xref: /linux/drivers/of/property.c (revision c435bce6af9b2a277662698875a689c389358f17)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * drivers/of/property.c - Procedures for accessing and interpreting
4  *			   Devicetree properties and graphs.
5  *
6  * Initially created by copying procedures from drivers/of/base.c. This
7  * file contains the OF property as well as the OF graph interface
8  * functions.
9  *
10  * Paul Mackerras	August 1996.
11  * Copyright (C) 1996-2005 Paul Mackerras.
12  *
13  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
14  *    {engebret|bergner}@us.ibm.com
15  *
16  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
17  *
18  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
19  *  Grant Likely.
20  */
21 
22 #define pr_fmt(fmt)	"OF: " fmt
23 
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_device.h>
27 #include <linux/of_graph.h>
28 #include <linux/of_irq.h>
29 #include <linux/string.h>
30 #include <linux/moduleparam.h>
31 
32 #include "of_private.h"
33 
34 /**
35  * of_graph_is_present() - check graph's presence
36  * @node: pointer to device_node containing graph port
37  *
38  * Return: True if @node has a port or ports (with a port) sub-node,
39  * false otherwise.
40  */
41 bool of_graph_is_present(const struct device_node *node)
42 {
43 	struct device_node *ports, *port;
44 
45 	ports = of_get_child_by_name(node, "ports");
46 	if (ports)
47 		node = ports;
48 
49 	port = of_get_child_by_name(node, "port");
50 	of_node_put(ports);
51 	of_node_put(port);
52 
53 	return !!port;
54 }
55 EXPORT_SYMBOL(of_graph_is_present);
56 
57 /**
58  * of_property_count_elems_of_size - Count the number of elements in a property
59  *
60  * @np:		device node from which the property value is to be read.
61  * @propname:	name of the property to be searched.
62  * @elem_size:	size of the individual element
63  *
64  * Search for a property in a device node and count the number of elements of
65  * size elem_size in it.
66  *
67  * Return: The number of elements on sucess, -EINVAL if the property does not
68  * exist or its length does not match a multiple of elem_size and -ENODATA if
69  * the property does not have a value.
70  */
71 int of_property_count_elems_of_size(const struct device_node *np,
72 				const char *propname, int elem_size)
73 {
74 	struct property *prop = of_find_property(np, propname, NULL);
75 
76 	if (!prop)
77 		return -EINVAL;
78 	if (!prop->value)
79 		return -ENODATA;
80 
81 	if (prop->length % elem_size != 0) {
82 		pr_err("size of %s in node %pOF is not a multiple of %d\n",
83 		       propname, np, elem_size);
84 		return -EINVAL;
85 	}
86 
87 	return prop->length / elem_size;
88 }
89 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
90 
91 /**
92  * of_find_property_value_of_size
93  *
94  * @np:		device node from which the property value is to be read.
95  * @propname:	name of the property to be searched.
96  * @min:	minimum allowed length of property value
97  * @max:	maximum allowed length of property value (0 means unlimited)
98  * @len:	if !=NULL, actual length is written to here
99  *
100  * Search for a property in a device node and valid the requested size.
101  *
102  * Return: The property value on success, -EINVAL if the property does not
103  * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
104  * property data is too small or too large.
105  *
106  */
107 static void *of_find_property_value_of_size(const struct device_node *np,
108 			const char *propname, u32 min, u32 max, size_t *len)
109 {
110 	struct property *prop = of_find_property(np, propname, NULL);
111 
112 	if (!prop)
113 		return ERR_PTR(-EINVAL);
114 	if (!prop->value)
115 		return ERR_PTR(-ENODATA);
116 	if (prop->length < min)
117 		return ERR_PTR(-EOVERFLOW);
118 	if (max && prop->length > max)
119 		return ERR_PTR(-EOVERFLOW);
120 
121 	if (len)
122 		*len = prop->length;
123 
124 	return prop->value;
125 }
126 
127 /**
128  * of_property_read_u32_index - Find and read a u32 from a multi-value property.
129  *
130  * @np:		device node from which the property value is to be read.
131  * @propname:	name of the property to be searched.
132  * @index:	index of the u32 in the list of values
133  * @out_value:	pointer to return value, modified only if no error.
134  *
135  * Search for a property in a device node and read nth 32-bit value from
136  * it.
137  *
138  * Return: 0 on success, -EINVAL if the property does not exist,
139  * -ENODATA if property does not have a value, and -EOVERFLOW if the
140  * property data isn't large enough.
141  *
142  * The out_value is modified only if a valid u32 value can be decoded.
143  */
144 int of_property_read_u32_index(const struct device_node *np,
145 				       const char *propname,
146 				       u32 index, u32 *out_value)
147 {
148 	const u32 *val = of_find_property_value_of_size(np, propname,
149 					((index + 1) * sizeof(*out_value)),
150 					0,
151 					NULL);
152 
153 	if (IS_ERR(val))
154 		return PTR_ERR(val);
155 
156 	*out_value = be32_to_cpup(((__be32 *)val) + index);
157 	return 0;
158 }
159 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
160 
161 /**
162  * of_property_read_u64_index - Find and read a u64 from a multi-value property.
163  *
164  * @np:		device node from which the property value is to be read.
165  * @propname:	name of the property to be searched.
166  * @index:	index of the u64 in the list of values
167  * @out_value:	pointer to return value, modified only if no error.
168  *
169  * Search for a property in a device node and read nth 64-bit value from
170  * it.
171  *
172  * Return: 0 on success, -EINVAL if the property does not exist,
173  * -ENODATA if property does not have a value, and -EOVERFLOW if the
174  * property data isn't large enough.
175  *
176  * The out_value is modified only if a valid u64 value can be decoded.
177  */
178 int of_property_read_u64_index(const struct device_node *np,
179 				       const char *propname,
180 				       u32 index, u64 *out_value)
181 {
182 	const u64 *val = of_find_property_value_of_size(np, propname,
183 					((index + 1) * sizeof(*out_value)),
184 					0, NULL);
185 
186 	if (IS_ERR(val))
187 		return PTR_ERR(val);
188 
189 	*out_value = be64_to_cpup(((__be64 *)val) + index);
190 	return 0;
191 }
192 EXPORT_SYMBOL_GPL(of_property_read_u64_index);
193 
194 /**
195  * of_property_read_variable_u8_array - Find and read an array of u8 from a
196  * property, with bounds on the minimum and maximum array size.
197  *
198  * @np:		device node from which the property value is to be read.
199  * @propname:	name of the property to be searched.
200  * @out_values:	pointer to found values.
201  * @sz_min:	minimum number of array elements to read
202  * @sz_max:	maximum number of array elements to read, if zero there is no
203  *		upper limit on the number of elements in the dts entry but only
204  *		sz_min will be read.
205  *
206  * Search for a property in a device node and read 8-bit value(s) from
207  * it.
208  *
209  * dts entry of array should be like:
210  *  ``property = /bits/ 8 <0x50 0x60 0x70>;``
211  *
212  * Return: The number of elements read on success, -EINVAL if the property
213  * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
214  * if the property data is smaller than sz_min or longer than sz_max.
215  *
216  * The out_values is modified only if a valid u8 value can be decoded.
217  */
218 int of_property_read_variable_u8_array(const struct device_node *np,
219 					const char *propname, u8 *out_values,
220 					size_t sz_min, size_t sz_max)
221 {
222 	size_t sz, count;
223 	const u8 *val = of_find_property_value_of_size(np, propname,
224 						(sz_min * sizeof(*out_values)),
225 						(sz_max * sizeof(*out_values)),
226 						&sz);
227 
228 	if (IS_ERR(val))
229 		return PTR_ERR(val);
230 
231 	if (!sz_max)
232 		sz = sz_min;
233 	else
234 		sz /= sizeof(*out_values);
235 
236 	count = sz;
237 	while (count--)
238 		*out_values++ = *val++;
239 
240 	return sz;
241 }
242 EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array);
243 
244 /**
245  * of_property_read_variable_u16_array - Find and read an array of u16 from a
246  * property, with bounds on the minimum and maximum array size.
247  *
248  * @np:		device node from which the property value is to be read.
249  * @propname:	name of the property to be searched.
250  * @out_values:	pointer to found values.
251  * @sz_min:	minimum number of array elements to read
252  * @sz_max:	maximum number of array elements to read, if zero there is no
253  *		upper limit on the number of elements in the dts entry but only
254  *		sz_min will be read.
255  *
256  * Search for a property in a device node and read 16-bit value(s) from
257  * it.
258  *
259  * dts entry of array should be like:
260  *  ``property = /bits/ 16 <0x5000 0x6000 0x7000>;``
261  *
262  * Return: The number of elements read on success, -EINVAL if the property
263  * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
264  * if the property data is smaller than sz_min or longer than sz_max.
265  *
266  * The out_values is modified only if a valid u16 value can be decoded.
267  */
268 int of_property_read_variable_u16_array(const struct device_node *np,
269 					const char *propname, u16 *out_values,
270 					size_t sz_min, size_t sz_max)
271 {
272 	size_t sz, count;
273 	const __be16 *val = of_find_property_value_of_size(np, propname,
274 						(sz_min * sizeof(*out_values)),
275 						(sz_max * sizeof(*out_values)),
276 						&sz);
277 
278 	if (IS_ERR(val))
279 		return PTR_ERR(val);
280 
281 	if (!sz_max)
282 		sz = sz_min;
283 	else
284 		sz /= sizeof(*out_values);
285 
286 	count = sz;
287 	while (count--)
288 		*out_values++ = be16_to_cpup(val++);
289 
290 	return sz;
291 }
292 EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array);
293 
294 /**
295  * of_property_read_variable_u32_array - Find and read an array of 32 bit
296  * integers from a property, with bounds on the minimum and maximum array size.
297  *
298  * @np:		device node from which the property value is to be read.
299  * @propname:	name of the property to be searched.
300  * @out_values:	pointer to return found values.
301  * @sz_min:	minimum number of array elements to read
302  * @sz_max:	maximum number of array elements to read, if zero there is no
303  *		upper limit on the number of elements in the dts entry but only
304  *		sz_min will be read.
305  *
306  * Search for a property in a device node and read 32-bit value(s) from
307  * it.
308  *
309  * Return: The number of elements read on success, -EINVAL if the property
310  * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
311  * if the property data is smaller than sz_min or longer than sz_max.
312  *
313  * The out_values is modified only if a valid u32 value can be decoded.
314  */
315 int of_property_read_variable_u32_array(const struct device_node *np,
316 			       const char *propname, u32 *out_values,
317 			       size_t sz_min, size_t sz_max)
318 {
319 	size_t sz, count;
320 	const __be32 *val = of_find_property_value_of_size(np, propname,
321 						(sz_min * sizeof(*out_values)),
322 						(sz_max * sizeof(*out_values)),
323 						&sz);
324 
325 	if (IS_ERR(val))
326 		return PTR_ERR(val);
327 
328 	if (!sz_max)
329 		sz = sz_min;
330 	else
331 		sz /= sizeof(*out_values);
332 
333 	count = sz;
334 	while (count--)
335 		*out_values++ = be32_to_cpup(val++);
336 
337 	return sz;
338 }
339 EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array);
340 
341 /**
342  * of_property_read_u64 - Find and read a 64 bit integer from a property
343  * @np:		device node from which the property value is to be read.
344  * @propname:	name of the property to be searched.
345  * @out_value:	pointer to return value, modified only if return value is 0.
346  *
347  * Search for a property in a device node and read a 64-bit value from
348  * it.
349  *
350  * Return: 0 on success, -EINVAL if the property does not exist,
351  * -ENODATA if property does not have a value, and -EOVERFLOW if the
352  * property data isn't large enough.
353  *
354  * The out_value is modified only if a valid u64 value can be decoded.
355  */
356 int of_property_read_u64(const struct device_node *np, const char *propname,
357 			 u64 *out_value)
358 {
359 	const __be32 *val = of_find_property_value_of_size(np, propname,
360 						sizeof(*out_value),
361 						0,
362 						NULL);
363 
364 	if (IS_ERR(val))
365 		return PTR_ERR(val);
366 
367 	*out_value = of_read_number(val, 2);
368 	return 0;
369 }
370 EXPORT_SYMBOL_GPL(of_property_read_u64);
371 
372 /**
373  * of_property_read_variable_u64_array - Find and read an array of 64 bit
374  * integers from a property, with bounds on the minimum and maximum array size.
375  *
376  * @np:		device node from which the property value is to be read.
377  * @propname:	name of the property to be searched.
378  * @out_values:	pointer to found values.
379  * @sz_min:	minimum number of array elements to read
380  * @sz_max:	maximum number of array elements to read, if zero there is no
381  *		upper limit on the number of elements in the dts entry but only
382  *		sz_min will be read.
383  *
384  * Search for a property in a device node and read 64-bit value(s) from
385  * it.
386  *
387  * Return: The number of elements read on success, -EINVAL if the property
388  * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
389  * if the property data is smaller than sz_min or longer than sz_max.
390  *
391  * The out_values is modified only if a valid u64 value can be decoded.
392  */
393 int of_property_read_variable_u64_array(const struct device_node *np,
394 			       const char *propname, u64 *out_values,
395 			       size_t sz_min, size_t sz_max)
396 {
397 	size_t sz, count;
398 	const __be32 *val = of_find_property_value_of_size(np, propname,
399 						(sz_min * sizeof(*out_values)),
400 						(sz_max * sizeof(*out_values)),
401 						&sz);
402 
403 	if (IS_ERR(val))
404 		return PTR_ERR(val);
405 
406 	if (!sz_max)
407 		sz = sz_min;
408 	else
409 		sz /= sizeof(*out_values);
410 
411 	count = sz;
412 	while (count--) {
413 		*out_values++ = of_read_number(val, 2);
414 		val += 2;
415 	}
416 
417 	return sz;
418 }
419 EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array);
420 
421 /**
422  * of_property_read_string - Find and read a string from a property
423  * @np:		device node from which the property value is to be read.
424  * @propname:	name of the property to be searched.
425  * @out_string:	pointer to null terminated return string, modified only if
426  *		return value is 0.
427  *
428  * Search for a property in a device tree node and retrieve a null
429  * terminated string value (pointer to data, not a copy).
430  *
431  * Return: 0 on success, -EINVAL if the property does not exist, -ENODATA if
432  * property does not have a value, and -EILSEQ if the string is not
433  * null-terminated within the length of the property data.
434  *
435  * Note that the empty string "" has length of 1, thus -ENODATA cannot
436  * be interpreted as an empty string.
437  *
438  * The out_string pointer is modified only if a valid string can be decoded.
439  */
440 int of_property_read_string(const struct device_node *np, const char *propname,
441 				const char **out_string)
442 {
443 	const struct property *prop = of_find_property(np, propname, NULL);
444 
445 	if (!prop)
446 		return -EINVAL;
447 	if (!prop->length)
448 		return -ENODATA;
449 	if (strnlen(prop->value, prop->length) >= prop->length)
450 		return -EILSEQ;
451 	*out_string = prop->value;
452 	return 0;
453 }
454 EXPORT_SYMBOL_GPL(of_property_read_string);
455 
456 /**
457  * of_property_match_string() - Find string in a list and return index
458  * @np: pointer to node containing string list property
459  * @propname: string list property name
460  * @string: pointer to string to search for in string list
461  *
462  * This function searches a string list property and returns the index
463  * of a specific string value.
464  */
465 int of_property_match_string(const struct device_node *np, const char *propname,
466 			     const char *string)
467 {
468 	const struct property *prop = of_find_property(np, propname, NULL);
469 	size_t l;
470 	int i;
471 	const char *p, *end;
472 
473 	if (!prop)
474 		return -EINVAL;
475 	if (!prop->value)
476 		return -ENODATA;
477 
478 	p = prop->value;
479 	end = p + prop->length;
480 
481 	for (i = 0; p < end; i++, p += l) {
482 		l = strnlen(p, end - p) + 1;
483 		if (p + l > end)
484 			return -EILSEQ;
485 		pr_debug("comparing %s with %s\n", string, p);
486 		if (strcmp(string, p) == 0)
487 			return i; /* Found it; return index */
488 	}
489 	return -ENODATA;
490 }
491 EXPORT_SYMBOL_GPL(of_property_match_string);
492 
493 /**
494  * of_property_read_string_helper() - Utility helper for parsing string properties
495  * @np:		device node from which the property value is to be read.
496  * @propname:	name of the property to be searched.
497  * @out_strs:	output array of string pointers.
498  * @sz:		number of array elements to read.
499  * @skip:	Number of strings to skip over at beginning of list.
500  *
501  * Don't call this function directly. It is a utility helper for the
502  * of_property_read_string*() family of functions.
503  */
504 int of_property_read_string_helper(const struct device_node *np,
505 				   const char *propname, const char **out_strs,
506 				   size_t sz, int skip)
507 {
508 	const struct property *prop = of_find_property(np, propname, NULL);
509 	int l = 0, i = 0;
510 	const char *p, *end;
511 
512 	if (!prop)
513 		return -EINVAL;
514 	if (!prop->value)
515 		return -ENODATA;
516 	p = prop->value;
517 	end = p + prop->length;
518 
519 	for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
520 		l = strnlen(p, end - p) + 1;
521 		if (p + l > end)
522 			return -EILSEQ;
523 		if (out_strs && i >= skip)
524 			*out_strs++ = p;
525 	}
526 	i -= skip;
527 	return i <= 0 ? -ENODATA : i;
528 }
529 EXPORT_SYMBOL_GPL(of_property_read_string_helper);
530 
531 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
532 			       u32 *pu)
533 {
534 	const void *curv = cur;
535 
536 	if (!prop)
537 		return NULL;
538 
539 	if (!cur) {
540 		curv = prop->value;
541 		goto out_val;
542 	}
543 
544 	curv += sizeof(*cur);
545 	if (curv >= prop->value + prop->length)
546 		return NULL;
547 
548 out_val:
549 	*pu = be32_to_cpup(curv);
550 	return curv;
551 }
552 EXPORT_SYMBOL_GPL(of_prop_next_u32);
553 
554 const char *of_prop_next_string(struct property *prop, const char *cur)
555 {
556 	const void *curv = cur;
557 
558 	if (!prop)
559 		return NULL;
560 
561 	if (!cur)
562 		return prop->value;
563 
564 	curv += strlen(cur) + 1;
565 	if (curv >= prop->value + prop->length)
566 		return NULL;
567 
568 	return curv;
569 }
570 EXPORT_SYMBOL_GPL(of_prop_next_string);
571 
572 /**
573  * of_graph_parse_endpoint() - parse common endpoint node properties
574  * @node: pointer to endpoint device_node
575  * @endpoint: pointer to the OF endpoint data structure
576  *
577  * The caller should hold a reference to @node.
578  */
579 int of_graph_parse_endpoint(const struct device_node *node,
580 			    struct of_endpoint *endpoint)
581 {
582 	struct device_node *port_node = of_get_parent(node);
583 
584 	WARN_ONCE(!port_node, "%s(): endpoint %pOF has no parent node\n",
585 		  __func__, node);
586 
587 	memset(endpoint, 0, sizeof(*endpoint));
588 
589 	endpoint->local_node = node;
590 	/*
591 	 * It doesn't matter whether the two calls below succeed.
592 	 * If they don't then the default value 0 is used.
593 	 */
594 	of_property_read_u32(port_node, "reg", &endpoint->port);
595 	of_property_read_u32(node, "reg", &endpoint->id);
596 
597 	of_node_put(port_node);
598 
599 	return 0;
600 }
601 EXPORT_SYMBOL(of_graph_parse_endpoint);
602 
603 /**
604  * of_graph_get_port_by_id() - get the port matching a given id
605  * @parent: pointer to the parent device node
606  * @id: id of the port
607  *
608  * Return: A 'port' node pointer with refcount incremented. The caller
609  * has to use of_node_put() on it when done.
610  */
611 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
612 {
613 	struct device_node *node, *port;
614 
615 	node = of_get_child_by_name(parent, "ports");
616 	if (node)
617 		parent = node;
618 
619 	for_each_child_of_node(parent, port) {
620 		u32 port_id = 0;
621 
622 		if (!of_node_name_eq(port, "port"))
623 			continue;
624 		of_property_read_u32(port, "reg", &port_id);
625 		if (id == port_id)
626 			break;
627 	}
628 
629 	of_node_put(node);
630 
631 	return port;
632 }
633 EXPORT_SYMBOL(of_graph_get_port_by_id);
634 
635 /**
636  * of_graph_get_next_endpoint() - get next endpoint node
637  * @parent: pointer to the parent device node
638  * @prev: previous endpoint node, or NULL to get first
639  *
640  * Return: An 'endpoint' node pointer with refcount incremented. Refcount
641  * of the passed @prev node is decremented.
642  */
643 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
644 					struct device_node *prev)
645 {
646 	struct device_node *endpoint;
647 	struct device_node *port;
648 
649 	if (!parent)
650 		return NULL;
651 
652 	/*
653 	 * Start by locating the port node. If no previous endpoint is specified
654 	 * search for the first port node, otherwise get the previous endpoint
655 	 * parent port node.
656 	 */
657 	if (!prev) {
658 		struct device_node *node;
659 
660 		node = of_get_child_by_name(parent, "ports");
661 		if (node)
662 			parent = node;
663 
664 		port = of_get_child_by_name(parent, "port");
665 		of_node_put(node);
666 
667 		if (!port) {
668 			pr_err("graph: no port node found in %pOF\n", parent);
669 			return NULL;
670 		}
671 	} else {
672 		port = of_get_parent(prev);
673 		if (WARN_ONCE(!port, "%s(): endpoint %pOF has no parent node\n",
674 			      __func__, prev))
675 			return NULL;
676 	}
677 
678 	while (1) {
679 		/*
680 		 * Now that we have a port node, get the next endpoint by
681 		 * getting the next child. If the previous endpoint is NULL this
682 		 * will return the first child.
683 		 */
684 		endpoint = of_get_next_child(port, prev);
685 		if (endpoint) {
686 			of_node_put(port);
687 			return endpoint;
688 		}
689 
690 		/* No more endpoints under this port, try the next one. */
691 		prev = NULL;
692 
693 		do {
694 			port = of_get_next_child(parent, port);
695 			if (!port)
696 				return NULL;
697 		} while (!of_node_name_eq(port, "port"));
698 	}
699 }
700 EXPORT_SYMBOL(of_graph_get_next_endpoint);
701 
702 /**
703  * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
704  * @parent: pointer to the parent device node
705  * @port_reg: identifier (value of reg property) of the parent port node
706  * @reg: identifier (value of reg property) of the endpoint node
707  *
708  * Return: An 'endpoint' node pointer which is identified by reg and at the same
709  * is the child of a port node identified by port_reg. reg and port_reg are
710  * ignored when they are -1. Use of_node_put() on the pointer when done.
711  */
712 struct device_node *of_graph_get_endpoint_by_regs(
713 	const struct device_node *parent, int port_reg, int reg)
714 {
715 	struct of_endpoint endpoint;
716 	struct device_node *node = NULL;
717 
718 	for_each_endpoint_of_node(parent, node) {
719 		of_graph_parse_endpoint(node, &endpoint);
720 		if (((port_reg == -1) || (endpoint.port == port_reg)) &&
721 			((reg == -1) || (endpoint.id == reg)))
722 			return node;
723 	}
724 
725 	return NULL;
726 }
727 EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
728 
729 /**
730  * of_graph_get_remote_endpoint() - get remote endpoint node
731  * @node: pointer to a local endpoint device_node
732  *
733  * Return: Remote endpoint node associated with remote endpoint node linked
734  *	   to @node. Use of_node_put() on it when done.
735  */
736 struct device_node *of_graph_get_remote_endpoint(const struct device_node *node)
737 {
738 	/* Get remote endpoint node. */
739 	return of_parse_phandle(node, "remote-endpoint", 0);
740 }
741 EXPORT_SYMBOL(of_graph_get_remote_endpoint);
742 
743 /**
744  * of_graph_get_port_parent() - get port's parent node
745  * @node: pointer to a local endpoint device_node
746  *
747  * Return: device node associated with endpoint node linked
748  *	   to @node. Use of_node_put() on it when done.
749  */
750 struct device_node *of_graph_get_port_parent(struct device_node *node)
751 {
752 	unsigned int depth;
753 
754 	if (!node)
755 		return NULL;
756 
757 	/*
758 	 * Preserve usecount for passed in node as of_get_next_parent()
759 	 * will do of_node_put() on it.
760 	 */
761 	of_node_get(node);
762 
763 	/* Walk 3 levels up only if there is 'ports' node. */
764 	for (depth = 3; depth && node; depth--) {
765 		node = of_get_next_parent(node);
766 		if (depth == 2 && !of_node_name_eq(node, "ports") &&
767 		    !of_node_name_eq(node, "in-ports") &&
768 		    !of_node_name_eq(node, "out-ports"))
769 			break;
770 	}
771 	return node;
772 }
773 EXPORT_SYMBOL(of_graph_get_port_parent);
774 
775 /**
776  * of_graph_get_remote_port_parent() - get remote port's parent node
777  * @node: pointer to a local endpoint device_node
778  *
779  * Return: Remote device node associated with remote endpoint node linked
780  *	   to @node. Use of_node_put() on it when done.
781  */
782 struct device_node *of_graph_get_remote_port_parent(
783 			       const struct device_node *node)
784 {
785 	struct device_node *np, *pp;
786 
787 	/* Get remote endpoint node. */
788 	np = of_graph_get_remote_endpoint(node);
789 
790 	pp = of_graph_get_port_parent(np);
791 
792 	of_node_put(np);
793 
794 	return pp;
795 }
796 EXPORT_SYMBOL(of_graph_get_remote_port_parent);
797 
798 /**
799  * of_graph_get_remote_port() - get remote port node
800  * @node: pointer to a local endpoint device_node
801  *
802  * Return: Remote port node associated with remote endpoint node linked
803  * to @node. Use of_node_put() on it when done.
804  */
805 struct device_node *of_graph_get_remote_port(const struct device_node *node)
806 {
807 	struct device_node *np;
808 
809 	/* Get remote endpoint node. */
810 	np = of_graph_get_remote_endpoint(node);
811 	if (!np)
812 		return NULL;
813 	return of_get_next_parent(np);
814 }
815 EXPORT_SYMBOL(of_graph_get_remote_port);
816 
817 int of_graph_get_endpoint_count(const struct device_node *np)
818 {
819 	struct device_node *endpoint;
820 	int num = 0;
821 
822 	for_each_endpoint_of_node(np, endpoint)
823 		num++;
824 
825 	return num;
826 }
827 EXPORT_SYMBOL(of_graph_get_endpoint_count);
828 
829 /**
830  * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint
831  * @node: pointer to parent device_node containing graph port/endpoint
832  * @port: identifier (value of reg property) of the parent port node
833  * @endpoint: identifier (value of reg property) of the endpoint node
834  *
835  * Return: Remote device node associated with remote endpoint node linked
836  * to @node. Use of_node_put() on it when done.
837  */
838 struct device_node *of_graph_get_remote_node(const struct device_node *node,
839 					     u32 port, u32 endpoint)
840 {
841 	struct device_node *endpoint_node, *remote;
842 
843 	endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint);
844 	if (!endpoint_node) {
845 		pr_debug("no valid endpoint (%d, %d) for node %pOF\n",
846 			 port, endpoint, node);
847 		return NULL;
848 	}
849 
850 	remote = of_graph_get_remote_port_parent(endpoint_node);
851 	of_node_put(endpoint_node);
852 	if (!remote) {
853 		pr_debug("no valid remote node\n");
854 		return NULL;
855 	}
856 
857 	if (!of_device_is_available(remote)) {
858 		pr_debug("not available for remote node\n");
859 		of_node_put(remote);
860 		return NULL;
861 	}
862 
863 	return remote;
864 }
865 EXPORT_SYMBOL(of_graph_get_remote_node);
866 
867 static struct fwnode_handle *of_fwnode_get(struct fwnode_handle *fwnode)
868 {
869 	return of_fwnode_handle(of_node_get(to_of_node(fwnode)));
870 }
871 
872 static void of_fwnode_put(struct fwnode_handle *fwnode)
873 {
874 	of_node_put(to_of_node(fwnode));
875 }
876 
877 static bool of_fwnode_device_is_available(const struct fwnode_handle *fwnode)
878 {
879 	return of_device_is_available(to_of_node(fwnode));
880 }
881 
882 static bool of_fwnode_device_dma_supported(const struct fwnode_handle *fwnode)
883 {
884 	return true;
885 }
886 
887 static enum dev_dma_attr
888 of_fwnode_device_get_dma_attr(const struct fwnode_handle *fwnode)
889 {
890 	if (of_dma_is_coherent(to_of_node(fwnode)))
891 		return DEV_DMA_COHERENT;
892 	else
893 		return DEV_DMA_NON_COHERENT;
894 }
895 
896 static bool of_fwnode_property_present(const struct fwnode_handle *fwnode,
897 				       const char *propname)
898 {
899 	return of_property_read_bool(to_of_node(fwnode), propname);
900 }
901 
902 static int of_fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
903 					     const char *propname,
904 					     unsigned int elem_size, void *val,
905 					     size_t nval)
906 {
907 	const struct device_node *node = to_of_node(fwnode);
908 
909 	if (!val)
910 		return of_property_count_elems_of_size(node, propname,
911 						       elem_size);
912 
913 	switch (elem_size) {
914 	case sizeof(u8):
915 		return of_property_read_u8_array(node, propname, val, nval);
916 	case sizeof(u16):
917 		return of_property_read_u16_array(node, propname, val, nval);
918 	case sizeof(u32):
919 		return of_property_read_u32_array(node, propname, val, nval);
920 	case sizeof(u64):
921 		return of_property_read_u64_array(node, propname, val, nval);
922 	}
923 
924 	return -ENXIO;
925 }
926 
927 static int
928 of_fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
929 				     const char *propname, const char **val,
930 				     size_t nval)
931 {
932 	const struct device_node *node = to_of_node(fwnode);
933 
934 	return val ?
935 		of_property_read_string_array(node, propname, val, nval) :
936 		of_property_count_strings(node, propname);
937 }
938 
939 static const char *of_fwnode_get_name(const struct fwnode_handle *fwnode)
940 {
941 	return kbasename(to_of_node(fwnode)->full_name);
942 }
943 
944 static const char *of_fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
945 {
946 	/* Root needs no prefix here (its name is "/"). */
947 	if (!to_of_node(fwnode)->parent)
948 		return "";
949 
950 	return "/";
951 }
952 
953 static struct fwnode_handle *
954 of_fwnode_get_parent(const struct fwnode_handle *fwnode)
955 {
956 	return of_fwnode_handle(of_get_parent(to_of_node(fwnode)));
957 }
958 
959 static struct fwnode_handle *
960 of_fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
961 			      struct fwnode_handle *child)
962 {
963 	return of_fwnode_handle(of_get_next_available_child(to_of_node(fwnode),
964 							    to_of_node(child)));
965 }
966 
967 static struct fwnode_handle *
968 of_fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
969 			       const char *childname)
970 {
971 	const struct device_node *node = to_of_node(fwnode);
972 	struct device_node *child;
973 
974 	for_each_available_child_of_node(node, child)
975 		if (of_node_name_eq(child, childname))
976 			return of_fwnode_handle(child);
977 
978 	return NULL;
979 }
980 
981 static int
982 of_fwnode_get_reference_args(const struct fwnode_handle *fwnode,
983 			     const char *prop, const char *nargs_prop,
984 			     unsigned int nargs, unsigned int index,
985 			     struct fwnode_reference_args *args)
986 {
987 	struct of_phandle_args of_args;
988 	unsigned int i;
989 	int ret;
990 
991 	if (nargs_prop)
992 		ret = of_parse_phandle_with_args(to_of_node(fwnode), prop,
993 						 nargs_prop, index, &of_args);
994 	else
995 		ret = of_parse_phandle_with_fixed_args(to_of_node(fwnode), prop,
996 						       nargs, index, &of_args);
997 	if (ret < 0)
998 		return ret;
999 	if (!args) {
1000 		of_node_put(of_args.np);
1001 		return 0;
1002 	}
1003 
1004 	args->nargs = of_args.args_count;
1005 	args->fwnode = of_fwnode_handle(of_args.np);
1006 
1007 	for (i = 0; i < NR_FWNODE_REFERENCE_ARGS; i++)
1008 		args->args[i] = i < of_args.args_count ? of_args.args[i] : 0;
1009 
1010 	return 0;
1011 }
1012 
1013 static struct fwnode_handle *
1014 of_fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1015 				  struct fwnode_handle *prev)
1016 {
1017 	return of_fwnode_handle(of_graph_get_next_endpoint(to_of_node(fwnode),
1018 							   to_of_node(prev)));
1019 }
1020 
1021 static struct fwnode_handle *
1022 of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1023 {
1024 	return of_fwnode_handle(
1025 		of_graph_get_remote_endpoint(to_of_node(fwnode)));
1026 }
1027 
1028 static struct fwnode_handle *
1029 of_fwnode_graph_get_port_parent(struct fwnode_handle *fwnode)
1030 {
1031 	struct device_node *np;
1032 
1033 	/* Get the parent of the port */
1034 	np = of_get_parent(to_of_node(fwnode));
1035 	if (!np)
1036 		return NULL;
1037 
1038 	/* Is this the "ports" node? If not, it's the port parent. */
1039 	if (!of_node_name_eq(np, "ports"))
1040 		return of_fwnode_handle(np);
1041 
1042 	return of_fwnode_handle(of_get_next_parent(np));
1043 }
1044 
1045 static int of_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1046 					  struct fwnode_endpoint *endpoint)
1047 {
1048 	const struct device_node *node = to_of_node(fwnode);
1049 	struct device_node *port_node = of_get_parent(node);
1050 
1051 	endpoint->local_fwnode = fwnode;
1052 
1053 	of_property_read_u32(port_node, "reg", &endpoint->port);
1054 	of_property_read_u32(node, "reg", &endpoint->id);
1055 
1056 	of_node_put(port_node);
1057 
1058 	return 0;
1059 }
1060 
1061 static const void *
1062 of_fwnode_device_get_match_data(const struct fwnode_handle *fwnode,
1063 				const struct device *dev)
1064 {
1065 	return of_device_get_match_data(dev);
1066 }
1067 
1068 static void of_link_to_phandle(struct device_node *con_np,
1069 			      struct device_node *sup_np)
1070 {
1071 	struct device_node *tmp_np = of_node_get(sup_np);
1072 
1073 	/* Check that sup_np and its ancestors are available. */
1074 	while (tmp_np) {
1075 		if (of_fwnode_handle(tmp_np)->dev) {
1076 			of_node_put(tmp_np);
1077 			break;
1078 		}
1079 
1080 		if (!of_device_is_available(tmp_np)) {
1081 			of_node_put(tmp_np);
1082 			return;
1083 		}
1084 
1085 		tmp_np = of_get_next_parent(tmp_np);
1086 	}
1087 
1088 	fwnode_link_add(of_fwnode_handle(con_np), of_fwnode_handle(sup_np));
1089 }
1090 
1091 /**
1092  * parse_prop_cells - Property parsing function for suppliers
1093  *
1094  * @np:		Pointer to device tree node containing a list
1095  * @prop_name:	Name of property to be parsed. Expected to hold phandle values
1096  * @index:	For properties holding a list of phandles, this is the index
1097  *		into the list.
1098  * @list_name:	Property name that is known to contain list of phandle(s) to
1099  *		supplier(s)
1100  * @cells_name:	property name that specifies phandles' arguments count
1101  *
1102  * This is a helper function to parse properties that have a known fixed name
1103  * and are a list of phandles and phandle arguments.
1104  *
1105  * Returns:
1106  * - phandle node pointer with refcount incremented. Caller must of_node_put()
1107  *   on it when done.
1108  * - NULL if no phandle found at index
1109  */
1110 static struct device_node *parse_prop_cells(struct device_node *np,
1111 					    const char *prop_name, int index,
1112 					    const char *list_name,
1113 					    const char *cells_name)
1114 {
1115 	struct of_phandle_args sup_args;
1116 
1117 	if (strcmp(prop_name, list_name))
1118 		return NULL;
1119 
1120 	if (__of_parse_phandle_with_args(np, list_name, cells_name, 0, index,
1121 					 &sup_args))
1122 		return NULL;
1123 
1124 	return sup_args.np;
1125 }
1126 
1127 #define DEFINE_SIMPLE_PROP(fname, name, cells)				  \
1128 static struct device_node *parse_##fname(struct device_node *np,	  \
1129 					const char *prop_name, int index) \
1130 {									  \
1131 	return parse_prop_cells(np, prop_name, index, name, cells);	  \
1132 }
1133 
1134 static int strcmp_suffix(const char *str, const char *suffix)
1135 {
1136 	unsigned int len, suffix_len;
1137 
1138 	len = strlen(str);
1139 	suffix_len = strlen(suffix);
1140 	if (len <= suffix_len)
1141 		return -1;
1142 	return strcmp(str + len - suffix_len, suffix);
1143 }
1144 
1145 /**
1146  * parse_suffix_prop_cells - Suffix property parsing function for suppliers
1147  *
1148  * @np:		Pointer to device tree node containing a list
1149  * @prop_name:	Name of property to be parsed. Expected to hold phandle values
1150  * @index:	For properties holding a list of phandles, this is the index
1151  *		into the list.
1152  * @suffix:	Property suffix that is known to contain list of phandle(s) to
1153  *		supplier(s)
1154  * @cells_name:	property name that specifies phandles' arguments count
1155  *
1156  * This is a helper function to parse properties that have a known fixed suffix
1157  * and are a list of phandles and phandle arguments.
1158  *
1159  * Returns:
1160  * - phandle node pointer with refcount incremented. Caller must of_node_put()
1161  *   on it when done.
1162  * - NULL if no phandle found at index
1163  */
1164 static struct device_node *parse_suffix_prop_cells(struct device_node *np,
1165 					    const char *prop_name, int index,
1166 					    const char *suffix,
1167 					    const char *cells_name)
1168 {
1169 	struct of_phandle_args sup_args;
1170 
1171 	if (strcmp_suffix(prop_name, suffix))
1172 		return NULL;
1173 
1174 	if (of_parse_phandle_with_args(np, prop_name, cells_name, index,
1175 				       &sup_args))
1176 		return NULL;
1177 
1178 	return sup_args.np;
1179 }
1180 
1181 #define DEFINE_SUFFIX_PROP(fname, suffix, cells)			     \
1182 static struct device_node *parse_##fname(struct device_node *np,	     \
1183 					const char *prop_name, int index)    \
1184 {									     \
1185 	return parse_suffix_prop_cells(np, prop_name, index, suffix, cells); \
1186 }
1187 
1188 /**
1189  * struct supplier_bindings - Property parsing functions for suppliers
1190  *
1191  * @parse_prop: function name
1192  *	parse_prop() finds the node corresponding to a supplier phandle
1193  *  parse_prop.np: Pointer to device node holding supplier phandle property
1194  *  parse_prop.prop_name: Name of property holding a phandle value
1195  *  parse_prop.index: For properties holding a list of phandles, this is the
1196  *		      index into the list
1197  * @get_con_dev: If the consumer node containing the property is never converted
1198  *		 to a struct device, implement this ops so fw_devlink can use it
1199  *		 to find the true consumer.
1200  * @optional: Describes whether a supplier is mandatory or not
1201  *
1202  * Returns:
1203  * parse_prop() return values are
1204  * - phandle node pointer with refcount incremented. Caller must of_node_put()
1205  *   on it when done.
1206  * - NULL if no phandle found at index
1207  */
1208 struct supplier_bindings {
1209 	struct device_node *(*parse_prop)(struct device_node *np,
1210 					  const char *prop_name, int index);
1211 	struct device_node *(*get_con_dev)(struct device_node *np);
1212 	bool optional;
1213 };
1214 
1215 DEFINE_SIMPLE_PROP(clocks, "clocks", "#clock-cells")
1216 DEFINE_SIMPLE_PROP(interconnects, "interconnects", "#interconnect-cells")
1217 DEFINE_SIMPLE_PROP(iommus, "iommus", "#iommu-cells")
1218 DEFINE_SIMPLE_PROP(mboxes, "mboxes", "#mbox-cells")
1219 DEFINE_SIMPLE_PROP(io_channels, "io-channels", "#io-channel-cells")
1220 DEFINE_SIMPLE_PROP(interrupt_parent, "interrupt-parent", NULL)
1221 DEFINE_SIMPLE_PROP(dmas, "dmas", "#dma-cells")
1222 DEFINE_SIMPLE_PROP(power_domains, "power-domains", "#power-domain-cells")
1223 DEFINE_SIMPLE_PROP(hwlocks, "hwlocks", "#hwlock-cells")
1224 DEFINE_SIMPLE_PROP(extcon, "extcon", NULL)
1225 DEFINE_SIMPLE_PROP(nvmem_cells, "nvmem-cells", "#nvmem-cell-cells")
1226 DEFINE_SIMPLE_PROP(phys, "phys", "#phy-cells")
1227 DEFINE_SIMPLE_PROP(wakeup_parent, "wakeup-parent", NULL)
1228 DEFINE_SIMPLE_PROP(pinctrl0, "pinctrl-0", NULL)
1229 DEFINE_SIMPLE_PROP(pinctrl1, "pinctrl-1", NULL)
1230 DEFINE_SIMPLE_PROP(pinctrl2, "pinctrl-2", NULL)
1231 DEFINE_SIMPLE_PROP(pinctrl3, "pinctrl-3", NULL)
1232 DEFINE_SIMPLE_PROP(pinctrl4, "pinctrl-4", NULL)
1233 DEFINE_SIMPLE_PROP(pinctrl5, "pinctrl-5", NULL)
1234 DEFINE_SIMPLE_PROP(pinctrl6, "pinctrl-6", NULL)
1235 DEFINE_SIMPLE_PROP(pinctrl7, "pinctrl-7", NULL)
1236 DEFINE_SIMPLE_PROP(pinctrl8, "pinctrl-8", NULL)
1237 DEFINE_SIMPLE_PROP(pwms, "pwms", "#pwm-cells")
1238 DEFINE_SIMPLE_PROP(resets, "resets", "#reset-cells")
1239 DEFINE_SIMPLE_PROP(leds, "leds", NULL)
1240 DEFINE_SIMPLE_PROP(backlight, "backlight", NULL)
1241 DEFINE_SIMPLE_PROP(panel, "panel", NULL)
1242 DEFINE_SIMPLE_PROP(msi_parent, "msi-parent", "#msi-cells")
1243 DEFINE_SUFFIX_PROP(regulators, "-supply", NULL)
1244 DEFINE_SUFFIX_PROP(gpio, "-gpio", "#gpio-cells")
1245 
1246 static struct device_node *parse_gpios(struct device_node *np,
1247 				       const char *prop_name, int index)
1248 {
1249 	if (!strcmp_suffix(prop_name, ",nr-gpios"))
1250 		return NULL;
1251 
1252 	return parse_suffix_prop_cells(np, prop_name, index, "-gpios",
1253 				       "#gpio-cells");
1254 }
1255 
1256 static struct device_node *parse_iommu_maps(struct device_node *np,
1257 					    const char *prop_name, int index)
1258 {
1259 	if (strcmp(prop_name, "iommu-map"))
1260 		return NULL;
1261 
1262 	return of_parse_phandle(np, prop_name, (index * 4) + 1);
1263 }
1264 
1265 static struct device_node *parse_gpio_compat(struct device_node *np,
1266 					     const char *prop_name, int index)
1267 {
1268 	struct of_phandle_args sup_args;
1269 
1270 	if (strcmp(prop_name, "gpio") && strcmp(prop_name, "gpios"))
1271 		return NULL;
1272 
1273 	/*
1274 	 * Ignore node with gpio-hog property since its gpios are all provided
1275 	 * by its parent.
1276 	 */
1277 	if (of_property_read_bool(np, "gpio-hog"))
1278 		return NULL;
1279 
1280 	if (of_parse_phandle_with_args(np, prop_name, "#gpio-cells", index,
1281 				       &sup_args))
1282 		return NULL;
1283 
1284 	return sup_args.np;
1285 }
1286 
1287 static struct device_node *parse_interrupts(struct device_node *np,
1288 					    const char *prop_name, int index)
1289 {
1290 	struct of_phandle_args sup_args;
1291 
1292 	if (!IS_ENABLED(CONFIG_OF_IRQ) || IS_ENABLED(CONFIG_PPC))
1293 		return NULL;
1294 
1295 	if (strcmp(prop_name, "interrupts") &&
1296 	    strcmp(prop_name, "interrupts-extended"))
1297 		return NULL;
1298 
1299 	return of_irq_parse_one(np, index, &sup_args) ? NULL : sup_args.np;
1300 }
1301 
1302 static struct device_node *parse_remote_endpoint(struct device_node *np,
1303 						 const char *prop_name,
1304 						 int index)
1305 {
1306 	/* Return NULL for index > 0 to signify end of remote-endpoints. */
1307 	if (!index || strcmp(prop_name, "remote-endpoint"))
1308 		return NULL;
1309 
1310 	return of_graph_get_remote_port_parent(np);
1311 }
1312 
1313 static const struct supplier_bindings of_supplier_bindings[] = {
1314 	{ .parse_prop = parse_clocks, },
1315 	{ .parse_prop = parse_interconnects, },
1316 	{ .parse_prop = parse_iommus, .optional = true, },
1317 	{ .parse_prop = parse_iommu_maps, .optional = true, },
1318 	{ .parse_prop = parse_mboxes, },
1319 	{ .parse_prop = parse_io_channels, },
1320 	{ .parse_prop = parse_interrupt_parent, },
1321 	{ .parse_prop = parse_dmas, .optional = true, },
1322 	{ .parse_prop = parse_power_domains, },
1323 	{ .parse_prop = parse_hwlocks, },
1324 	{ .parse_prop = parse_extcon, },
1325 	{ .parse_prop = parse_nvmem_cells, },
1326 	{ .parse_prop = parse_phys, },
1327 	{ .parse_prop = parse_wakeup_parent, },
1328 	{ .parse_prop = parse_pinctrl0, },
1329 	{ .parse_prop = parse_pinctrl1, },
1330 	{ .parse_prop = parse_pinctrl2, },
1331 	{ .parse_prop = parse_pinctrl3, },
1332 	{ .parse_prop = parse_pinctrl4, },
1333 	{ .parse_prop = parse_pinctrl5, },
1334 	{ .parse_prop = parse_pinctrl6, },
1335 	{ .parse_prop = parse_pinctrl7, },
1336 	{ .parse_prop = parse_pinctrl8, },
1337 	{
1338 		.parse_prop = parse_remote_endpoint,
1339 		.get_con_dev = of_graph_get_port_parent,
1340 	},
1341 	{ .parse_prop = parse_pwms, },
1342 	{ .parse_prop = parse_resets, },
1343 	{ .parse_prop = parse_leds, },
1344 	{ .parse_prop = parse_backlight, },
1345 	{ .parse_prop = parse_panel, },
1346 	{ .parse_prop = parse_msi_parent, },
1347 	{ .parse_prop = parse_gpio_compat, },
1348 	{ .parse_prop = parse_interrupts, },
1349 	{ .parse_prop = parse_regulators, },
1350 	{ .parse_prop = parse_gpio, },
1351 	{ .parse_prop = parse_gpios, },
1352 	{}
1353 };
1354 
1355 /**
1356  * of_link_property - Create device links to suppliers listed in a property
1357  * @con_np: The consumer device tree node which contains the property
1358  * @prop_name: Name of property to be parsed
1359  *
1360  * This function checks if the property @prop_name that is present in the
1361  * @con_np device tree node is one of the known common device tree bindings
1362  * that list phandles to suppliers. If @prop_name isn't one, this function
1363  * doesn't do anything.
1364  *
1365  * If @prop_name is one, this function attempts to create fwnode links from the
1366  * consumer device tree node @con_np to all the suppliers device tree nodes
1367  * listed in @prop_name.
1368  *
1369  * Any failed attempt to create a fwnode link will NOT result in an immediate
1370  * return.  of_link_property() must create links to all the available supplier
1371  * device tree nodes even when attempts to create a link to one or more
1372  * suppliers fail.
1373  */
1374 static int of_link_property(struct device_node *con_np, const char *prop_name)
1375 {
1376 	struct device_node *phandle;
1377 	const struct supplier_bindings *s = of_supplier_bindings;
1378 	unsigned int i = 0;
1379 	bool matched = false;
1380 
1381 	/* Do not stop at first failed link, link all available suppliers. */
1382 	while (!matched && s->parse_prop) {
1383 		if (s->optional && !fw_devlink_is_strict()) {
1384 			s++;
1385 			continue;
1386 		}
1387 
1388 		while ((phandle = s->parse_prop(con_np, prop_name, i))) {
1389 			struct device_node *con_dev_np;
1390 
1391 			con_dev_np = s->get_con_dev
1392 					? s->get_con_dev(con_np)
1393 					: of_node_get(con_np);
1394 			matched = true;
1395 			i++;
1396 			of_link_to_phandle(con_dev_np, phandle);
1397 			of_node_put(phandle);
1398 			of_node_put(con_dev_np);
1399 		}
1400 		s++;
1401 	}
1402 	return 0;
1403 }
1404 
1405 static void __iomem *of_fwnode_iomap(struct fwnode_handle *fwnode, int index)
1406 {
1407 #ifdef CONFIG_OF_ADDRESS
1408 	return of_iomap(to_of_node(fwnode), index);
1409 #else
1410 	return NULL;
1411 #endif
1412 }
1413 
1414 static int of_fwnode_irq_get(const struct fwnode_handle *fwnode,
1415 			     unsigned int index)
1416 {
1417 	return of_irq_get(to_of_node(fwnode), index);
1418 }
1419 
1420 static int of_fwnode_add_links(struct fwnode_handle *fwnode)
1421 {
1422 	struct property *p;
1423 	struct device_node *con_np = to_of_node(fwnode);
1424 
1425 	if (IS_ENABLED(CONFIG_X86))
1426 		return 0;
1427 
1428 	if (!con_np)
1429 		return -EINVAL;
1430 
1431 	for_each_property_of_node(con_np, p)
1432 		of_link_property(con_np, p->name);
1433 
1434 	return 0;
1435 }
1436 
1437 const struct fwnode_operations of_fwnode_ops = {
1438 	.get = of_fwnode_get,
1439 	.put = of_fwnode_put,
1440 	.device_is_available = of_fwnode_device_is_available,
1441 	.device_get_match_data = of_fwnode_device_get_match_data,
1442 	.device_dma_supported = of_fwnode_device_dma_supported,
1443 	.device_get_dma_attr = of_fwnode_device_get_dma_attr,
1444 	.property_present = of_fwnode_property_present,
1445 	.property_read_int_array = of_fwnode_property_read_int_array,
1446 	.property_read_string_array = of_fwnode_property_read_string_array,
1447 	.get_name = of_fwnode_get_name,
1448 	.get_name_prefix = of_fwnode_get_name_prefix,
1449 	.get_parent = of_fwnode_get_parent,
1450 	.get_next_child_node = of_fwnode_get_next_child_node,
1451 	.get_named_child_node = of_fwnode_get_named_child_node,
1452 	.get_reference_args = of_fwnode_get_reference_args,
1453 	.graph_get_next_endpoint = of_fwnode_graph_get_next_endpoint,
1454 	.graph_get_remote_endpoint = of_fwnode_graph_get_remote_endpoint,
1455 	.graph_get_port_parent = of_fwnode_graph_get_port_parent,
1456 	.graph_parse_endpoint = of_fwnode_graph_parse_endpoint,
1457 	.iomap = of_fwnode_iomap,
1458 	.irq_get = of_fwnode_irq_get,
1459 	.add_links = of_fwnode_add_links,
1460 };
1461 EXPORT_SYMBOL_GPL(of_fwnode_ops);
1462