xref: /linux/drivers/of/property.c (revision 8137a49e1567726eb10fcf55ad141ac19804ca6b)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * drivers/of/property.c - Procedures for accessing and interpreting
4  *			   Devicetree properties and graphs.
5  *
6  * Initially created by copying procedures from drivers/of/base.c. This
7  * file contains the OF property as well as the OF graph interface
8  * functions.
9  *
10  * Paul Mackerras	August 1996.
11  * Copyright (C) 1996-2005 Paul Mackerras.
12  *
13  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
14  *    {engebret|bergner}@us.ibm.com
15  *
16  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
17  *
18  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
19  *  Grant Likely.
20  */
21 
22 #define pr_fmt(fmt)	"OF: " fmt
23 
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/of_graph.h>
27 #include <linux/of_irq.h>
28 #include <linux/string.h>
29 #include <linux/moduleparam.h>
30 
31 #include "of_private.h"
32 
33 /**
34  * of_graph_is_present() - check graph's presence
35  * @node: pointer to device_node containing graph port
36  *
37  * Return: True if @node has a port or ports (with a port) sub-node,
38  * false otherwise.
39  */
40 bool of_graph_is_present(const struct device_node *node)
41 {
42 	struct device_node *ports, *port;
43 
44 	ports = of_get_child_by_name(node, "ports");
45 	if (ports)
46 		node = ports;
47 
48 	port = of_get_child_by_name(node, "port");
49 	of_node_put(ports);
50 	of_node_put(port);
51 
52 	return !!port;
53 }
54 EXPORT_SYMBOL(of_graph_is_present);
55 
56 /**
57  * of_property_count_elems_of_size - Count the number of elements in a property
58  *
59  * @np:		device node from which the property value is to be read.
60  * @propname:	name of the property to be searched.
61  * @elem_size:	size of the individual element
62  *
63  * Search for a property in a device node and count the number of elements of
64  * size elem_size in it.
65  *
66  * Return: The number of elements on sucess, -EINVAL if the property does not
67  * exist or its length does not match a multiple of elem_size and -ENODATA if
68  * the property does not have a value.
69  */
70 int of_property_count_elems_of_size(const struct device_node *np,
71 				const char *propname, int elem_size)
72 {
73 	struct property *prop = of_find_property(np, propname, NULL);
74 
75 	if (!prop)
76 		return -EINVAL;
77 	if (!prop->value)
78 		return -ENODATA;
79 
80 	if (prop->length % elem_size != 0) {
81 		pr_err("size of %s in node %pOF is not a multiple of %d\n",
82 		       propname, np, elem_size);
83 		return -EINVAL;
84 	}
85 
86 	return prop->length / elem_size;
87 }
88 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
89 
90 /**
91  * of_find_property_value_of_size
92  *
93  * @np:		device node from which the property value is to be read.
94  * @propname:	name of the property to be searched.
95  * @min:	minimum allowed length of property value
96  * @max:	maximum allowed length of property value (0 means unlimited)
97  * @len:	if !=NULL, actual length is written to here
98  *
99  * Search for a property in a device node and valid the requested size.
100  *
101  * Return: The property value on success, -EINVAL if the property does not
102  * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
103  * property data is too small or too large.
104  *
105  */
106 static void *of_find_property_value_of_size(const struct device_node *np,
107 			const char *propname, u32 min, u32 max, size_t *len)
108 {
109 	struct property *prop = of_find_property(np, propname, NULL);
110 
111 	if (!prop)
112 		return ERR_PTR(-EINVAL);
113 	if (!prop->value)
114 		return ERR_PTR(-ENODATA);
115 	if (prop->length < min)
116 		return ERR_PTR(-EOVERFLOW);
117 	if (max && prop->length > max)
118 		return ERR_PTR(-EOVERFLOW);
119 
120 	if (len)
121 		*len = prop->length;
122 
123 	return prop->value;
124 }
125 
126 /**
127  * of_property_read_u32_index - Find and read a u32 from a multi-value property.
128  *
129  * @np:		device node from which the property value is to be read.
130  * @propname:	name of the property to be searched.
131  * @index:	index of the u32 in the list of values
132  * @out_value:	pointer to return value, modified only if no error.
133  *
134  * Search for a property in a device node and read nth 32-bit value from
135  * it.
136  *
137  * Return: 0 on success, -EINVAL if the property does not exist,
138  * -ENODATA if property does not have a value, and -EOVERFLOW if the
139  * property data isn't large enough.
140  *
141  * The out_value is modified only if a valid u32 value can be decoded.
142  */
143 int of_property_read_u32_index(const struct device_node *np,
144 				       const char *propname,
145 				       u32 index, u32 *out_value)
146 {
147 	const u32 *val = of_find_property_value_of_size(np, propname,
148 					((index + 1) * sizeof(*out_value)),
149 					0,
150 					NULL);
151 
152 	if (IS_ERR(val))
153 		return PTR_ERR(val);
154 
155 	*out_value = be32_to_cpup(((__be32 *)val) + index);
156 	return 0;
157 }
158 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
159 
160 /**
161  * of_property_read_u64_index - Find and read a u64 from a multi-value property.
162  *
163  * @np:		device node from which the property value is to be read.
164  * @propname:	name of the property to be searched.
165  * @index:	index of the u64 in the list of values
166  * @out_value:	pointer to return value, modified only if no error.
167  *
168  * Search for a property in a device node and read nth 64-bit value from
169  * it.
170  *
171  * Return: 0 on success, -EINVAL if the property does not exist,
172  * -ENODATA if property does not have a value, and -EOVERFLOW if the
173  * property data isn't large enough.
174  *
175  * The out_value is modified only if a valid u64 value can be decoded.
176  */
177 int of_property_read_u64_index(const struct device_node *np,
178 				       const char *propname,
179 				       u32 index, u64 *out_value)
180 {
181 	const u64 *val = of_find_property_value_of_size(np, propname,
182 					((index + 1) * sizeof(*out_value)),
183 					0, NULL);
184 
185 	if (IS_ERR(val))
186 		return PTR_ERR(val);
187 
188 	*out_value = be64_to_cpup(((__be64 *)val) + index);
189 	return 0;
190 }
191 EXPORT_SYMBOL_GPL(of_property_read_u64_index);
192 
193 /**
194  * of_property_read_variable_u8_array - Find and read an array of u8 from a
195  * property, with bounds on the minimum and maximum array size.
196  *
197  * @np:		device node from which the property value is to be read.
198  * @propname:	name of the property to be searched.
199  * @out_values:	pointer to found values.
200  * @sz_min:	minimum number of array elements to read
201  * @sz_max:	maximum number of array elements to read, if zero there is no
202  *		upper limit on the number of elements in the dts entry but only
203  *		sz_min will be read.
204  *
205  * Search for a property in a device node and read 8-bit value(s) from
206  * it.
207  *
208  * dts entry of array should be like:
209  *  ``property = /bits/ 8 <0x50 0x60 0x70>;``
210  *
211  * Return: The number of elements read on success, -EINVAL if the property
212  * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
213  * if the property data is smaller than sz_min or longer than sz_max.
214  *
215  * The out_values is modified only if a valid u8 value can be decoded.
216  */
217 int of_property_read_variable_u8_array(const struct device_node *np,
218 					const char *propname, u8 *out_values,
219 					size_t sz_min, size_t sz_max)
220 {
221 	size_t sz, count;
222 	const u8 *val = of_find_property_value_of_size(np, propname,
223 						(sz_min * sizeof(*out_values)),
224 						(sz_max * sizeof(*out_values)),
225 						&sz);
226 
227 	if (IS_ERR(val))
228 		return PTR_ERR(val);
229 
230 	if (!sz_max)
231 		sz = sz_min;
232 	else
233 		sz /= sizeof(*out_values);
234 
235 	count = sz;
236 	while (count--)
237 		*out_values++ = *val++;
238 
239 	return sz;
240 }
241 EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array);
242 
243 /**
244  * of_property_read_variable_u16_array - Find and read an array of u16 from a
245  * property, with bounds on the minimum and maximum array size.
246  *
247  * @np:		device node from which the property value is to be read.
248  * @propname:	name of the property to be searched.
249  * @out_values:	pointer to found values.
250  * @sz_min:	minimum number of array elements to read
251  * @sz_max:	maximum number of array elements to read, if zero there is no
252  *		upper limit on the number of elements in the dts entry but only
253  *		sz_min will be read.
254  *
255  * Search for a property in a device node and read 16-bit value(s) from
256  * it.
257  *
258  * dts entry of array should be like:
259  *  ``property = /bits/ 16 <0x5000 0x6000 0x7000>;``
260  *
261  * Return: The number of elements read on success, -EINVAL if the property
262  * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
263  * if the property data is smaller than sz_min or longer than sz_max.
264  *
265  * The out_values is modified only if a valid u16 value can be decoded.
266  */
267 int of_property_read_variable_u16_array(const struct device_node *np,
268 					const char *propname, u16 *out_values,
269 					size_t sz_min, size_t sz_max)
270 {
271 	size_t sz, count;
272 	const __be16 *val = of_find_property_value_of_size(np, propname,
273 						(sz_min * sizeof(*out_values)),
274 						(sz_max * sizeof(*out_values)),
275 						&sz);
276 
277 	if (IS_ERR(val))
278 		return PTR_ERR(val);
279 
280 	if (!sz_max)
281 		sz = sz_min;
282 	else
283 		sz /= sizeof(*out_values);
284 
285 	count = sz;
286 	while (count--)
287 		*out_values++ = be16_to_cpup(val++);
288 
289 	return sz;
290 }
291 EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array);
292 
293 /**
294  * of_property_read_variable_u32_array - Find and read an array of 32 bit
295  * integers from a property, with bounds on the minimum and maximum array size.
296  *
297  * @np:		device node from which the property value is to be read.
298  * @propname:	name of the property to be searched.
299  * @out_values:	pointer to return found values.
300  * @sz_min:	minimum number of array elements to read
301  * @sz_max:	maximum number of array elements to read, if zero there is no
302  *		upper limit on the number of elements in the dts entry but only
303  *		sz_min will be read.
304  *
305  * Search for a property in a device node and read 32-bit value(s) from
306  * it.
307  *
308  * Return: The number of elements read on success, -EINVAL if the property
309  * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
310  * if the property data is smaller than sz_min or longer than sz_max.
311  *
312  * The out_values is modified only if a valid u32 value can be decoded.
313  */
314 int of_property_read_variable_u32_array(const struct device_node *np,
315 			       const char *propname, u32 *out_values,
316 			       size_t sz_min, size_t sz_max)
317 {
318 	size_t sz, count;
319 	const __be32 *val = of_find_property_value_of_size(np, propname,
320 						(sz_min * sizeof(*out_values)),
321 						(sz_max * sizeof(*out_values)),
322 						&sz);
323 
324 	if (IS_ERR(val))
325 		return PTR_ERR(val);
326 
327 	if (!sz_max)
328 		sz = sz_min;
329 	else
330 		sz /= sizeof(*out_values);
331 
332 	count = sz;
333 	while (count--)
334 		*out_values++ = be32_to_cpup(val++);
335 
336 	return sz;
337 }
338 EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array);
339 
340 /**
341  * of_property_read_u64 - Find and read a 64 bit integer from a property
342  * @np:		device node from which the property value is to be read.
343  * @propname:	name of the property to be searched.
344  * @out_value:	pointer to return value, modified only if return value is 0.
345  *
346  * Search for a property in a device node and read a 64-bit value from
347  * it.
348  *
349  * Return: 0 on success, -EINVAL if the property does not exist,
350  * -ENODATA if property does not have a value, and -EOVERFLOW if the
351  * property data isn't large enough.
352  *
353  * The out_value is modified only if a valid u64 value can be decoded.
354  */
355 int of_property_read_u64(const struct device_node *np, const char *propname,
356 			 u64 *out_value)
357 {
358 	const __be32 *val = of_find_property_value_of_size(np, propname,
359 						sizeof(*out_value),
360 						0,
361 						NULL);
362 
363 	if (IS_ERR(val))
364 		return PTR_ERR(val);
365 
366 	*out_value = of_read_number(val, 2);
367 	return 0;
368 }
369 EXPORT_SYMBOL_GPL(of_property_read_u64);
370 
371 /**
372  * of_property_read_variable_u64_array - Find and read an array of 64 bit
373  * integers from a property, with bounds on the minimum and maximum array size.
374  *
375  * @np:		device node from which the property value is to be read.
376  * @propname:	name of the property to be searched.
377  * @out_values:	pointer to found values.
378  * @sz_min:	minimum number of array elements to read
379  * @sz_max:	maximum number of array elements to read, if zero there is no
380  *		upper limit on the number of elements in the dts entry but only
381  *		sz_min will be read.
382  *
383  * Search for a property in a device node and read 64-bit value(s) from
384  * it.
385  *
386  * Return: The number of elements read on success, -EINVAL if the property
387  * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
388  * if the property data is smaller than sz_min or longer than sz_max.
389  *
390  * The out_values is modified only if a valid u64 value can be decoded.
391  */
392 int of_property_read_variable_u64_array(const struct device_node *np,
393 			       const char *propname, u64 *out_values,
394 			       size_t sz_min, size_t sz_max)
395 {
396 	size_t sz, count;
397 	const __be32 *val = of_find_property_value_of_size(np, propname,
398 						(sz_min * sizeof(*out_values)),
399 						(sz_max * sizeof(*out_values)),
400 						&sz);
401 
402 	if (IS_ERR(val))
403 		return PTR_ERR(val);
404 
405 	if (!sz_max)
406 		sz = sz_min;
407 	else
408 		sz /= sizeof(*out_values);
409 
410 	count = sz;
411 	while (count--) {
412 		*out_values++ = of_read_number(val, 2);
413 		val += 2;
414 	}
415 
416 	return sz;
417 }
418 EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array);
419 
420 /**
421  * of_property_read_string - Find and read a string from a property
422  * @np:		device node from which the property value is to be read.
423  * @propname:	name of the property to be searched.
424  * @out_string:	pointer to null terminated return string, modified only if
425  *		return value is 0.
426  *
427  * Search for a property in a device tree node and retrieve a null
428  * terminated string value (pointer to data, not a copy).
429  *
430  * Return: 0 on success, -EINVAL if the property does not exist, -ENODATA if
431  * property does not have a value, and -EILSEQ if the string is not
432  * null-terminated within the length of the property data.
433  *
434  * The out_string pointer is modified only if a valid string can be decoded.
435  */
436 int of_property_read_string(const struct device_node *np, const char *propname,
437 				const char **out_string)
438 {
439 	const struct property *prop = of_find_property(np, propname, NULL);
440 	if (!prop)
441 		return -EINVAL;
442 	if (!prop->value)
443 		return -ENODATA;
444 	if (strnlen(prop->value, prop->length) >= prop->length)
445 		return -EILSEQ;
446 	*out_string = prop->value;
447 	return 0;
448 }
449 EXPORT_SYMBOL_GPL(of_property_read_string);
450 
451 /**
452  * of_property_match_string() - Find string in a list and return index
453  * @np: pointer to node containing string list property
454  * @propname: string list property name
455  * @string: pointer to string to search for in string list
456  *
457  * This function searches a string list property and returns the index
458  * of a specific string value.
459  */
460 int of_property_match_string(const struct device_node *np, const char *propname,
461 			     const char *string)
462 {
463 	const struct property *prop = of_find_property(np, propname, NULL);
464 	size_t l;
465 	int i;
466 	const char *p, *end;
467 
468 	if (!prop)
469 		return -EINVAL;
470 	if (!prop->value)
471 		return -ENODATA;
472 
473 	p = prop->value;
474 	end = p + prop->length;
475 
476 	for (i = 0; p < end; i++, p += l) {
477 		l = strnlen(p, end - p) + 1;
478 		if (p + l > end)
479 			return -EILSEQ;
480 		pr_debug("comparing %s with %s\n", string, p);
481 		if (strcmp(string, p) == 0)
482 			return i; /* Found it; return index */
483 	}
484 	return -ENODATA;
485 }
486 EXPORT_SYMBOL_GPL(of_property_match_string);
487 
488 /**
489  * of_property_read_string_helper() - Utility helper for parsing string properties
490  * @np:		device node from which the property value is to be read.
491  * @propname:	name of the property to be searched.
492  * @out_strs:	output array of string pointers.
493  * @sz:		number of array elements to read.
494  * @skip:	Number of strings to skip over at beginning of list.
495  *
496  * Don't call this function directly. It is a utility helper for the
497  * of_property_read_string*() family of functions.
498  */
499 int of_property_read_string_helper(const struct device_node *np,
500 				   const char *propname, const char **out_strs,
501 				   size_t sz, int skip)
502 {
503 	const struct property *prop = of_find_property(np, propname, NULL);
504 	int l = 0, i = 0;
505 	const char *p, *end;
506 
507 	if (!prop)
508 		return -EINVAL;
509 	if (!prop->value)
510 		return -ENODATA;
511 	p = prop->value;
512 	end = p + prop->length;
513 
514 	for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
515 		l = strnlen(p, end - p) + 1;
516 		if (p + l > end)
517 			return -EILSEQ;
518 		if (out_strs && i >= skip)
519 			*out_strs++ = p;
520 	}
521 	i -= skip;
522 	return i <= 0 ? -ENODATA : i;
523 }
524 EXPORT_SYMBOL_GPL(of_property_read_string_helper);
525 
526 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
527 			       u32 *pu)
528 {
529 	const void *curv = cur;
530 
531 	if (!prop)
532 		return NULL;
533 
534 	if (!cur) {
535 		curv = prop->value;
536 		goto out_val;
537 	}
538 
539 	curv += sizeof(*cur);
540 	if (curv >= prop->value + prop->length)
541 		return NULL;
542 
543 out_val:
544 	*pu = be32_to_cpup(curv);
545 	return curv;
546 }
547 EXPORT_SYMBOL_GPL(of_prop_next_u32);
548 
549 const char *of_prop_next_string(struct property *prop, const char *cur)
550 {
551 	const void *curv = cur;
552 
553 	if (!prop)
554 		return NULL;
555 
556 	if (!cur)
557 		return prop->value;
558 
559 	curv += strlen(cur) + 1;
560 	if (curv >= prop->value + prop->length)
561 		return NULL;
562 
563 	return curv;
564 }
565 EXPORT_SYMBOL_GPL(of_prop_next_string);
566 
567 /**
568  * of_graph_parse_endpoint() - parse common endpoint node properties
569  * @node: pointer to endpoint device_node
570  * @endpoint: pointer to the OF endpoint data structure
571  *
572  * The caller should hold a reference to @node.
573  */
574 int of_graph_parse_endpoint(const struct device_node *node,
575 			    struct of_endpoint *endpoint)
576 {
577 	struct device_node *port_node = of_get_parent(node);
578 
579 	WARN_ONCE(!port_node, "%s(): endpoint %pOF has no parent node\n",
580 		  __func__, node);
581 
582 	memset(endpoint, 0, sizeof(*endpoint));
583 
584 	endpoint->local_node = node;
585 	/*
586 	 * It doesn't matter whether the two calls below succeed.
587 	 * If they don't then the default value 0 is used.
588 	 */
589 	of_property_read_u32(port_node, "reg", &endpoint->port);
590 	of_property_read_u32(node, "reg", &endpoint->id);
591 
592 	of_node_put(port_node);
593 
594 	return 0;
595 }
596 EXPORT_SYMBOL(of_graph_parse_endpoint);
597 
598 /**
599  * of_graph_get_port_by_id() - get the port matching a given id
600  * @parent: pointer to the parent device node
601  * @id: id of the port
602  *
603  * Return: A 'port' node pointer with refcount incremented. The caller
604  * has to use of_node_put() on it when done.
605  */
606 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
607 {
608 	struct device_node *node, *port;
609 
610 	node = of_get_child_by_name(parent, "ports");
611 	if (node)
612 		parent = node;
613 
614 	for_each_child_of_node(parent, port) {
615 		u32 port_id = 0;
616 
617 		if (!of_node_name_eq(port, "port"))
618 			continue;
619 		of_property_read_u32(port, "reg", &port_id);
620 		if (id == port_id)
621 			break;
622 	}
623 
624 	of_node_put(node);
625 
626 	return port;
627 }
628 EXPORT_SYMBOL(of_graph_get_port_by_id);
629 
630 /**
631  * of_graph_get_next_endpoint() - get next endpoint node
632  * @parent: pointer to the parent device node
633  * @prev: previous endpoint node, or NULL to get first
634  *
635  * Return: An 'endpoint' node pointer with refcount incremented. Refcount
636  * of the passed @prev node is decremented.
637  */
638 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
639 					struct device_node *prev)
640 {
641 	struct device_node *endpoint;
642 	struct device_node *port;
643 
644 	if (!parent)
645 		return NULL;
646 
647 	/*
648 	 * Start by locating the port node. If no previous endpoint is specified
649 	 * search for the first port node, otherwise get the previous endpoint
650 	 * parent port node.
651 	 */
652 	if (!prev) {
653 		struct device_node *node;
654 
655 		node = of_get_child_by_name(parent, "ports");
656 		if (node)
657 			parent = node;
658 
659 		port = of_get_child_by_name(parent, "port");
660 		of_node_put(node);
661 
662 		if (!port) {
663 			pr_err("graph: no port node found in %pOF\n", parent);
664 			return NULL;
665 		}
666 	} else {
667 		port = of_get_parent(prev);
668 		if (WARN_ONCE(!port, "%s(): endpoint %pOF has no parent node\n",
669 			      __func__, prev))
670 			return NULL;
671 	}
672 
673 	while (1) {
674 		/*
675 		 * Now that we have a port node, get the next endpoint by
676 		 * getting the next child. If the previous endpoint is NULL this
677 		 * will return the first child.
678 		 */
679 		endpoint = of_get_next_child(port, prev);
680 		if (endpoint) {
681 			of_node_put(port);
682 			return endpoint;
683 		}
684 
685 		/* No more endpoints under this port, try the next one. */
686 		prev = NULL;
687 
688 		do {
689 			port = of_get_next_child(parent, port);
690 			if (!port)
691 				return NULL;
692 		} while (!of_node_name_eq(port, "port"));
693 	}
694 }
695 EXPORT_SYMBOL(of_graph_get_next_endpoint);
696 
697 /**
698  * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
699  * @parent: pointer to the parent device node
700  * @port_reg: identifier (value of reg property) of the parent port node
701  * @reg: identifier (value of reg property) of the endpoint node
702  *
703  * Return: An 'endpoint' node pointer which is identified by reg and at the same
704  * is the child of a port node identified by port_reg. reg and port_reg are
705  * ignored when they are -1. Use of_node_put() on the pointer when done.
706  */
707 struct device_node *of_graph_get_endpoint_by_regs(
708 	const struct device_node *parent, int port_reg, int reg)
709 {
710 	struct of_endpoint endpoint;
711 	struct device_node *node = NULL;
712 
713 	for_each_endpoint_of_node(parent, node) {
714 		of_graph_parse_endpoint(node, &endpoint);
715 		if (((port_reg == -1) || (endpoint.port == port_reg)) &&
716 			((reg == -1) || (endpoint.id == reg)))
717 			return node;
718 	}
719 
720 	return NULL;
721 }
722 EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
723 
724 /**
725  * of_graph_get_remote_endpoint() - get remote endpoint node
726  * @node: pointer to a local endpoint device_node
727  *
728  * Return: Remote endpoint node associated with remote endpoint node linked
729  *	   to @node. Use of_node_put() on it when done.
730  */
731 struct device_node *of_graph_get_remote_endpoint(const struct device_node *node)
732 {
733 	/* Get remote endpoint node. */
734 	return of_parse_phandle(node, "remote-endpoint", 0);
735 }
736 EXPORT_SYMBOL(of_graph_get_remote_endpoint);
737 
738 /**
739  * of_graph_get_port_parent() - get port's parent node
740  * @node: pointer to a local endpoint device_node
741  *
742  * Return: device node associated with endpoint node linked
743  *	   to @node. Use of_node_put() on it when done.
744  */
745 struct device_node *of_graph_get_port_parent(struct device_node *node)
746 {
747 	unsigned int depth;
748 
749 	if (!node)
750 		return NULL;
751 
752 	/*
753 	 * Preserve usecount for passed in node as of_get_next_parent()
754 	 * will do of_node_put() on it.
755 	 */
756 	of_node_get(node);
757 
758 	/* Walk 3 levels up only if there is 'ports' node. */
759 	for (depth = 3; depth && node; depth--) {
760 		node = of_get_next_parent(node);
761 		if (depth == 2 && !of_node_name_eq(node, "ports"))
762 			break;
763 	}
764 	return node;
765 }
766 EXPORT_SYMBOL(of_graph_get_port_parent);
767 
768 /**
769  * of_graph_get_remote_port_parent() - get remote port's parent node
770  * @node: pointer to a local endpoint device_node
771  *
772  * Return: Remote device node associated with remote endpoint node linked
773  *	   to @node. Use of_node_put() on it when done.
774  */
775 struct device_node *of_graph_get_remote_port_parent(
776 			       const struct device_node *node)
777 {
778 	struct device_node *np, *pp;
779 
780 	/* Get remote endpoint node. */
781 	np = of_graph_get_remote_endpoint(node);
782 
783 	pp = of_graph_get_port_parent(np);
784 
785 	of_node_put(np);
786 
787 	return pp;
788 }
789 EXPORT_SYMBOL(of_graph_get_remote_port_parent);
790 
791 /**
792  * of_graph_get_remote_port() - get remote port node
793  * @node: pointer to a local endpoint device_node
794  *
795  * Return: Remote port node associated with remote endpoint node linked
796  * to @node. Use of_node_put() on it when done.
797  */
798 struct device_node *of_graph_get_remote_port(const struct device_node *node)
799 {
800 	struct device_node *np;
801 
802 	/* Get remote endpoint node. */
803 	np = of_graph_get_remote_endpoint(node);
804 	if (!np)
805 		return NULL;
806 	return of_get_next_parent(np);
807 }
808 EXPORT_SYMBOL(of_graph_get_remote_port);
809 
810 int of_graph_get_endpoint_count(const struct device_node *np)
811 {
812 	struct device_node *endpoint;
813 	int num = 0;
814 
815 	for_each_endpoint_of_node(np, endpoint)
816 		num++;
817 
818 	return num;
819 }
820 EXPORT_SYMBOL(of_graph_get_endpoint_count);
821 
822 /**
823  * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint
824  * @node: pointer to parent device_node containing graph port/endpoint
825  * @port: identifier (value of reg property) of the parent port node
826  * @endpoint: identifier (value of reg property) of the endpoint node
827  *
828  * Return: Remote device node associated with remote endpoint node linked
829  * to @node. Use of_node_put() on it when done.
830  */
831 struct device_node *of_graph_get_remote_node(const struct device_node *node,
832 					     u32 port, u32 endpoint)
833 {
834 	struct device_node *endpoint_node, *remote;
835 
836 	endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint);
837 	if (!endpoint_node) {
838 		pr_debug("no valid endpoint (%d, %d) for node %pOF\n",
839 			 port, endpoint, node);
840 		return NULL;
841 	}
842 
843 	remote = of_graph_get_remote_port_parent(endpoint_node);
844 	of_node_put(endpoint_node);
845 	if (!remote) {
846 		pr_debug("no valid remote node\n");
847 		return NULL;
848 	}
849 
850 	if (!of_device_is_available(remote)) {
851 		pr_debug("not available for remote node\n");
852 		of_node_put(remote);
853 		return NULL;
854 	}
855 
856 	return remote;
857 }
858 EXPORT_SYMBOL(of_graph_get_remote_node);
859 
860 static struct fwnode_handle *of_fwnode_get(struct fwnode_handle *fwnode)
861 {
862 	return of_fwnode_handle(of_node_get(to_of_node(fwnode)));
863 }
864 
865 static void of_fwnode_put(struct fwnode_handle *fwnode)
866 {
867 	of_node_put(to_of_node(fwnode));
868 }
869 
870 static bool of_fwnode_device_is_available(const struct fwnode_handle *fwnode)
871 {
872 	return of_device_is_available(to_of_node(fwnode));
873 }
874 
875 static bool of_fwnode_property_present(const struct fwnode_handle *fwnode,
876 				       const char *propname)
877 {
878 	return of_property_read_bool(to_of_node(fwnode), propname);
879 }
880 
881 static int of_fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
882 					     const char *propname,
883 					     unsigned int elem_size, void *val,
884 					     size_t nval)
885 {
886 	const struct device_node *node = to_of_node(fwnode);
887 
888 	if (!val)
889 		return of_property_count_elems_of_size(node, propname,
890 						       elem_size);
891 
892 	switch (elem_size) {
893 	case sizeof(u8):
894 		return of_property_read_u8_array(node, propname, val, nval);
895 	case sizeof(u16):
896 		return of_property_read_u16_array(node, propname, val, nval);
897 	case sizeof(u32):
898 		return of_property_read_u32_array(node, propname, val, nval);
899 	case sizeof(u64):
900 		return of_property_read_u64_array(node, propname, val, nval);
901 	}
902 
903 	return -ENXIO;
904 }
905 
906 static int
907 of_fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
908 				     const char *propname, const char **val,
909 				     size_t nval)
910 {
911 	const struct device_node *node = to_of_node(fwnode);
912 
913 	return val ?
914 		of_property_read_string_array(node, propname, val, nval) :
915 		of_property_count_strings(node, propname);
916 }
917 
918 static const char *of_fwnode_get_name(const struct fwnode_handle *fwnode)
919 {
920 	return kbasename(to_of_node(fwnode)->full_name);
921 }
922 
923 static const char *of_fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
924 {
925 	/* Root needs no prefix here (its name is "/"). */
926 	if (!to_of_node(fwnode)->parent)
927 		return "";
928 
929 	return "/";
930 }
931 
932 static struct fwnode_handle *
933 of_fwnode_get_parent(const struct fwnode_handle *fwnode)
934 {
935 	return of_fwnode_handle(of_get_parent(to_of_node(fwnode)));
936 }
937 
938 static struct fwnode_handle *
939 of_fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
940 			      struct fwnode_handle *child)
941 {
942 	return of_fwnode_handle(of_get_next_available_child(to_of_node(fwnode),
943 							    to_of_node(child)));
944 }
945 
946 static struct fwnode_handle *
947 of_fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
948 			       const char *childname)
949 {
950 	const struct device_node *node = to_of_node(fwnode);
951 	struct device_node *child;
952 
953 	for_each_available_child_of_node(node, child)
954 		if (of_node_name_eq(child, childname))
955 			return of_fwnode_handle(child);
956 
957 	return NULL;
958 }
959 
960 static int
961 of_fwnode_get_reference_args(const struct fwnode_handle *fwnode,
962 			     const char *prop, const char *nargs_prop,
963 			     unsigned int nargs, unsigned int index,
964 			     struct fwnode_reference_args *args)
965 {
966 	struct of_phandle_args of_args;
967 	unsigned int i;
968 	int ret;
969 
970 	if (nargs_prop)
971 		ret = of_parse_phandle_with_args(to_of_node(fwnode), prop,
972 						 nargs_prop, index, &of_args);
973 	else
974 		ret = of_parse_phandle_with_fixed_args(to_of_node(fwnode), prop,
975 						       nargs, index, &of_args);
976 	if (ret < 0)
977 		return ret;
978 	if (!args)
979 		return 0;
980 
981 	args->nargs = of_args.args_count;
982 	args->fwnode = of_fwnode_handle(of_args.np);
983 
984 	for (i = 0; i < NR_FWNODE_REFERENCE_ARGS; i++)
985 		args->args[i] = i < of_args.args_count ? of_args.args[i] : 0;
986 
987 	return 0;
988 }
989 
990 static struct fwnode_handle *
991 of_fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
992 				  struct fwnode_handle *prev)
993 {
994 	return of_fwnode_handle(of_graph_get_next_endpoint(to_of_node(fwnode),
995 							   to_of_node(prev)));
996 }
997 
998 static struct fwnode_handle *
999 of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1000 {
1001 	return of_fwnode_handle(
1002 		of_graph_get_remote_endpoint(to_of_node(fwnode)));
1003 }
1004 
1005 static struct fwnode_handle *
1006 of_fwnode_graph_get_port_parent(struct fwnode_handle *fwnode)
1007 {
1008 	struct device_node *np;
1009 
1010 	/* Get the parent of the port */
1011 	np = of_get_parent(to_of_node(fwnode));
1012 	if (!np)
1013 		return NULL;
1014 
1015 	/* Is this the "ports" node? If not, it's the port parent. */
1016 	if (!of_node_name_eq(np, "ports"))
1017 		return of_fwnode_handle(np);
1018 
1019 	return of_fwnode_handle(of_get_next_parent(np));
1020 }
1021 
1022 static int of_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1023 					  struct fwnode_endpoint *endpoint)
1024 {
1025 	const struct device_node *node = to_of_node(fwnode);
1026 	struct device_node *port_node = of_get_parent(node);
1027 
1028 	endpoint->local_fwnode = fwnode;
1029 
1030 	of_property_read_u32(port_node, "reg", &endpoint->port);
1031 	of_property_read_u32(node, "reg", &endpoint->id);
1032 
1033 	of_node_put(port_node);
1034 
1035 	return 0;
1036 }
1037 
1038 static const void *
1039 of_fwnode_device_get_match_data(const struct fwnode_handle *fwnode,
1040 				const struct device *dev)
1041 {
1042 	return of_device_get_match_data(dev);
1043 }
1044 
1045 static bool of_is_ancestor_of(struct device_node *test_ancestor,
1046 			      struct device_node *child)
1047 {
1048 	of_node_get(child);
1049 	while (child) {
1050 		if (child == test_ancestor) {
1051 			of_node_put(child);
1052 			return true;
1053 		}
1054 		child = of_get_next_parent(child);
1055 	}
1056 	return false;
1057 }
1058 
1059 static struct device_node *of_get_compat_node(struct device_node *np)
1060 {
1061 	of_node_get(np);
1062 
1063 	while (np) {
1064 		if (!of_device_is_available(np)) {
1065 			of_node_put(np);
1066 			np = NULL;
1067 		}
1068 
1069 		if (of_find_property(np, "compatible", NULL))
1070 			break;
1071 
1072 		np = of_get_next_parent(np);
1073 	}
1074 
1075 	return np;
1076 }
1077 
1078 /**
1079  * of_link_to_phandle - Add fwnode link to supplier from supplier phandle
1080  * @con_np: consumer device tree node
1081  * @sup_np: supplier device tree node
1082  *
1083  * Given a phandle to a supplier device tree node (@sup_np), this function
1084  * finds the device that owns the supplier device tree node and creates a
1085  * device link from @dev consumer device to the supplier device. This function
1086  * doesn't create device links for invalid scenarios such as trying to create a
1087  * link with a parent device as the consumer of its child device. In such
1088  * cases, it returns an error.
1089  *
1090  * Returns:
1091  * - 0 if fwnode link successfully created to supplier
1092  * - -EINVAL if the supplier link is invalid and should not be created
1093  * - -ENODEV if struct device will never be create for supplier
1094  */
1095 static int of_link_to_phandle(struct device_node *con_np,
1096 			      struct device_node *sup_np)
1097 {
1098 	struct device *sup_dev;
1099 	struct device_node *tmp_np = sup_np;
1100 
1101 	/*
1102 	 * Find the device node that contains the supplier phandle.  It may be
1103 	 * @sup_np or it may be an ancestor of @sup_np.
1104 	 */
1105 	sup_np = of_get_compat_node(sup_np);
1106 	if (!sup_np) {
1107 		pr_debug("Not linking %pOFP to %pOFP - No device\n",
1108 			 con_np, tmp_np);
1109 		return -ENODEV;
1110 	}
1111 
1112 	/*
1113 	 * Don't allow linking a device node as a consumer of one of its
1114 	 * descendant nodes. By definition, a child node can't be a functional
1115 	 * dependency for the parent node.
1116 	 */
1117 	if (of_is_ancestor_of(con_np, sup_np)) {
1118 		pr_debug("Not linking %pOFP to %pOFP - is descendant\n",
1119 			 con_np, sup_np);
1120 		of_node_put(sup_np);
1121 		return -EINVAL;
1122 	}
1123 
1124 	/*
1125 	 * Don't create links to "early devices" that won't have struct devices
1126 	 * created for them.
1127 	 */
1128 	sup_dev = get_dev_from_fwnode(&sup_np->fwnode);
1129 	if (!sup_dev &&
1130 	    (of_node_check_flag(sup_np, OF_POPULATED) ||
1131 	     sup_np->fwnode.flags & FWNODE_FLAG_NOT_DEVICE)) {
1132 		pr_debug("Not linking %pOFP to %pOFP - No struct device\n",
1133 			 con_np, sup_np);
1134 		of_node_put(sup_np);
1135 		return -ENODEV;
1136 	}
1137 	put_device(sup_dev);
1138 
1139 	fwnode_link_add(of_fwnode_handle(con_np), of_fwnode_handle(sup_np));
1140 	of_node_put(sup_np);
1141 
1142 	return 0;
1143 }
1144 
1145 /**
1146  * parse_prop_cells - Property parsing function for suppliers
1147  *
1148  * @np:		Pointer to device tree node containing a list
1149  * @prop_name:	Name of property to be parsed. Expected to hold phandle values
1150  * @index:	For properties holding a list of phandles, this is the index
1151  *		into the list.
1152  * @list_name:	Property name that is known to contain list of phandle(s) to
1153  *		supplier(s)
1154  * @cells_name:	property name that specifies phandles' arguments count
1155  *
1156  * This is a helper function to parse properties that have a known fixed name
1157  * and are a list of phandles and phandle arguments.
1158  *
1159  * Returns:
1160  * - phandle node pointer with refcount incremented. Caller must of_node_put()
1161  *   on it when done.
1162  * - NULL if no phandle found at index
1163  */
1164 static struct device_node *parse_prop_cells(struct device_node *np,
1165 					    const char *prop_name, int index,
1166 					    const char *list_name,
1167 					    const char *cells_name)
1168 {
1169 	struct of_phandle_args sup_args;
1170 
1171 	if (strcmp(prop_name, list_name))
1172 		return NULL;
1173 
1174 	if (of_parse_phandle_with_args(np, list_name, cells_name, index,
1175 				       &sup_args))
1176 		return NULL;
1177 
1178 	return sup_args.np;
1179 }
1180 
1181 #define DEFINE_SIMPLE_PROP(fname, name, cells)				  \
1182 static struct device_node *parse_##fname(struct device_node *np,	  \
1183 					const char *prop_name, int index) \
1184 {									  \
1185 	return parse_prop_cells(np, prop_name, index, name, cells);	  \
1186 }
1187 
1188 static int strcmp_suffix(const char *str, const char *suffix)
1189 {
1190 	unsigned int len, suffix_len;
1191 
1192 	len = strlen(str);
1193 	suffix_len = strlen(suffix);
1194 	if (len <= suffix_len)
1195 		return -1;
1196 	return strcmp(str + len - suffix_len, suffix);
1197 }
1198 
1199 /**
1200  * parse_suffix_prop_cells - Suffix property parsing function for suppliers
1201  *
1202  * @np:		Pointer to device tree node containing a list
1203  * @prop_name:	Name of property to be parsed. Expected to hold phandle values
1204  * @index:	For properties holding a list of phandles, this is the index
1205  *		into the list.
1206  * @suffix:	Property suffix that is known to contain list of phandle(s) to
1207  *		supplier(s)
1208  * @cells_name:	property name that specifies phandles' arguments count
1209  *
1210  * This is a helper function to parse properties that have a known fixed suffix
1211  * and are a list of phandles and phandle arguments.
1212  *
1213  * Returns:
1214  * - phandle node pointer with refcount incremented. Caller must of_node_put()
1215  *   on it when done.
1216  * - NULL if no phandle found at index
1217  */
1218 static struct device_node *parse_suffix_prop_cells(struct device_node *np,
1219 					    const char *prop_name, int index,
1220 					    const char *suffix,
1221 					    const char *cells_name)
1222 {
1223 	struct of_phandle_args sup_args;
1224 
1225 	if (strcmp_suffix(prop_name, suffix))
1226 		return NULL;
1227 
1228 	if (of_parse_phandle_with_args(np, prop_name, cells_name, index,
1229 				       &sup_args))
1230 		return NULL;
1231 
1232 	return sup_args.np;
1233 }
1234 
1235 #define DEFINE_SUFFIX_PROP(fname, suffix, cells)			     \
1236 static struct device_node *parse_##fname(struct device_node *np,	     \
1237 					const char *prop_name, int index)    \
1238 {									     \
1239 	return parse_suffix_prop_cells(np, prop_name, index, suffix, cells); \
1240 }
1241 
1242 /**
1243  * struct supplier_bindings - Property parsing functions for suppliers
1244  *
1245  * @parse_prop: function name
1246  *	parse_prop() finds the node corresponding to a supplier phandle
1247  * @parse_prop.np: Pointer to device node holding supplier phandle property
1248  * @parse_prop.prop_name: Name of property holding a phandle value
1249  * @parse_prop.index: For properties holding a list of phandles, this is the
1250  *		      index into the list
1251  * @optional: Describes whether a supplier is mandatory or not
1252  * @node_not_dev: The consumer node containing the property is never a device.
1253  *
1254  * Returns:
1255  * parse_prop() return values are
1256  * - phandle node pointer with refcount incremented. Caller must of_node_put()
1257  *   on it when done.
1258  * - NULL if no phandle found at index
1259  */
1260 struct supplier_bindings {
1261 	struct device_node *(*parse_prop)(struct device_node *np,
1262 					  const char *prop_name, int index);
1263 	bool optional;
1264 	bool node_not_dev;
1265 };
1266 
1267 DEFINE_SIMPLE_PROP(clocks, "clocks", "#clock-cells")
1268 DEFINE_SIMPLE_PROP(interconnects, "interconnects", "#interconnect-cells")
1269 DEFINE_SIMPLE_PROP(iommus, "iommus", "#iommu-cells")
1270 DEFINE_SIMPLE_PROP(mboxes, "mboxes", "#mbox-cells")
1271 DEFINE_SIMPLE_PROP(io_channels, "io-channel", "#io-channel-cells")
1272 DEFINE_SIMPLE_PROP(interrupt_parent, "interrupt-parent", NULL)
1273 DEFINE_SIMPLE_PROP(dmas, "dmas", "#dma-cells")
1274 DEFINE_SIMPLE_PROP(power_domains, "power-domains", "#power-domain-cells")
1275 DEFINE_SIMPLE_PROP(hwlocks, "hwlocks", "#hwlock-cells")
1276 DEFINE_SIMPLE_PROP(extcon, "extcon", NULL)
1277 DEFINE_SIMPLE_PROP(nvmem_cells, "nvmem-cells", NULL)
1278 DEFINE_SIMPLE_PROP(phys, "phys", "#phy-cells")
1279 DEFINE_SIMPLE_PROP(wakeup_parent, "wakeup-parent", NULL)
1280 DEFINE_SIMPLE_PROP(pinctrl0, "pinctrl-0", NULL)
1281 DEFINE_SIMPLE_PROP(pinctrl1, "pinctrl-1", NULL)
1282 DEFINE_SIMPLE_PROP(pinctrl2, "pinctrl-2", NULL)
1283 DEFINE_SIMPLE_PROP(pinctrl3, "pinctrl-3", NULL)
1284 DEFINE_SIMPLE_PROP(pinctrl4, "pinctrl-4", NULL)
1285 DEFINE_SIMPLE_PROP(pinctrl5, "pinctrl-5", NULL)
1286 DEFINE_SIMPLE_PROP(pinctrl6, "pinctrl-6", NULL)
1287 DEFINE_SIMPLE_PROP(pinctrl7, "pinctrl-7", NULL)
1288 DEFINE_SIMPLE_PROP(pinctrl8, "pinctrl-8", NULL)
1289 DEFINE_SIMPLE_PROP(remote_endpoint, "remote-endpoint", NULL)
1290 DEFINE_SUFFIX_PROP(regulators, "-supply", NULL)
1291 DEFINE_SUFFIX_PROP(gpio, "-gpio", "#gpio-cells")
1292 
1293 static struct device_node *parse_gpios(struct device_node *np,
1294 				       const char *prop_name, int index)
1295 {
1296 	if (!strcmp_suffix(prop_name, ",nr-gpios"))
1297 		return NULL;
1298 
1299 	return parse_suffix_prop_cells(np, prop_name, index, "-gpios",
1300 				       "#gpio-cells");
1301 }
1302 
1303 static struct device_node *parse_iommu_maps(struct device_node *np,
1304 					    const char *prop_name, int index)
1305 {
1306 	if (strcmp(prop_name, "iommu-map"))
1307 		return NULL;
1308 
1309 	return of_parse_phandle(np, prop_name, (index * 4) + 1);
1310 }
1311 
1312 static struct device_node *parse_gpio_compat(struct device_node *np,
1313 					     const char *prop_name, int index)
1314 {
1315 	struct of_phandle_args sup_args;
1316 
1317 	if (strcmp(prop_name, "gpio") && strcmp(prop_name, "gpios"))
1318 		return NULL;
1319 
1320 	/*
1321 	 * Ignore node with gpio-hog property since its gpios are all provided
1322 	 * by its parent.
1323 	 */
1324 	if (of_find_property(np, "gpio-hog", NULL))
1325 		return NULL;
1326 
1327 	if (of_parse_phandle_with_args(np, prop_name, "#gpio-cells", index,
1328 				       &sup_args))
1329 		return NULL;
1330 
1331 	return sup_args.np;
1332 }
1333 
1334 static struct device_node *parse_interrupts(struct device_node *np,
1335 					    const char *prop_name, int index)
1336 {
1337 	struct of_phandle_args sup_args;
1338 
1339 	if (!IS_ENABLED(CONFIG_OF_IRQ) || IS_ENABLED(CONFIG_PPC))
1340 		return NULL;
1341 
1342 	if (strcmp(prop_name, "interrupts") &&
1343 	    strcmp(prop_name, "interrupts-extended"))
1344 		return NULL;
1345 
1346 	return of_irq_parse_one(np, index, &sup_args) ? NULL : sup_args.np;
1347 }
1348 
1349 static const struct supplier_bindings of_supplier_bindings[] = {
1350 	{ .parse_prop = parse_clocks, },
1351 	{ .parse_prop = parse_interconnects, },
1352 	{ .parse_prop = parse_iommus, .optional = true, },
1353 	{ .parse_prop = parse_iommu_maps, .optional = true, },
1354 	{ .parse_prop = parse_mboxes, },
1355 	{ .parse_prop = parse_io_channels, },
1356 	{ .parse_prop = parse_interrupt_parent, },
1357 	{ .parse_prop = parse_dmas, .optional = true, },
1358 	{ .parse_prop = parse_power_domains, },
1359 	{ .parse_prop = parse_hwlocks, },
1360 	{ .parse_prop = parse_extcon, },
1361 	{ .parse_prop = parse_nvmem_cells, },
1362 	{ .parse_prop = parse_phys, },
1363 	{ .parse_prop = parse_wakeup_parent, },
1364 	{ .parse_prop = parse_pinctrl0, },
1365 	{ .parse_prop = parse_pinctrl1, },
1366 	{ .parse_prop = parse_pinctrl2, },
1367 	{ .parse_prop = parse_pinctrl3, },
1368 	{ .parse_prop = parse_pinctrl4, },
1369 	{ .parse_prop = parse_pinctrl5, },
1370 	{ .parse_prop = parse_pinctrl6, },
1371 	{ .parse_prop = parse_pinctrl7, },
1372 	{ .parse_prop = parse_pinctrl8, },
1373 	{ .parse_prop = parse_remote_endpoint, .node_not_dev = true, },
1374 	{ .parse_prop = parse_gpio_compat, },
1375 	{ .parse_prop = parse_interrupts, },
1376 	{ .parse_prop = parse_regulators, },
1377 	{ .parse_prop = parse_gpio, },
1378 	{ .parse_prop = parse_gpios, },
1379 	{}
1380 };
1381 
1382 /**
1383  * of_link_property - Create device links to suppliers listed in a property
1384  * @con_np: The consumer device tree node which contains the property
1385  * @prop_name: Name of property to be parsed
1386  *
1387  * This function checks if the property @prop_name that is present in the
1388  * @con_np device tree node is one of the known common device tree bindings
1389  * that list phandles to suppliers. If @prop_name isn't one, this function
1390  * doesn't do anything.
1391  *
1392  * If @prop_name is one, this function attempts to create fwnode links from the
1393  * consumer device tree node @con_np to all the suppliers device tree nodes
1394  * listed in @prop_name.
1395  *
1396  * Any failed attempt to create a fwnode link will NOT result in an immediate
1397  * return.  of_link_property() must create links to all the available supplier
1398  * device tree nodes even when attempts to create a link to one or more
1399  * suppliers fail.
1400  */
1401 static int of_link_property(struct device_node *con_np, const char *prop_name)
1402 {
1403 	struct device_node *phandle;
1404 	const struct supplier_bindings *s = of_supplier_bindings;
1405 	unsigned int i = 0;
1406 	bool matched = false;
1407 
1408 	/* Do not stop at first failed link, link all available suppliers. */
1409 	while (!matched && s->parse_prop) {
1410 		if (s->optional && !fw_devlink_is_strict()) {
1411 			s++;
1412 			continue;
1413 		}
1414 
1415 		while ((phandle = s->parse_prop(con_np, prop_name, i))) {
1416 			struct device_node *con_dev_np;
1417 
1418 			con_dev_np = s->node_not_dev
1419 					? of_get_compat_node(con_np)
1420 					: of_node_get(con_np);
1421 			matched = true;
1422 			i++;
1423 			of_link_to_phandle(con_dev_np, phandle);
1424 			of_node_put(phandle);
1425 			of_node_put(con_dev_np);
1426 		}
1427 		s++;
1428 	}
1429 	return 0;
1430 }
1431 
1432 static int of_fwnode_add_links(struct fwnode_handle *fwnode)
1433 {
1434 	struct property *p;
1435 	struct device_node *con_np = to_of_node(fwnode);
1436 
1437 	if (!con_np)
1438 		return -EINVAL;
1439 
1440 	for_each_property_of_node(con_np, p)
1441 		of_link_property(con_np, p->name);
1442 
1443 	return 0;
1444 }
1445 
1446 const struct fwnode_operations of_fwnode_ops = {
1447 	.get = of_fwnode_get,
1448 	.put = of_fwnode_put,
1449 	.device_is_available = of_fwnode_device_is_available,
1450 	.device_get_match_data = of_fwnode_device_get_match_data,
1451 	.property_present = of_fwnode_property_present,
1452 	.property_read_int_array = of_fwnode_property_read_int_array,
1453 	.property_read_string_array = of_fwnode_property_read_string_array,
1454 	.get_name = of_fwnode_get_name,
1455 	.get_name_prefix = of_fwnode_get_name_prefix,
1456 	.get_parent = of_fwnode_get_parent,
1457 	.get_next_child_node = of_fwnode_get_next_child_node,
1458 	.get_named_child_node = of_fwnode_get_named_child_node,
1459 	.get_reference_args = of_fwnode_get_reference_args,
1460 	.graph_get_next_endpoint = of_fwnode_graph_get_next_endpoint,
1461 	.graph_get_remote_endpoint = of_fwnode_graph_get_remote_endpoint,
1462 	.graph_get_port_parent = of_fwnode_graph_get_port_parent,
1463 	.graph_parse_endpoint = of_fwnode_graph_parse_endpoint,
1464 	.add_links = of_fwnode_add_links,
1465 };
1466 EXPORT_SYMBOL_GPL(of_fwnode_ops);
1467