1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * drivers/of/property.c - Procedures for accessing and interpreting 4 * Devicetree properties and graphs. 5 * 6 * Initially created by copying procedures from drivers/of/base.c. This 7 * file contains the OF property as well as the OF graph interface 8 * functions. 9 * 10 * Paul Mackerras August 1996. 11 * Copyright (C) 1996-2005 Paul Mackerras. 12 * 13 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 14 * {engebret|bergner}@us.ibm.com 15 * 16 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 17 * 18 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 19 * Grant Likely. 20 */ 21 22 #define pr_fmt(fmt) "OF: " fmt 23 24 #include <linux/of.h> 25 #include <linux/of_address.h> 26 #include <linux/of_device.h> 27 #include <linux/of_graph.h> 28 #include <linux/of_irq.h> 29 #include <linux/string.h> 30 #include <linux/moduleparam.h> 31 32 #include "of_private.h" 33 34 /** 35 * of_graph_is_present() - check graph's presence 36 * @node: pointer to device_node containing graph port 37 * 38 * Return: True if @node has a port or ports (with a port) sub-node, 39 * false otherwise. 40 */ 41 bool of_graph_is_present(const struct device_node *node) 42 { 43 struct device_node *ports, *port; 44 45 ports = of_get_child_by_name(node, "ports"); 46 if (ports) 47 node = ports; 48 49 port = of_get_child_by_name(node, "port"); 50 of_node_put(ports); 51 of_node_put(port); 52 53 return !!port; 54 } 55 EXPORT_SYMBOL(of_graph_is_present); 56 57 /** 58 * of_property_count_elems_of_size - Count the number of elements in a property 59 * 60 * @np: device node from which the property value is to be read. 61 * @propname: name of the property to be searched. 62 * @elem_size: size of the individual element 63 * 64 * Search for a property in a device node and count the number of elements of 65 * size elem_size in it. 66 * 67 * Return: The number of elements on sucess, -EINVAL if the property does not 68 * exist or its length does not match a multiple of elem_size and -ENODATA if 69 * the property does not have a value. 70 */ 71 int of_property_count_elems_of_size(const struct device_node *np, 72 const char *propname, int elem_size) 73 { 74 struct property *prop = of_find_property(np, propname, NULL); 75 76 if (!prop) 77 return -EINVAL; 78 if (!prop->value) 79 return -ENODATA; 80 81 if (prop->length % elem_size != 0) { 82 pr_err("size of %s in node %pOF is not a multiple of %d\n", 83 propname, np, elem_size); 84 return -EINVAL; 85 } 86 87 return prop->length / elem_size; 88 } 89 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size); 90 91 /** 92 * of_find_property_value_of_size 93 * 94 * @np: device node from which the property value is to be read. 95 * @propname: name of the property to be searched. 96 * @min: minimum allowed length of property value 97 * @max: maximum allowed length of property value (0 means unlimited) 98 * @len: if !=NULL, actual length is written to here 99 * 100 * Search for a property in a device node and valid the requested size. 101 * 102 * Return: The property value on success, -EINVAL if the property does not 103 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the 104 * property data is too small or too large. 105 * 106 */ 107 static void *of_find_property_value_of_size(const struct device_node *np, 108 const char *propname, u32 min, u32 max, size_t *len) 109 { 110 struct property *prop = of_find_property(np, propname, NULL); 111 112 if (!prop) 113 return ERR_PTR(-EINVAL); 114 if (!prop->value) 115 return ERR_PTR(-ENODATA); 116 if (prop->length < min) 117 return ERR_PTR(-EOVERFLOW); 118 if (max && prop->length > max) 119 return ERR_PTR(-EOVERFLOW); 120 121 if (len) 122 *len = prop->length; 123 124 return prop->value; 125 } 126 127 /** 128 * of_property_read_u32_index - Find and read a u32 from a multi-value property. 129 * 130 * @np: device node from which the property value is to be read. 131 * @propname: name of the property to be searched. 132 * @index: index of the u32 in the list of values 133 * @out_value: pointer to return value, modified only if no error. 134 * 135 * Search for a property in a device node and read nth 32-bit value from 136 * it. 137 * 138 * Return: 0 on success, -EINVAL if the property does not exist, 139 * -ENODATA if property does not have a value, and -EOVERFLOW if the 140 * property data isn't large enough. 141 * 142 * The out_value is modified only if a valid u32 value can be decoded. 143 */ 144 int of_property_read_u32_index(const struct device_node *np, 145 const char *propname, 146 u32 index, u32 *out_value) 147 { 148 const u32 *val = of_find_property_value_of_size(np, propname, 149 ((index + 1) * sizeof(*out_value)), 150 0, 151 NULL); 152 153 if (IS_ERR(val)) 154 return PTR_ERR(val); 155 156 *out_value = be32_to_cpup(((__be32 *)val) + index); 157 return 0; 158 } 159 EXPORT_SYMBOL_GPL(of_property_read_u32_index); 160 161 /** 162 * of_property_read_u64_index - Find and read a u64 from a multi-value property. 163 * 164 * @np: device node from which the property value is to be read. 165 * @propname: name of the property to be searched. 166 * @index: index of the u64 in the list of values 167 * @out_value: pointer to return value, modified only if no error. 168 * 169 * Search for a property in a device node and read nth 64-bit value from 170 * it. 171 * 172 * Return: 0 on success, -EINVAL if the property does not exist, 173 * -ENODATA if property does not have a value, and -EOVERFLOW if the 174 * property data isn't large enough. 175 * 176 * The out_value is modified only if a valid u64 value can be decoded. 177 */ 178 int of_property_read_u64_index(const struct device_node *np, 179 const char *propname, 180 u32 index, u64 *out_value) 181 { 182 const u64 *val = of_find_property_value_of_size(np, propname, 183 ((index + 1) * sizeof(*out_value)), 184 0, NULL); 185 186 if (IS_ERR(val)) 187 return PTR_ERR(val); 188 189 *out_value = be64_to_cpup(((__be64 *)val) + index); 190 return 0; 191 } 192 EXPORT_SYMBOL_GPL(of_property_read_u64_index); 193 194 /** 195 * of_property_read_variable_u8_array - Find and read an array of u8 from a 196 * property, with bounds on the minimum and maximum array size. 197 * 198 * @np: device node from which the property value is to be read. 199 * @propname: name of the property to be searched. 200 * @out_values: pointer to found values. 201 * @sz_min: minimum number of array elements to read 202 * @sz_max: maximum number of array elements to read, if zero there is no 203 * upper limit on the number of elements in the dts entry but only 204 * sz_min will be read. 205 * 206 * Search for a property in a device node and read 8-bit value(s) from 207 * it. 208 * 209 * dts entry of array should be like: 210 * ``property = /bits/ 8 <0x50 0x60 0x70>;`` 211 * 212 * Return: The number of elements read on success, -EINVAL if the property 213 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 214 * if the property data is smaller than sz_min or longer than sz_max. 215 * 216 * The out_values is modified only if a valid u8 value can be decoded. 217 */ 218 int of_property_read_variable_u8_array(const struct device_node *np, 219 const char *propname, u8 *out_values, 220 size_t sz_min, size_t sz_max) 221 { 222 size_t sz, count; 223 const u8 *val = of_find_property_value_of_size(np, propname, 224 (sz_min * sizeof(*out_values)), 225 (sz_max * sizeof(*out_values)), 226 &sz); 227 228 if (IS_ERR(val)) 229 return PTR_ERR(val); 230 231 if (!sz_max) 232 sz = sz_min; 233 else 234 sz /= sizeof(*out_values); 235 236 count = sz; 237 while (count--) 238 *out_values++ = *val++; 239 240 return sz; 241 } 242 EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array); 243 244 /** 245 * of_property_read_variable_u16_array - Find and read an array of u16 from a 246 * property, with bounds on the minimum and maximum array size. 247 * 248 * @np: device node from which the property value is to be read. 249 * @propname: name of the property to be searched. 250 * @out_values: pointer to found values. 251 * @sz_min: minimum number of array elements to read 252 * @sz_max: maximum number of array elements to read, if zero there is no 253 * upper limit on the number of elements in the dts entry but only 254 * sz_min will be read. 255 * 256 * Search for a property in a device node and read 16-bit value(s) from 257 * it. 258 * 259 * dts entry of array should be like: 260 * ``property = /bits/ 16 <0x5000 0x6000 0x7000>;`` 261 * 262 * Return: The number of elements read on success, -EINVAL if the property 263 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 264 * if the property data is smaller than sz_min or longer than sz_max. 265 * 266 * The out_values is modified only if a valid u16 value can be decoded. 267 */ 268 int of_property_read_variable_u16_array(const struct device_node *np, 269 const char *propname, u16 *out_values, 270 size_t sz_min, size_t sz_max) 271 { 272 size_t sz, count; 273 const __be16 *val = of_find_property_value_of_size(np, propname, 274 (sz_min * sizeof(*out_values)), 275 (sz_max * sizeof(*out_values)), 276 &sz); 277 278 if (IS_ERR(val)) 279 return PTR_ERR(val); 280 281 if (!sz_max) 282 sz = sz_min; 283 else 284 sz /= sizeof(*out_values); 285 286 count = sz; 287 while (count--) 288 *out_values++ = be16_to_cpup(val++); 289 290 return sz; 291 } 292 EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array); 293 294 /** 295 * of_property_read_variable_u32_array - Find and read an array of 32 bit 296 * integers from a property, with bounds on the minimum and maximum array size. 297 * 298 * @np: device node from which the property value is to be read. 299 * @propname: name of the property to be searched. 300 * @out_values: pointer to return found values. 301 * @sz_min: minimum number of array elements to read 302 * @sz_max: maximum number of array elements to read, if zero there is no 303 * upper limit on the number of elements in the dts entry but only 304 * sz_min will be read. 305 * 306 * Search for a property in a device node and read 32-bit value(s) from 307 * it. 308 * 309 * Return: The number of elements read on success, -EINVAL if the property 310 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 311 * if the property data is smaller than sz_min or longer than sz_max. 312 * 313 * The out_values is modified only if a valid u32 value can be decoded. 314 */ 315 int of_property_read_variable_u32_array(const struct device_node *np, 316 const char *propname, u32 *out_values, 317 size_t sz_min, size_t sz_max) 318 { 319 size_t sz, count; 320 const __be32 *val = of_find_property_value_of_size(np, propname, 321 (sz_min * sizeof(*out_values)), 322 (sz_max * sizeof(*out_values)), 323 &sz); 324 325 if (IS_ERR(val)) 326 return PTR_ERR(val); 327 328 if (!sz_max) 329 sz = sz_min; 330 else 331 sz /= sizeof(*out_values); 332 333 count = sz; 334 while (count--) 335 *out_values++ = be32_to_cpup(val++); 336 337 return sz; 338 } 339 EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array); 340 341 /** 342 * of_property_read_u64 - Find and read a 64 bit integer from a property 343 * @np: device node from which the property value is to be read. 344 * @propname: name of the property to be searched. 345 * @out_value: pointer to return value, modified only if return value is 0. 346 * 347 * Search for a property in a device node and read a 64-bit value from 348 * it. 349 * 350 * Return: 0 on success, -EINVAL if the property does not exist, 351 * -ENODATA if property does not have a value, and -EOVERFLOW if the 352 * property data isn't large enough. 353 * 354 * The out_value is modified only if a valid u64 value can be decoded. 355 */ 356 int of_property_read_u64(const struct device_node *np, const char *propname, 357 u64 *out_value) 358 { 359 const __be32 *val = of_find_property_value_of_size(np, propname, 360 sizeof(*out_value), 361 0, 362 NULL); 363 364 if (IS_ERR(val)) 365 return PTR_ERR(val); 366 367 *out_value = of_read_number(val, 2); 368 return 0; 369 } 370 EXPORT_SYMBOL_GPL(of_property_read_u64); 371 372 /** 373 * of_property_read_variable_u64_array - Find and read an array of 64 bit 374 * integers from a property, with bounds on the minimum and maximum array size. 375 * 376 * @np: device node from which the property value is to be read. 377 * @propname: name of the property to be searched. 378 * @out_values: pointer to found values. 379 * @sz_min: minimum number of array elements to read 380 * @sz_max: maximum number of array elements to read, if zero there is no 381 * upper limit on the number of elements in the dts entry but only 382 * sz_min will be read. 383 * 384 * Search for a property in a device node and read 64-bit value(s) from 385 * it. 386 * 387 * Return: The number of elements read on success, -EINVAL if the property 388 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 389 * if the property data is smaller than sz_min or longer than sz_max. 390 * 391 * The out_values is modified only if a valid u64 value can be decoded. 392 */ 393 int of_property_read_variable_u64_array(const struct device_node *np, 394 const char *propname, u64 *out_values, 395 size_t sz_min, size_t sz_max) 396 { 397 size_t sz, count; 398 const __be32 *val = of_find_property_value_of_size(np, propname, 399 (sz_min * sizeof(*out_values)), 400 (sz_max * sizeof(*out_values)), 401 &sz); 402 403 if (IS_ERR(val)) 404 return PTR_ERR(val); 405 406 if (!sz_max) 407 sz = sz_min; 408 else 409 sz /= sizeof(*out_values); 410 411 count = sz; 412 while (count--) { 413 *out_values++ = of_read_number(val, 2); 414 val += 2; 415 } 416 417 return sz; 418 } 419 EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array); 420 421 /** 422 * of_property_read_string - Find and read a string from a property 423 * @np: device node from which the property value is to be read. 424 * @propname: name of the property to be searched. 425 * @out_string: pointer to null terminated return string, modified only if 426 * return value is 0. 427 * 428 * Search for a property in a device tree node and retrieve a null 429 * terminated string value (pointer to data, not a copy). 430 * 431 * Return: 0 on success, -EINVAL if the property does not exist, -ENODATA if 432 * property does not have a value, and -EILSEQ if the string is not 433 * null-terminated within the length of the property data. 434 * 435 * Note that the empty string "" has length of 1, thus -ENODATA cannot 436 * be interpreted as an empty string. 437 * 438 * The out_string pointer is modified only if a valid string can be decoded. 439 */ 440 int of_property_read_string(const struct device_node *np, const char *propname, 441 const char **out_string) 442 { 443 const struct property *prop = of_find_property(np, propname, NULL); 444 445 if (!prop) 446 return -EINVAL; 447 if (!prop->length) 448 return -ENODATA; 449 if (strnlen(prop->value, prop->length) >= prop->length) 450 return -EILSEQ; 451 *out_string = prop->value; 452 return 0; 453 } 454 EXPORT_SYMBOL_GPL(of_property_read_string); 455 456 /** 457 * of_property_match_string() - Find string in a list and return index 458 * @np: pointer to node containing string list property 459 * @propname: string list property name 460 * @string: pointer to string to search for in string list 461 * 462 * This function searches a string list property and returns the index 463 * of a specific string value. 464 */ 465 int of_property_match_string(const struct device_node *np, const char *propname, 466 const char *string) 467 { 468 const struct property *prop = of_find_property(np, propname, NULL); 469 size_t l; 470 int i; 471 const char *p, *end; 472 473 if (!prop) 474 return -EINVAL; 475 if (!prop->value) 476 return -ENODATA; 477 478 p = prop->value; 479 end = p + prop->length; 480 481 for (i = 0; p < end; i++, p += l) { 482 l = strnlen(p, end - p) + 1; 483 if (p + l > end) 484 return -EILSEQ; 485 pr_debug("comparing %s with %s\n", string, p); 486 if (strcmp(string, p) == 0) 487 return i; /* Found it; return index */ 488 } 489 return -ENODATA; 490 } 491 EXPORT_SYMBOL_GPL(of_property_match_string); 492 493 /** 494 * of_property_read_string_helper() - Utility helper for parsing string properties 495 * @np: device node from which the property value is to be read. 496 * @propname: name of the property to be searched. 497 * @out_strs: output array of string pointers. 498 * @sz: number of array elements to read. 499 * @skip: Number of strings to skip over at beginning of list. 500 * 501 * Don't call this function directly. It is a utility helper for the 502 * of_property_read_string*() family of functions. 503 */ 504 int of_property_read_string_helper(const struct device_node *np, 505 const char *propname, const char **out_strs, 506 size_t sz, int skip) 507 { 508 const struct property *prop = of_find_property(np, propname, NULL); 509 int l = 0, i = 0; 510 const char *p, *end; 511 512 if (!prop) 513 return -EINVAL; 514 if (!prop->value) 515 return -ENODATA; 516 p = prop->value; 517 end = p + prop->length; 518 519 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) { 520 l = strnlen(p, end - p) + 1; 521 if (p + l > end) 522 return -EILSEQ; 523 if (out_strs && i >= skip) 524 *out_strs++ = p; 525 } 526 i -= skip; 527 return i <= 0 ? -ENODATA : i; 528 } 529 EXPORT_SYMBOL_GPL(of_property_read_string_helper); 530 531 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur, 532 u32 *pu) 533 { 534 const void *curv = cur; 535 536 if (!prop) 537 return NULL; 538 539 if (!cur) { 540 curv = prop->value; 541 goto out_val; 542 } 543 544 curv += sizeof(*cur); 545 if (curv >= prop->value + prop->length) 546 return NULL; 547 548 out_val: 549 *pu = be32_to_cpup(curv); 550 return curv; 551 } 552 EXPORT_SYMBOL_GPL(of_prop_next_u32); 553 554 const char *of_prop_next_string(struct property *prop, const char *cur) 555 { 556 const void *curv = cur; 557 558 if (!prop) 559 return NULL; 560 561 if (!cur) 562 return prop->value; 563 564 curv += strlen(cur) + 1; 565 if (curv >= prop->value + prop->length) 566 return NULL; 567 568 return curv; 569 } 570 EXPORT_SYMBOL_GPL(of_prop_next_string); 571 572 /** 573 * of_graph_parse_endpoint() - parse common endpoint node properties 574 * @node: pointer to endpoint device_node 575 * @endpoint: pointer to the OF endpoint data structure 576 * 577 * The caller should hold a reference to @node. 578 */ 579 int of_graph_parse_endpoint(const struct device_node *node, 580 struct of_endpoint *endpoint) 581 { 582 struct device_node *port_node = of_get_parent(node); 583 584 WARN_ONCE(!port_node, "%s(): endpoint %pOF has no parent node\n", 585 __func__, node); 586 587 memset(endpoint, 0, sizeof(*endpoint)); 588 589 endpoint->local_node = node; 590 /* 591 * It doesn't matter whether the two calls below succeed. 592 * If they don't then the default value 0 is used. 593 */ 594 of_property_read_u32(port_node, "reg", &endpoint->port); 595 of_property_read_u32(node, "reg", &endpoint->id); 596 597 of_node_put(port_node); 598 599 return 0; 600 } 601 EXPORT_SYMBOL(of_graph_parse_endpoint); 602 603 /** 604 * of_graph_get_port_by_id() - get the port matching a given id 605 * @parent: pointer to the parent device node 606 * @id: id of the port 607 * 608 * Return: A 'port' node pointer with refcount incremented. The caller 609 * has to use of_node_put() on it when done. 610 */ 611 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id) 612 { 613 struct device_node *node, *port; 614 615 node = of_get_child_by_name(parent, "ports"); 616 if (node) 617 parent = node; 618 619 for_each_child_of_node(parent, port) { 620 u32 port_id = 0; 621 622 if (!of_node_name_eq(port, "port")) 623 continue; 624 of_property_read_u32(port, "reg", &port_id); 625 if (id == port_id) 626 break; 627 } 628 629 of_node_put(node); 630 631 return port; 632 } 633 EXPORT_SYMBOL(of_graph_get_port_by_id); 634 635 /** 636 * of_graph_get_next_endpoint() - get next endpoint node 637 * @parent: pointer to the parent device node 638 * @prev: previous endpoint node, or NULL to get first 639 * 640 * Return: An 'endpoint' node pointer with refcount incremented. Refcount 641 * of the passed @prev node is decremented. 642 */ 643 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent, 644 struct device_node *prev) 645 { 646 struct device_node *endpoint; 647 struct device_node *port; 648 649 if (!parent) 650 return NULL; 651 652 /* 653 * Start by locating the port node. If no previous endpoint is specified 654 * search for the first port node, otherwise get the previous endpoint 655 * parent port node. 656 */ 657 if (!prev) { 658 struct device_node *node; 659 660 node = of_get_child_by_name(parent, "ports"); 661 if (node) 662 parent = node; 663 664 port = of_get_child_by_name(parent, "port"); 665 of_node_put(node); 666 667 if (!port) { 668 pr_err("graph: no port node found in %pOF\n", parent); 669 return NULL; 670 } 671 } else { 672 port = of_get_parent(prev); 673 if (WARN_ONCE(!port, "%s(): endpoint %pOF has no parent node\n", 674 __func__, prev)) 675 return NULL; 676 } 677 678 while (1) { 679 /* 680 * Now that we have a port node, get the next endpoint by 681 * getting the next child. If the previous endpoint is NULL this 682 * will return the first child. 683 */ 684 endpoint = of_get_next_child(port, prev); 685 if (endpoint) { 686 of_node_put(port); 687 return endpoint; 688 } 689 690 /* No more endpoints under this port, try the next one. */ 691 prev = NULL; 692 693 do { 694 port = of_get_next_child(parent, port); 695 if (!port) 696 return NULL; 697 } while (!of_node_name_eq(port, "port")); 698 } 699 } 700 EXPORT_SYMBOL(of_graph_get_next_endpoint); 701 702 /** 703 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers 704 * @parent: pointer to the parent device node 705 * @port_reg: identifier (value of reg property) of the parent port node 706 * @reg: identifier (value of reg property) of the endpoint node 707 * 708 * Return: An 'endpoint' node pointer which is identified by reg and at the same 709 * is the child of a port node identified by port_reg. reg and port_reg are 710 * ignored when they are -1. Use of_node_put() on the pointer when done. 711 */ 712 struct device_node *of_graph_get_endpoint_by_regs( 713 const struct device_node *parent, int port_reg, int reg) 714 { 715 struct of_endpoint endpoint; 716 struct device_node *node = NULL; 717 718 for_each_endpoint_of_node(parent, node) { 719 of_graph_parse_endpoint(node, &endpoint); 720 if (((port_reg == -1) || (endpoint.port == port_reg)) && 721 ((reg == -1) || (endpoint.id == reg))) 722 return node; 723 } 724 725 return NULL; 726 } 727 EXPORT_SYMBOL(of_graph_get_endpoint_by_regs); 728 729 /** 730 * of_graph_get_remote_endpoint() - get remote endpoint node 731 * @node: pointer to a local endpoint device_node 732 * 733 * Return: Remote endpoint node associated with remote endpoint node linked 734 * to @node. Use of_node_put() on it when done. 735 */ 736 struct device_node *of_graph_get_remote_endpoint(const struct device_node *node) 737 { 738 /* Get remote endpoint node. */ 739 return of_parse_phandle(node, "remote-endpoint", 0); 740 } 741 EXPORT_SYMBOL(of_graph_get_remote_endpoint); 742 743 /** 744 * of_graph_get_port_parent() - get port's parent node 745 * @node: pointer to a local endpoint device_node 746 * 747 * Return: device node associated with endpoint node linked 748 * to @node. Use of_node_put() on it when done. 749 */ 750 struct device_node *of_graph_get_port_parent(struct device_node *node) 751 { 752 unsigned int depth; 753 754 if (!node) 755 return NULL; 756 757 /* 758 * Preserve usecount for passed in node as of_get_next_parent() 759 * will do of_node_put() on it. 760 */ 761 of_node_get(node); 762 763 /* Walk 3 levels up only if there is 'ports' node. */ 764 for (depth = 3; depth && node; depth--) { 765 node = of_get_next_parent(node); 766 if (depth == 2 && !of_node_name_eq(node, "ports")) 767 break; 768 } 769 return node; 770 } 771 EXPORT_SYMBOL(of_graph_get_port_parent); 772 773 /** 774 * of_graph_get_remote_port_parent() - get remote port's parent node 775 * @node: pointer to a local endpoint device_node 776 * 777 * Return: Remote device node associated with remote endpoint node linked 778 * to @node. Use of_node_put() on it when done. 779 */ 780 struct device_node *of_graph_get_remote_port_parent( 781 const struct device_node *node) 782 { 783 struct device_node *np, *pp; 784 785 /* Get remote endpoint node. */ 786 np = of_graph_get_remote_endpoint(node); 787 788 pp = of_graph_get_port_parent(np); 789 790 of_node_put(np); 791 792 return pp; 793 } 794 EXPORT_SYMBOL(of_graph_get_remote_port_parent); 795 796 /** 797 * of_graph_get_remote_port() - get remote port node 798 * @node: pointer to a local endpoint device_node 799 * 800 * Return: Remote port node associated with remote endpoint node linked 801 * to @node. Use of_node_put() on it when done. 802 */ 803 struct device_node *of_graph_get_remote_port(const struct device_node *node) 804 { 805 struct device_node *np; 806 807 /* Get remote endpoint node. */ 808 np = of_graph_get_remote_endpoint(node); 809 if (!np) 810 return NULL; 811 return of_get_next_parent(np); 812 } 813 EXPORT_SYMBOL(of_graph_get_remote_port); 814 815 int of_graph_get_endpoint_count(const struct device_node *np) 816 { 817 struct device_node *endpoint; 818 int num = 0; 819 820 for_each_endpoint_of_node(np, endpoint) 821 num++; 822 823 return num; 824 } 825 EXPORT_SYMBOL(of_graph_get_endpoint_count); 826 827 /** 828 * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint 829 * @node: pointer to parent device_node containing graph port/endpoint 830 * @port: identifier (value of reg property) of the parent port node 831 * @endpoint: identifier (value of reg property) of the endpoint node 832 * 833 * Return: Remote device node associated with remote endpoint node linked 834 * to @node. Use of_node_put() on it when done. 835 */ 836 struct device_node *of_graph_get_remote_node(const struct device_node *node, 837 u32 port, u32 endpoint) 838 { 839 struct device_node *endpoint_node, *remote; 840 841 endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint); 842 if (!endpoint_node) { 843 pr_debug("no valid endpoint (%d, %d) for node %pOF\n", 844 port, endpoint, node); 845 return NULL; 846 } 847 848 remote = of_graph_get_remote_port_parent(endpoint_node); 849 of_node_put(endpoint_node); 850 if (!remote) { 851 pr_debug("no valid remote node\n"); 852 return NULL; 853 } 854 855 if (!of_device_is_available(remote)) { 856 pr_debug("not available for remote node\n"); 857 of_node_put(remote); 858 return NULL; 859 } 860 861 return remote; 862 } 863 EXPORT_SYMBOL(of_graph_get_remote_node); 864 865 static struct fwnode_handle *of_fwnode_get(struct fwnode_handle *fwnode) 866 { 867 return of_fwnode_handle(of_node_get(to_of_node(fwnode))); 868 } 869 870 static void of_fwnode_put(struct fwnode_handle *fwnode) 871 { 872 of_node_put(to_of_node(fwnode)); 873 } 874 875 static bool of_fwnode_device_is_available(const struct fwnode_handle *fwnode) 876 { 877 return of_device_is_available(to_of_node(fwnode)); 878 } 879 880 static bool of_fwnode_device_dma_supported(const struct fwnode_handle *fwnode) 881 { 882 return true; 883 } 884 885 static enum dev_dma_attr 886 of_fwnode_device_get_dma_attr(const struct fwnode_handle *fwnode) 887 { 888 if (of_dma_is_coherent(to_of_node(fwnode))) 889 return DEV_DMA_COHERENT; 890 else 891 return DEV_DMA_NON_COHERENT; 892 } 893 894 static bool of_fwnode_property_present(const struct fwnode_handle *fwnode, 895 const char *propname) 896 { 897 return of_property_read_bool(to_of_node(fwnode), propname); 898 } 899 900 static int of_fwnode_property_read_int_array(const struct fwnode_handle *fwnode, 901 const char *propname, 902 unsigned int elem_size, void *val, 903 size_t nval) 904 { 905 const struct device_node *node = to_of_node(fwnode); 906 907 if (!val) 908 return of_property_count_elems_of_size(node, propname, 909 elem_size); 910 911 switch (elem_size) { 912 case sizeof(u8): 913 return of_property_read_u8_array(node, propname, val, nval); 914 case sizeof(u16): 915 return of_property_read_u16_array(node, propname, val, nval); 916 case sizeof(u32): 917 return of_property_read_u32_array(node, propname, val, nval); 918 case sizeof(u64): 919 return of_property_read_u64_array(node, propname, val, nval); 920 } 921 922 return -ENXIO; 923 } 924 925 static int 926 of_fwnode_property_read_string_array(const struct fwnode_handle *fwnode, 927 const char *propname, const char **val, 928 size_t nval) 929 { 930 const struct device_node *node = to_of_node(fwnode); 931 932 return val ? 933 of_property_read_string_array(node, propname, val, nval) : 934 of_property_count_strings(node, propname); 935 } 936 937 static const char *of_fwnode_get_name(const struct fwnode_handle *fwnode) 938 { 939 return kbasename(to_of_node(fwnode)->full_name); 940 } 941 942 static const char *of_fwnode_get_name_prefix(const struct fwnode_handle *fwnode) 943 { 944 /* Root needs no prefix here (its name is "/"). */ 945 if (!to_of_node(fwnode)->parent) 946 return ""; 947 948 return "/"; 949 } 950 951 static struct fwnode_handle * 952 of_fwnode_get_parent(const struct fwnode_handle *fwnode) 953 { 954 return of_fwnode_handle(of_get_parent(to_of_node(fwnode))); 955 } 956 957 static struct fwnode_handle * 958 of_fwnode_get_next_child_node(const struct fwnode_handle *fwnode, 959 struct fwnode_handle *child) 960 { 961 return of_fwnode_handle(of_get_next_available_child(to_of_node(fwnode), 962 to_of_node(child))); 963 } 964 965 static struct fwnode_handle * 966 of_fwnode_get_named_child_node(const struct fwnode_handle *fwnode, 967 const char *childname) 968 { 969 const struct device_node *node = to_of_node(fwnode); 970 struct device_node *child; 971 972 for_each_available_child_of_node(node, child) 973 if (of_node_name_eq(child, childname)) 974 return of_fwnode_handle(child); 975 976 return NULL; 977 } 978 979 static int 980 of_fwnode_get_reference_args(const struct fwnode_handle *fwnode, 981 const char *prop, const char *nargs_prop, 982 unsigned int nargs, unsigned int index, 983 struct fwnode_reference_args *args) 984 { 985 struct of_phandle_args of_args; 986 unsigned int i; 987 int ret; 988 989 if (nargs_prop) 990 ret = of_parse_phandle_with_args(to_of_node(fwnode), prop, 991 nargs_prop, index, &of_args); 992 else 993 ret = of_parse_phandle_with_fixed_args(to_of_node(fwnode), prop, 994 nargs, index, &of_args); 995 if (ret < 0) 996 return ret; 997 if (!args) { 998 of_node_put(of_args.np); 999 return 0; 1000 } 1001 1002 args->nargs = of_args.args_count; 1003 args->fwnode = of_fwnode_handle(of_args.np); 1004 1005 for (i = 0; i < NR_FWNODE_REFERENCE_ARGS; i++) 1006 args->args[i] = i < of_args.args_count ? of_args.args[i] : 0; 1007 1008 return 0; 1009 } 1010 1011 static struct fwnode_handle * 1012 of_fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode, 1013 struct fwnode_handle *prev) 1014 { 1015 return of_fwnode_handle(of_graph_get_next_endpoint(to_of_node(fwnode), 1016 to_of_node(prev))); 1017 } 1018 1019 static struct fwnode_handle * 1020 of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode) 1021 { 1022 return of_fwnode_handle( 1023 of_graph_get_remote_endpoint(to_of_node(fwnode))); 1024 } 1025 1026 static struct fwnode_handle * 1027 of_fwnode_graph_get_port_parent(struct fwnode_handle *fwnode) 1028 { 1029 struct device_node *np; 1030 1031 /* Get the parent of the port */ 1032 np = of_get_parent(to_of_node(fwnode)); 1033 if (!np) 1034 return NULL; 1035 1036 /* Is this the "ports" node? If not, it's the port parent. */ 1037 if (!of_node_name_eq(np, "ports")) 1038 return of_fwnode_handle(np); 1039 1040 return of_fwnode_handle(of_get_next_parent(np)); 1041 } 1042 1043 static int of_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode, 1044 struct fwnode_endpoint *endpoint) 1045 { 1046 const struct device_node *node = to_of_node(fwnode); 1047 struct device_node *port_node = of_get_parent(node); 1048 1049 endpoint->local_fwnode = fwnode; 1050 1051 of_property_read_u32(port_node, "reg", &endpoint->port); 1052 of_property_read_u32(node, "reg", &endpoint->id); 1053 1054 of_node_put(port_node); 1055 1056 return 0; 1057 } 1058 1059 static const void * 1060 of_fwnode_device_get_match_data(const struct fwnode_handle *fwnode, 1061 const struct device *dev) 1062 { 1063 return of_device_get_match_data(dev); 1064 } 1065 1066 static struct device_node *of_get_compat_node(struct device_node *np) 1067 { 1068 of_node_get(np); 1069 1070 while (np) { 1071 if (!of_device_is_available(np)) { 1072 of_node_put(np); 1073 np = NULL; 1074 } 1075 1076 if (of_property_present(np, "compatible")) 1077 break; 1078 1079 np = of_get_next_parent(np); 1080 } 1081 1082 return np; 1083 } 1084 1085 static struct device_node *of_get_compat_node_parent(struct device_node *np) 1086 { 1087 struct device_node *parent, *node; 1088 1089 parent = of_get_parent(np); 1090 node = of_get_compat_node(parent); 1091 of_node_put(parent); 1092 1093 return node; 1094 } 1095 1096 static void of_link_to_phandle(struct device_node *con_np, 1097 struct device_node *sup_np) 1098 { 1099 struct device_node *tmp_np = of_node_get(sup_np); 1100 1101 /* Check that sup_np and its ancestors are available. */ 1102 while (tmp_np) { 1103 if (of_fwnode_handle(tmp_np)->dev) { 1104 of_node_put(tmp_np); 1105 break; 1106 } 1107 1108 if (!of_device_is_available(tmp_np)) { 1109 of_node_put(tmp_np); 1110 return; 1111 } 1112 1113 tmp_np = of_get_next_parent(tmp_np); 1114 } 1115 1116 fwnode_link_add(of_fwnode_handle(con_np), of_fwnode_handle(sup_np)); 1117 } 1118 1119 /** 1120 * parse_prop_cells - Property parsing function for suppliers 1121 * 1122 * @np: Pointer to device tree node containing a list 1123 * @prop_name: Name of property to be parsed. Expected to hold phandle values 1124 * @index: For properties holding a list of phandles, this is the index 1125 * into the list. 1126 * @list_name: Property name that is known to contain list of phandle(s) to 1127 * supplier(s) 1128 * @cells_name: property name that specifies phandles' arguments count 1129 * 1130 * This is a helper function to parse properties that have a known fixed name 1131 * and are a list of phandles and phandle arguments. 1132 * 1133 * Returns: 1134 * - phandle node pointer with refcount incremented. Caller must of_node_put() 1135 * on it when done. 1136 * - NULL if no phandle found at index 1137 */ 1138 static struct device_node *parse_prop_cells(struct device_node *np, 1139 const char *prop_name, int index, 1140 const char *list_name, 1141 const char *cells_name) 1142 { 1143 struct of_phandle_args sup_args; 1144 1145 if (strcmp(prop_name, list_name)) 1146 return NULL; 1147 1148 if (__of_parse_phandle_with_args(np, list_name, cells_name, 0, index, 1149 &sup_args)) 1150 return NULL; 1151 1152 return sup_args.np; 1153 } 1154 1155 #define DEFINE_SIMPLE_PROP(fname, name, cells) \ 1156 static struct device_node *parse_##fname(struct device_node *np, \ 1157 const char *prop_name, int index) \ 1158 { \ 1159 return parse_prop_cells(np, prop_name, index, name, cells); \ 1160 } 1161 1162 static int strcmp_suffix(const char *str, const char *suffix) 1163 { 1164 unsigned int len, suffix_len; 1165 1166 len = strlen(str); 1167 suffix_len = strlen(suffix); 1168 if (len <= suffix_len) 1169 return -1; 1170 return strcmp(str + len - suffix_len, suffix); 1171 } 1172 1173 /** 1174 * parse_suffix_prop_cells - Suffix property parsing function for suppliers 1175 * 1176 * @np: Pointer to device tree node containing a list 1177 * @prop_name: Name of property to be parsed. Expected to hold phandle values 1178 * @index: For properties holding a list of phandles, this is the index 1179 * into the list. 1180 * @suffix: Property suffix that is known to contain list of phandle(s) to 1181 * supplier(s) 1182 * @cells_name: property name that specifies phandles' arguments count 1183 * 1184 * This is a helper function to parse properties that have a known fixed suffix 1185 * and are a list of phandles and phandle arguments. 1186 * 1187 * Returns: 1188 * - phandle node pointer with refcount incremented. Caller must of_node_put() 1189 * on it when done. 1190 * - NULL if no phandle found at index 1191 */ 1192 static struct device_node *parse_suffix_prop_cells(struct device_node *np, 1193 const char *prop_name, int index, 1194 const char *suffix, 1195 const char *cells_name) 1196 { 1197 struct of_phandle_args sup_args; 1198 1199 if (strcmp_suffix(prop_name, suffix)) 1200 return NULL; 1201 1202 if (of_parse_phandle_with_args(np, prop_name, cells_name, index, 1203 &sup_args)) 1204 return NULL; 1205 1206 return sup_args.np; 1207 } 1208 1209 #define DEFINE_SUFFIX_PROP(fname, suffix, cells) \ 1210 static struct device_node *parse_##fname(struct device_node *np, \ 1211 const char *prop_name, int index) \ 1212 { \ 1213 return parse_suffix_prop_cells(np, prop_name, index, suffix, cells); \ 1214 } 1215 1216 /** 1217 * struct supplier_bindings - Property parsing functions for suppliers 1218 * 1219 * @parse_prop: function name 1220 * parse_prop() finds the node corresponding to a supplier phandle 1221 * parse_prop.np: Pointer to device node holding supplier phandle property 1222 * parse_prop.prop_name: Name of property holding a phandle value 1223 * parse_prop.index: For properties holding a list of phandles, this is the 1224 * index into the list 1225 * @optional: Describes whether a supplier is mandatory or not 1226 * @node_not_dev: The consumer node containing the property is never converted 1227 * to a struct device. Instead, parse ancestor nodes for the 1228 * compatible property to find a node corresponding to a device. 1229 * 1230 * Returns: 1231 * parse_prop() return values are 1232 * - phandle node pointer with refcount incremented. Caller must of_node_put() 1233 * on it when done. 1234 * - NULL if no phandle found at index 1235 */ 1236 struct supplier_bindings { 1237 struct device_node *(*parse_prop)(struct device_node *np, 1238 const char *prop_name, int index); 1239 bool optional; 1240 bool node_not_dev; 1241 }; 1242 1243 DEFINE_SIMPLE_PROP(clocks, "clocks", "#clock-cells") 1244 DEFINE_SIMPLE_PROP(interconnects, "interconnects", "#interconnect-cells") 1245 DEFINE_SIMPLE_PROP(iommus, "iommus", "#iommu-cells") 1246 DEFINE_SIMPLE_PROP(mboxes, "mboxes", "#mbox-cells") 1247 DEFINE_SIMPLE_PROP(io_channels, "io-channel", "#io-channel-cells") 1248 DEFINE_SIMPLE_PROP(interrupt_parent, "interrupt-parent", NULL) 1249 DEFINE_SIMPLE_PROP(dmas, "dmas", "#dma-cells") 1250 DEFINE_SIMPLE_PROP(power_domains, "power-domains", "#power-domain-cells") 1251 DEFINE_SIMPLE_PROP(hwlocks, "hwlocks", "#hwlock-cells") 1252 DEFINE_SIMPLE_PROP(extcon, "extcon", NULL) 1253 DEFINE_SIMPLE_PROP(nvmem_cells, "nvmem-cells", "#nvmem-cell-cells") 1254 DEFINE_SIMPLE_PROP(phys, "phys", "#phy-cells") 1255 DEFINE_SIMPLE_PROP(wakeup_parent, "wakeup-parent", NULL) 1256 DEFINE_SIMPLE_PROP(pinctrl0, "pinctrl-0", NULL) 1257 DEFINE_SIMPLE_PROP(pinctrl1, "pinctrl-1", NULL) 1258 DEFINE_SIMPLE_PROP(pinctrl2, "pinctrl-2", NULL) 1259 DEFINE_SIMPLE_PROP(pinctrl3, "pinctrl-3", NULL) 1260 DEFINE_SIMPLE_PROP(pinctrl4, "pinctrl-4", NULL) 1261 DEFINE_SIMPLE_PROP(pinctrl5, "pinctrl-5", NULL) 1262 DEFINE_SIMPLE_PROP(pinctrl6, "pinctrl-6", NULL) 1263 DEFINE_SIMPLE_PROP(pinctrl7, "pinctrl-7", NULL) 1264 DEFINE_SIMPLE_PROP(pinctrl8, "pinctrl-8", NULL) 1265 DEFINE_SIMPLE_PROP(remote_endpoint, "remote-endpoint", NULL) 1266 DEFINE_SIMPLE_PROP(pwms, "pwms", "#pwm-cells") 1267 DEFINE_SIMPLE_PROP(resets, "resets", "#reset-cells") 1268 DEFINE_SIMPLE_PROP(leds, "leds", NULL) 1269 DEFINE_SIMPLE_PROP(backlight, "backlight", NULL) 1270 DEFINE_SIMPLE_PROP(panel, "panel", NULL) 1271 DEFINE_SIMPLE_PROP(msi_parent, "msi-parent", "#msi-cells") 1272 DEFINE_SUFFIX_PROP(regulators, "-supply", NULL) 1273 DEFINE_SUFFIX_PROP(gpio, "-gpio", "#gpio-cells") 1274 1275 static struct device_node *parse_gpios(struct device_node *np, 1276 const char *prop_name, int index) 1277 { 1278 if (!strcmp_suffix(prop_name, ",nr-gpios")) 1279 return NULL; 1280 1281 return parse_suffix_prop_cells(np, prop_name, index, "-gpios", 1282 "#gpio-cells"); 1283 } 1284 1285 static struct device_node *parse_iommu_maps(struct device_node *np, 1286 const char *prop_name, int index) 1287 { 1288 if (strcmp(prop_name, "iommu-map")) 1289 return NULL; 1290 1291 return of_parse_phandle(np, prop_name, (index * 4) + 1); 1292 } 1293 1294 static struct device_node *parse_gpio_compat(struct device_node *np, 1295 const char *prop_name, int index) 1296 { 1297 struct of_phandle_args sup_args; 1298 1299 if (strcmp(prop_name, "gpio") && strcmp(prop_name, "gpios")) 1300 return NULL; 1301 1302 /* 1303 * Ignore node with gpio-hog property since its gpios are all provided 1304 * by its parent. 1305 */ 1306 if (of_property_read_bool(np, "gpio-hog")) 1307 return NULL; 1308 1309 if (of_parse_phandle_with_args(np, prop_name, "#gpio-cells", index, 1310 &sup_args)) 1311 return NULL; 1312 1313 return sup_args.np; 1314 } 1315 1316 static struct device_node *parse_interrupts(struct device_node *np, 1317 const char *prop_name, int index) 1318 { 1319 struct of_phandle_args sup_args; 1320 1321 if (!IS_ENABLED(CONFIG_OF_IRQ) || IS_ENABLED(CONFIG_PPC)) 1322 return NULL; 1323 1324 if (strcmp(prop_name, "interrupts") && 1325 strcmp(prop_name, "interrupts-extended")) 1326 return NULL; 1327 1328 return of_irq_parse_one(np, index, &sup_args) ? NULL : sup_args.np; 1329 } 1330 1331 static const struct supplier_bindings of_supplier_bindings[] = { 1332 { .parse_prop = parse_clocks, }, 1333 { .parse_prop = parse_interconnects, }, 1334 { .parse_prop = parse_iommus, .optional = true, }, 1335 { .parse_prop = parse_iommu_maps, .optional = true, }, 1336 { .parse_prop = parse_mboxes, }, 1337 { .parse_prop = parse_io_channels, }, 1338 { .parse_prop = parse_interrupt_parent, }, 1339 { .parse_prop = parse_dmas, .optional = true, }, 1340 { .parse_prop = parse_power_domains, }, 1341 { .parse_prop = parse_hwlocks, }, 1342 { .parse_prop = parse_extcon, }, 1343 { .parse_prop = parse_nvmem_cells, }, 1344 { .parse_prop = parse_phys, }, 1345 { .parse_prop = parse_wakeup_parent, }, 1346 { .parse_prop = parse_pinctrl0, }, 1347 { .parse_prop = parse_pinctrl1, }, 1348 { .parse_prop = parse_pinctrl2, }, 1349 { .parse_prop = parse_pinctrl3, }, 1350 { .parse_prop = parse_pinctrl4, }, 1351 { .parse_prop = parse_pinctrl5, }, 1352 { .parse_prop = parse_pinctrl6, }, 1353 { .parse_prop = parse_pinctrl7, }, 1354 { .parse_prop = parse_pinctrl8, }, 1355 { .parse_prop = parse_remote_endpoint, .node_not_dev = true, }, 1356 { .parse_prop = parse_pwms, }, 1357 { .parse_prop = parse_resets, }, 1358 { .parse_prop = parse_leds, }, 1359 { .parse_prop = parse_backlight, }, 1360 { .parse_prop = parse_panel, }, 1361 { .parse_prop = parse_msi_parent, }, 1362 { .parse_prop = parse_gpio_compat, }, 1363 { .parse_prop = parse_interrupts, }, 1364 { .parse_prop = parse_regulators, }, 1365 { .parse_prop = parse_gpio, }, 1366 { .parse_prop = parse_gpios, }, 1367 {} 1368 }; 1369 1370 /** 1371 * of_link_property - Create device links to suppliers listed in a property 1372 * @con_np: The consumer device tree node which contains the property 1373 * @prop_name: Name of property to be parsed 1374 * 1375 * This function checks if the property @prop_name that is present in the 1376 * @con_np device tree node is one of the known common device tree bindings 1377 * that list phandles to suppliers. If @prop_name isn't one, this function 1378 * doesn't do anything. 1379 * 1380 * If @prop_name is one, this function attempts to create fwnode links from the 1381 * consumer device tree node @con_np to all the suppliers device tree nodes 1382 * listed in @prop_name. 1383 * 1384 * Any failed attempt to create a fwnode link will NOT result in an immediate 1385 * return. of_link_property() must create links to all the available supplier 1386 * device tree nodes even when attempts to create a link to one or more 1387 * suppliers fail. 1388 */ 1389 static int of_link_property(struct device_node *con_np, const char *prop_name) 1390 { 1391 struct device_node *phandle; 1392 const struct supplier_bindings *s = of_supplier_bindings; 1393 unsigned int i = 0; 1394 bool matched = false; 1395 1396 /* Do not stop at first failed link, link all available suppliers. */ 1397 while (!matched && s->parse_prop) { 1398 if (s->optional && !fw_devlink_is_strict()) { 1399 s++; 1400 continue; 1401 } 1402 1403 while ((phandle = s->parse_prop(con_np, prop_name, i))) { 1404 struct device_node *con_dev_np; 1405 1406 con_dev_np = s->node_not_dev 1407 ? of_get_compat_node_parent(con_np) 1408 : of_node_get(con_np); 1409 matched = true; 1410 i++; 1411 of_link_to_phandle(con_dev_np, phandle); 1412 of_node_put(phandle); 1413 of_node_put(con_dev_np); 1414 } 1415 s++; 1416 } 1417 return 0; 1418 } 1419 1420 static void __iomem *of_fwnode_iomap(struct fwnode_handle *fwnode, int index) 1421 { 1422 #ifdef CONFIG_OF_ADDRESS 1423 return of_iomap(to_of_node(fwnode), index); 1424 #else 1425 return NULL; 1426 #endif 1427 } 1428 1429 static int of_fwnode_irq_get(const struct fwnode_handle *fwnode, 1430 unsigned int index) 1431 { 1432 return of_irq_get(to_of_node(fwnode), index); 1433 } 1434 1435 static int of_fwnode_add_links(struct fwnode_handle *fwnode) 1436 { 1437 struct property *p; 1438 struct device_node *con_np = to_of_node(fwnode); 1439 1440 if (IS_ENABLED(CONFIG_X86)) 1441 return 0; 1442 1443 if (!con_np) 1444 return -EINVAL; 1445 1446 for_each_property_of_node(con_np, p) 1447 of_link_property(con_np, p->name); 1448 1449 return 0; 1450 } 1451 1452 const struct fwnode_operations of_fwnode_ops = { 1453 .get = of_fwnode_get, 1454 .put = of_fwnode_put, 1455 .device_is_available = of_fwnode_device_is_available, 1456 .device_get_match_data = of_fwnode_device_get_match_data, 1457 .device_dma_supported = of_fwnode_device_dma_supported, 1458 .device_get_dma_attr = of_fwnode_device_get_dma_attr, 1459 .property_present = of_fwnode_property_present, 1460 .property_read_int_array = of_fwnode_property_read_int_array, 1461 .property_read_string_array = of_fwnode_property_read_string_array, 1462 .get_name = of_fwnode_get_name, 1463 .get_name_prefix = of_fwnode_get_name_prefix, 1464 .get_parent = of_fwnode_get_parent, 1465 .get_next_child_node = of_fwnode_get_next_child_node, 1466 .get_named_child_node = of_fwnode_get_named_child_node, 1467 .get_reference_args = of_fwnode_get_reference_args, 1468 .graph_get_next_endpoint = of_fwnode_graph_get_next_endpoint, 1469 .graph_get_remote_endpoint = of_fwnode_graph_get_remote_endpoint, 1470 .graph_get_port_parent = of_fwnode_graph_get_port_parent, 1471 .graph_parse_endpoint = of_fwnode_graph_parse_endpoint, 1472 .iomap = of_fwnode_iomap, 1473 .irq_get = of_fwnode_irq_get, 1474 .add_links = of_fwnode_add_links, 1475 }; 1476 EXPORT_SYMBOL_GPL(of_fwnode_ops); 1477