1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * drivers/of/property.c - Procedures for accessing and interpreting 4 * Devicetree properties and graphs. 5 * 6 * Initially created by copying procedures from drivers/of/base.c. This 7 * file contains the OF property as well as the OF graph interface 8 * functions. 9 * 10 * Paul Mackerras August 1996. 11 * Copyright (C) 1996-2005 Paul Mackerras. 12 * 13 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 14 * {engebret|bergner}@us.ibm.com 15 * 16 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 17 * 18 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 19 * Grant Likely. 20 */ 21 22 #define pr_fmt(fmt) "OF: " fmt 23 24 #include <linux/of.h> 25 #include <linux/of_address.h> 26 #include <linux/of_device.h> 27 #include <linux/of_graph.h> 28 #include <linux/of_irq.h> 29 #include <linux/string.h> 30 #include <linux/moduleparam.h> 31 32 #include "of_private.h" 33 34 /** 35 * of_property_read_bool - Find a property 36 * @np: device node from which the property value is to be read. 37 * @propname: name of the property to be searched. 38 * 39 * Search for a boolean property in a device node. Usage on non-boolean 40 * property types is deprecated. 41 * 42 * Return: true if the property exists false otherwise. 43 */ 44 bool of_property_read_bool(const struct device_node *np, const char *propname) 45 { 46 struct property *prop = of_find_property(np, propname, NULL); 47 48 /* 49 * Boolean properties should not have a value. Testing for property 50 * presence should either use of_property_present() or just read the 51 * property value and check the returned error code. 52 */ 53 if (prop && prop->length) 54 pr_warn("%pOF: Read of boolean property '%s' with a value.\n", np, propname); 55 56 return prop ? true : false; 57 } 58 EXPORT_SYMBOL(of_property_read_bool); 59 60 /** 61 * of_graph_is_present() - check graph's presence 62 * @node: pointer to device_node containing graph port 63 * 64 * Return: True if @node has a port or ports (with a port) sub-node, 65 * false otherwise. 66 */ 67 bool of_graph_is_present(const struct device_node *node) 68 { 69 struct device_node *ports __free(device_node) = of_get_child_by_name(node, "ports"); 70 71 if (ports) 72 node = ports; 73 74 struct device_node *port __free(device_node) = of_get_child_by_name(node, "port"); 75 76 return !!port; 77 } 78 EXPORT_SYMBOL(of_graph_is_present); 79 80 /** 81 * of_property_count_elems_of_size - Count the number of elements in a property 82 * 83 * @np: device node from which the property value is to be read. 84 * @propname: name of the property to be searched. 85 * @elem_size: size of the individual element 86 * 87 * Search for a property in a device node and count the number of elements of 88 * size elem_size in it. 89 * 90 * Return: The number of elements on sucess, -EINVAL if the property does not 91 * exist or its length does not match a multiple of elem_size and -ENODATA if 92 * the property does not have a value. 93 */ 94 int of_property_count_elems_of_size(const struct device_node *np, 95 const char *propname, int elem_size) 96 { 97 const struct property *prop = of_find_property(np, propname, NULL); 98 99 if (!prop) 100 return -EINVAL; 101 if (!prop->value) 102 return -ENODATA; 103 104 if (prop->length % elem_size != 0) { 105 pr_err("size of %s in node %pOF is not a multiple of %d\n", 106 propname, np, elem_size); 107 return -EINVAL; 108 } 109 110 return prop->length / elem_size; 111 } 112 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size); 113 114 /** 115 * of_find_property_value_of_size 116 * 117 * @np: device node from which the property value is to be read. 118 * @propname: name of the property to be searched. 119 * @min: minimum allowed length of property value 120 * @max: maximum allowed length of property value (0 means unlimited) 121 * @len: if !=NULL, actual length is written to here 122 * 123 * Search for a property in a device node and valid the requested size. 124 * 125 * Return: The property value on success, -EINVAL if the property does not 126 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the 127 * property data is too small or too large. 128 * 129 */ 130 static void *of_find_property_value_of_size(const struct device_node *np, 131 const char *propname, u32 min, u32 max, size_t *len) 132 { 133 const struct property *prop = of_find_property(np, propname, NULL); 134 135 if (!prop) 136 return ERR_PTR(-EINVAL); 137 if (!prop->value) 138 return ERR_PTR(-ENODATA); 139 if (prop->length < min) 140 return ERR_PTR(-EOVERFLOW); 141 if (max && prop->length > max) 142 return ERR_PTR(-EOVERFLOW); 143 144 if (len) 145 *len = prop->length; 146 147 return prop->value; 148 } 149 150 /** 151 * of_property_read_u8_index - Find and read a u8 from a multi-value property. 152 * 153 * @np: device node from which the property value is to be read. 154 * @propname: name of the property to be searched. 155 * @index: index of the u8 in the list of values 156 * @out_value: pointer to return value, modified only if no error. 157 * 158 * Search for a property in a device node and read nth 8-bit value from 159 * it. 160 * 161 * Return: 0 on success, -EINVAL if the property does not exist, 162 * -ENODATA if property does not have a value, and -EOVERFLOW if the 163 * property data isn't large enough. 164 * 165 * The out_value is modified only if a valid u8 value can be decoded. 166 */ 167 int of_property_read_u8_index(const struct device_node *np, 168 const char *propname, 169 u32 index, u8 *out_value) 170 { 171 const u8 *val = of_find_property_value_of_size(np, propname, 172 ((index + 1) * sizeof(*out_value)), 173 0, NULL); 174 175 if (IS_ERR(val)) 176 return PTR_ERR(val); 177 178 *out_value = val[index]; 179 return 0; 180 } 181 EXPORT_SYMBOL_GPL(of_property_read_u8_index); 182 183 /** 184 * of_property_read_u16_index - Find and read a u16 from a multi-value property. 185 * 186 * @np: device node from which the property value is to be read. 187 * @propname: name of the property to be searched. 188 * @index: index of the u16 in the list of values 189 * @out_value: pointer to return value, modified only if no error. 190 * 191 * Search for a property in a device node and read nth 16-bit value from 192 * it. 193 * 194 * Return: 0 on success, -EINVAL if the property does not exist, 195 * -ENODATA if property does not have a value, and -EOVERFLOW if the 196 * property data isn't large enough. 197 * 198 * The out_value is modified only if a valid u16 value can be decoded. 199 */ 200 int of_property_read_u16_index(const struct device_node *np, 201 const char *propname, 202 u32 index, u16 *out_value) 203 { 204 const u16 *val = of_find_property_value_of_size(np, propname, 205 ((index + 1) * sizeof(*out_value)), 206 0, NULL); 207 208 if (IS_ERR(val)) 209 return PTR_ERR(val); 210 211 *out_value = be16_to_cpup(((__be16 *)val) + index); 212 return 0; 213 } 214 EXPORT_SYMBOL_GPL(of_property_read_u16_index); 215 216 /** 217 * of_property_read_u32_index - Find and read a u32 from a multi-value property. 218 * 219 * @np: device node from which the property value is to be read. 220 * @propname: name of the property to be searched. 221 * @index: index of the u32 in the list of values 222 * @out_value: pointer to return value, modified only if no error. 223 * 224 * Search for a property in a device node and read nth 32-bit value from 225 * it. 226 * 227 * Return: 0 on success, -EINVAL if the property does not exist, 228 * -ENODATA if property does not have a value, and -EOVERFLOW if the 229 * property data isn't large enough. 230 * 231 * The out_value is modified only if a valid u32 value can be decoded. 232 */ 233 int of_property_read_u32_index(const struct device_node *np, 234 const char *propname, 235 u32 index, u32 *out_value) 236 { 237 const u32 *val = of_find_property_value_of_size(np, propname, 238 ((index + 1) * sizeof(*out_value)), 239 0, 240 NULL); 241 242 if (IS_ERR(val)) 243 return PTR_ERR(val); 244 245 *out_value = be32_to_cpup(((__be32 *)val) + index); 246 return 0; 247 } 248 EXPORT_SYMBOL_GPL(of_property_read_u32_index); 249 250 /** 251 * of_property_read_u64_index - Find and read a u64 from a multi-value property. 252 * 253 * @np: device node from which the property value is to be read. 254 * @propname: name of the property to be searched. 255 * @index: index of the u64 in the list of values 256 * @out_value: pointer to return value, modified only if no error. 257 * 258 * Search for a property in a device node and read nth 64-bit value from 259 * it. 260 * 261 * Return: 0 on success, -EINVAL if the property does not exist, 262 * -ENODATA if property does not have a value, and -EOVERFLOW if the 263 * property data isn't large enough. 264 * 265 * The out_value is modified only if a valid u64 value can be decoded. 266 */ 267 int of_property_read_u64_index(const struct device_node *np, 268 const char *propname, 269 u32 index, u64 *out_value) 270 { 271 const u64 *val = of_find_property_value_of_size(np, propname, 272 ((index + 1) * sizeof(*out_value)), 273 0, NULL); 274 275 if (IS_ERR(val)) 276 return PTR_ERR(val); 277 278 *out_value = be64_to_cpup(((__be64 *)val) + index); 279 return 0; 280 } 281 EXPORT_SYMBOL_GPL(of_property_read_u64_index); 282 283 /** 284 * of_property_read_variable_u8_array - Find and read an array of u8 from a 285 * property, with bounds on the minimum and maximum array size. 286 * 287 * @np: device node from which the property value is to be read. 288 * @propname: name of the property to be searched. 289 * @out_values: pointer to found values. 290 * @sz_min: minimum number of array elements to read 291 * @sz_max: maximum number of array elements to read, if zero there is no 292 * upper limit on the number of elements in the dts entry but only 293 * sz_min will be read. 294 * 295 * Search for a property in a device node and read 8-bit value(s) from 296 * it. 297 * 298 * dts entry of array should be like: 299 * ``property = /bits/ 8 <0x50 0x60 0x70>;`` 300 * 301 * Return: The number of elements read on success, -EINVAL if the property 302 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 303 * if the property data is smaller than sz_min or longer than sz_max. 304 * 305 * The out_values is modified only if a valid u8 value can be decoded. 306 */ 307 int of_property_read_variable_u8_array(const struct device_node *np, 308 const char *propname, u8 *out_values, 309 size_t sz_min, size_t sz_max) 310 { 311 size_t sz, count; 312 const u8 *val = of_find_property_value_of_size(np, propname, 313 (sz_min * sizeof(*out_values)), 314 (sz_max * sizeof(*out_values)), 315 &sz); 316 317 if (IS_ERR(val)) 318 return PTR_ERR(val); 319 320 if (!sz_max) 321 sz = sz_min; 322 else 323 sz /= sizeof(*out_values); 324 325 count = sz; 326 while (count--) 327 *out_values++ = *val++; 328 329 return sz; 330 } 331 EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array); 332 333 /** 334 * of_property_read_variable_u16_array - Find and read an array of u16 from a 335 * property, with bounds on the minimum and maximum array size. 336 * 337 * @np: device node from which the property value is to be read. 338 * @propname: name of the property to be searched. 339 * @out_values: pointer to found values. 340 * @sz_min: minimum number of array elements to read 341 * @sz_max: maximum number of array elements to read, if zero there is no 342 * upper limit on the number of elements in the dts entry but only 343 * sz_min will be read. 344 * 345 * Search for a property in a device node and read 16-bit value(s) from 346 * it. 347 * 348 * dts entry of array should be like: 349 * ``property = /bits/ 16 <0x5000 0x6000 0x7000>;`` 350 * 351 * Return: The number of elements read on success, -EINVAL if the property 352 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 353 * if the property data is smaller than sz_min or longer than sz_max. 354 * 355 * The out_values is modified only if a valid u16 value can be decoded. 356 */ 357 int of_property_read_variable_u16_array(const struct device_node *np, 358 const char *propname, u16 *out_values, 359 size_t sz_min, size_t sz_max) 360 { 361 size_t sz, count; 362 const __be16 *val = of_find_property_value_of_size(np, propname, 363 (sz_min * sizeof(*out_values)), 364 (sz_max * sizeof(*out_values)), 365 &sz); 366 367 if (IS_ERR(val)) 368 return PTR_ERR(val); 369 370 if (!sz_max) 371 sz = sz_min; 372 else 373 sz /= sizeof(*out_values); 374 375 count = sz; 376 while (count--) 377 *out_values++ = be16_to_cpup(val++); 378 379 return sz; 380 } 381 EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array); 382 383 /** 384 * of_property_read_variable_u32_array - Find and read an array of 32 bit 385 * integers from a property, with bounds on the minimum and maximum array size. 386 * 387 * @np: device node from which the property value is to be read. 388 * @propname: name of the property to be searched. 389 * @out_values: pointer to return found values. 390 * @sz_min: minimum number of array elements to read 391 * @sz_max: maximum number of array elements to read, if zero there is no 392 * upper limit on the number of elements in the dts entry but only 393 * sz_min will be read. 394 * 395 * Search for a property in a device node and read 32-bit value(s) from 396 * it. 397 * 398 * Return: The number of elements read on success, -EINVAL if the property 399 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 400 * if the property data is smaller than sz_min or longer than sz_max. 401 * 402 * The out_values is modified only if a valid u32 value can be decoded. 403 */ 404 int of_property_read_variable_u32_array(const struct device_node *np, 405 const char *propname, u32 *out_values, 406 size_t sz_min, size_t sz_max) 407 { 408 size_t sz, count; 409 const __be32 *val = of_find_property_value_of_size(np, propname, 410 (sz_min * sizeof(*out_values)), 411 (sz_max * sizeof(*out_values)), 412 &sz); 413 414 if (IS_ERR(val)) 415 return PTR_ERR(val); 416 417 if (!sz_max) 418 sz = sz_min; 419 else 420 sz /= sizeof(*out_values); 421 422 count = sz; 423 while (count--) 424 *out_values++ = be32_to_cpup(val++); 425 426 return sz; 427 } 428 EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array); 429 430 /** 431 * of_property_read_u64 - Find and read a 64 bit integer from a property 432 * @np: device node from which the property value is to be read. 433 * @propname: name of the property to be searched. 434 * @out_value: pointer to return value, modified only if return value is 0. 435 * 436 * Search for a property in a device node and read a 64-bit value from 437 * it. 438 * 439 * Return: 0 on success, -EINVAL if the property does not exist, 440 * -ENODATA if property does not have a value, and -EOVERFLOW if the 441 * property data isn't large enough. 442 * 443 * The out_value is modified only if a valid u64 value can be decoded. 444 */ 445 int of_property_read_u64(const struct device_node *np, const char *propname, 446 u64 *out_value) 447 { 448 const __be32 *val = of_find_property_value_of_size(np, propname, 449 sizeof(*out_value), 450 0, 451 NULL); 452 453 if (IS_ERR(val)) 454 return PTR_ERR(val); 455 456 *out_value = of_read_number(val, 2); 457 return 0; 458 } 459 EXPORT_SYMBOL_GPL(of_property_read_u64); 460 461 /** 462 * of_property_read_variable_u64_array - Find and read an array of 64 bit 463 * integers from a property, with bounds on the minimum and maximum array size. 464 * 465 * @np: device node from which the property value is to be read. 466 * @propname: name of the property to be searched. 467 * @out_values: pointer to found values. 468 * @sz_min: minimum number of array elements to read 469 * @sz_max: maximum number of array elements to read, if zero there is no 470 * upper limit on the number of elements in the dts entry but only 471 * sz_min will be read. 472 * 473 * Search for a property in a device node and read 64-bit value(s) from 474 * it. 475 * 476 * Return: The number of elements read on success, -EINVAL if the property 477 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 478 * if the property data is smaller than sz_min or longer than sz_max. 479 * 480 * The out_values is modified only if a valid u64 value can be decoded. 481 */ 482 int of_property_read_variable_u64_array(const struct device_node *np, 483 const char *propname, u64 *out_values, 484 size_t sz_min, size_t sz_max) 485 { 486 size_t sz, count; 487 const __be32 *val = of_find_property_value_of_size(np, propname, 488 (sz_min * sizeof(*out_values)), 489 (sz_max * sizeof(*out_values)), 490 &sz); 491 492 if (IS_ERR(val)) 493 return PTR_ERR(val); 494 495 if (!sz_max) 496 sz = sz_min; 497 else 498 sz /= sizeof(*out_values); 499 500 count = sz; 501 while (count--) { 502 *out_values++ = of_read_number(val, 2); 503 val += 2; 504 } 505 506 return sz; 507 } 508 EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array); 509 510 /** 511 * of_property_read_string - Find and read a string from a property 512 * @np: device node from which the property value is to be read. 513 * @propname: name of the property to be searched. 514 * @out_string: pointer to null terminated return string, modified only if 515 * return value is 0. 516 * 517 * Search for a property in a device tree node and retrieve a null 518 * terminated string value (pointer to data, not a copy). 519 * 520 * Return: 0 on success, -EINVAL if the property does not exist, -ENODATA if 521 * property does not have a value, and -EILSEQ if the string is not 522 * null-terminated within the length of the property data. 523 * 524 * Note that the empty string "" has length of 1, thus -ENODATA cannot 525 * be interpreted as an empty string. 526 * 527 * The out_string pointer is modified only if a valid string can be decoded. 528 */ 529 int of_property_read_string(const struct device_node *np, const char *propname, 530 const char **out_string) 531 { 532 const struct property *prop = of_find_property(np, propname, NULL); 533 534 if (!prop) 535 return -EINVAL; 536 if (!prop->length) 537 return -ENODATA; 538 if (strnlen(prop->value, prop->length) >= prop->length) 539 return -EILSEQ; 540 *out_string = prop->value; 541 return 0; 542 } 543 EXPORT_SYMBOL_GPL(of_property_read_string); 544 545 /** 546 * of_property_match_string() - Find string in a list and return index 547 * @np: pointer to the node containing the string list property 548 * @propname: string list property name 549 * @string: pointer to the string to search for in the string list 550 * 551 * Search for an exact match of string in a device node property which is a 552 * string of lists. 553 * 554 * Return: the index of the first occurrence of the string on success, -EINVAL 555 * if the property does not exist, -ENODATA if the property does not have a 556 * value, and -EILSEQ if the string is not null-terminated within the length of 557 * the property data. 558 */ 559 int of_property_match_string(const struct device_node *np, const char *propname, 560 const char *string) 561 { 562 const struct property *prop = of_find_property(np, propname, NULL); 563 size_t l; 564 int i; 565 const char *p, *end; 566 567 if (!prop) 568 return -EINVAL; 569 if (!prop->value) 570 return -ENODATA; 571 572 p = prop->value; 573 end = p + prop->length; 574 575 for (i = 0; p < end; i++, p += l) { 576 l = strnlen(p, end - p) + 1; 577 if (p + l > end) 578 return -EILSEQ; 579 pr_debug("comparing %s with %s\n", string, p); 580 if (strcmp(string, p) == 0) 581 return i; /* Found it; return index */ 582 } 583 return -ENODATA; 584 } 585 EXPORT_SYMBOL_GPL(of_property_match_string); 586 587 /** 588 * of_property_read_string_helper() - Utility helper for parsing string properties 589 * @np: device node from which the property value is to be read. 590 * @propname: name of the property to be searched. 591 * @out_strs: output array of string pointers. 592 * @sz: number of array elements to read. 593 * @skip: Number of strings to skip over at beginning of list. 594 * 595 * Don't call this function directly. It is a utility helper for the 596 * of_property_read_string*() family of functions. 597 */ 598 int of_property_read_string_helper(const struct device_node *np, 599 const char *propname, const char **out_strs, 600 size_t sz, int skip) 601 { 602 const struct property *prop = of_find_property(np, propname, NULL); 603 int l = 0, i = 0; 604 const char *p, *end; 605 606 if (!prop) 607 return -EINVAL; 608 if (!prop->value) 609 return -ENODATA; 610 p = prop->value; 611 end = p + prop->length; 612 613 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) { 614 l = strnlen(p, end - p) + 1; 615 if (p + l > end) 616 return -EILSEQ; 617 if (out_strs && i >= skip) 618 *out_strs++ = p; 619 } 620 i -= skip; 621 return i <= 0 ? -ENODATA : i; 622 } 623 EXPORT_SYMBOL_GPL(of_property_read_string_helper); 624 625 const __be32 *of_prop_next_u32(const struct property *prop, const __be32 *cur, 626 u32 *pu) 627 { 628 const void *curv = cur; 629 630 if (!prop) 631 return NULL; 632 633 if (!cur) { 634 curv = prop->value; 635 goto out_val; 636 } 637 638 curv += sizeof(*cur); 639 if (curv >= prop->value + prop->length) 640 return NULL; 641 642 out_val: 643 *pu = be32_to_cpup(curv); 644 return curv; 645 } 646 EXPORT_SYMBOL_GPL(of_prop_next_u32); 647 648 const char *of_prop_next_string(const struct property *prop, const char *cur) 649 { 650 const void *curv = cur; 651 652 if (!prop) 653 return NULL; 654 655 if (!cur) 656 return prop->value; 657 658 curv += strlen(cur) + 1; 659 if (curv >= prop->value + prop->length) 660 return NULL; 661 662 return curv; 663 } 664 EXPORT_SYMBOL_GPL(of_prop_next_string); 665 666 /** 667 * of_graph_parse_endpoint() - parse common endpoint node properties 668 * @node: pointer to endpoint device_node 669 * @endpoint: pointer to the OF endpoint data structure 670 * 671 * The caller should hold a reference to @node. 672 */ 673 int of_graph_parse_endpoint(const struct device_node *node, 674 struct of_endpoint *endpoint) 675 { 676 struct device_node *port_node __free(device_node) = 677 of_get_parent(node); 678 679 WARN_ONCE(!port_node, "%s(): endpoint %pOF has no parent node\n", 680 __func__, node); 681 682 memset(endpoint, 0, sizeof(*endpoint)); 683 684 endpoint->local_node = node; 685 /* 686 * It doesn't matter whether the two calls below succeed. 687 * If they don't then the default value 0 is used. 688 */ 689 of_property_read_u32(port_node, "reg", &endpoint->port); 690 of_property_read_u32(node, "reg", &endpoint->id); 691 692 return 0; 693 } 694 EXPORT_SYMBOL(of_graph_parse_endpoint); 695 696 /** 697 * of_graph_get_port_by_id() - get the port matching a given id 698 * @parent: pointer to the parent device node 699 * @id: id of the port 700 * 701 * Return: A 'port' node pointer with refcount incremented. The caller 702 * has to use of_node_put() on it when done. 703 */ 704 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id) 705 { 706 struct device_node *node __free(device_node) = of_get_child_by_name(parent, "ports"); 707 708 if (node) 709 parent = node; 710 711 for_each_child_of_node_scoped(parent, port) { 712 u32 port_id = 0; 713 714 if (!of_node_name_eq(port, "port")) 715 continue; 716 of_property_read_u32(port, "reg", &port_id); 717 if (id == port_id) 718 return_ptr(port); 719 } 720 721 return NULL; 722 } 723 EXPORT_SYMBOL(of_graph_get_port_by_id); 724 725 /** 726 * of_graph_get_next_port() - get next port node. 727 * @parent: pointer to the parent device node, or parent ports node 728 * @prev: previous port node, or NULL to get first 729 * 730 * Parent device node can be used as @parent whether device node has ports node 731 * or not. It will work same as ports@0 node. 732 * 733 * Return: A 'port' node pointer with refcount incremented. Refcount 734 * of the passed @prev node is decremented. 735 */ 736 struct device_node *of_graph_get_next_port(const struct device_node *parent, 737 struct device_node *prev) 738 { 739 if (!parent) 740 return NULL; 741 742 if (!prev) { 743 struct device_node *node __free(device_node) = 744 of_get_child_by_name(parent, "ports"); 745 746 if (node) 747 parent = node; 748 749 return of_get_child_by_name(parent, "port"); 750 } 751 752 do { 753 prev = of_get_next_child(parent, prev); 754 if (!prev) 755 break; 756 } while (!of_node_name_eq(prev, "port")); 757 758 return prev; 759 } 760 EXPORT_SYMBOL(of_graph_get_next_port); 761 762 /** 763 * of_graph_get_next_port_endpoint() - get next endpoint node in port. 764 * If it reached to end of the port, it will return NULL. 765 * @port: pointer to the target port node 766 * @prev: previous endpoint node, or NULL to get first 767 * 768 * Return: An 'endpoint' node pointer with refcount incremented. Refcount 769 * of the passed @prev node is decremented. 770 */ 771 struct device_node *of_graph_get_next_port_endpoint(const struct device_node *port, 772 struct device_node *prev) 773 { 774 while (1) { 775 prev = of_get_next_child(port, prev); 776 if (!prev) 777 break; 778 if (WARN(!of_node_name_eq(prev, "endpoint"), 779 "non endpoint node is used (%pOF)", prev)) 780 continue; 781 782 break; 783 } 784 785 return prev; 786 } 787 EXPORT_SYMBOL(of_graph_get_next_port_endpoint); 788 789 /** 790 * of_graph_get_next_endpoint() - get next endpoint node 791 * @parent: pointer to the parent device node 792 * @prev: previous endpoint node, or NULL to get first 793 * 794 * Return: An 'endpoint' node pointer with refcount incremented. Refcount 795 * of the passed @prev node is decremented. 796 */ 797 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent, 798 struct device_node *prev) 799 { 800 struct device_node *endpoint; 801 struct device_node *port; 802 803 if (!parent) 804 return NULL; 805 806 /* 807 * Start by locating the port node. If no previous endpoint is specified 808 * search for the first port node, otherwise get the previous endpoint 809 * parent port node. 810 */ 811 if (!prev) { 812 port = of_graph_get_next_port(parent, NULL); 813 if (!port) { 814 pr_debug("graph: no port node found in %pOF\n", parent); 815 return NULL; 816 } 817 } else { 818 port = of_get_parent(prev); 819 if (WARN_ONCE(!port, "%s(): endpoint %pOF has no parent node\n", 820 __func__, prev)) 821 return NULL; 822 } 823 824 while (1) { 825 /* 826 * Now that we have a port node, get the next endpoint by 827 * getting the next child. If the previous endpoint is NULL this 828 * will return the first child. 829 */ 830 endpoint = of_graph_get_next_port_endpoint(port, prev); 831 if (endpoint) { 832 of_node_put(port); 833 return endpoint; 834 } 835 836 /* No more endpoints under this port, try the next one. */ 837 prev = NULL; 838 839 port = of_graph_get_next_port(parent, port); 840 if (!port) 841 return NULL; 842 } 843 } 844 EXPORT_SYMBOL(of_graph_get_next_endpoint); 845 846 /** 847 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers 848 * @parent: pointer to the parent device node 849 * @port_reg: identifier (value of reg property) of the parent port node 850 * @reg: identifier (value of reg property) of the endpoint node 851 * 852 * Return: An 'endpoint' node pointer which is identified by reg and at the same 853 * is the child of a port node identified by port_reg. reg and port_reg are 854 * ignored when they are -1. Use of_node_put() on the pointer when done. 855 */ 856 struct device_node *of_graph_get_endpoint_by_regs( 857 const struct device_node *parent, int port_reg, int reg) 858 { 859 struct of_endpoint endpoint; 860 struct device_node *node = NULL; 861 862 for_each_endpoint_of_node(parent, node) { 863 of_graph_parse_endpoint(node, &endpoint); 864 if (((port_reg == -1) || (endpoint.port == port_reg)) && 865 ((reg == -1) || (endpoint.id == reg))) 866 return node; 867 } 868 869 return NULL; 870 } 871 EXPORT_SYMBOL(of_graph_get_endpoint_by_regs); 872 873 /** 874 * of_graph_get_remote_endpoint() - get remote endpoint node 875 * @node: pointer to a local endpoint device_node 876 * 877 * Return: Remote endpoint node associated with remote endpoint node linked 878 * to @node. Use of_node_put() on it when done. 879 */ 880 struct device_node *of_graph_get_remote_endpoint(const struct device_node *node) 881 { 882 /* Get remote endpoint node. */ 883 return of_parse_phandle(node, "remote-endpoint", 0); 884 } 885 EXPORT_SYMBOL(of_graph_get_remote_endpoint); 886 887 /** 888 * of_graph_get_port_parent() - get port's parent node 889 * @node: pointer to a local endpoint device_node 890 * 891 * Return: device node associated with endpoint node linked 892 * to @node. Use of_node_put() on it when done. 893 */ 894 struct device_node *of_graph_get_port_parent(struct device_node *node) 895 { 896 unsigned int depth; 897 898 if (!node) 899 return NULL; 900 901 /* 902 * Preserve usecount for passed in node as of_get_next_parent() 903 * will do of_node_put() on it. 904 */ 905 of_node_get(node); 906 907 /* Walk 3 levels up only if there is 'ports' node. */ 908 for (depth = 3; depth && node; depth--) { 909 node = of_get_next_parent(node); 910 if (depth == 2 && !of_node_name_eq(node, "ports") && 911 !of_node_name_eq(node, "in-ports") && 912 !of_node_name_eq(node, "out-ports")) 913 break; 914 } 915 return node; 916 } 917 EXPORT_SYMBOL(of_graph_get_port_parent); 918 919 /** 920 * of_graph_get_remote_port_parent() - get remote port's parent node 921 * @node: pointer to a local endpoint device_node 922 * 923 * Return: Remote device node associated with remote endpoint node linked 924 * to @node. Use of_node_put() on it when done. 925 */ 926 struct device_node *of_graph_get_remote_port_parent( 927 const struct device_node *node) 928 { 929 /* Get remote endpoint node. */ 930 struct device_node *np __free(device_node) = 931 of_graph_get_remote_endpoint(node); 932 933 return of_graph_get_port_parent(np); 934 } 935 EXPORT_SYMBOL(of_graph_get_remote_port_parent); 936 937 /** 938 * of_graph_get_remote_port() - get remote port node 939 * @node: pointer to a local endpoint device_node 940 * 941 * Return: Remote port node associated with remote endpoint node linked 942 * to @node. Use of_node_put() on it when done. 943 */ 944 struct device_node *of_graph_get_remote_port(const struct device_node *node) 945 { 946 struct device_node *np; 947 948 /* Get remote endpoint node. */ 949 np = of_graph_get_remote_endpoint(node); 950 if (!np) 951 return NULL; 952 return of_get_next_parent(np); 953 } 954 EXPORT_SYMBOL(of_graph_get_remote_port); 955 956 /** 957 * of_graph_get_endpoint_count() - get the number of endpoints in a device node 958 * @np: parent device node containing ports and endpoints 959 * 960 * Return: count of endpoint of this device node 961 */ 962 unsigned int of_graph_get_endpoint_count(const struct device_node *np) 963 { 964 struct device_node *endpoint; 965 unsigned int num = 0; 966 967 for_each_endpoint_of_node(np, endpoint) 968 num++; 969 970 return num; 971 } 972 EXPORT_SYMBOL(of_graph_get_endpoint_count); 973 974 /** 975 * of_graph_get_port_count() - get the number of port in a device or ports node 976 * @np: pointer to the device or ports node 977 * 978 * Return: count of port of this device or ports node 979 */ 980 unsigned int of_graph_get_port_count(struct device_node *np) 981 { 982 unsigned int num = 0; 983 984 for_each_of_graph_port(np, port) 985 num++; 986 987 return num; 988 } 989 EXPORT_SYMBOL(of_graph_get_port_count); 990 991 /** 992 * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint 993 * @node: pointer to parent device_node containing graph port/endpoint 994 * @port: identifier (value of reg property) of the parent port node 995 * @endpoint: identifier (value of reg property) of the endpoint node 996 * 997 * Return: Remote device node associated with remote endpoint node linked 998 * to @node. Use of_node_put() on it when done. 999 */ 1000 struct device_node *of_graph_get_remote_node(const struct device_node *node, 1001 u32 port, u32 endpoint) 1002 { 1003 struct device_node *endpoint_node, *remote; 1004 1005 endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint); 1006 if (!endpoint_node) { 1007 pr_debug("no valid endpoint (%d, %d) for node %pOF\n", 1008 port, endpoint, node); 1009 return NULL; 1010 } 1011 1012 remote = of_graph_get_remote_port_parent(endpoint_node); 1013 of_node_put(endpoint_node); 1014 if (!remote) { 1015 pr_debug("no valid remote node\n"); 1016 return NULL; 1017 } 1018 1019 if (!of_device_is_available(remote)) { 1020 pr_debug("not available for remote node\n"); 1021 of_node_put(remote); 1022 return NULL; 1023 } 1024 1025 return remote; 1026 } 1027 EXPORT_SYMBOL(of_graph_get_remote_node); 1028 1029 static struct fwnode_handle *of_fwnode_get(struct fwnode_handle *fwnode) 1030 { 1031 return of_fwnode_handle(of_node_get(to_of_node(fwnode))); 1032 } 1033 1034 static void of_fwnode_put(struct fwnode_handle *fwnode) 1035 { 1036 of_node_put(to_of_node(fwnode)); 1037 } 1038 1039 static bool of_fwnode_device_is_available(const struct fwnode_handle *fwnode) 1040 { 1041 return of_device_is_available(to_of_node(fwnode)); 1042 } 1043 1044 static bool of_fwnode_device_dma_supported(const struct fwnode_handle *fwnode) 1045 { 1046 return true; 1047 } 1048 1049 static enum dev_dma_attr 1050 of_fwnode_device_get_dma_attr(const struct fwnode_handle *fwnode) 1051 { 1052 if (of_dma_is_coherent(to_of_node(fwnode))) 1053 return DEV_DMA_COHERENT; 1054 else 1055 return DEV_DMA_NON_COHERENT; 1056 } 1057 1058 static bool of_fwnode_property_present(const struct fwnode_handle *fwnode, 1059 const char *propname) 1060 { 1061 return of_property_present(to_of_node(fwnode), propname); 1062 } 1063 1064 static bool of_fwnode_property_read_bool(const struct fwnode_handle *fwnode, 1065 const char *propname) 1066 { 1067 return of_property_read_bool(to_of_node(fwnode), propname); 1068 } 1069 1070 static int of_fwnode_property_read_int_array(const struct fwnode_handle *fwnode, 1071 const char *propname, 1072 unsigned int elem_size, void *val, 1073 size_t nval) 1074 { 1075 const struct device_node *node = to_of_node(fwnode); 1076 1077 if (!val) 1078 return of_property_count_elems_of_size(node, propname, 1079 elem_size); 1080 1081 switch (elem_size) { 1082 case sizeof(u8): 1083 return of_property_read_u8_array(node, propname, val, nval); 1084 case sizeof(u16): 1085 return of_property_read_u16_array(node, propname, val, nval); 1086 case sizeof(u32): 1087 return of_property_read_u32_array(node, propname, val, nval); 1088 case sizeof(u64): 1089 return of_property_read_u64_array(node, propname, val, nval); 1090 } 1091 1092 return -ENXIO; 1093 } 1094 1095 static int 1096 of_fwnode_property_read_string_array(const struct fwnode_handle *fwnode, 1097 const char *propname, const char **val, 1098 size_t nval) 1099 { 1100 const struct device_node *node = to_of_node(fwnode); 1101 1102 return val ? 1103 of_property_read_string_array(node, propname, val, nval) : 1104 of_property_count_strings(node, propname); 1105 } 1106 1107 static const char *of_fwnode_get_name(const struct fwnode_handle *fwnode) 1108 { 1109 return kbasename(to_of_node(fwnode)->full_name); 1110 } 1111 1112 static const char *of_fwnode_get_name_prefix(const struct fwnode_handle *fwnode) 1113 { 1114 /* Root needs no prefix here (its name is "/"). */ 1115 if (!to_of_node(fwnode)->parent) 1116 return ""; 1117 1118 return "/"; 1119 } 1120 1121 static struct fwnode_handle * 1122 of_fwnode_get_parent(const struct fwnode_handle *fwnode) 1123 { 1124 return of_fwnode_handle(of_get_parent(to_of_node(fwnode))); 1125 } 1126 1127 static struct fwnode_handle * 1128 of_fwnode_get_next_child_node(const struct fwnode_handle *fwnode, 1129 struct fwnode_handle *child) 1130 { 1131 return of_fwnode_handle(of_get_next_available_child(to_of_node(fwnode), 1132 to_of_node(child))); 1133 } 1134 1135 static struct fwnode_handle * 1136 of_fwnode_get_named_child_node(const struct fwnode_handle *fwnode, 1137 const char *childname) 1138 { 1139 const struct device_node *node = to_of_node(fwnode); 1140 struct device_node *child; 1141 1142 for_each_available_child_of_node(node, child) 1143 if (of_node_name_eq(child, childname)) 1144 return of_fwnode_handle(child); 1145 1146 return NULL; 1147 } 1148 1149 static int 1150 of_fwnode_get_reference_args(const struct fwnode_handle *fwnode, 1151 const char *prop, const char *nargs_prop, 1152 unsigned int nargs, unsigned int index, 1153 struct fwnode_reference_args *args) 1154 { 1155 struct of_phandle_args of_args; 1156 unsigned int i; 1157 int ret; 1158 1159 if (nargs_prop) 1160 ret = of_parse_phandle_with_args(to_of_node(fwnode), prop, 1161 nargs_prop, index, &of_args); 1162 else 1163 ret = of_parse_phandle_with_fixed_args(to_of_node(fwnode), prop, 1164 nargs, index, &of_args); 1165 if (ret < 0) 1166 return ret; 1167 if (!args) { 1168 of_node_put(of_args.np); 1169 return 0; 1170 } 1171 1172 args->nargs = of_args.args_count; 1173 args->fwnode = of_fwnode_handle(of_args.np); 1174 1175 for (i = 0; i < NR_FWNODE_REFERENCE_ARGS; i++) 1176 args->args[i] = i < of_args.args_count ? of_args.args[i] : 0; 1177 1178 return 0; 1179 } 1180 1181 static struct fwnode_handle * 1182 of_fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode, 1183 struct fwnode_handle *prev) 1184 { 1185 return of_fwnode_handle(of_graph_get_next_endpoint(to_of_node(fwnode), 1186 to_of_node(prev))); 1187 } 1188 1189 static struct fwnode_handle * 1190 of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode) 1191 { 1192 return of_fwnode_handle( 1193 of_graph_get_remote_endpoint(to_of_node(fwnode))); 1194 } 1195 1196 static struct fwnode_handle * 1197 of_fwnode_graph_get_port_parent(struct fwnode_handle *fwnode) 1198 { 1199 struct device_node *np; 1200 1201 /* Get the parent of the port */ 1202 np = of_get_parent(to_of_node(fwnode)); 1203 if (!np) 1204 return NULL; 1205 1206 /* Is this the "ports" node? If not, it's the port parent. */ 1207 if (!of_node_name_eq(np, "ports")) 1208 return of_fwnode_handle(np); 1209 1210 return of_fwnode_handle(of_get_next_parent(np)); 1211 } 1212 1213 static int of_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode, 1214 struct fwnode_endpoint *endpoint) 1215 { 1216 const struct device_node *node = to_of_node(fwnode); 1217 struct device_node *port_node __free(device_node) = of_get_parent(node); 1218 1219 endpoint->local_fwnode = fwnode; 1220 1221 of_property_read_u32(port_node, "reg", &endpoint->port); 1222 of_property_read_u32(node, "reg", &endpoint->id); 1223 1224 return 0; 1225 } 1226 1227 static const void * 1228 of_fwnode_device_get_match_data(const struct fwnode_handle *fwnode, 1229 const struct device *dev) 1230 { 1231 return of_device_get_match_data(dev); 1232 } 1233 1234 static void of_link_to_phandle(struct device_node *con_np, 1235 struct device_node *sup_np, 1236 u8 flags) 1237 { 1238 struct device_node *tmp_np __free(device_node) = of_node_get(sup_np); 1239 1240 /* Check that sup_np and its ancestors are available. */ 1241 while (tmp_np) { 1242 if (of_fwnode_handle(tmp_np)->dev) 1243 break; 1244 1245 if (!of_device_is_available(tmp_np)) 1246 return; 1247 1248 tmp_np = of_get_next_parent(tmp_np); 1249 } 1250 1251 fwnode_link_add(of_fwnode_handle(con_np), of_fwnode_handle(sup_np), flags); 1252 } 1253 1254 /** 1255 * parse_prop_cells - Property parsing function for suppliers 1256 * 1257 * @np: Pointer to device tree node containing a list 1258 * @prop_name: Name of property to be parsed. Expected to hold phandle values 1259 * @index: For properties holding a list of phandles, this is the index 1260 * into the list. 1261 * @list_name: Property name that is known to contain list of phandle(s) to 1262 * supplier(s) 1263 * @cells_name: property name that specifies phandles' arguments count 1264 * 1265 * This is a helper function to parse properties that have a known fixed name 1266 * and are a list of phandles and phandle arguments. 1267 * 1268 * Returns: 1269 * - phandle node pointer with refcount incremented. Caller must of_node_put() 1270 * on it when done. 1271 * - NULL if no phandle found at index 1272 */ 1273 static struct device_node *parse_prop_cells(struct device_node *np, 1274 const char *prop_name, int index, 1275 const char *list_name, 1276 const char *cells_name) 1277 { 1278 struct of_phandle_args sup_args; 1279 1280 if (strcmp(prop_name, list_name)) 1281 return NULL; 1282 1283 if (__of_parse_phandle_with_args(np, list_name, cells_name, 0, index, 1284 &sup_args)) 1285 return NULL; 1286 1287 return sup_args.np; 1288 } 1289 1290 #define DEFINE_SIMPLE_PROP(fname, name, cells) \ 1291 static struct device_node *parse_##fname(struct device_node *np, \ 1292 const char *prop_name, int index) \ 1293 { \ 1294 return parse_prop_cells(np, prop_name, index, name, cells); \ 1295 } 1296 1297 static int strcmp_suffix(const char *str, const char *suffix) 1298 { 1299 unsigned int len, suffix_len; 1300 1301 len = strlen(str); 1302 suffix_len = strlen(suffix); 1303 if (len <= suffix_len) 1304 return -1; 1305 return strcmp(str + len - suffix_len, suffix); 1306 } 1307 1308 /** 1309 * parse_suffix_prop_cells - Suffix property parsing function for suppliers 1310 * 1311 * @np: Pointer to device tree node containing a list 1312 * @prop_name: Name of property to be parsed. Expected to hold phandle values 1313 * @index: For properties holding a list of phandles, this is the index 1314 * into the list. 1315 * @suffix: Property suffix that is known to contain list of phandle(s) to 1316 * supplier(s) 1317 * @cells_name: property name that specifies phandles' arguments count 1318 * 1319 * This is a helper function to parse properties that have a known fixed suffix 1320 * and are a list of phandles and phandle arguments. 1321 * 1322 * Returns: 1323 * - phandle node pointer with refcount incremented. Caller must of_node_put() 1324 * on it when done. 1325 * - NULL if no phandle found at index 1326 */ 1327 static struct device_node *parse_suffix_prop_cells(struct device_node *np, 1328 const char *prop_name, int index, 1329 const char *suffix, 1330 const char *cells_name) 1331 { 1332 struct of_phandle_args sup_args; 1333 1334 if (strcmp_suffix(prop_name, suffix)) 1335 return NULL; 1336 1337 if (of_parse_phandle_with_args(np, prop_name, cells_name, index, 1338 &sup_args)) 1339 return NULL; 1340 1341 return sup_args.np; 1342 } 1343 1344 #define DEFINE_SUFFIX_PROP(fname, suffix, cells) \ 1345 static struct device_node *parse_##fname(struct device_node *np, \ 1346 const char *prop_name, int index) \ 1347 { \ 1348 return parse_suffix_prop_cells(np, prop_name, index, suffix, cells); \ 1349 } 1350 1351 /** 1352 * struct supplier_bindings - Property parsing functions for suppliers 1353 * 1354 * @parse_prop: function name 1355 * parse_prop() finds the node corresponding to a supplier phandle 1356 * parse_prop.np: Pointer to device node holding supplier phandle property 1357 * parse_prop.prop_name: Name of property holding a phandle value 1358 * parse_prop.index: For properties holding a list of phandles, this is the 1359 * index into the list 1360 * @get_con_dev: If the consumer node containing the property is never converted 1361 * to a struct device, implement this ops so fw_devlink can use it 1362 * to find the true consumer. 1363 * @optional: Describes whether a supplier is mandatory or not 1364 * @fwlink_flags: Optional fwnode link flags to use when creating a fwnode link 1365 * for this property. 1366 * 1367 * Returns: 1368 * parse_prop() return values are 1369 * - phandle node pointer with refcount incremented. Caller must of_node_put() 1370 * on it when done. 1371 * - NULL if no phandle found at index 1372 */ 1373 struct supplier_bindings { 1374 struct device_node *(*parse_prop)(struct device_node *np, 1375 const char *prop_name, int index); 1376 struct device_node *(*get_con_dev)(struct device_node *np); 1377 bool optional; 1378 u8 fwlink_flags; 1379 }; 1380 1381 DEFINE_SIMPLE_PROP(clocks, "clocks", "#clock-cells") 1382 DEFINE_SIMPLE_PROP(interconnects, "interconnects", "#interconnect-cells") 1383 DEFINE_SIMPLE_PROP(iommus, "iommus", "#iommu-cells") 1384 DEFINE_SIMPLE_PROP(mboxes, "mboxes", "#mbox-cells") 1385 DEFINE_SIMPLE_PROP(io_channels, "io-channels", "#io-channel-cells") 1386 DEFINE_SIMPLE_PROP(io_backends, "io-backends", "#io-backend-cells") 1387 DEFINE_SIMPLE_PROP(dmas, "dmas", "#dma-cells") 1388 DEFINE_SIMPLE_PROP(power_domains, "power-domains", "#power-domain-cells") 1389 DEFINE_SIMPLE_PROP(hwlocks, "hwlocks", "#hwlock-cells") 1390 DEFINE_SIMPLE_PROP(extcon, "extcon", NULL) 1391 DEFINE_SIMPLE_PROP(nvmem_cells, "nvmem-cells", "#nvmem-cell-cells") 1392 DEFINE_SIMPLE_PROP(phys, "phys", "#phy-cells") 1393 DEFINE_SIMPLE_PROP(wakeup_parent, "wakeup-parent", NULL) 1394 DEFINE_SIMPLE_PROP(pinctrl0, "pinctrl-0", NULL) 1395 DEFINE_SIMPLE_PROP(pinctrl1, "pinctrl-1", NULL) 1396 DEFINE_SIMPLE_PROP(pinctrl2, "pinctrl-2", NULL) 1397 DEFINE_SIMPLE_PROP(pinctrl3, "pinctrl-3", NULL) 1398 DEFINE_SIMPLE_PROP(pinctrl4, "pinctrl-4", NULL) 1399 DEFINE_SIMPLE_PROP(pinctrl5, "pinctrl-5", NULL) 1400 DEFINE_SIMPLE_PROP(pinctrl6, "pinctrl-6", NULL) 1401 DEFINE_SIMPLE_PROP(pinctrl7, "pinctrl-7", NULL) 1402 DEFINE_SIMPLE_PROP(pinctrl8, "pinctrl-8", NULL) 1403 DEFINE_SIMPLE_PROP(pwms, "pwms", "#pwm-cells") 1404 DEFINE_SIMPLE_PROP(resets, "resets", "#reset-cells") 1405 DEFINE_SIMPLE_PROP(leds, "leds", NULL) 1406 DEFINE_SIMPLE_PROP(backlight, "backlight", NULL) 1407 DEFINE_SIMPLE_PROP(panel, "panel", NULL) 1408 DEFINE_SIMPLE_PROP(msi_parent, "msi-parent", "#msi-cells") 1409 DEFINE_SIMPLE_PROP(post_init_providers, "post-init-providers", NULL) 1410 DEFINE_SIMPLE_PROP(access_controllers, "access-controllers", "#access-controller-cells") 1411 DEFINE_SIMPLE_PROP(pses, "pses", "#pse-cells") 1412 DEFINE_SIMPLE_PROP(power_supplies, "power-supplies", NULL) 1413 DEFINE_SUFFIX_PROP(regulators, "-supply", NULL) 1414 DEFINE_SUFFIX_PROP(gpio, "-gpio", "#gpio-cells") 1415 1416 static struct device_node *parse_gpios(struct device_node *np, 1417 const char *prop_name, int index) 1418 { 1419 if (!strcmp_suffix(prop_name, ",nr-gpios")) 1420 return NULL; 1421 1422 return parse_suffix_prop_cells(np, prop_name, index, "-gpios", 1423 "#gpio-cells"); 1424 } 1425 1426 static struct device_node *parse_iommu_maps(struct device_node *np, 1427 const char *prop_name, int index) 1428 { 1429 if (strcmp(prop_name, "iommu-map")) 1430 return NULL; 1431 1432 return of_parse_phandle(np, prop_name, (index * 4) + 1); 1433 } 1434 1435 static struct device_node *parse_gpio_compat(struct device_node *np, 1436 const char *prop_name, int index) 1437 { 1438 struct of_phandle_args sup_args; 1439 1440 if (strcmp(prop_name, "gpio") && strcmp(prop_name, "gpios")) 1441 return NULL; 1442 1443 /* 1444 * Ignore node with gpio-hog property since its gpios are all provided 1445 * by its parent. 1446 */ 1447 if (of_property_read_bool(np, "gpio-hog")) 1448 return NULL; 1449 1450 if (of_parse_phandle_with_args(np, prop_name, "#gpio-cells", index, 1451 &sup_args)) 1452 return NULL; 1453 1454 return sup_args.np; 1455 } 1456 1457 static struct device_node *parse_interrupts(struct device_node *np, 1458 const char *prop_name, int index) 1459 { 1460 struct of_phandle_args sup_args; 1461 1462 if (!IS_ENABLED(CONFIG_OF_IRQ) || IS_ENABLED(CONFIG_PPC)) 1463 return NULL; 1464 1465 if (strcmp(prop_name, "interrupts") && 1466 strcmp(prop_name, "interrupts-extended")) 1467 return NULL; 1468 1469 return of_irq_parse_one(np, index, &sup_args) ? NULL : sup_args.np; 1470 } 1471 1472 static struct device_node *parse_interrupt_map(struct device_node *np, 1473 const char *prop_name, int index) 1474 { 1475 const __be32 *imap, *imap_end; 1476 struct of_phandle_args sup_args; 1477 u32 addrcells, intcells; 1478 int imaplen; 1479 1480 if (!IS_ENABLED(CONFIG_OF_IRQ)) 1481 return NULL; 1482 1483 if (strcmp(prop_name, "interrupt-map")) 1484 return NULL; 1485 1486 if (of_property_read_u32(np, "#interrupt-cells", &intcells)) 1487 return NULL; 1488 addrcells = of_bus_n_addr_cells(np); 1489 1490 imap = of_get_property(np, "interrupt-map", &imaplen); 1491 if (!imap) 1492 return NULL; 1493 imaplen /= sizeof(*imap); 1494 1495 imap_end = imap + imaplen; 1496 1497 for (int i = 0; imap + addrcells + intcells + 1 < imap_end; i++) { 1498 imap += addrcells + intcells; 1499 1500 imap = of_irq_parse_imap_parent(imap, imap_end - imap, &sup_args); 1501 if (!imap) 1502 return NULL; 1503 1504 if (i == index) 1505 return sup_args.np; 1506 1507 of_node_put(sup_args.np); 1508 } 1509 1510 return NULL; 1511 } 1512 1513 static struct device_node *parse_remote_endpoint(struct device_node *np, 1514 const char *prop_name, 1515 int index) 1516 { 1517 /* Return NULL for index > 0 to signify end of remote-endpoints. */ 1518 if (index > 0 || strcmp(prop_name, "remote-endpoint")) 1519 return NULL; 1520 1521 return of_graph_get_remote_port_parent(np); 1522 } 1523 1524 static const struct supplier_bindings of_supplier_bindings[] = { 1525 { .parse_prop = parse_clocks, }, 1526 { .parse_prop = parse_interconnects, }, 1527 { .parse_prop = parse_iommus, .optional = true, }, 1528 { .parse_prop = parse_iommu_maps, .optional = true, }, 1529 { .parse_prop = parse_mboxes, }, 1530 { .parse_prop = parse_io_channels, }, 1531 { .parse_prop = parse_io_backends, }, 1532 { .parse_prop = parse_dmas, .optional = true, }, 1533 { .parse_prop = parse_power_domains, }, 1534 { .parse_prop = parse_hwlocks, }, 1535 { .parse_prop = parse_extcon, }, 1536 { .parse_prop = parse_nvmem_cells, }, 1537 { .parse_prop = parse_phys, }, 1538 { .parse_prop = parse_wakeup_parent, }, 1539 { .parse_prop = parse_pinctrl0, }, 1540 { .parse_prop = parse_pinctrl1, }, 1541 { .parse_prop = parse_pinctrl2, }, 1542 { .parse_prop = parse_pinctrl3, }, 1543 { .parse_prop = parse_pinctrl4, }, 1544 { .parse_prop = parse_pinctrl5, }, 1545 { .parse_prop = parse_pinctrl6, }, 1546 { .parse_prop = parse_pinctrl7, }, 1547 { .parse_prop = parse_pinctrl8, }, 1548 { 1549 .parse_prop = parse_remote_endpoint, 1550 .get_con_dev = of_graph_get_port_parent, 1551 }, 1552 { .parse_prop = parse_pwms, }, 1553 { .parse_prop = parse_resets, }, 1554 { .parse_prop = parse_leds, }, 1555 { .parse_prop = parse_backlight, }, 1556 { .parse_prop = parse_panel, }, 1557 { .parse_prop = parse_msi_parent, }, 1558 { .parse_prop = parse_pses, }, 1559 { .parse_prop = parse_power_supplies, }, 1560 { .parse_prop = parse_gpio_compat, }, 1561 { .parse_prop = parse_interrupts, }, 1562 { .parse_prop = parse_interrupt_map, }, 1563 { .parse_prop = parse_access_controllers, }, 1564 { .parse_prop = parse_regulators, }, 1565 { .parse_prop = parse_gpio, }, 1566 { .parse_prop = parse_gpios, }, 1567 { 1568 .parse_prop = parse_post_init_providers, 1569 .fwlink_flags = FWLINK_FLAG_IGNORE, 1570 }, 1571 {} 1572 }; 1573 1574 /** 1575 * of_link_property - Create device links to suppliers listed in a property 1576 * @con_np: The consumer device tree node which contains the property 1577 * @prop_name: Name of property to be parsed 1578 * 1579 * This function checks if the property @prop_name that is present in the 1580 * @con_np device tree node is one of the known common device tree bindings 1581 * that list phandles to suppliers. If @prop_name isn't one, this function 1582 * doesn't do anything. 1583 * 1584 * If @prop_name is one, this function attempts to create fwnode links from the 1585 * consumer device tree node @con_np to all the suppliers device tree nodes 1586 * listed in @prop_name. 1587 * 1588 * Any failed attempt to create a fwnode link will NOT result in an immediate 1589 * return. of_link_property() must create links to all the available supplier 1590 * device tree nodes even when attempts to create a link to one or more 1591 * suppliers fail. 1592 */ 1593 static int of_link_property(struct device_node *con_np, const char *prop_name) 1594 { 1595 struct device_node *phandle; 1596 const struct supplier_bindings *s = of_supplier_bindings; 1597 unsigned int i = 0; 1598 bool matched = false; 1599 1600 /* Do not stop at first failed link, link all available suppliers. */ 1601 while (!matched && s->parse_prop) { 1602 if (s->optional && !fw_devlink_is_strict()) { 1603 s++; 1604 continue; 1605 } 1606 1607 while ((phandle = s->parse_prop(con_np, prop_name, i))) { 1608 struct device_node *con_dev_np __free(device_node) = 1609 s->get_con_dev ? s->get_con_dev(con_np) : of_node_get(con_np); 1610 1611 matched = true; 1612 i++; 1613 of_link_to_phandle(con_dev_np, phandle, s->fwlink_flags); 1614 of_node_put(phandle); 1615 } 1616 s++; 1617 } 1618 return 0; 1619 } 1620 1621 static void __iomem *of_fwnode_iomap(struct fwnode_handle *fwnode, int index) 1622 { 1623 #ifdef CONFIG_OF_ADDRESS 1624 return of_iomap(to_of_node(fwnode), index); 1625 #else 1626 return NULL; 1627 #endif 1628 } 1629 1630 static int of_fwnode_irq_get(const struct fwnode_handle *fwnode, 1631 unsigned int index) 1632 { 1633 return of_irq_get(to_of_node(fwnode), index); 1634 } 1635 1636 static int of_fwnode_add_links(struct fwnode_handle *fwnode) 1637 { 1638 const struct property *p; 1639 struct device_node *con_np = to_of_node(fwnode); 1640 1641 if (IS_ENABLED(CONFIG_X86)) 1642 return 0; 1643 1644 if (!con_np) 1645 return -EINVAL; 1646 1647 for_each_property_of_node(con_np, p) 1648 of_link_property(con_np, p->name); 1649 1650 return 0; 1651 } 1652 1653 const struct fwnode_operations of_fwnode_ops = { 1654 .get = of_fwnode_get, 1655 .put = of_fwnode_put, 1656 .device_is_available = of_fwnode_device_is_available, 1657 .device_get_match_data = of_fwnode_device_get_match_data, 1658 .device_dma_supported = of_fwnode_device_dma_supported, 1659 .device_get_dma_attr = of_fwnode_device_get_dma_attr, 1660 .property_present = of_fwnode_property_present, 1661 .property_read_bool = of_fwnode_property_read_bool, 1662 .property_read_int_array = of_fwnode_property_read_int_array, 1663 .property_read_string_array = of_fwnode_property_read_string_array, 1664 .get_name = of_fwnode_get_name, 1665 .get_name_prefix = of_fwnode_get_name_prefix, 1666 .get_parent = of_fwnode_get_parent, 1667 .get_next_child_node = of_fwnode_get_next_child_node, 1668 .get_named_child_node = of_fwnode_get_named_child_node, 1669 .get_reference_args = of_fwnode_get_reference_args, 1670 .graph_get_next_endpoint = of_fwnode_graph_get_next_endpoint, 1671 .graph_get_remote_endpoint = of_fwnode_graph_get_remote_endpoint, 1672 .graph_get_port_parent = of_fwnode_graph_get_port_parent, 1673 .graph_parse_endpoint = of_fwnode_graph_parse_endpoint, 1674 .iomap = of_fwnode_iomap, 1675 .irq_get = of_fwnode_irq_get, 1676 .add_links = of_fwnode_add_links, 1677 }; 1678 EXPORT_SYMBOL_GPL(of_fwnode_ops); 1679