1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * drivers/of/property.c - Procedures for accessing and interpreting 4 * Devicetree properties and graphs. 5 * 6 * Initially created by copying procedures from drivers/of/base.c. This 7 * file contains the OF property as well as the OF graph interface 8 * functions. 9 * 10 * Paul Mackerras August 1996. 11 * Copyright (C) 1996-2005 Paul Mackerras. 12 * 13 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 14 * {engebret|bergner}@us.ibm.com 15 * 16 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 17 * 18 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 19 * Grant Likely. 20 */ 21 22 #define pr_fmt(fmt) "OF: " fmt 23 24 #include <linux/of.h> 25 #include <linux/of_device.h> 26 #include <linux/of_graph.h> 27 #include <linux/of_irq.h> 28 #include <linux/string.h> 29 #include <linux/moduleparam.h> 30 31 #include "of_private.h" 32 33 /** 34 * of_graph_is_present() - check graph's presence 35 * @node: pointer to device_node containing graph port 36 * 37 * Return: True if @node has a port or ports (with a port) sub-node, 38 * false otherwise. 39 */ 40 bool of_graph_is_present(const struct device_node *node) 41 { 42 struct device_node *ports, *port; 43 44 ports = of_get_child_by_name(node, "ports"); 45 if (ports) 46 node = ports; 47 48 port = of_get_child_by_name(node, "port"); 49 of_node_put(ports); 50 of_node_put(port); 51 52 return !!port; 53 } 54 EXPORT_SYMBOL(of_graph_is_present); 55 56 /** 57 * of_property_count_elems_of_size - Count the number of elements in a property 58 * 59 * @np: device node from which the property value is to be read. 60 * @propname: name of the property to be searched. 61 * @elem_size: size of the individual element 62 * 63 * Search for a property in a device node and count the number of elements of 64 * size elem_size in it. 65 * 66 * Return: The number of elements on sucess, -EINVAL if the property does not 67 * exist or its length does not match a multiple of elem_size and -ENODATA if 68 * the property does not have a value. 69 */ 70 int of_property_count_elems_of_size(const struct device_node *np, 71 const char *propname, int elem_size) 72 { 73 struct property *prop = of_find_property(np, propname, NULL); 74 75 if (!prop) 76 return -EINVAL; 77 if (!prop->value) 78 return -ENODATA; 79 80 if (prop->length % elem_size != 0) { 81 pr_err("size of %s in node %pOF is not a multiple of %d\n", 82 propname, np, elem_size); 83 return -EINVAL; 84 } 85 86 return prop->length / elem_size; 87 } 88 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size); 89 90 /** 91 * of_find_property_value_of_size 92 * 93 * @np: device node from which the property value is to be read. 94 * @propname: name of the property to be searched. 95 * @min: minimum allowed length of property value 96 * @max: maximum allowed length of property value (0 means unlimited) 97 * @len: if !=NULL, actual length is written to here 98 * 99 * Search for a property in a device node and valid the requested size. 100 * 101 * Return: The property value on success, -EINVAL if the property does not 102 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the 103 * property data is too small or too large. 104 * 105 */ 106 static void *of_find_property_value_of_size(const struct device_node *np, 107 const char *propname, u32 min, u32 max, size_t *len) 108 { 109 struct property *prop = of_find_property(np, propname, NULL); 110 111 if (!prop) 112 return ERR_PTR(-EINVAL); 113 if (!prop->value) 114 return ERR_PTR(-ENODATA); 115 if (prop->length < min) 116 return ERR_PTR(-EOVERFLOW); 117 if (max && prop->length > max) 118 return ERR_PTR(-EOVERFLOW); 119 120 if (len) 121 *len = prop->length; 122 123 return prop->value; 124 } 125 126 /** 127 * of_property_read_u32_index - Find and read a u32 from a multi-value property. 128 * 129 * @np: device node from which the property value is to be read. 130 * @propname: name of the property to be searched. 131 * @index: index of the u32 in the list of values 132 * @out_value: pointer to return value, modified only if no error. 133 * 134 * Search for a property in a device node and read nth 32-bit value from 135 * it. 136 * 137 * Return: 0 on success, -EINVAL if the property does not exist, 138 * -ENODATA if property does not have a value, and -EOVERFLOW if the 139 * property data isn't large enough. 140 * 141 * The out_value is modified only if a valid u32 value can be decoded. 142 */ 143 int of_property_read_u32_index(const struct device_node *np, 144 const char *propname, 145 u32 index, u32 *out_value) 146 { 147 const u32 *val = of_find_property_value_of_size(np, propname, 148 ((index + 1) * sizeof(*out_value)), 149 0, 150 NULL); 151 152 if (IS_ERR(val)) 153 return PTR_ERR(val); 154 155 *out_value = be32_to_cpup(((__be32 *)val) + index); 156 return 0; 157 } 158 EXPORT_SYMBOL_GPL(of_property_read_u32_index); 159 160 /** 161 * of_property_read_u64_index - Find and read a u64 from a multi-value property. 162 * 163 * @np: device node from which the property value is to be read. 164 * @propname: name of the property to be searched. 165 * @index: index of the u64 in the list of values 166 * @out_value: pointer to return value, modified only if no error. 167 * 168 * Search for a property in a device node and read nth 64-bit value from 169 * it. 170 * 171 * Return: 0 on success, -EINVAL if the property does not exist, 172 * -ENODATA if property does not have a value, and -EOVERFLOW if the 173 * property data isn't large enough. 174 * 175 * The out_value is modified only if a valid u64 value can be decoded. 176 */ 177 int of_property_read_u64_index(const struct device_node *np, 178 const char *propname, 179 u32 index, u64 *out_value) 180 { 181 const u64 *val = of_find_property_value_of_size(np, propname, 182 ((index + 1) * sizeof(*out_value)), 183 0, NULL); 184 185 if (IS_ERR(val)) 186 return PTR_ERR(val); 187 188 *out_value = be64_to_cpup(((__be64 *)val) + index); 189 return 0; 190 } 191 EXPORT_SYMBOL_GPL(of_property_read_u64_index); 192 193 /** 194 * of_property_read_variable_u8_array - Find and read an array of u8 from a 195 * property, with bounds on the minimum and maximum array size. 196 * 197 * @np: device node from which the property value is to be read. 198 * @propname: name of the property to be searched. 199 * @out_values: pointer to found values. 200 * @sz_min: minimum number of array elements to read 201 * @sz_max: maximum number of array elements to read, if zero there is no 202 * upper limit on the number of elements in the dts entry but only 203 * sz_min will be read. 204 * 205 * Search for a property in a device node and read 8-bit value(s) from 206 * it. 207 * 208 * dts entry of array should be like: 209 * ``property = /bits/ 8 <0x50 0x60 0x70>;`` 210 * 211 * Return: The number of elements read on success, -EINVAL if the property 212 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 213 * if the property data is smaller than sz_min or longer than sz_max. 214 * 215 * The out_values is modified only if a valid u8 value can be decoded. 216 */ 217 int of_property_read_variable_u8_array(const struct device_node *np, 218 const char *propname, u8 *out_values, 219 size_t sz_min, size_t sz_max) 220 { 221 size_t sz, count; 222 const u8 *val = of_find_property_value_of_size(np, propname, 223 (sz_min * sizeof(*out_values)), 224 (sz_max * sizeof(*out_values)), 225 &sz); 226 227 if (IS_ERR(val)) 228 return PTR_ERR(val); 229 230 if (!sz_max) 231 sz = sz_min; 232 else 233 sz /= sizeof(*out_values); 234 235 count = sz; 236 while (count--) 237 *out_values++ = *val++; 238 239 return sz; 240 } 241 EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array); 242 243 /** 244 * of_property_read_variable_u16_array - Find and read an array of u16 from a 245 * property, with bounds on the minimum and maximum array size. 246 * 247 * @np: device node from which the property value is to be read. 248 * @propname: name of the property to be searched. 249 * @out_values: pointer to found values. 250 * @sz_min: minimum number of array elements to read 251 * @sz_max: maximum number of array elements to read, if zero there is no 252 * upper limit on the number of elements in the dts entry but only 253 * sz_min will be read. 254 * 255 * Search for a property in a device node and read 16-bit value(s) from 256 * it. 257 * 258 * dts entry of array should be like: 259 * ``property = /bits/ 16 <0x5000 0x6000 0x7000>;`` 260 * 261 * Return: The number of elements read on success, -EINVAL if the property 262 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 263 * if the property data is smaller than sz_min or longer than sz_max. 264 * 265 * The out_values is modified only if a valid u16 value can be decoded. 266 */ 267 int of_property_read_variable_u16_array(const struct device_node *np, 268 const char *propname, u16 *out_values, 269 size_t sz_min, size_t sz_max) 270 { 271 size_t sz, count; 272 const __be16 *val = of_find_property_value_of_size(np, propname, 273 (sz_min * sizeof(*out_values)), 274 (sz_max * sizeof(*out_values)), 275 &sz); 276 277 if (IS_ERR(val)) 278 return PTR_ERR(val); 279 280 if (!sz_max) 281 sz = sz_min; 282 else 283 sz /= sizeof(*out_values); 284 285 count = sz; 286 while (count--) 287 *out_values++ = be16_to_cpup(val++); 288 289 return sz; 290 } 291 EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array); 292 293 /** 294 * of_property_read_variable_u32_array - Find and read an array of 32 bit 295 * integers from a property, with bounds on the minimum and maximum array size. 296 * 297 * @np: device node from which the property value is to be read. 298 * @propname: name of the property to be searched. 299 * @out_values: pointer to return found values. 300 * @sz_min: minimum number of array elements to read 301 * @sz_max: maximum number of array elements to read, if zero there is no 302 * upper limit on the number of elements in the dts entry but only 303 * sz_min will be read. 304 * 305 * Search for a property in a device node and read 32-bit value(s) from 306 * it. 307 * 308 * Return: The number of elements read on success, -EINVAL if the property 309 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 310 * if the property data is smaller than sz_min or longer than sz_max. 311 * 312 * The out_values is modified only if a valid u32 value can be decoded. 313 */ 314 int of_property_read_variable_u32_array(const struct device_node *np, 315 const char *propname, u32 *out_values, 316 size_t sz_min, size_t sz_max) 317 { 318 size_t sz, count; 319 const __be32 *val = of_find_property_value_of_size(np, propname, 320 (sz_min * sizeof(*out_values)), 321 (sz_max * sizeof(*out_values)), 322 &sz); 323 324 if (IS_ERR(val)) 325 return PTR_ERR(val); 326 327 if (!sz_max) 328 sz = sz_min; 329 else 330 sz /= sizeof(*out_values); 331 332 count = sz; 333 while (count--) 334 *out_values++ = be32_to_cpup(val++); 335 336 return sz; 337 } 338 EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array); 339 340 /** 341 * of_property_read_u64 - Find and read a 64 bit integer from a property 342 * @np: device node from which the property value is to be read. 343 * @propname: name of the property to be searched. 344 * @out_value: pointer to return value, modified only if return value is 0. 345 * 346 * Search for a property in a device node and read a 64-bit value from 347 * it. 348 * 349 * Return: 0 on success, -EINVAL if the property does not exist, 350 * -ENODATA if property does not have a value, and -EOVERFLOW if the 351 * property data isn't large enough. 352 * 353 * The out_value is modified only if a valid u64 value can be decoded. 354 */ 355 int of_property_read_u64(const struct device_node *np, const char *propname, 356 u64 *out_value) 357 { 358 const __be32 *val = of_find_property_value_of_size(np, propname, 359 sizeof(*out_value), 360 0, 361 NULL); 362 363 if (IS_ERR(val)) 364 return PTR_ERR(val); 365 366 *out_value = of_read_number(val, 2); 367 return 0; 368 } 369 EXPORT_SYMBOL_GPL(of_property_read_u64); 370 371 /** 372 * of_property_read_variable_u64_array - Find and read an array of 64 bit 373 * integers from a property, with bounds on the minimum and maximum array size. 374 * 375 * @np: device node from which the property value is to be read. 376 * @propname: name of the property to be searched. 377 * @out_values: pointer to found values. 378 * @sz_min: minimum number of array elements to read 379 * @sz_max: maximum number of array elements to read, if zero there is no 380 * upper limit on the number of elements in the dts entry but only 381 * sz_min will be read. 382 * 383 * Search for a property in a device node and read 64-bit value(s) from 384 * it. 385 * 386 * Return: The number of elements read on success, -EINVAL if the property 387 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 388 * if the property data is smaller than sz_min or longer than sz_max. 389 * 390 * The out_values is modified only if a valid u64 value can be decoded. 391 */ 392 int of_property_read_variable_u64_array(const struct device_node *np, 393 const char *propname, u64 *out_values, 394 size_t sz_min, size_t sz_max) 395 { 396 size_t sz, count; 397 const __be32 *val = of_find_property_value_of_size(np, propname, 398 (sz_min * sizeof(*out_values)), 399 (sz_max * sizeof(*out_values)), 400 &sz); 401 402 if (IS_ERR(val)) 403 return PTR_ERR(val); 404 405 if (!sz_max) 406 sz = sz_min; 407 else 408 sz /= sizeof(*out_values); 409 410 count = sz; 411 while (count--) { 412 *out_values++ = of_read_number(val, 2); 413 val += 2; 414 } 415 416 return sz; 417 } 418 EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array); 419 420 /** 421 * of_property_read_string - Find and read a string from a property 422 * @np: device node from which the property value is to be read. 423 * @propname: name of the property to be searched. 424 * @out_string: pointer to null terminated return string, modified only if 425 * return value is 0. 426 * 427 * Search for a property in a device tree node and retrieve a null 428 * terminated string value (pointer to data, not a copy). 429 * 430 * Return: 0 on success, -EINVAL if the property does not exist, -ENODATA if 431 * property does not have a value, and -EILSEQ if the string is not 432 * null-terminated within the length of the property data. 433 * 434 * The out_string pointer is modified only if a valid string can be decoded. 435 */ 436 int of_property_read_string(const struct device_node *np, const char *propname, 437 const char **out_string) 438 { 439 const struct property *prop = of_find_property(np, propname, NULL); 440 if (!prop) 441 return -EINVAL; 442 if (!prop->value) 443 return -ENODATA; 444 if (strnlen(prop->value, prop->length) >= prop->length) 445 return -EILSEQ; 446 *out_string = prop->value; 447 return 0; 448 } 449 EXPORT_SYMBOL_GPL(of_property_read_string); 450 451 /** 452 * of_property_match_string() - Find string in a list and return index 453 * @np: pointer to node containing string list property 454 * @propname: string list property name 455 * @string: pointer to string to search for in string list 456 * 457 * This function searches a string list property and returns the index 458 * of a specific string value. 459 */ 460 int of_property_match_string(const struct device_node *np, const char *propname, 461 const char *string) 462 { 463 const struct property *prop = of_find_property(np, propname, NULL); 464 size_t l; 465 int i; 466 const char *p, *end; 467 468 if (!prop) 469 return -EINVAL; 470 if (!prop->value) 471 return -ENODATA; 472 473 p = prop->value; 474 end = p + prop->length; 475 476 for (i = 0; p < end; i++, p += l) { 477 l = strnlen(p, end - p) + 1; 478 if (p + l > end) 479 return -EILSEQ; 480 pr_debug("comparing %s with %s\n", string, p); 481 if (strcmp(string, p) == 0) 482 return i; /* Found it; return index */ 483 } 484 return -ENODATA; 485 } 486 EXPORT_SYMBOL_GPL(of_property_match_string); 487 488 /** 489 * of_property_read_string_helper() - Utility helper for parsing string properties 490 * @np: device node from which the property value is to be read. 491 * @propname: name of the property to be searched. 492 * @out_strs: output array of string pointers. 493 * @sz: number of array elements to read. 494 * @skip: Number of strings to skip over at beginning of list. 495 * 496 * Don't call this function directly. It is a utility helper for the 497 * of_property_read_string*() family of functions. 498 */ 499 int of_property_read_string_helper(const struct device_node *np, 500 const char *propname, const char **out_strs, 501 size_t sz, int skip) 502 { 503 const struct property *prop = of_find_property(np, propname, NULL); 504 int l = 0, i = 0; 505 const char *p, *end; 506 507 if (!prop) 508 return -EINVAL; 509 if (!prop->value) 510 return -ENODATA; 511 p = prop->value; 512 end = p + prop->length; 513 514 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) { 515 l = strnlen(p, end - p) + 1; 516 if (p + l > end) 517 return -EILSEQ; 518 if (out_strs && i >= skip) 519 *out_strs++ = p; 520 } 521 i -= skip; 522 return i <= 0 ? -ENODATA : i; 523 } 524 EXPORT_SYMBOL_GPL(of_property_read_string_helper); 525 526 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur, 527 u32 *pu) 528 { 529 const void *curv = cur; 530 531 if (!prop) 532 return NULL; 533 534 if (!cur) { 535 curv = prop->value; 536 goto out_val; 537 } 538 539 curv += sizeof(*cur); 540 if (curv >= prop->value + prop->length) 541 return NULL; 542 543 out_val: 544 *pu = be32_to_cpup(curv); 545 return curv; 546 } 547 EXPORT_SYMBOL_GPL(of_prop_next_u32); 548 549 const char *of_prop_next_string(struct property *prop, const char *cur) 550 { 551 const void *curv = cur; 552 553 if (!prop) 554 return NULL; 555 556 if (!cur) 557 return prop->value; 558 559 curv += strlen(cur) + 1; 560 if (curv >= prop->value + prop->length) 561 return NULL; 562 563 return curv; 564 } 565 EXPORT_SYMBOL_GPL(of_prop_next_string); 566 567 /** 568 * of_graph_parse_endpoint() - parse common endpoint node properties 569 * @node: pointer to endpoint device_node 570 * @endpoint: pointer to the OF endpoint data structure 571 * 572 * The caller should hold a reference to @node. 573 */ 574 int of_graph_parse_endpoint(const struct device_node *node, 575 struct of_endpoint *endpoint) 576 { 577 struct device_node *port_node = of_get_parent(node); 578 579 WARN_ONCE(!port_node, "%s(): endpoint %pOF has no parent node\n", 580 __func__, node); 581 582 memset(endpoint, 0, sizeof(*endpoint)); 583 584 endpoint->local_node = node; 585 /* 586 * It doesn't matter whether the two calls below succeed. 587 * If they don't then the default value 0 is used. 588 */ 589 of_property_read_u32(port_node, "reg", &endpoint->port); 590 of_property_read_u32(node, "reg", &endpoint->id); 591 592 of_node_put(port_node); 593 594 return 0; 595 } 596 EXPORT_SYMBOL(of_graph_parse_endpoint); 597 598 /** 599 * of_graph_get_port_by_id() - get the port matching a given id 600 * @parent: pointer to the parent device node 601 * @id: id of the port 602 * 603 * Return: A 'port' node pointer with refcount incremented. The caller 604 * has to use of_node_put() on it when done. 605 */ 606 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id) 607 { 608 struct device_node *node, *port; 609 610 node = of_get_child_by_name(parent, "ports"); 611 if (node) 612 parent = node; 613 614 for_each_child_of_node(parent, port) { 615 u32 port_id = 0; 616 617 if (!of_node_name_eq(port, "port")) 618 continue; 619 of_property_read_u32(port, "reg", &port_id); 620 if (id == port_id) 621 break; 622 } 623 624 of_node_put(node); 625 626 return port; 627 } 628 EXPORT_SYMBOL(of_graph_get_port_by_id); 629 630 /** 631 * of_graph_get_next_endpoint() - get next endpoint node 632 * @parent: pointer to the parent device node 633 * @prev: previous endpoint node, or NULL to get first 634 * 635 * Return: An 'endpoint' node pointer with refcount incremented. Refcount 636 * of the passed @prev node is decremented. 637 */ 638 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent, 639 struct device_node *prev) 640 { 641 struct device_node *endpoint; 642 struct device_node *port; 643 644 if (!parent) 645 return NULL; 646 647 /* 648 * Start by locating the port node. If no previous endpoint is specified 649 * search for the first port node, otherwise get the previous endpoint 650 * parent port node. 651 */ 652 if (!prev) { 653 struct device_node *node; 654 655 node = of_get_child_by_name(parent, "ports"); 656 if (node) 657 parent = node; 658 659 port = of_get_child_by_name(parent, "port"); 660 of_node_put(node); 661 662 if (!port) { 663 pr_err("graph: no port node found in %pOF\n", parent); 664 return NULL; 665 } 666 } else { 667 port = of_get_parent(prev); 668 if (WARN_ONCE(!port, "%s(): endpoint %pOF has no parent node\n", 669 __func__, prev)) 670 return NULL; 671 } 672 673 while (1) { 674 /* 675 * Now that we have a port node, get the next endpoint by 676 * getting the next child. If the previous endpoint is NULL this 677 * will return the first child. 678 */ 679 endpoint = of_get_next_child(port, prev); 680 if (endpoint) { 681 of_node_put(port); 682 return endpoint; 683 } 684 685 /* No more endpoints under this port, try the next one. */ 686 prev = NULL; 687 688 do { 689 port = of_get_next_child(parent, port); 690 if (!port) 691 return NULL; 692 } while (!of_node_name_eq(port, "port")); 693 } 694 } 695 EXPORT_SYMBOL(of_graph_get_next_endpoint); 696 697 /** 698 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers 699 * @parent: pointer to the parent device node 700 * @port_reg: identifier (value of reg property) of the parent port node 701 * @reg: identifier (value of reg property) of the endpoint node 702 * 703 * Return: An 'endpoint' node pointer which is identified by reg and at the same 704 * is the child of a port node identified by port_reg. reg and port_reg are 705 * ignored when they are -1. Use of_node_put() on the pointer when done. 706 */ 707 struct device_node *of_graph_get_endpoint_by_regs( 708 const struct device_node *parent, int port_reg, int reg) 709 { 710 struct of_endpoint endpoint; 711 struct device_node *node = NULL; 712 713 for_each_endpoint_of_node(parent, node) { 714 of_graph_parse_endpoint(node, &endpoint); 715 if (((port_reg == -1) || (endpoint.port == port_reg)) && 716 ((reg == -1) || (endpoint.id == reg))) 717 return node; 718 } 719 720 return NULL; 721 } 722 EXPORT_SYMBOL(of_graph_get_endpoint_by_regs); 723 724 /** 725 * of_graph_get_remote_endpoint() - get remote endpoint node 726 * @node: pointer to a local endpoint device_node 727 * 728 * Return: Remote endpoint node associated with remote endpoint node linked 729 * to @node. Use of_node_put() on it when done. 730 */ 731 struct device_node *of_graph_get_remote_endpoint(const struct device_node *node) 732 { 733 /* Get remote endpoint node. */ 734 return of_parse_phandle(node, "remote-endpoint", 0); 735 } 736 EXPORT_SYMBOL(of_graph_get_remote_endpoint); 737 738 /** 739 * of_graph_get_port_parent() - get port's parent node 740 * @node: pointer to a local endpoint device_node 741 * 742 * Return: device node associated with endpoint node linked 743 * to @node. Use of_node_put() on it when done. 744 */ 745 struct device_node *of_graph_get_port_parent(struct device_node *node) 746 { 747 unsigned int depth; 748 749 if (!node) 750 return NULL; 751 752 /* 753 * Preserve usecount for passed in node as of_get_next_parent() 754 * will do of_node_put() on it. 755 */ 756 of_node_get(node); 757 758 /* Walk 3 levels up only if there is 'ports' node. */ 759 for (depth = 3; depth && node; depth--) { 760 node = of_get_next_parent(node); 761 if (depth == 2 && !of_node_name_eq(node, "ports")) 762 break; 763 } 764 return node; 765 } 766 EXPORT_SYMBOL(of_graph_get_port_parent); 767 768 /** 769 * of_graph_get_remote_port_parent() - get remote port's parent node 770 * @node: pointer to a local endpoint device_node 771 * 772 * Return: Remote device node associated with remote endpoint node linked 773 * to @node. Use of_node_put() on it when done. 774 */ 775 struct device_node *of_graph_get_remote_port_parent( 776 const struct device_node *node) 777 { 778 struct device_node *np, *pp; 779 780 /* Get remote endpoint node. */ 781 np = of_graph_get_remote_endpoint(node); 782 783 pp = of_graph_get_port_parent(np); 784 785 of_node_put(np); 786 787 return pp; 788 } 789 EXPORT_SYMBOL(of_graph_get_remote_port_parent); 790 791 /** 792 * of_graph_get_remote_port() - get remote port node 793 * @node: pointer to a local endpoint device_node 794 * 795 * Return: Remote port node associated with remote endpoint node linked 796 * to @node. Use of_node_put() on it when done. 797 */ 798 struct device_node *of_graph_get_remote_port(const struct device_node *node) 799 { 800 struct device_node *np; 801 802 /* Get remote endpoint node. */ 803 np = of_graph_get_remote_endpoint(node); 804 if (!np) 805 return NULL; 806 return of_get_next_parent(np); 807 } 808 EXPORT_SYMBOL(of_graph_get_remote_port); 809 810 int of_graph_get_endpoint_count(const struct device_node *np) 811 { 812 struct device_node *endpoint; 813 int num = 0; 814 815 for_each_endpoint_of_node(np, endpoint) 816 num++; 817 818 return num; 819 } 820 EXPORT_SYMBOL(of_graph_get_endpoint_count); 821 822 /** 823 * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint 824 * @node: pointer to parent device_node containing graph port/endpoint 825 * @port: identifier (value of reg property) of the parent port node 826 * @endpoint: identifier (value of reg property) of the endpoint node 827 * 828 * Return: Remote device node associated with remote endpoint node linked 829 * to @node. Use of_node_put() on it when done. 830 */ 831 struct device_node *of_graph_get_remote_node(const struct device_node *node, 832 u32 port, u32 endpoint) 833 { 834 struct device_node *endpoint_node, *remote; 835 836 endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint); 837 if (!endpoint_node) { 838 pr_debug("no valid endpoint (%d, %d) for node %pOF\n", 839 port, endpoint, node); 840 return NULL; 841 } 842 843 remote = of_graph_get_remote_port_parent(endpoint_node); 844 of_node_put(endpoint_node); 845 if (!remote) { 846 pr_debug("no valid remote node\n"); 847 return NULL; 848 } 849 850 if (!of_device_is_available(remote)) { 851 pr_debug("not available for remote node\n"); 852 of_node_put(remote); 853 return NULL; 854 } 855 856 return remote; 857 } 858 EXPORT_SYMBOL(of_graph_get_remote_node); 859 860 static struct fwnode_handle *of_fwnode_get(struct fwnode_handle *fwnode) 861 { 862 return of_fwnode_handle(of_node_get(to_of_node(fwnode))); 863 } 864 865 static void of_fwnode_put(struct fwnode_handle *fwnode) 866 { 867 of_node_put(to_of_node(fwnode)); 868 } 869 870 static bool of_fwnode_device_is_available(const struct fwnode_handle *fwnode) 871 { 872 return of_device_is_available(to_of_node(fwnode)); 873 } 874 875 static bool of_fwnode_property_present(const struct fwnode_handle *fwnode, 876 const char *propname) 877 { 878 return of_property_read_bool(to_of_node(fwnode), propname); 879 } 880 881 static int of_fwnode_property_read_int_array(const struct fwnode_handle *fwnode, 882 const char *propname, 883 unsigned int elem_size, void *val, 884 size_t nval) 885 { 886 const struct device_node *node = to_of_node(fwnode); 887 888 if (!val) 889 return of_property_count_elems_of_size(node, propname, 890 elem_size); 891 892 switch (elem_size) { 893 case sizeof(u8): 894 return of_property_read_u8_array(node, propname, val, nval); 895 case sizeof(u16): 896 return of_property_read_u16_array(node, propname, val, nval); 897 case sizeof(u32): 898 return of_property_read_u32_array(node, propname, val, nval); 899 case sizeof(u64): 900 return of_property_read_u64_array(node, propname, val, nval); 901 } 902 903 return -ENXIO; 904 } 905 906 static int 907 of_fwnode_property_read_string_array(const struct fwnode_handle *fwnode, 908 const char *propname, const char **val, 909 size_t nval) 910 { 911 const struct device_node *node = to_of_node(fwnode); 912 913 return val ? 914 of_property_read_string_array(node, propname, val, nval) : 915 of_property_count_strings(node, propname); 916 } 917 918 static const char *of_fwnode_get_name(const struct fwnode_handle *fwnode) 919 { 920 return kbasename(to_of_node(fwnode)->full_name); 921 } 922 923 static const char *of_fwnode_get_name_prefix(const struct fwnode_handle *fwnode) 924 { 925 /* Root needs no prefix here (its name is "/"). */ 926 if (!to_of_node(fwnode)->parent) 927 return ""; 928 929 return "/"; 930 } 931 932 static struct fwnode_handle * 933 of_fwnode_get_parent(const struct fwnode_handle *fwnode) 934 { 935 return of_fwnode_handle(of_get_parent(to_of_node(fwnode))); 936 } 937 938 static struct fwnode_handle * 939 of_fwnode_get_next_child_node(const struct fwnode_handle *fwnode, 940 struct fwnode_handle *child) 941 { 942 return of_fwnode_handle(of_get_next_available_child(to_of_node(fwnode), 943 to_of_node(child))); 944 } 945 946 static struct fwnode_handle * 947 of_fwnode_get_named_child_node(const struct fwnode_handle *fwnode, 948 const char *childname) 949 { 950 const struct device_node *node = to_of_node(fwnode); 951 struct device_node *child; 952 953 for_each_available_child_of_node(node, child) 954 if (of_node_name_eq(child, childname)) 955 return of_fwnode_handle(child); 956 957 return NULL; 958 } 959 960 static int 961 of_fwnode_get_reference_args(const struct fwnode_handle *fwnode, 962 const char *prop, const char *nargs_prop, 963 unsigned int nargs, unsigned int index, 964 struct fwnode_reference_args *args) 965 { 966 struct of_phandle_args of_args; 967 unsigned int i; 968 int ret; 969 970 if (nargs_prop) 971 ret = of_parse_phandle_with_args(to_of_node(fwnode), prop, 972 nargs_prop, index, &of_args); 973 else 974 ret = of_parse_phandle_with_fixed_args(to_of_node(fwnode), prop, 975 nargs, index, &of_args); 976 if (ret < 0) 977 return ret; 978 if (!args) 979 return 0; 980 981 args->nargs = of_args.args_count; 982 args->fwnode = of_fwnode_handle(of_args.np); 983 984 for (i = 0; i < NR_FWNODE_REFERENCE_ARGS; i++) 985 args->args[i] = i < of_args.args_count ? of_args.args[i] : 0; 986 987 return 0; 988 } 989 990 static struct fwnode_handle * 991 of_fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode, 992 struct fwnode_handle *prev) 993 { 994 return of_fwnode_handle(of_graph_get_next_endpoint(to_of_node(fwnode), 995 to_of_node(prev))); 996 } 997 998 static struct fwnode_handle * 999 of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode) 1000 { 1001 return of_fwnode_handle( 1002 of_graph_get_remote_endpoint(to_of_node(fwnode))); 1003 } 1004 1005 static struct fwnode_handle * 1006 of_fwnode_graph_get_port_parent(struct fwnode_handle *fwnode) 1007 { 1008 struct device_node *np; 1009 1010 /* Get the parent of the port */ 1011 np = of_get_parent(to_of_node(fwnode)); 1012 if (!np) 1013 return NULL; 1014 1015 /* Is this the "ports" node? If not, it's the port parent. */ 1016 if (!of_node_name_eq(np, "ports")) 1017 return of_fwnode_handle(np); 1018 1019 return of_fwnode_handle(of_get_next_parent(np)); 1020 } 1021 1022 static int of_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode, 1023 struct fwnode_endpoint *endpoint) 1024 { 1025 const struct device_node *node = to_of_node(fwnode); 1026 struct device_node *port_node = of_get_parent(node); 1027 1028 endpoint->local_fwnode = fwnode; 1029 1030 of_property_read_u32(port_node, "reg", &endpoint->port); 1031 of_property_read_u32(node, "reg", &endpoint->id); 1032 1033 of_node_put(port_node); 1034 1035 return 0; 1036 } 1037 1038 static const void * 1039 of_fwnode_device_get_match_data(const struct fwnode_handle *fwnode, 1040 const struct device *dev) 1041 { 1042 return of_device_get_match_data(dev); 1043 } 1044 1045 static bool of_is_ancestor_of(struct device_node *test_ancestor, 1046 struct device_node *child) 1047 { 1048 of_node_get(child); 1049 while (child) { 1050 if (child == test_ancestor) { 1051 of_node_put(child); 1052 return true; 1053 } 1054 child = of_get_next_parent(child); 1055 } 1056 return false; 1057 } 1058 1059 static struct device_node *of_get_compat_node(struct device_node *np) 1060 { 1061 of_node_get(np); 1062 1063 while (np) { 1064 if (!of_device_is_available(np)) { 1065 of_node_put(np); 1066 np = NULL; 1067 } 1068 1069 if (of_find_property(np, "compatible", NULL)) 1070 break; 1071 1072 np = of_get_next_parent(np); 1073 } 1074 1075 return np; 1076 } 1077 1078 /** 1079 * of_link_to_phandle - Add fwnode link to supplier from supplier phandle 1080 * @con_np: consumer device tree node 1081 * @sup_np: supplier device tree node 1082 * 1083 * Given a phandle to a supplier device tree node (@sup_np), this function 1084 * finds the device that owns the supplier device tree node and creates a 1085 * device link from @dev consumer device to the supplier device. This function 1086 * doesn't create device links for invalid scenarios such as trying to create a 1087 * link with a parent device as the consumer of its child device. In such 1088 * cases, it returns an error. 1089 * 1090 * Returns: 1091 * - 0 if fwnode link successfully created to supplier 1092 * - -EINVAL if the supplier link is invalid and should not be created 1093 * - -ENODEV if struct device will never be create for supplier 1094 */ 1095 static int of_link_to_phandle(struct device_node *con_np, 1096 struct device_node *sup_np) 1097 { 1098 struct device *sup_dev; 1099 struct device_node *tmp_np = sup_np; 1100 1101 /* 1102 * Find the device node that contains the supplier phandle. It may be 1103 * @sup_np or it may be an ancestor of @sup_np. 1104 */ 1105 sup_np = of_get_compat_node(sup_np); 1106 if (!sup_np) { 1107 pr_debug("Not linking %pOFP to %pOFP - No device\n", 1108 con_np, tmp_np); 1109 return -ENODEV; 1110 } 1111 1112 /* 1113 * Don't allow linking a device node as a consumer of one of its 1114 * descendant nodes. By definition, a child node can't be a functional 1115 * dependency for the parent node. 1116 */ 1117 if (of_is_ancestor_of(con_np, sup_np)) { 1118 pr_debug("Not linking %pOFP to %pOFP - is descendant\n", 1119 con_np, sup_np); 1120 of_node_put(sup_np); 1121 return -EINVAL; 1122 } 1123 1124 /* 1125 * Don't create links to "early devices" that won't have struct devices 1126 * created for them. 1127 */ 1128 sup_dev = get_dev_from_fwnode(&sup_np->fwnode); 1129 if (!sup_dev && 1130 (of_node_check_flag(sup_np, OF_POPULATED) || 1131 sup_np->fwnode.flags & FWNODE_FLAG_NOT_DEVICE)) { 1132 pr_debug("Not linking %pOFP to %pOFP - No struct device\n", 1133 con_np, sup_np); 1134 of_node_put(sup_np); 1135 return -ENODEV; 1136 } 1137 put_device(sup_dev); 1138 1139 fwnode_link_add(of_fwnode_handle(con_np), of_fwnode_handle(sup_np)); 1140 of_node_put(sup_np); 1141 1142 return 0; 1143 } 1144 1145 /** 1146 * parse_prop_cells - Property parsing function for suppliers 1147 * 1148 * @np: Pointer to device tree node containing a list 1149 * @prop_name: Name of property to be parsed. Expected to hold phandle values 1150 * @index: For properties holding a list of phandles, this is the index 1151 * into the list. 1152 * @list_name: Property name that is known to contain list of phandle(s) to 1153 * supplier(s) 1154 * @cells_name: property name that specifies phandles' arguments count 1155 * 1156 * This is a helper function to parse properties that have a known fixed name 1157 * and are a list of phandles and phandle arguments. 1158 * 1159 * Returns: 1160 * - phandle node pointer with refcount incremented. Caller must of_node_put() 1161 * on it when done. 1162 * - NULL if no phandle found at index 1163 */ 1164 static struct device_node *parse_prop_cells(struct device_node *np, 1165 const char *prop_name, int index, 1166 const char *list_name, 1167 const char *cells_name) 1168 { 1169 struct of_phandle_args sup_args; 1170 1171 if (strcmp(prop_name, list_name)) 1172 return NULL; 1173 1174 if (of_parse_phandle_with_args(np, list_name, cells_name, index, 1175 &sup_args)) 1176 return NULL; 1177 1178 return sup_args.np; 1179 } 1180 1181 #define DEFINE_SIMPLE_PROP(fname, name, cells) \ 1182 static struct device_node *parse_##fname(struct device_node *np, \ 1183 const char *prop_name, int index) \ 1184 { \ 1185 return parse_prop_cells(np, prop_name, index, name, cells); \ 1186 } 1187 1188 static int strcmp_suffix(const char *str, const char *suffix) 1189 { 1190 unsigned int len, suffix_len; 1191 1192 len = strlen(str); 1193 suffix_len = strlen(suffix); 1194 if (len <= suffix_len) 1195 return -1; 1196 return strcmp(str + len - suffix_len, suffix); 1197 } 1198 1199 /** 1200 * parse_suffix_prop_cells - Suffix property parsing function for suppliers 1201 * 1202 * @np: Pointer to device tree node containing a list 1203 * @prop_name: Name of property to be parsed. Expected to hold phandle values 1204 * @index: For properties holding a list of phandles, this is the index 1205 * into the list. 1206 * @suffix: Property suffix that is known to contain list of phandle(s) to 1207 * supplier(s) 1208 * @cells_name: property name that specifies phandles' arguments count 1209 * 1210 * This is a helper function to parse properties that have a known fixed suffix 1211 * and are a list of phandles and phandle arguments. 1212 * 1213 * Returns: 1214 * - phandle node pointer with refcount incremented. Caller must of_node_put() 1215 * on it when done. 1216 * - NULL if no phandle found at index 1217 */ 1218 static struct device_node *parse_suffix_prop_cells(struct device_node *np, 1219 const char *prop_name, int index, 1220 const char *suffix, 1221 const char *cells_name) 1222 { 1223 struct of_phandle_args sup_args; 1224 1225 if (strcmp_suffix(prop_name, suffix)) 1226 return NULL; 1227 1228 if (of_parse_phandle_with_args(np, prop_name, cells_name, index, 1229 &sup_args)) 1230 return NULL; 1231 1232 return sup_args.np; 1233 } 1234 1235 #define DEFINE_SUFFIX_PROP(fname, suffix, cells) \ 1236 static struct device_node *parse_##fname(struct device_node *np, \ 1237 const char *prop_name, int index) \ 1238 { \ 1239 return parse_suffix_prop_cells(np, prop_name, index, suffix, cells); \ 1240 } 1241 1242 /** 1243 * struct supplier_bindings - Property parsing functions for suppliers 1244 * 1245 * @parse_prop: function name 1246 * parse_prop() finds the node corresponding to a supplier phandle 1247 * @parse_prop.np: Pointer to device node holding supplier phandle property 1248 * @parse_prop.prop_name: Name of property holding a phandle value 1249 * @parse_prop.index: For properties holding a list of phandles, this is the 1250 * index into the list 1251 * @optional: Describes whether a supplier is mandatory or not 1252 * @node_not_dev: The consumer node containing the property is never a device. 1253 * 1254 * Returns: 1255 * parse_prop() return values are 1256 * - phandle node pointer with refcount incremented. Caller must of_node_put() 1257 * on it when done. 1258 * - NULL if no phandle found at index 1259 */ 1260 struct supplier_bindings { 1261 struct device_node *(*parse_prop)(struct device_node *np, 1262 const char *prop_name, int index); 1263 bool optional; 1264 bool node_not_dev; 1265 }; 1266 1267 DEFINE_SIMPLE_PROP(clocks, "clocks", "#clock-cells") 1268 DEFINE_SIMPLE_PROP(interconnects, "interconnects", "#interconnect-cells") 1269 DEFINE_SIMPLE_PROP(iommus, "iommus", "#iommu-cells") 1270 DEFINE_SIMPLE_PROP(mboxes, "mboxes", "#mbox-cells") 1271 DEFINE_SIMPLE_PROP(io_channels, "io-channel", "#io-channel-cells") 1272 DEFINE_SIMPLE_PROP(interrupt_parent, "interrupt-parent", NULL) 1273 DEFINE_SIMPLE_PROP(dmas, "dmas", "#dma-cells") 1274 DEFINE_SIMPLE_PROP(power_domains, "power-domains", "#power-domain-cells") 1275 DEFINE_SIMPLE_PROP(hwlocks, "hwlocks", "#hwlock-cells") 1276 DEFINE_SIMPLE_PROP(extcon, "extcon", NULL) 1277 DEFINE_SIMPLE_PROP(nvmem_cells, "nvmem-cells", NULL) 1278 DEFINE_SIMPLE_PROP(phys, "phys", "#phy-cells") 1279 DEFINE_SIMPLE_PROP(wakeup_parent, "wakeup-parent", NULL) 1280 DEFINE_SIMPLE_PROP(pinctrl0, "pinctrl-0", NULL) 1281 DEFINE_SIMPLE_PROP(pinctrl1, "pinctrl-1", NULL) 1282 DEFINE_SIMPLE_PROP(pinctrl2, "pinctrl-2", NULL) 1283 DEFINE_SIMPLE_PROP(pinctrl3, "pinctrl-3", NULL) 1284 DEFINE_SIMPLE_PROP(pinctrl4, "pinctrl-4", NULL) 1285 DEFINE_SIMPLE_PROP(pinctrl5, "pinctrl-5", NULL) 1286 DEFINE_SIMPLE_PROP(pinctrl6, "pinctrl-6", NULL) 1287 DEFINE_SIMPLE_PROP(pinctrl7, "pinctrl-7", NULL) 1288 DEFINE_SIMPLE_PROP(pinctrl8, "pinctrl-8", NULL) 1289 DEFINE_SIMPLE_PROP(remote_endpoint, "remote-endpoint", NULL) 1290 DEFINE_SUFFIX_PROP(regulators, "-supply", NULL) 1291 DEFINE_SUFFIX_PROP(gpio, "-gpio", "#gpio-cells") 1292 1293 static struct device_node *parse_gpios(struct device_node *np, 1294 const char *prop_name, int index) 1295 { 1296 if (!strcmp_suffix(prop_name, ",nr-gpios")) 1297 return NULL; 1298 1299 return parse_suffix_prop_cells(np, prop_name, index, "-gpios", 1300 "#gpio-cells"); 1301 } 1302 1303 static struct device_node *parse_iommu_maps(struct device_node *np, 1304 const char *prop_name, int index) 1305 { 1306 if (strcmp(prop_name, "iommu-map")) 1307 return NULL; 1308 1309 return of_parse_phandle(np, prop_name, (index * 4) + 1); 1310 } 1311 1312 static struct device_node *parse_gpio_compat(struct device_node *np, 1313 const char *prop_name, int index) 1314 { 1315 struct of_phandle_args sup_args; 1316 1317 if (strcmp(prop_name, "gpio") && strcmp(prop_name, "gpios")) 1318 return NULL; 1319 1320 /* 1321 * Ignore node with gpio-hog property since its gpios are all provided 1322 * by its parent. 1323 */ 1324 if (of_find_property(np, "gpio-hog", NULL)) 1325 return NULL; 1326 1327 if (of_parse_phandle_with_args(np, prop_name, "#gpio-cells", index, 1328 &sup_args)) 1329 return NULL; 1330 1331 return sup_args.np; 1332 } 1333 1334 static struct device_node *parse_interrupts(struct device_node *np, 1335 const char *prop_name, int index) 1336 { 1337 struct of_phandle_args sup_args; 1338 1339 if (!IS_ENABLED(CONFIG_OF_IRQ) || IS_ENABLED(CONFIG_PPC)) 1340 return NULL; 1341 1342 if (strcmp(prop_name, "interrupts") && 1343 strcmp(prop_name, "interrupts-extended")) 1344 return NULL; 1345 1346 return of_irq_parse_one(np, index, &sup_args) ? NULL : sup_args.np; 1347 } 1348 1349 static const struct supplier_bindings of_supplier_bindings[] = { 1350 { .parse_prop = parse_clocks, }, 1351 { .parse_prop = parse_interconnects, }, 1352 { .parse_prop = parse_iommus, .optional = true, }, 1353 { .parse_prop = parse_iommu_maps, .optional = true, }, 1354 { .parse_prop = parse_mboxes, }, 1355 { .parse_prop = parse_io_channels, }, 1356 { .parse_prop = parse_interrupt_parent, }, 1357 { .parse_prop = parse_dmas, .optional = true, }, 1358 { .parse_prop = parse_power_domains, }, 1359 { .parse_prop = parse_hwlocks, }, 1360 { .parse_prop = parse_extcon, }, 1361 { .parse_prop = parse_nvmem_cells, }, 1362 { .parse_prop = parse_phys, }, 1363 { .parse_prop = parse_wakeup_parent, }, 1364 { .parse_prop = parse_pinctrl0, }, 1365 { .parse_prop = parse_pinctrl1, }, 1366 { .parse_prop = parse_pinctrl2, }, 1367 { .parse_prop = parse_pinctrl3, }, 1368 { .parse_prop = parse_pinctrl4, }, 1369 { .parse_prop = parse_pinctrl5, }, 1370 { .parse_prop = parse_pinctrl6, }, 1371 { .parse_prop = parse_pinctrl7, }, 1372 { .parse_prop = parse_pinctrl8, }, 1373 { .parse_prop = parse_remote_endpoint, .node_not_dev = true, }, 1374 { .parse_prop = parse_gpio_compat, }, 1375 { .parse_prop = parse_interrupts, }, 1376 { .parse_prop = parse_regulators, }, 1377 { .parse_prop = parse_gpio, }, 1378 { .parse_prop = parse_gpios, }, 1379 {} 1380 }; 1381 1382 /** 1383 * of_link_property - Create device links to suppliers listed in a property 1384 * @con_np: The consumer device tree node which contains the property 1385 * @prop_name: Name of property to be parsed 1386 * 1387 * This function checks if the property @prop_name that is present in the 1388 * @con_np device tree node is one of the known common device tree bindings 1389 * that list phandles to suppliers. If @prop_name isn't one, this function 1390 * doesn't do anything. 1391 * 1392 * If @prop_name is one, this function attempts to create fwnode links from the 1393 * consumer device tree node @con_np to all the suppliers device tree nodes 1394 * listed in @prop_name. 1395 * 1396 * Any failed attempt to create a fwnode link will NOT result in an immediate 1397 * return. of_link_property() must create links to all the available supplier 1398 * device tree nodes even when attempts to create a link to one or more 1399 * suppliers fail. 1400 */ 1401 static int of_link_property(struct device_node *con_np, const char *prop_name) 1402 { 1403 struct device_node *phandle; 1404 const struct supplier_bindings *s = of_supplier_bindings; 1405 unsigned int i = 0; 1406 bool matched = false; 1407 1408 /* Do not stop at first failed link, link all available suppliers. */ 1409 while (!matched && s->parse_prop) { 1410 if (s->optional && !fw_devlink_is_strict()) { 1411 s++; 1412 continue; 1413 } 1414 1415 while ((phandle = s->parse_prop(con_np, prop_name, i))) { 1416 struct device_node *con_dev_np; 1417 1418 con_dev_np = s->node_not_dev 1419 ? of_get_compat_node(con_np) 1420 : of_node_get(con_np); 1421 matched = true; 1422 i++; 1423 of_link_to_phandle(con_dev_np, phandle); 1424 of_node_put(phandle); 1425 of_node_put(con_dev_np); 1426 } 1427 s++; 1428 } 1429 return 0; 1430 } 1431 1432 static int of_fwnode_add_links(struct fwnode_handle *fwnode) 1433 { 1434 struct property *p; 1435 struct device_node *con_np = to_of_node(fwnode); 1436 1437 if (!con_np) 1438 return -EINVAL; 1439 1440 for_each_property_of_node(con_np, p) 1441 of_link_property(con_np, p->name); 1442 1443 return 0; 1444 } 1445 1446 const struct fwnode_operations of_fwnode_ops = { 1447 .get = of_fwnode_get, 1448 .put = of_fwnode_put, 1449 .device_is_available = of_fwnode_device_is_available, 1450 .device_get_match_data = of_fwnode_device_get_match_data, 1451 .property_present = of_fwnode_property_present, 1452 .property_read_int_array = of_fwnode_property_read_int_array, 1453 .property_read_string_array = of_fwnode_property_read_string_array, 1454 .get_name = of_fwnode_get_name, 1455 .get_name_prefix = of_fwnode_get_name_prefix, 1456 .get_parent = of_fwnode_get_parent, 1457 .get_next_child_node = of_fwnode_get_next_child_node, 1458 .get_named_child_node = of_fwnode_get_named_child_node, 1459 .get_reference_args = of_fwnode_get_reference_args, 1460 .graph_get_next_endpoint = of_fwnode_graph_get_next_endpoint, 1461 .graph_get_remote_endpoint = of_fwnode_graph_get_remote_endpoint, 1462 .graph_get_port_parent = of_fwnode_graph_get_port_parent, 1463 .graph_parse_endpoint = of_fwnode_graph_parse_endpoint, 1464 .add_links = of_fwnode_add_links, 1465 }; 1466 EXPORT_SYMBOL_GPL(of_fwnode_ops); 1467