1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * drivers/of/property.c - Procedures for accessing and interpreting 4 * Devicetree properties and graphs. 5 * 6 * Initially created by copying procedures from drivers/of/base.c. This 7 * file contains the OF property as well as the OF graph interface 8 * functions. 9 * 10 * Paul Mackerras August 1996. 11 * Copyright (C) 1996-2005 Paul Mackerras. 12 * 13 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 14 * {engebret|bergner}@us.ibm.com 15 * 16 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 17 * 18 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 19 * Grant Likely. 20 */ 21 22 #define pr_fmt(fmt) "OF: " fmt 23 24 #include <linux/of.h> 25 #include <linux/of_address.h> 26 #include <linux/of_device.h> 27 #include <linux/of_graph.h> 28 #include <linux/of_irq.h> 29 #include <linux/string.h> 30 #include <linux/moduleparam.h> 31 32 #include "of_private.h" 33 34 /** 35 * of_graph_is_present() - check graph's presence 36 * @node: pointer to device_node containing graph port 37 * 38 * Return: True if @node has a port or ports (with a port) sub-node, 39 * false otherwise. 40 */ 41 bool of_graph_is_present(const struct device_node *node) 42 { 43 struct device_node *ports __free(device_node) = of_get_child_by_name(node, "ports"); 44 45 if (ports) 46 node = ports; 47 48 struct device_node *port __free(device_node) = of_get_child_by_name(node, "port"); 49 50 return !!port; 51 } 52 EXPORT_SYMBOL(of_graph_is_present); 53 54 /** 55 * of_property_count_elems_of_size - Count the number of elements in a property 56 * 57 * @np: device node from which the property value is to be read. 58 * @propname: name of the property to be searched. 59 * @elem_size: size of the individual element 60 * 61 * Search for a property in a device node and count the number of elements of 62 * size elem_size in it. 63 * 64 * Return: The number of elements on sucess, -EINVAL if the property does not 65 * exist or its length does not match a multiple of elem_size and -ENODATA if 66 * the property does not have a value. 67 */ 68 int of_property_count_elems_of_size(const struct device_node *np, 69 const char *propname, int elem_size) 70 { 71 const struct property *prop = of_find_property(np, propname, NULL); 72 73 if (!prop) 74 return -EINVAL; 75 if (!prop->value) 76 return -ENODATA; 77 78 if (prop->length % elem_size != 0) { 79 pr_err("size of %s in node %pOF is not a multiple of %d\n", 80 propname, np, elem_size); 81 return -EINVAL; 82 } 83 84 return prop->length / elem_size; 85 } 86 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size); 87 88 /** 89 * of_find_property_value_of_size 90 * 91 * @np: device node from which the property value is to be read. 92 * @propname: name of the property to be searched. 93 * @min: minimum allowed length of property value 94 * @max: maximum allowed length of property value (0 means unlimited) 95 * @len: if !=NULL, actual length is written to here 96 * 97 * Search for a property in a device node and valid the requested size. 98 * 99 * Return: The property value on success, -EINVAL if the property does not 100 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the 101 * property data is too small or too large. 102 * 103 */ 104 static void *of_find_property_value_of_size(const struct device_node *np, 105 const char *propname, u32 min, u32 max, size_t *len) 106 { 107 const struct property *prop = of_find_property(np, propname, NULL); 108 109 if (!prop) 110 return ERR_PTR(-EINVAL); 111 if (!prop->value) 112 return ERR_PTR(-ENODATA); 113 if (prop->length < min) 114 return ERR_PTR(-EOVERFLOW); 115 if (max && prop->length > max) 116 return ERR_PTR(-EOVERFLOW); 117 118 if (len) 119 *len = prop->length; 120 121 return prop->value; 122 } 123 124 /** 125 * of_property_read_u32_index - Find and read a u32 from a multi-value property. 126 * 127 * @np: device node from which the property value is to be read. 128 * @propname: name of the property to be searched. 129 * @index: index of the u32 in the list of values 130 * @out_value: pointer to return value, modified only if no error. 131 * 132 * Search for a property in a device node and read nth 32-bit value from 133 * it. 134 * 135 * Return: 0 on success, -EINVAL if the property does not exist, 136 * -ENODATA if property does not have a value, and -EOVERFLOW if the 137 * property data isn't large enough. 138 * 139 * The out_value is modified only if a valid u32 value can be decoded. 140 */ 141 int of_property_read_u32_index(const struct device_node *np, 142 const char *propname, 143 u32 index, u32 *out_value) 144 { 145 const u32 *val = of_find_property_value_of_size(np, propname, 146 ((index + 1) * sizeof(*out_value)), 147 0, 148 NULL); 149 150 if (IS_ERR(val)) 151 return PTR_ERR(val); 152 153 *out_value = be32_to_cpup(((__be32 *)val) + index); 154 return 0; 155 } 156 EXPORT_SYMBOL_GPL(of_property_read_u32_index); 157 158 /** 159 * of_property_read_u64_index - Find and read a u64 from a multi-value property. 160 * 161 * @np: device node from which the property value is to be read. 162 * @propname: name of the property to be searched. 163 * @index: index of the u64 in the list of values 164 * @out_value: pointer to return value, modified only if no error. 165 * 166 * Search for a property in a device node and read nth 64-bit value from 167 * it. 168 * 169 * Return: 0 on success, -EINVAL if the property does not exist, 170 * -ENODATA if property does not have a value, and -EOVERFLOW if the 171 * property data isn't large enough. 172 * 173 * The out_value is modified only if a valid u64 value can be decoded. 174 */ 175 int of_property_read_u64_index(const struct device_node *np, 176 const char *propname, 177 u32 index, u64 *out_value) 178 { 179 const u64 *val = of_find_property_value_of_size(np, propname, 180 ((index + 1) * sizeof(*out_value)), 181 0, NULL); 182 183 if (IS_ERR(val)) 184 return PTR_ERR(val); 185 186 *out_value = be64_to_cpup(((__be64 *)val) + index); 187 return 0; 188 } 189 EXPORT_SYMBOL_GPL(of_property_read_u64_index); 190 191 /** 192 * of_property_read_variable_u8_array - Find and read an array of u8 from a 193 * property, with bounds on the minimum and maximum array size. 194 * 195 * @np: device node from which the property value is to be read. 196 * @propname: name of the property to be searched. 197 * @out_values: pointer to found values. 198 * @sz_min: minimum number of array elements to read 199 * @sz_max: maximum number of array elements to read, if zero there is no 200 * upper limit on the number of elements in the dts entry but only 201 * sz_min will be read. 202 * 203 * Search for a property in a device node and read 8-bit value(s) from 204 * it. 205 * 206 * dts entry of array should be like: 207 * ``property = /bits/ 8 <0x50 0x60 0x70>;`` 208 * 209 * Return: The number of elements read on success, -EINVAL if the property 210 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 211 * if the property data is smaller than sz_min or longer than sz_max. 212 * 213 * The out_values is modified only if a valid u8 value can be decoded. 214 */ 215 int of_property_read_variable_u8_array(const struct device_node *np, 216 const char *propname, u8 *out_values, 217 size_t sz_min, size_t sz_max) 218 { 219 size_t sz, count; 220 const u8 *val = of_find_property_value_of_size(np, propname, 221 (sz_min * sizeof(*out_values)), 222 (sz_max * sizeof(*out_values)), 223 &sz); 224 225 if (IS_ERR(val)) 226 return PTR_ERR(val); 227 228 if (!sz_max) 229 sz = sz_min; 230 else 231 sz /= sizeof(*out_values); 232 233 count = sz; 234 while (count--) 235 *out_values++ = *val++; 236 237 return sz; 238 } 239 EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array); 240 241 /** 242 * of_property_read_variable_u16_array - Find and read an array of u16 from a 243 * property, with bounds on the minimum and maximum array size. 244 * 245 * @np: device node from which the property value is to be read. 246 * @propname: name of the property to be searched. 247 * @out_values: pointer to found values. 248 * @sz_min: minimum number of array elements to read 249 * @sz_max: maximum number of array elements to read, if zero there is no 250 * upper limit on the number of elements in the dts entry but only 251 * sz_min will be read. 252 * 253 * Search for a property in a device node and read 16-bit value(s) from 254 * it. 255 * 256 * dts entry of array should be like: 257 * ``property = /bits/ 16 <0x5000 0x6000 0x7000>;`` 258 * 259 * Return: The number of elements read on success, -EINVAL if the property 260 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 261 * if the property data is smaller than sz_min or longer than sz_max. 262 * 263 * The out_values is modified only if a valid u16 value can be decoded. 264 */ 265 int of_property_read_variable_u16_array(const struct device_node *np, 266 const char *propname, u16 *out_values, 267 size_t sz_min, size_t sz_max) 268 { 269 size_t sz, count; 270 const __be16 *val = of_find_property_value_of_size(np, propname, 271 (sz_min * sizeof(*out_values)), 272 (sz_max * sizeof(*out_values)), 273 &sz); 274 275 if (IS_ERR(val)) 276 return PTR_ERR(val); 277 278 if (!sz_max) 279 sz = sz_min; 280 else 281 sz /= sizeof(*out_values); 282 283 count = sz; 284 while (count--) 285 *out_values++ = be16_to_cpup(val++); 286 287 return sz; 288 } 289 EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array); 290 291 /** 292 * of_property_read_variable_u32_array - Find and read an array of 32 bit 293 * integers from a property, with bounds on the minimum and maximum array size. 294 * 295 * @np: device node from which the property value is to be read. 296 * @propname: name of the property to be searched. 297 * @out_values: pointer to return found values. 298 * @sz_min: minimum number of array elements to read 299 * @sz_max: maximum number of array elements to read, if zero there is no 300 * upper limit on the number of elements in the dts entry but only 301 * sz_min will be read. 302 * 303 * Search for a property in a device node and read 32-bit value(s) from 304 * it. 305 * 306 * Return: The number of elements read on success, -EINVAL if the property 307 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 308 * if the property data is smaller than sz_min or longer than sz_max. 309 * 310 * The out_values is modified only if a valid u32 value can be decoded. 311 */ 312 int of_property_read_variable_u32_array(const struct device_node *np, 313 const char *propname, u32 *out_values, 314 size_t sz_min, size_t sz_max) 315 { 316 size_t sz, count; 317 const __be32 *val = of_find_property_value_of_size(np, propname, 318 (sz_min * sizeof(*out_values)), 319 (sz_max * sizeof(*out_values)), 320 &sz); 321 322 if (IS_ERR(val)) 323 return PTR_ERR(val); 324 325 if (!sz_max) 326 sz = sz_min; 327 else 328 sz /= sizeof(*out_values); 329 330 count = sz; 331 while (count--) 332 *out_values++ = be32_to_cpup(val++); 333 334 return sz; 335 } 336 EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array); 337 338 /** 339 * of_property_read_u64 - Find and read a 64 bit integer from a property 340 * @np: device node from which the property value is to be read. 341 * @propname: name of the property to be searched. 342 * @out_value: pointer to return value, modified only if return value is 0. 343 * 344 * Search for a property in a device node and read a 64-bit value from 345 * it. 346 * 347 * Return: 0 on success, -EINVAL if the property does not exist, 348 * -ENODATA if property does not have a value, and -EOVERFLOW if the 349 * property data isn't large enough. 350 * 351 * The out_value is modified only if a valid u64 value can be decoded. 352 */ 353 int of_property_read_u64(const struct device_node *np, const char *propname, 354 u64 *out_value) 355 { 356 const __be32 *val = of_find_property_value_of_size(np, propname, 357 sizeof(*out_value), 358 0, 359 NULL); 360 361 if (IS_ERR(val)) 362 return PTR_ERR(val); 363 364 *out_value = of_read_number(val, 2); 365 return 0; 366 } 367 EXPORT_SYMBOL_GPL(of_property_read_u64); 368 369 /** 370 * of_property_read_variable_u64_array - Find and read an array of 64 bit 371 * integers from a property, with bounds on the minimum and maximum array size. 372 * 373 * @np: device node from which the property value is to be read. 374 * @propname: name of the property to be searched. 375 * @out_values: pointer to found values. 376 * @sz_min: minimum number of array elements to read 377 * @sz_max: maximum number of array elements to read, if zero there is no 378 * upper limit on the number of elements in the dts entry but only 379 * sz_min will be read. 380 * 381 * Search for a property in a device node and read 64-bit value(s) from 382 * it. 383 * 384 * Return: The number of elements read on success, -EINVAL if the property 385 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 386 * if the property data is smaller than sz_min or longer than sz_max. 387 * 388 * The out_values is modified only if a valid u64 value can be decoded. 389 */ 390 int of_property_read_variable_u64_array(const struct device_node *np, 391 const char *propname, u64 *out_values, 392 size_t sz_min, size_t sz_max) 393 { 394 size_t sz, count; 395 const __be32 *val = of_find_property_value_of_size(np, propname, 396 (sz_min * sizeof(*out_values)), 397 (sz_max * sizeof(*out_values)), 398 &sz); 399 400 if (IS_ERR(val)) 401 return PTR_ERR(val); 402 403 if (!sz_max) 404 sz = sz_min; 405 else 406 sz /= sizeof(*out_values); 407 408 count = sz; 409 while (count--) { 410 *out_values++ = of_read_number(val, 2); 411 val += 2; 412 } 413 414 return sz; 415 } 416 EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array); 417 418 /** 419 * of_property_read_string - Find and read a string from a property 420 * @np: device node from which the property value is to be read. 421 * @propname: name of the property to be searched. 422 * @out_string: pointer to null terminated return string, modified only if 423 * return value is 0. 424 * 425 * Search for a property in a device tree node and retrieve a null 426 * terminated string value (pointer to data, not a copy). 427 * 428 * Return: 0 on success, -EINVAL if the property does not exist, -ENODATA if 429 * property does not have a value, and -EILSEQ if the string is not 430 * null-terminated within the length of the property data. 431 * 432 * Note that the empty string "" has length of 1, thus -ENODATA cannot 433 * be interpreted as an empty string. 434 * 435 * The out_string pointer is modified only if a valid string can be decoded. 436 */ 437 int of_property_read_string(const struct device_node *np, const char *propname, 438 const char **out_string) 439 { 440 const struct property *prop = of_find_property(np, propname, NULL); 441 442 if (!prop) 443 return -EINVAL; 444 if (!prop->length) 445 return -ENODATA; 446 if (strnlen(prop->value, prop->length) >= prop->length) 447 return -EILSEQ; 448 *out_string = prop->value; 449 return 0; 450 } 451 EXPORT_SYMBOL_GPL(of_property_read_string); 452 453 /** 454 * of_property_match_string() - Find string in a list and return index 455 * @np: pointer to the node containing the string list property 456 * @propname: string list property name 457 * @string: pointer to the string to search for in the string list 458 * 459 * Search for an exact match of string in a device node property which is a 460 * string of lists. 461 * 462 * Return: the index of the first occurrence of the string on success, -EINVAL 463 * if the property does not exist, -ENODATA if the property does not have a 464 * value, and -EILSEQ if the string is not null-terminated within the length of 465 * the property data. 466 */ 467 int of_property_match_string(const struct device_node *np, const char *propname, 468 const char *string) 469 { 470 const struct property *prop = of_find_property(np, propname, NULL); 471 size_t l; 472 int i; 473 const char *p, *end; 474 475 if (!prop) 476 return -EINVAL; 477 if (!prop->value) 478 return -ENODATA; 479 480 p = prop->value; 481 end = p + prop->length; 482 483 for (i = 0; p < end; i++, p += l) { 484 l = strnlen(p, end - p) + 1; 485 if (p + l > end) 486 return -EILSEQ; 487 pr_debug("comparing %s with %s\n", string, p); 488 if (strcmp(string, p) == 0) 489 return i; /* Found it; return index */ 490 } 491 return -ENODATA; 492 } 493 EXPORT_SYMBOL_GPL(of_property_match_string); 494 495 /** 496 * of_property_read_string_helper() - Utility helper for parsing string properties 497 * @np: device node from which the property value is to be read. 498 * @propname: name of the property to be searched. 499 * @out_strs: output array of string pointers. 500 * @sz: number of array elements to read. 501 * @skip: Number of strings to skip over at beginning of list. 502 * 503 * Don't call this function directly. It is a utility helper for the 504 * of_property_read_string*() family of functions. 505 */ 506 int of_property_read_string_helper(const struct device_node *np, 507 const char *propname, const char **out_strs, 508 size_t sz, int skip) 509 { 510 const struct property *prop = of_find_property(np, propname, NULL); 511 int l = 0, i = 0; 512 const char *p, *end; 513 514 if (!prop) 515 return -EINVAL; 516 if (!prop->value) 517 return -ENODATA; 518 p = prop->value; 519 end = p + prop->length; 520 521 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) { 522 l = strnlen(p, end - p) + 1; 523 if (p + l > end) 524 return -EILSEQ; 525 if (out_strs && i >= skip) 526 *out_strs++ = p; 527 } 528 i -= skip; 529 return i <= 0 ? -ENODATA : i; 530 } 531 EXPORT_SYMBOL_GPL(of_property_read_string_helper); 532 533 const __be32 *of_prop_next_u32(const struct property *prop, const __be32 *cur, 534 u32 *pu) 535 { 536 const void *curv = cur; 537 538 if (!prop) 539 return NULL; 540 541 if (!cur) { 542 curv = prop->value; 543 goto out_val; 544 } 545 546 curv += sizeof(*cur); 547 if (curv >= prop->value + prop->length) 548 return NULL; 549 550 out_val: 551 *pu = be32_to_cpup(curv); 552 return curv; 553 } 554 EXPORT_SYMBOL_GPL(of_prop_next_u32); 555 556 const char *of_prop_next_string(const struct property *prop, const char *cur) 557 { 558 const void *curv = cur; 559 560 if (!prop) 561 return NULL; 562 563 if (!cur) 564 return prop->value; 565 566 curv += strlen(cur) + 1; 567 if (curv >= prop->value + prop->length) 568 return NULL; 569 570 return curv; 571 } 572 EXPORT_SYMBOL_GPL(of_prop_next_string); 573 574 /** 575 * of_graph_parse_endpoint() - parse common endpoint node properties 576 * @node: pointer to endpoint device_node 577 * @endpoint: pointer to the OF endpoint data structure 578 * 579 * The caller should hold a reference to @node. 580 */ 581 int of_graph_parse_endpoint(const struct device_node *node, 582 struct of_endpoint *endpoint) 583 { 584 struct device_node *port_node __free(device_node) = 585 of_get_parent(node); 586 587 WARN_ONCE(!port_node, "%s(): endpoint %pOF has no parent node\n", 588 __func__, node); 589 590 memset(endpoint, 0, sizeof(*endpoint)); 591 592 endpoint->local_node = node; 593 /* 594 * It doesn't matter whether the two calls below succeed. 595 * If they don't then the default value 0 is used. 596 */ 597 of_property_read_u32(port_node, "reg", &endpoint->port); 598 of_property_read_u32(node, "reg", &endpoint->id); 599 600 return 0; 601 } 602 EXPORT_SYMBOL(of_graph_parse_endpoint); 603 604 /** 605 * of_graph_get_port_by_id() - get the port matching a given id 606 * @parent: pointer to the parent device node 607 * @id: id of the port 608 * 609 * Return: A 'port' node pointer with refcount incremented. The caller 610 * has to use of_node_put() on it when done. 611 */ 612 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id) 613 { 614 struct device_node *node __free(device_node) = of_get_child_by_name(parent, "ports"); 615 616 if (node) 617 parent = node; 618 619 for_each_child_of_node_scoped(parent, port) { 620 u32 port_id = 0; 621 622 if (!of_node_name_eq(port, "port")) 623 continue; 624 of_property_read_u32(port, "reg", &port_id); 625 if (id == port_id) 626 return_ptr(port); 627 } 628 629 return NULL; 630 } 631 EXPORT_SYMBOL(of_graph_get_port_by_id); 632 633 /** 634 * of_graph_get_next_port() - get next port node. 635 * @parent: pointer to the parent device node, or parent ports node 636 * @prev: previous port node, or NULL to get first 637 * 638 * Parent device node can be used as @parent whether device node has ports node 639 * or not. It will work same as ports@0 node. 640 * 641 * Return: A 'port' node pointer with refcount incremented. Refcount 642 * of the passed @prev node is decremented. 643 */ 644 struct device_node *of_graph_get_next_port(const struct device_node *parent, 645 struct device_node *prev) 646 { 647 if (!parent) 648 return NULL; 649 650 if (!prev) { 651 struct device_node *node __free(device_node) = 652 of_get_child_by_name(parent, "ports"); 653 654 if (node) 655 parent = node; 656 657 return of_get_child_by_name(parent, "port"); 658 } 659 660 do { 661 prev = of_get_next_child(parent, prev); 662 if (!prev) 663 break; 664 } while (!of_node_name_eq(prev, "port")); 665 666 return prev; 667 } 668 EXPORT_SYMBOL(of_graph_get_next_port); 669 670 /** 671 * of_graph_get_next_port_endpoint() - get next endpoint node in port. 672 * If it reached to end of the port, it will return NULL. 673 * @port: pointer to the target port node 674 * @prev: previous endpoint node, or NULL to get first 675 * 676 * Return: An 'endpoint' node pointer with refcount incremented. Refcount 677 * of the passed @prev node is decremented. 678 */ 679 struct device_node *of_graph_get_next_port_endpoint(const struct device_node *port, 680 struct device_node *prev) 681 { 682 while (1) { 683 prev = of_get_next_child(port, prev); 684 if (!prev) 685 break; 686 if (WARN(!of_node_name_eq(prev, "endpoint"), 687 "non endpoint node is used (%pOF)", prev)) 688 continue; 689 690 break; 691 } 692 693 return prev; 694 } 695 EXPORT_SYMBOL(of_graph_get_next_port_endpoint); 696 697 /** 698 * of_graph_get_next_endpoint() - get next endpoint node 699 * @parent: pointer to the parent device node 700 * @prev: previous endpoint node, or NULL to get first 701 * 702 * Return: An 'endpoint' node pointer with refcount incremented. Refcount 703 * of the passed @prev node is decremented. 704 */ 705 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent, 706 struct device_node *prev) 707 { 708 struct device_node *endpoint; 709 struct device_node *port; 710 711 if (!parent) 712 return NULL; 713 714 /* 715 * Start by locating the port node. If no previous endpoint is specified 716 * search for the first port node, otherwise get the previous endpoint 717 * parent port node. 718 */ 719 if (!prev) { 720 port = of_graph_get_next_port(parent, NULL); 721 if (!port) { 722 pr_debug("graph: no port node found in %pOF\n", parent); 723 return NULL; 724 } 725 } else { 726 port = of_get_parent(prev); 727 if (WARN_ONCE(!port, "%s(): endpoint %pOF has no parent node\n", 728 __func__, prev)) 729 return NULL; 730 } 731 732 while (1) { 733 /* 734 * Now that we have a port node, get the next endpoint by 735 * getting the next child. If the previous endpoint is NULL this 736 * will return the first child. 737 */ 738 endpoint = of_graph_get_next_port_endpoint(port, prev); 739 if (endpoint) { 740 of_node_put(port); 741 return endpoint; 742 } 743 744 /* No more endpoints under this port, try the next one. */ 745 prev = NULL; 746 747 port = of_graph_get_next_port(parent, port); 748 if (!port) 749 return NULL; 750 } 751 } 752 EXPORT_SYMBOL(of_graph_get_next_endpoint); 753 754 /** 755 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers 756 * @parent: pointer to the parent device node 757 * @port_reg: identifier (value of reg property) of the parent port node 758 * @reg: identifier (value of reg property) of the endpoint node 759 * 760 * Return: An 'endpoint' node pointer which is identified by reg and at the same 761 * is the child of a port node identified by port_reg. reg and port_reg are 762 * ignored when they are -1. Use of_node_put() on the pointer when done. 763 */ 764 struct device_node *of_graph_get_endpoint_by_regs( 765 const struct device_node *parent, int port_reg, int reg) 766 { 767 struct of_endpoint endpoint; 768 struct device_node *node = NULL; 769 770 for_each_endpoint_of_node(parent, node) { 771 of_graph_parse_endpoint(node, &endpoint); 772 if (((port_reg == -1) || (endpoint.port == port_reg)) && 773 ((reg == -1) || (endpoint.id == reg))) 774 return node; 775 } 776 777 return NULL; 778 } 779 EXPORT_SYMBOL(of_graph_get_endpoint_by_regs); 780 781 /** 782 * of_graph_get_remote_endpoint() - get remote endpoint node 783 * @node: pointer to a local endpoint device_node 784 * 785 * Return: Remote endpoint node associated with remote endpoint node linked 786 * to @node. Use of_node_put() on it when done. 787 */ 788 struct device_node *of_graph_get_remote_endpoint(const struct device_node *node) 789 { 790 /* Get remote endpoint node. */ 791 return of_parse_phandle(node, "remote-endpoint", 0); 792 } 793 EXPORT_SYMBOL(of_graph_get_remote_endpoint); 794 795 /** 796 * of_graph_get_port_parent() - get port's parent node 797 * @node: pointer to a local endpoint device_node 798 * 799 * Return: device node associated with endpoint node linked 800 * to @node. Use of_node_put() on it when done. 801 */ 802 struct device_node *of_graph_get_port_parent(struct device_node *node) 803 { 804 unsigned int depth; 805 806 if (!node) 807 return NULL; 808 809 /* 810 * Preserve usecount for passed in node as of_get_next_parent() 811 * will do of_node_put() on it. 812 */ 813 of_node_get(node); 814 815 /* Walk 3 levels up only if there is 'ports' node. */ 816 for (depth = 3; depth && node; depth--) { 817 node = of_get_next_parent(node); 818 if (depth == 2 && !of_node_name_eq(node, "ports") && 819 !of_node_name_eq(node, "in-ports") && 820 !of_node_name_eq(node, "out-ports")) 821 break; 822 } 823 return node; 824 } 825 EXPORT_SYMBOL(of_graph_get_port_parent); 826 827 /** 828 * of_graph_get_remote_port_parent() - get remote port's parent node 829 * @node: pointer to a local endpoint device_node 830 * 831 * Return: Remote device node associated with remote endpoint node linked 832 * to @node. Use of_node_put() on it when done. 833 */ 834 struct device_node *of_graph_get_remote_port_parent( 835 const struct device_node *node) 836 { 837 /* Get remote endpoint node. */ 838 struct device_node *np __free(device_node) = 839 of_graph_get_remote_endpoint(node); 840 841 return of_graph_get_port_parent(np); 842 } 843 EXPORT_SYMBOL(of_graph_get_remote_port_parent); 844 845 /** 846 * of_graph_get_remote_port() - get remote port node 847 * @node: pointer to a local endpoint device_node 848 * 849 * Return: Remote port node associated with remote endpoint node linked 850 * to @node. Use of_node_put() on it when done. 851 */ 852 struct device_node *of_graph_get_remote_port(const struct device_node *node) 853 { 854 struct device_node *np; 855 856 /* Get remote endpoint node. */ 857 np = of_graph_get_remote_endpoint(node); 858 if (!np) 859 return NULL; 860 return of_get_next_parent(np); 861 } 862 EXPORT_SYMBOL(of_graph_get_remote_port); 863 864 /** 865 * of_graph_get_endpoint_count() - get the number of endpoints in a device node 866 * @np: parent device node containing ports and endpoints 867 * 868 * Return: count of endpoint of this device node 869 */ 870 unsigned int of_graph_get_endpoint_count(const struct device_node *np) 871 { 872 struct device_node *endpoint; 873 unsigned int num = 0; 874 875 for_each_endpoint_of_node(np, endpoint) 876 num++; 877 878 return num; 879 } 880 EXPORT_SYMBOL(of_graph_get_endpoint_count); 881 882 /** 883 * of_graph_get_port_count() - get the number of port in a device or ports node 884 * @np: pointer to the device or ports node 885 * 886 * Return: count of port of this device or ports node 887 */ 888 unsigned int of_graph_get_port_count(struct device_node *np) 889 { 890 unsigned int num = 0; 891 892 for_each_of_graph_port(np, port) 893 num++; 894 895 return num; 896 } 897 EXPORT_SYMBOL(of_graph_get_port_count); 898 899 /** 900 * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint 901 * @node: pointer to parent device_node containing graph port/endpoint 902 * @port: identifier (value of reg property) of the parent port node 903 * @endpoint: identifier (value of reg property) of the endpoint node 904 * 905 * Return: Remote device node associated with remote endpoint node linked 906 * to @node. Use of_node_put() on it when done. 907 */ 908 struct device_node *of_graph_get_remote_node(const struct device_node *node, 909 u32 port, u32 endpoint) 910 { 911 struct device_node *endpoint_node, *remote; 912 913 endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint); 914 if (!endpoint_node) { 915 pr_debug("no valid endpoint (%d, %d) for node %pOF\n", 916 port, endpoint, node); 917 return NULL; 918 } 919 920 remote = of_graph_get_remote_port_parent(endpoint_node); 921 of_node_put(endpoint_node); 922 if (!remote) { 923 pr_debug("no valid remote node\n"); 924 return NULL; 925 } 926 927 if (!of_device_is_available(remote)) { 928 pr_debug("not available for remote node\n"); 929 of_node_put(remote); 930 return NULL; 931 } 932 933 return remote; 934 } 935 EXPORT_SYMBOL(of_graph_get_remote_node); 936 937 static struct fwnode_handle *of_fwnode_get(struct fwnode_handle *fwnode) 938 { 939 return of_fwnode_handle(of_node_get(to_of_node(fwnode))); 940 } 941 942 static void of_fwnode_put(struct fwnode_handle *fwnode) 943 { 944 of_node_put(to_of_node(fwnode)); 945 } 946 947 static bool of_fwnode_device_is_available(const struct fwnode_handle *fwnode) 948 { 949 return of_device_is_available(to_of_node(fwnode)); 950 } 951 952 static bool of_fwnode_device_dma_supported(const struct fwnode_handle *fwnode) 953 { 954 return true; 955 } 956 957 static enum dev_dma_attr 958 of_fwnode_device_get_dma_attr(const struct fwnode_handle *fwnode) 959 { 960 if (of_dma_is_coherent(to_of_node(fwnode))) 961 return DEV_DMA_COHERENT; 962 else 963 return DEV_DMA_NON_COHERENT; 964 } 965 966 static bool of_fwnode_property_present(const struct fwnode_handle *fwnode, 967 const char *propname) 968 { 969 return of_property_read_bool(to_of_node(fwnode), propname); 970 } 971 972 static int of_fwnode_property_read_int_array(const struct fwnode_handle *fwnode, 973 const char *propname, 974 unsigned int elem_size, void *val, 975 size_t nval) 976 { 977 const struct device_node *node = to_of_node(fwnode); 978 979 if (!val) 980 return of_property_count_elems_of_size(node, propname, 981 elem_size); 982 983 switch (elem_size) { 984 case sizeof(u8): 985 return of_property_read_u8_array(node, propname, val, nval); 986 case sizeof(u16): 987 return of_property_read_u16_array(node, propname, val, nval); 988 case sizeof(u32): 989 return of_property_read_u32_array(node, propname, val, nval); 990 case sizeof(u64): 991 return of_property_read_u64_array(node, propname, val, nval); 992 } 993 994 return -ENXIO; 995 } 996 997 static int 998 of_fwnode_property_read_string_array(const struct fwnode_handle *fwnode, 999 const char *propname, const char **val, 1000 size_t nval) 1001 { 1002 const struct device_node *node = to_of_node(fwnode); 1003 1004 return val ? 1005 of_property_read_string_array(node, propname, val, nval) : 1006 of_property_count_strings(node, propname); 1007 } 1008 1009 static const char *of_fwnode_get_name(const struct fwnode_handle *fwnode) 1010 { 1011 return kbasename(to_of_node(fwnode)->full_name); 1012 } 1013 1014 static const char *of_fwnode_get_name_prefix(const struct fwnode_handle *fwnode) 1015 { 1016 /* Root needs no prefix here (its name is "/"). */ 1017 if (!to_of_node(fwnode)->parent) 1018 return ""; 1019 1020 return "/"; 1021 } 1022 1023 static struct fwnode_handle * 1024 of_fwnode_get_parent(const struct fwnode_handle *fwnode) 1025 { 1026 return of_fwnode_handle(of_get_parent(to_of_node(fwnode))); 1027 } 1028 1029 static struct fwnode_handle * 1030 of_fwnode_get_next_child_node(const struct fwnode_handle *fwnode, 1031 struct fwnode_handle *child) 1032 { 1033 return of_fwnode_handle(of_get_next_available_child(to_of_node(fwnode), 1034 to_of_node(child))); 1035 } 1036 1037 static struct fwnode_handle * 1038 of_fwnode_get_named_child_node(const struct fwnode_handle *fwnode, 1039 const char *childname) 1040 { 1041 const struct device_node *node = to_of_node(fwnode); 1042 struct device_node *child; 1043 1044 for_each_available_child_of_node(node, child) 1045 if (of_node_name_eq(child, childname)) 1046 return of_fwnode_handle(child); 1047 1048 return NULL; 1049 } 1050 1051 static int 1052 of_fwnode_get_reference_args(const struct fwnode_handle *fwnode, 1053 const char *prop, const char *nargs_prop, 1054 unsigned int nargs, unsigned int index, 1055 struct fwnode_reference_args *args) 1056 { 1057 struct of_phandle_args of_args; 1058 unsigned int i; 1059 int ret; 1060 1061 if (nargs_prop) 1062 ret = of_parse_phandle_with_args(to_of_node(fwnode), prop, 1063 nargs_prop, index, &of_args); 1064 else 1065 ret = of_parse_phandle_with_fixed_args(to_of_node(fwnode), prop, 1066 nargs, index, &of_args); 1067 if (ret < 0) 1068 return ret; 1069 if (!args) { 1070 of_node_put(of_args.np); 1071 return 0; 1072 } 1073 1074 args->nargs = of_args.args_count; 1075 args->fwnode = of_fwnode_handle(of_args.np); 1076 1077 for (i = 0; i < NR_FWNODE_REFERENCE_ARGS; i++) 1078 args->args[i] = i < of_args.args_count ? of_args.args[i] : 0; 1079 1080 return 0; 1081 } 1082 1083 static struct fwnode_handle * 1084 of_fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode, 1085 struct fwnode_handle *prev) 1086 { 1087 return of_fwnode_handle(of_graph_get_next_endpoint(to_of_node(fwnode), 1088 to_of_node(prev))); 1089 } 1090 1091 static struct fwnode_handle * 1092 of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode) 1093 { 1094 return of_fwnode_handle( 1095 of_graph_get_remote_endpoint(to_of_node(fwnode))); 1096 } 1097 1098 static struct fwnode_handle * 1099 of_fwnode_graph_get_port_parent(struct fwnode_handle *fwnode) 1100 { 1101 struct device_node *np; 1102 1103 /* Get the parent of the port */ 1104 np = of_get_parent(to_of_node(fwnode)); 1105 if (!np) 1106 return NULL; 1107 1108 /* Is this the "ports" node? If not, it's the port parent. */ 1109 if (!of_node_name_eq(np, "ports")) 1110 return of_fwnode_handle(np); 1111 1112 return of_fwnode_handle(of_get_next_parent(np)); 1113 } 1114 1115 static int of_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode, 1116 struct fwnode_endpoint *endpoint) 1117 { 1118 const struct device_node *node = to_of_node(fwnode); 1119 struct device_node *port_node __free(device_node) = of_get_parent(node); 1120 1121 endpoint->local_fwnode = fwnode; 1122 1123 of_property_read_u32(port_node, "reg", &endpoint->port); 1124 of_property_read_u32(node, "reg", &endpoint->id); 1125 1126 return 0; 1127 } 1128 1129 static const void * 1130 of_fwnode_device_get_match_data(const struct fwnode_handle *fwnode, 1131 const struct device *dev) 1132 { 1133 return of_device_get_match_data(dev); 1134 } 1135 1136 static void of_link_to_phandle(struct device_node *con_np, 1137 struct device_node *sup_np, 1138 u8 flags) 1139 { 1140 struct device_node *tmp_np __free(device_node) = of_node_get(sup_np); 1141 1142 /* Check that sup_np and its ancestors are available. */ 1143 while (tmp_np) { 1144 if (of_fwnode_handle(tmp_np)->dev) 1145 break; 1146 1147 if (!of_device_is_available(tmp_np)) 1148 return; 1149 1150 tmp_np = of_get_next_parent(tmp_np); 1151 } 1152 1153 fwnode_link_add(of_fwnode_handle(con_np), of_fwnode_handle(sup_np), flags); 1154 } 1155 1156 /** 1157 * parse_prop_cells - Property parsing function for suppliers 1158 * 1159 * @np: Pointer to device tree node containing a list 1160 * @prop_name: Name of property to be parsed. Expected to hold phandle values 1161 * @index: For properties holding a list of phandles, this is the index 1162 * into the list. 1163 * @list_name: Property name that is known to contain list of phandle(s) to 1164 * supplier(s) 1165 * @cells_name: property name that specifies phandles' arguments count 1166 * 1167 * This is a helper function to parse properties that have a known fixed name 1168 * and are a list of phandles and phandle arguments. 1169 * 1170 * Returns: 1171 * - phandle node pointer with refcount incremented. Caller must of_node_put() 1172 * on it when done. 1173 * - NULL if no phandle found at index 1174 */ 1175 static struct device_node *parse_prop_cells(struct device_node *np, 1176 const char *prop_name, int index, 1177 const char *list_name, 1178 const char *cells_name) 1179 { 1180 struct of_phandle_args sup_args; 1181 1182 if (strcmp(prop_name, list_name)) 1183 return NULL; 1184 1185 if (__of_parse_phandle_with_args(np, list_name, cells_name, 0, index, 1186 &sup_args)) 1187 return NULL; 1188 1189 return sup_args.np; 1190 } 1191 1192 #define DEFINE_SIMPLE_PROP(fname, name, cells) \ 1193 static struct device_node *parse_##fname(struct device_node *np, \ 1194 const char *prop_name, int index) \ 1195 { \ 1196 return parse_prop_cells(np, prop_name, index, name, cells); \ 1197 } 1198 1199 static int strcmp_suffix(const char *str, const char *suffix) 1200 { 1201 unsigned int len, suffix_len; 1202 1203 len = strlen(str); 1204 suffix_len = strlen(suffix); 1205 if (len <= suffix_len) 1206 return -1; 1207 return strcmp(str + len - suffix_len, suffix); 1208 } 1209 1210 /** 1211 * parse_suffix_prop_cells - Suffix property parsing function for suppliers 1212 * 1213 * @np: Pointer to device tree node containing a list 1214 * @prop_name: Name of property to be parsed. Expected to hold phandle values 1215 * @index: For properties holding a list of phandles, this is the index 1216 * into the list. 1217 * @suffix: Property suffix that is known to contain list of phandle(s) to 1218 * supplier(s) 1219 * @cells_name: property name that specifies phandles' arguments count 1220 * 1221 * This is a helper function to parse properties that have a known fixed suffix 1222 * and are a list of phandles and phandle arguments. 1223 * 1224 * Returns: 1225 * - phandle node pointer with refcount incremented. Caller must of_node_put() 1226 * on it when done. 1227 * - NULL if no phandle found at index 1228 */ 1229 static struct device_node *parse_suffix_prop_cells(struct device_node *np, 1230 const char *prop_name, int index, 1231 const char *suffix, 1232 const char *cells_name) 1233 { 1234 struct of_phandle_args sup_args; 1235 1236 if (strcmp_suffix(prop_name, suffix)) 1237 return NULL; 1238 1239 if (of_parse_phandle_with_args(np, prop_name, cells_name, index, 1240 &sup_args)) 1241 return NULL; 1242 1243 return sup_args.np; 1244 } 1245 1246 #define DEFINE_SUFFIX_PROP(fname, suffix, cells) \ 1247 static struct device_node *parse_##fname(struct device_node *np, \ 1248 const char *prop_name, int index) \ 1249 { \ 1250 return parse_suffix_prop_cells(np, prop_name, index, suffix, cells); \ 1251 } 1252 1253 /** 1254 * struct supplier_bindings - Property parsing functions for suppliers 1255 * 1256 * @parse_prop: function name 1257 * parse_prop() finds the node corresponding to a supplier phandle 1258 * parse_prop.np: Pointer to device node holding supplier phandle property 1259 * parse_prop.prop_name: Name of property holding a phandle value 1260 * parse_prop.index: For properties holding a list of phandles, this is the 1261 * index into the list 1262 * @get_con_dev: If the consumer node containing the property is never converted 1263 * to a struct device, implement this ops so fw_devlink can use it 1264 * to find the true consumer. 1265 * @optional: Describes whether a supplier is mandatory or not 1266 * @fwlink_flags: Optional fwnode link flags to use when creating a fwnode link 1267 * for this property. 1268 * 1269 * Returns: 1270 * parse_prop() return values are 1271 * - phandle node pointer with refcount incremented. Caller must of_node_put() 1272 * on it when done. 1273 * - NULL if no phandle found at index 1274 */ 1275 struct supplier_bindings { 1276 struct device_node *(*parse_prop)(struct device_node *np, 1277 const char *prop_name, int index); 1278 struct device_node *(*get_con_dev)(struct device_node *np); 1279 bool optional; 1280 u8 fwlink_flags; 1281 }; 1282 1283 DEFINE_SIMPLE_PROP(clocks, "clocks", "#clock-cells") 1284 DEFINE_SIMPLE_PROP(interconnects, "interconnects", "#interconnect-cells") 1285 DEFINE_SIMPLE_PROP(iommus, "iommus", "#iommu-cells") 1286 DEFINE_SIMPLE_PROP(mboxes, "mboxes", "#mbox-cells") 1287 DEFINE_SIMPLE_PROP(io_channels, "io-channels", "#io-channel-cells") 1288 DEFINE_SIMPLE_PROP(io_backends, "io-backends", "#io-backend-cells") 1289 DEFINE_SIMPLE_PROP(interrupt_parent, "interrupt-parent", NULL) 1290 DEFINE_SIMPLE_PROP(dmas, "dmas", "#dma-cells") 1291 DEFINE_SIMPLE_PROP(power_domains, "power-domains", "#power-domain-cells") 1292 DEFINE_SIMPLE_PROP(hwlocks, "hwlocks", "#hwlock-cells") 1293 DEFINE_SIMPLE_PROP(extcon, "extcon", NULL) 1294 DEFINE_SIMPLE_PROP(nvmem_cells, "nvmem-cells", "#nvmem-cell-cells") 1295 DEFINE_SIMPLE_PROP(phys, "phys", "#phy-cells") 1296 DEFINE_SIMPLE_PROP(wakeup_parent, "wakeup-parent", NULL) 1297 DEFINE_SIMPLE_PROP(pinctrl0, "pinctrl-0", NULL) 1298 DEFINE_SIMPLE_PROP(pinctrl1, "pinctrl-1", NULL) 1299 DEFINE_SIMPLE_PROP(pinctrl2, "pinctrl-2", NULL) 1300 DEFINE_SIMPLE_PROP(pinctrl3, "pinctrl-3", NULL) 1301 DEFINE_SIMPLE_PROP(pinctrl4, "pinctrl-4", NULL) 1302 DEFINE_SIMPLE_PROP(pinctrl5, "pinctrl-5", NULL) 1303 DEFINE_SIMPLE_PROP(pinctrl6, "pinctrl-6", NULL) 1304 DEFINE_SIMPLE_PROP(pinctrl7, "pinctrl-7", NULL) 1305 DEFINE_SIMPLE_PROP(pinctrl8, "pinctrl-8", NULL) 1306 DEFINE_SIMPLE_PROP(pwms, "pwms", "#pwm-cells") 1307 DEFINE_SIMPLE_PROP(resets, "resets", "#reset-cells") 1308 DEFINE_SIMPLE_PROP(leds, "leds", NULL) 1309 DEFINE_SIMPLE_PROP(backlight, "backlight", NULL) 1310 DEFINE_SIMPLE_PROP(panel, "panel", NULL) 1311 DEFINE_SIMPLE_PROP(msi_parent, "msi-parent", "#msi-cells") 1312 DEFINE_SIMPLE_PROP(post_init_providers, "post-init-providers", NULL) 1313 DEFINE_SIMPLE_PROP(access_controllers, "access-controllers", "#access-controller-cells") 1314 DEFINE_SIMPLE_PROP(pses, "pses", "#pse-cells") 1315 DEFINE_SIMPLE_PROP(power_supplies, "power-supplies", NULL) 1316 DEFINE_SUFFIX_PROP(regulators, "-supply", NULL) 1317 DEFINE_SUFFIX_PROP(gpio, "-gpio", "#gpio-cells") 1318 1319 static struct device_node *parse_gpios(struct device_node *np, 1320 const char *prop_name, int index) 1321 { 1322 if (!strcmp_suffix(prop_name, ",nr-gpios")) 1323 return NULL; 1324 1325 return parse_suffix_prop_cells(np, prop_name, index, "-gpios", 1326 "#gpio-cells"); 1327 } 1328 1329 static struct device_node *parse_iommu_maps(struct device_node *np, 1330 const char *prop_name, int index) 1331 { 1332 if (strcmp(prop_name, "iommu-map")) 1333 return NULL; 1334 1335 return of_parse_phandle(np, prop_name, (index * 4) + 1); 1336 } 1337 1338 static struct device_node *parse_gpio_compat(struct device_node *np, 1339 const char *prop_name, int index) 1340 { 1341 struct of_phandle_args sup_args; 1342 1343 if (strcmp(prop_name, "gpio") && strcmp(prop_name, "gpios")) 1344 return NULL; 1345 1346 /* 1347 * Ignore node with gpio-hog property since its gpios are all provided 1348 * by its parent. 1349 */ 1350 if (of_property_read_bool(np, "gpio-hog")) 1351 return NULL; 1352 1353 if (of_parse_phandle_with_args(np, prop_name, "#gpio-cells", index, 1354 &sup_args)) 1355 return NULL; 1356 1357 return sup_args.np; 1358 } 1359 1360 static struct device_node *parse_interrupts(struct device_node *np, 1361 const char *prop_name, int index) 1362 { 1363 struct of_phandle_args sup_args; 1364 1365 if (!IS_ENABLED(CONFIG_OF_IRQ) || IS_ENABLED(CONFIG_PPC)) 1366 return NULL; 1367 1368 if (strcmp(prop_name, "interrupts") && 1369 strcmp(prop_name, "interrupts-extended")) 1370 return NULL; 1371 1372 return of_irq_parse_one(np, index, &sup_args) ? NULL : sup_args.np; 1373 } 1374 1375 static struct device_node *parse_interrupt_map(struct device_node *np, 1376 const char *prop_name, int index) 1377 { 1378 const __be32 *imap, *imap_end; 1379 struct of_phandle_args sup_args; 1380 u32 addrcells, intcells; 1381 int imaplen; 1382 1383 if (!IS_ENABLED(CONFIG_OF_IRQ)) 1384 return NULL; 1385 1386 if (strcmp(prop_name, "interrupt-map")) 1387 return NULL; 1388 1389 if (of_property_read_u32(np, "#interrupt-cells", &intcells)) 1390 return NULL; 1391 addrcells = of_bus_n_addr_cells(np); 1392 1393 imap = of_get_property(np, "interrupt-map", &imaplen); 1394 imaplen /= sizeof(*imap); 1395 if (!imap) 1396 return NULL; 1397 1398 imap_end = imap + imaplen; 1399 1400 for (int i = 0; imap + addrcells + intcells + 1 < imap_end; i++) { 1401 imap += addrcells + intcells; 1402 1403 imap = of_irq_parse_imap_parent(imap, imap_end - imap, &sup_args); 1404 if (!imap) 1405 return NULL; 1406 1407 if (i == index) 1408 return sup_args.np; 1409 1410 of_node_put(sup_args.np); 1411 } 1412 1413 return NULL; 1414 } 1415 1416 static struct device_node *parse_remote_endpoint(struct device_node *np, 1417 const char *prop_name, 1418 int index) 1419 { 1420 /* Return NULL for index > 0 to signify end of remote-endpoints. */ 1421 if (index > 0 || strcmp(prop_name, "remote-endpoint")) 1422 return NULL; 1423 1424 return of_graph_get_remote_port_parent(np); 1425 } 1426 1427 static const struct supplier_bindings of_supplier_bindings[] = { 1428 { .parse_prop = parse_clocks, }, 1429 { .parse_prop = parse_interconnects, }, 1430 { .parse_prop = parse_iommus, .optional = true, }, 1431 { .parse_prop = parse_iommu_maps, .optional = true, }, 1432 { .parse_prop = parse_mboxes, }, 1433 { .parse_prop = parse_io_channels, }, 1434 { .parse_prop = parse_io_backends, }, 1435 { .parse_prop = parse_interrupt_parent, }, 1436 { .parse_prop = parse_dmas, .optional = true, }, 1437 { .parse_prop = parse_power_domains, }, 1438 { .parse_prop = parse_hwlocks, }, 1439 { .parse_prop = parse_extcon, }, 1440 { .parse_prop = parse_nvmem_cells, }, 1441 { .parse_prop = parse_phys, }, 1442 { .parse_prop = parse_wakeup_parent, }, 1443 { .parse_prop = parse_pinctrl0, }, 1444 { .parse_prop = parse_pinctrl1, }, 1445 { .parse_prop = parse_pinctrl2, }, 1446 { .parse_prop = parse_pinctrl3, }, 1447 { .parse_prop = parse_pinctrl4, }, 1448 { .parse_prop = parse_pinctrl5, }, 1449 { .parse_prop = parse_pinctrl6, }, 1450 { .parse_prop = parse_pinctrl7, }, 1451 { .parse_prop = parse_pinctrl8, }, 1452 { 1453 .parse_prop = parse_remote_endpoint, 1454 .get_con_dev = of_graph_get_port_parent, 1455 }, 1456 { .parse_prop = parse_pwms, }, 1457 { .parse_prop = parse_resets, }, 1458 { .parse_prop = parse_leds, }, 1459 { .parse_prop = parse_backlight, }, 1460 { .parse_prop = parse_panel, }, 1461 { .parse_prop = parse_msi_parent, }, 1462 { .parse_prop = parse_pses, }, 1463 { .parse_prop = parse_power_supplies, }, 1464 { .parse_prop = parse_gpio_compat, }, 1465 { .parse_prop = parse_interrupts, }, 1466 { .parse_prop = parse_interrupt_map, }, 1467 { .parse_prop = parse_access_controllers, }, 1468 { .parse_prop = parse_regulators, }, 1469 { .parse_prop = parse_gpio, }, 1470 { .parse_prop = parse_gpios, }, 1471 { 1472 .parse_prop = parse_post_init_providers, 1473 .fwlink_flags = FWLINK_FLAG_IGNORE, 1474 }, 1475 {} 1476 }; 1477 1478 /** 1479 * of_link_property - Create device links to suppliers listed in a property 1480 * @con_np: The consumer device tree node which contains the property 1481 * @prop_name: Name of property to be parsed 1482 * 1483 * This function checks if the property @prop_name that is present in the 1484 * @con_np device tree node is one of the known common device tree bindings 1485 * that list phandles to suppliers. If @prop_name isn't one, this function 1486 * doesn't do anything. 1487 * 1488 * If @prop_name is one, this function attempts to create fwnode links from the 1489 * consumer device tree node @con_np to all the suppliers device tree nodes 1490 * listed in @prop_name. 1491 * 1492 * Any failed attempt to create a fwnode link will NOT result in an immediate 1493 * return. of_link_property() must create links to all the available supplier 1494 * device tree nodes even when attempts to create a link to one or more 1495 * suppliers fail. 1496 */ 1497 static int of_link_property(struct device_node *con_np, const char *prop_name) 1498 { 1499 struct device_node *phandle; 1500 const struct supplier_bindings *s = of_supplier_bindings; 1501 unsigned int i = 0; 1502 bool matched = false; 1503 1504 /* Do not stop at first failed link, link all available suppliers. */ 1505 while (!matched && s->parse_prop) { 1506 if (s->optional && !fw_devlink_is_strict()) { 1507 s++; 1508 continue; 1509 } 1510 1511 while ((phandle = s->parse_prop(con_np, prop_name, i))) { 1512 struct device_node *con_dev_np __free(device_node) = 1513 s->get_con_dev ? s->get_con_dev(con_np) : of_node_get(con_np); 1514 1515 matched = true; 1516 i++; 1517 of_link_to_phandle(con_dev_np, phandle, s->fwlink_flags); 1518 of_node_put(phandle); 1519 } 1520 s++; 1521 } 1522 return 0; 1523 } 1524 1525 static void __iomem *of_fwnode_iomap(struct fwnode_handle *fwnode, int index) 1526 { 1527 #ifdef CONFIG_OF_ADDRESS 1528 return of_iomap(to_of_node(fwnode), index); 1529 #else 1530 return NULL; 1531 #endif 1532 } 1533 1534 static int of_fwnode_irq_get(const struct fwnode_handle *fwnode, 1535 unsigned int index) 1536 { 1537 return of_irq_get(to_of_node(fwnode), index); 1538 } 1539 1540 static int of_fwnode_add_links(struct fwnode_handle *fwnode) 1541 { 1542 const struct property *p; 1543 struct device_node *con_np = to_of_node(fwnode); 1544 1545 if (IS_ENABLED(CONFIG_X86)) 1546 return 0; 1547 1548 if (!con_np) 1549 return -EINVAL; 1550 1551 for_each_property_of_node(con_np, p) 1552 of_link_property(con_np, p->name); 1553 1554 return 0; 1555 } 1556 1557 const struct fwnode_operations of_fwnode_ops = { 1558 .get = of_fwnode_get, 1559 .put = of_fwnode_put, 1560 .device_is_available = of_fwnode_device_is_available, 1561 .device_get_match_data = of_fwnode_device_get_match_data, 1562 .device_dma_supported = of_fwnode_device_dma_supported, 1563 .device_get_dma_attr = of_fwnode_device_get_dma_attr, 1564 .property_present = of_fwnode_property_present, 1565 .property_read_int_array = of_fwnode_property_read_int_array, 1566 .property_read_string_array = of_fwnode_property_read_string_array, 1567 .get_name = of_fwnode_get_name, 1568 .get_name_prefix = of_fwnode_get_name_prefix, 1569 .get_parent = of_fwnode_get_parent, 1570 .get_next_child_node = of_fwnode_get_next_child_node, 1571 .get_named_child_node = of_fwnode_get_named_child_node, 1572 .get_reference_args = of_fwnode_get_reference_args, 1573 .graph_get_next_endpoint = of_fwnode_graph_get_next_endpoint, 1574 .graph_get_remote_endpoint = of_fwnode_graph_get_remote_endpoint, 1575 .graph_get_port_parent = of_fwnode_graph_get_port_parent, 1576 .graph_parse_endpoint = of_fwnode_graph_parse_endpoint, 1577 .iomap = of_fwnode_iomap, 1578 .irq_get = of_fwnode_irq_get, 1579 .add_links = of_fwnode_add_links, 1580 }; 1581 EXPORT_SYMBOL_GPL(of_fwnode_ops); 1582