access-controllers", "#access-controller-cells") 1241 DEFINE_SIMPLE_PROP(pses, "pses", "#pse-cells") 1242 DEFINE_SIMPLE_PROP(power_supplies, "power-supplies", NULL) 1243 DEFINE_SUFFIX_PROP(regulators, "-supply", NULL) 1244 DEFINE_SUFFIX_PROP(gpio, "-gpio", "#gpio-cells") 1245 1246 static struct device_node *parse_gpios(struct device_node *np, 1247 const char *prop_name, int index) 1248 { 1249 if (!strcmp_suffix(prop_name, ",nr-gpios")) 1250 return NULL; 1251 1252 return parse_suffix_prop_cells(np, prop_name, index, "-gpios", 1253 "#gpio-cells"); 1254 } 1255 1256 static struct device_node *parse_iommu_maps(struct device_node *np, 1257 const char *prop_name, int index) 1258 { 1259 if (strcmp(prop_name, "iommu-map")) 1260 return NULL; 1261 1262 return of_parse_phandle(np, prop_name, (index * 4) + 1); 1263 } 1264 1265 static struct device_node *parse_gpio_compat(struct device_node *np, 1266 const char *prop_name, int index) 1267 { 1268 struct of_phandle_args sup_args; 1269 1270 if (strcmp(prop_name, "gpio") && strcmp(prop_name, "gpios")) 1271 return NULL; 1272 1273 /* 1274 * Ignore node with gpio-hog property since its gpios are all provided 1275 * by its parent. 1276 */ 1277 if (of_property_read_bool(np, "gpio-hog")) 1278 return NULL; 1279 1280 if (of_parse_phandle_with_args(np, prop_name, "#gpio-cells", index, 1281 &sup_args)) 1282 return NULL; 1283 1284 return sup_args.np; 1285 } 1286 1287 static struct device_node *parse_interrupts(struct device_node *np, 1288 const char *prop_name, int index) 1289 { 1290 struct of_phandle_args sup_args; 1291 1292 if (!IS_ENABLED(CONFIG_OF_IRQ) || IS_ENABLED(CONFIG_PPC)) 1293 return NULL; 1294 1295 if (strcmp(prop_name, "interrupts") && 1296 strcmp(prop_name, "interrupts-extended")) 1297 return NULL; 1298 1299 return of_irq_parse_one(np, index, &sup_args) ? NULL : sup_args.np; 1300 } 1301 1302 static struct device_node *parse_interrupt_map(struct device_node *np, 1303 const char *prop_name, int index) 1304 { 1305 const __be32 *imap, *imap_end; 1306 struct of_phandle_args sup_args; 1307 u32 addrcells, intcells; 1308 int imaplen; 1309 1310 if (!IS_ENABLED(CONFIG_OF_IRQ)) 1311 return NULL; 1312 1313 if (strcmp(prop_name, "interrupt-map")) 1314 return NULL; 1315 1316 if (of_property_read_u32(np, "#interrupt-cells", &intcells)) 1317 return NULL; 1318 addrcells = of_bus_n_addr_cells(np); 1319 1320 imap = of_get_property(np, "interrupt-map", &imaplen); 1321 imaplen /= sizeof(*imap); 1322 if (!imap) 1323 return NULL; 1324 1325 imap_end = imap + imaplen; 1326 1327 for (int i = 0; imap + addrcells + intcells + 1 < imap_end; i++) { 1328 imap += addrcells + intcells; 1329 1330 imap = of_irq_parse_imap_parent(imap, imap_end - imap, &sup_args); 1331 if (!imap) 1332 return NULL; 1333 1334 if (i == index) 1335 return sup_args.np; 1336 1337 of_node_put(sup_args.np); 1338 } 1339 1340 return NULL; 1341 } 1342 1343 static struct device_node *parse_remote_endpoint(struct device_node *np, 1344 const char *prop_name, 1345 int index) 1346 { 1347 /* Return NULL for index > 0 to signify end of remote-endpoints. */ 1348 if (index > 0 || strcmp(prop_name, "remote-endpoint")) 1349 return NULL; 1350 1351 return of_graph_get_remote_port_parent(np); 1352 } 1353 1354 static const struct supplier_bindings of_supplier_bindings[] = { 1355 { .parse_prop = parse_clocks, }, 1356 { .parse_prop = parse_interconnects, }, 1357 { .parse_prop = parse_iommus, .optional = true, }, 1358 { .parse_prop = parse_iommu_maps, .optional = true, }, 1359 { .parse_prop = parse_mboxes, }, 1360 { .parse_prop = parse_io_channels, }, 1361 { .parse_prop = parse_io_backends, }, 1362 { .parse_prop = parse_interrupt_parent, }, 1363 { .parse_prop = parse_dmas, .optional = true, }, 1364 { .parse_prop = parse_power_domains, }, 1365 { .parse_prop = parse_hwlocks, }, 1366 { .parse_prop = parse_extcon, }, 1367 { .parse_prop = parse_nvmem_cells, }, 1368 { .parse_prop = parse_phys, }, 1369 { .parse_prop = parse_wakeup_parent, }, 1370 { .parse_prop = parse_pinctrl0, }, 1371 { .parse_prop = parse_pinctrl1, }, 1372 { .parse_prop = parse_pinctrl2, }, 1373 { .parse_prop = parse_pinctrl3, }, 1374 { .parse_prop = parse_pinctrl4, }, 1375 { .parse_prop = parse_pinctrl5, }, 1376 { .parse_prop = parse_pinctrl6, }, 1377 { .parse_prop = parse_pinctrl7, }, 1378 { .parse_prop = parse_pinctrl8, }, 1379 { 1380 .parse_prop = parse_remote_endpoint, 1381 .get_con_dev = of_graph_get_port_parent, 1382 }, 1383 { .parse_prop = parse_pwms, }, 1384 { .parse_prop = parse_resets, }, 1385 { .parse_prop = parse_leds, }, 1386 { .parse_prop = parse_backlight, }, 1387 { .parse_prop = parse_panel, }, 1388 { .parse_prop = parse_msi_parent, }, 1389 { .parse_prop = parse_pses, }, 1390 { .parse_prop = parse_power_supplies, }, 1391 { .parse_prop = parse_gpio_compat, }, 1392 { .parse_prop = parse_interrupts, }, 1393 { .parse_prop = parse_interrupt_map, }, 1394 { .parse_prop = parse_access_controllers, }, 1395 { .parse_prop = parse_regulators, }, 1396 { .parse_prop = parse_gpio, }, 1397 { .parse_prop = parse_gpios, }, 1398 { 1399 .parse_prop = parse_post_init_providers, 1400 .fwlink_flags = FWLINK_FLAG_IGNORE, 1401 }, 1402 {} 1403 }; 1404 1405 /** 1406 * of_link_property - Create device links to suppliers listed in a property 1407 * @con_np: The consumer device tree node which contains the property 1408 * @prop_name: Name of property to be parsed 1409 * 1410 * This function checks if the property @prop_name that is present in the 1411 * @con_np device tree node is one of the known common device tree bindings 1412 * that list phandles to suppliers. If @prop_name isn't one, this function 1413 * doesn't do anything. 1414 * 1415 * If @prop_name is one, this function attempts to create fwnode links from the 1416 * consumer device tree node @con_np to all the suppliers device tree nodes 1417 * listed in @prop_name. 1418 * 1419 * Any failed attempt to create a fwnode link will NOT result in an immediate 1420 * return. of_link_property() must create links to all the available supplier 1421 * device tree nodes even when attempts to create a link to one or more 1422 * suppliers fail. 1423 */ 1424 static int of_link_property(struct device_node *con_np, const char *prop_name) 1425 { 1426 struct device_node *phandle; 1427 const struct supplier_bindings *s = of_supplier_bindings; 1428 unsigned int i = 0; 1429 bool matched = false; 1430 1431 /* Do not stop at first failed link, link all available suppliers. */ 1432 while (!matched && s->parse_prop) { 1433 if (s->optional && !fw_devlink_is_strict()) { 1434 s++; 1435 continue; 1436 } 1437 1438 while ((phandle = s->parse_prop(con_np, prop_name, i))) { 1439 struct device_node *con_dev_np __free(device_node) = 1440 s->get_con_dev ? s->get_con_dev(con_np) : of_node_get(con_np); 1441 1442 matched = true; 1443 i++; 1444 of_link_to_phandle(con_dev_np, phandle, s->fwlink_flags); 1445 of_node_put(phandle); 1446 } 1447 s++; 1448 } 1449 return 0; 1450 } 1451 1452 static void __iomem *of_fwnode_iomap(struct fwnode_handle *fwnode, int index) 1453 { 1454 #ifdef CONFIG_OF_ADDRESS 1455 return of_iomap(to_of_node(fwnode), index); 1456 #else 1457 return NULL; 1458 #endif 1459 } 1460 1461 static int of_fwnode_irq_get(const struct fwnode_handle *fwnode, 1462 unsigned int index) 1463 { 1464 return of_irq_get(to_of_node(fwnode), index); 1465 } 1466 1467 static int of_fwnode_add_links(struct fwnode_handle *fwnode) 1468 { 1469 struct property *p; 1470 struct device_node *con_np = to_of_node(fwnode); 1471 1472 if (IS_ENABLED(CONFIG_X86)) 1473 return 0; 1474 1475 if (!con_np) 1476 return -EINVAL; 1477 1478 for_each_property_of_node(con_np, p) 1479 of_link_property(con_np, p->name); 1480 1481 return 0; 1482 } 1483 1484 const struct fwnode_operations of_fwnode_ops = { 1485 .get = of_fwnode_get, 1486 .put = of_fwnode_put, 1487 .device_is_available = of_fwnode_device_is_available, 1488 .device_get_match_data = of_fwnode_device_get_match_data, 1489 .device_dma_supported = of_fwnode_device_dma_supported, 1490 .device_get_dma_attr = of_fwnode_device_get_dma_attr, 1491 .property_present = of_fwnode_property_present, 1492 .property_read_int_array = of_fwnode_property_read_int_array, 1493 .property_read_string_array = of_fwnode_property_read_string_array, 1494 .get_name = of_fwnode_get_name, 1495 .get_name_prefix = of_fwnode_get_name_prefix, 1496 .get_parent = of_fwnode_get_parent, 1497 .get_next_child_node = of_fwnode_get_next_child_node, 1498 .get_named_child_node = of_fwnode_get_named_child_node, 1499 .get_reference_args = of_fwnode_get_reference_args, 1500 .graph_get_next_endpoint = of_fwnode_graph_get_next_endpoint, 1501 .graph_get_remote_endpoint = of_fwnode_graph_get_remote_endpoint, 1502 .graph_get_port_parent = of_fwnode_graph_get_port_parent, 1503 .graph_parse_endpoint = of_fwnode_graph_parse_endpoint, 1504 .iomap = of_fwnode_iomap, 1505 .irq_get = of_fwnode_irq_get, 1506 .add_links = of_fwnode_add_links, 1507 }; 1508 EXPORT_SYMBOL_GPL(of_fwnode_ops); 1509