1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * drivers/of/property.c - Procedures for accessing and interpreting 4 * Devicetree properties and graphs. 5 * 6 * Initially created by copying procedures from drivers/of/base.c. This 7 * file contains the OF property as well as the OF graph interface 8 * functions. 9 * 10 * Paul Mackerras August 1996. 11 * Copyright (C) 1996-2005 Paul Mackerras. 12 * 13 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 14 * {engebret|bergner}@us.ibm.com 15 * 16 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 17 * 18 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 19 * Grant Likely. 20 */ 21 22 #define pr_fmt(fmt) "OF: " fmt 23 24 #include <linux/of.h> 25 #include <linux/of_address.h> 26 #include <linux/of_device.h> 27 #include <linux/of_graph.h> 28 #include <linux/of_irq.h> 29 #include <linux/string.h> 30 #include <linux/moduleparam.h> 31 32 #include "of_private.h" 33 34 /** 35 * of_property_read_bool - Find a property 36 * @np: device node from which the property value is to be read. 37 * @propname: name of the property to be searched. 38 * 39 * Search for a boolean property in a device node. Usage on non-boolean 40 * property types is deprecated. 41 * 42 * Return: true if the property exists false otherwise. 43 */ 44 bool of_property_read_bool(const struct device_node *np, const char *propname) 45 { 46 struct property *prop = of_find_property(np, propname, NULL); 47 48 /* 49 * Boolean properties should not have a value. Testing for property 50 * presence should either use of_property_present() or just read the 51 * property value and check the returned error code. 52 */ 53 if (prop && prop->length) 54 pr_warn("%pOF: Read of boolean property '%s' with a value.\n", np, propname); 55 56 return prop ? true : false; 57 } 58 EXPORT_SYMBOL(of_property_read_bool); 59 60 /** 61 * of_graph_is_present() - check graph's presence 62 * @node: pointer to device_node containing graph port 63 * 64 * Return: True if @node has a port or ports (with a port) sub-node, 65 * false otherwise. 66 */ 67 bool of_graph_is_present(const struct device_node *node) 68 { 69 struct device_node *ports __free(device_node) = of_get_child_by_name(node, "ports"); 70 71 if (ports) 72 node = ports; 73 74 struct device_node *port __free(device_node) = of_get_child_by_name(node, "port"); 75 76 return !!port; 77 } 78 EXPORT_SYMBOL(of_graph_is_present); 79 80 /** 81 * of_property_count_elems_of_size - Count the number of elements in a property 82 * 83 * @np: device node from which the property value is to be read. 84 * @propname: name of the property to be searched. 85 * @elem_size: size of the individual element 86 * 87 * Search for a property in a device node and count the number of elements of 88 * size elem_size in it. 89 * 90 * Return: The number of elements on sucess, -EINVAL if the property does not 91 * exist or its length does not match a multiple of elem_size and -ENODATA if 92 * the property does not have a value. 93 */ 94 int of_property_count_elems_of_size(const struct device_node *np, 95 const char *propname, int elem_size) 96 { 97 const struct property *prop = of_find_property(np, propname, NULL); 98 99 if (!prop) 100 return -EINVAL; 101 if (!prop->value) 102 return -ENODATA; 103 104 if (prop->length % elem_size != 0) { 105 pr_err("size of %s in node %pOF is not a multiple of %d\n", 106 propname, np, elem_size); 107 return -EINVAL; 108 } 109 110 return prop->length / elem_size; 111 } 112 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size); 113 114 /** 115 * of_find_property_value_of_size 116 * 117 * @np: device node from which the property value is to be read. 118 * @propname: name of the property to be searched. 119 * @min: minimum allowed length of property value 120 * @max: maximum allowed length of property value (0 means unlimited) 121 * @len: if !=NULL, actual length is written to here 122 * 123 * Search for a property in a device node and valid the requested size. 124 * 125 * Return: The property value on success, -EINVAL if the property does not 126 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the 127 * property data is too small or too large. 128 * 129 */ 130 static void *of_find_property_value_of_size(const struct device_node *np, 131 const char *propname, u32 min, u32 max, size_t *len) 132 { 133 const struct property *prop = of_find_property(np, propname, NULL); 134 135 if (!prop) 136 return ERR_PTR(-EINVAL); 137 if (!prop->value) 138 return ERR_PTR(-ENODATA); 139 if (prop->length < min) 140 return ERR_PTR(-EOVERFLOW); 141 if (max && prop->length > max) 142 return ERR_PTR(-EOVERFLOW); 143 144 if (len) 145 *len = prop->length; 146 147 return prop->value; 148 } 149 150 /** 151 * of_property_read_u16_index - Find and read a u16 from a multi-value property. 152 * 153 * @np: device node from which the property value is to be read. 154 * @propname: name of the property to be searched. 155 * @index: index of the u16 in the list of values 156 * @out_value: pointer to return value, modified only if no error. 157 * 158 * Search for a property in a device node and read nth 16-bit value from 159 * it. 160 * 161 * Return: 0 on success, -EINVAL if the property does not exist, 162 * -ENODATA if property does not have a value, and -EOVERFLOW if the 163 * property data isn't large enough. 164 * 165 * The out_value is modified only if a valid u16 value can be decoded. 166 */ 167 int of_property_read_u16_index(const struct device_node *np, 168 const char *propname, 169 u32 index, u16 *out_value) 170 { 171 const u16 *val = of_find_property_value_of_size(np, propname, 172 ((index + 1) * sizeof(*out_value)), 173 0, NULL); 174 175 if (IS_ERR(val)) 176 return PTR_ERR(val); 177 178 *out_value = be16_to_cpup(((__be16 *)val) + index); 179 return 0; 180 } 181 EXPORT_SYMBOL_GPL(of_property_read_u16_index); 182 183 /** 184 * of_property_read_u32_index - Find and read a u32 from a multi-value property. 185 * 186 * @np: device node from which the property value is to be read. 187 * @propname: name of the property to be searched. 188 * @index: index of the u32 in the list of values 189 * @out_value: pointer to return value, modified only if no error. 190 * 191 * Search for a property in a device node and read nth 32-bit value from 192 * it. 193 * 194 * Return: 0 on success, -EINVAL if the property does not exist, 195 * -ENODATA if property does not have a value, and -EOVERFLOW if the 196 * property data isn't large enough. 197 * 198 * The out_value is modified only if a valid u32 value can be decoded. 199 */ 200 int of_property_read_u32_index(const struct device_node *np, 201 const char *propname, 202 u32 index, u32 *out_value) 203 { 204 const u32 *val = of_find_property_value_of_size(np, propname, 205 ((index + 1) * sizeof(*out_value)), 206 0, 207 NULL); 208 209 if (IS_ERR(val)) 210 return PTR_ERR(val); 211 212 *out_value = be32_to_cpup(((__be32 *)val) + index); 213 return 0; 214 } 215 EXPORT_SYMBOL_GPL(of_property_read_u32_index); 216 217 /** 218 * of_property_read_u64_index - Find and read a u64 from a multi-value property. 219 * 220 * @np: device node from which the property value is to be read. 221 * @propname: name of the property to be searched. 222 * @index: index of the u64 in the list of values 223 * @out_value: pointer to return value, modified only if no error. 224 * 225 * Search for a property in a device node and read nth 64-bit value from 226 * it. 227 * 228 * Return: 0 on success, -EINVAL if the property does not exist, 229 * -ENODATA if property does not have a value, and -EOVERFLOW if the 230 * property data isn't large enough. 231 * 232 * The out_value is modified only if a valid u64 value can be decoded. 233 */ 234 int of_property_read_u64_index(const struct device_node *np, 235 const char *propname, 236 u32 index, u64 *out_value) 237 { 238 const u64 *val = of_find_property_value_of_size(np, propname, 239 ((index + 1) * sizeof(*out_value)), 240 0, NULL); 241 242 if (IS_ERR(val)) 243 return PTR_ERR(val); 244 245 *out_value = be64_to_cpup(((__be64 *)val) + index); 246 return 0; 247 } 248 EXPORT_SYMBOL_GPL(of_property_read_u64_index); 249 250 /** 251 * of_property_read_variable_u8_array - Find and read an array of u8 from a 252 * property, with bounds on the minimum and maximum array size. 253 * 254 * @np: device node from which the property value is to be read. 255 * @propname: name of the property to be searched. 256 * @out_values: pointer to found values. 257 * @sz_min: minimum number of array elements to read 258 * @sz_max: maximum number of array elements to read, if zero there is no 259 * upper limit on the number of elements in the dts entry but only 260 * sz_min will be read. 261 * 262 * Search for a property in a device node and read 8-bit value(s) from 263 * it. 264 * 265 * dts entry of array should be like: 266 * ``property = /bits/ 8 <0x50 0x60 0x70>;`` 267 * 268 * Return: The number of elements read on success, -EINVAL if the property 269 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 270 * if the property data is smaller than sz_min or longer than sz_max. 271 * 272 * The out_values is modified only if a valid u8 value can be decoded. 273 */ 274 int of_property_read_variable_u8_array(const struct device_node *np, 275 const char *propname, u8 *out_values, 276 size_t sz_min, size_t sz_max) 277 { 278 size_t sz, count; 279 const u8 *val = of_find_property_value_of_size(np, propname, 280 (sz_min * sizeof(*out_values)), 281 (sz_max * sizeof(*out_values)), 282 &sz); 283 284 if (IS_ERR(val)) 285 return PTR_ERR(val); 286 287 if (!sz_max) 288 sz = sz_min; 289 else 290 sz /= sizeof(*out_values); 291 292 count = sz; 293 while (count--) 294 *out_values++ = *val++; 295 296 return sz; 297 } 298 EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array); 299 300 /** 301 * of_property_read_variable_u16_array - Find and read an array of u16 from a 302 * property, with bounds on the minimum and maximum array size. 303 * 304 * @np: device node from which the property value is to be read. 305 * @propname: name of the property to be searched. 306 * @out_values: pointer to found values. 307 * @sz_min: minimum number of array elements to read 308 * @sz_max: maximum number of array elements to read, if zero there is no 309 * upper limit on the number of elements in the dts entry but only 310 * sz_min will be read. 311 * 312 * Search for a property in a device node and read 16-bit value(s) from 313 * it. 314 * 315 * dts entry of array should be like: 316 * ``property = /bits/ 16 <0x5000 0x6000 0x7000>;`` 317 * 318 * Return: The number of elements read on success, -EINVAL if the property 319 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 320 * if the property data is smaller than sz_min or longer than sz_max. 321 * 322 * The out_values is modified only if a valid u16 value can be decoded. 323 */ 324 int of_property_read_variable_u16_array(const struct device_node *np, 325 const char *propname, u16 *out_values, 326 size_t sz_min, size_t sz_max) 327 { 328 size_t sz, count; 329 const __be16 *val = of_find_property_value_of_size(np, propname, 330 (sz_min * sizeof(*out_values)), 331 (sz_max * sizeof(*out_values)), 332 &sz); 333 334 if (IS_ERR(val)) 335 return PTR_ERR(val); 336 337 if (!sz_max) 338 sz = sz_min; 339 else 340 sz /= sizeof(*out_values); 341 342 count = sz; 343 while (count--) 344 *out_values++ = be16_to_cpup(val++); 345 346 return sz; 347 } 348 EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array); 349 350 /** 351 * of_property_read_variable_u32_array - Find and read an array of 32 bit 352 * integers from a property, with bounds on the minimum and maximum array size. 353 * 354 * @np: device node from which the property value is to be read. 355 * @propname: name of the property to be searched. 356 * @out_values: pointer to return found values. 357 * @sz_min: minimum number of array elements to read 358 * @sz_max: maximum number of array elements to read, if zero there is no 359 * upper limit on the number of elements in the dts entry but only 360 * sz_min will be read. 361 * 362 * Search for a property in a device node and read 32-bit value(s) from 363 * it. 364 * 365 * Return: The number of elements read on success, -EINVAL if the property 366 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 367 * if the property data is smaller than sz_min or longer than sz_max. 368 * 369 * The out_values is modified only if a valid u32 value can be decoded. 370 */ 371 int of_property_read_variable_u32_array(const struct device_node *np, 372 const char *propname, u32 *out_values, 373 size_t sz_min, size_t sz_max) 374 { 375 size_t sz, count; 376 const __be32 *val = of_find_property_value_of_size(np, propname, 377 (sz_min * sizeof(*out_values)), 378 (sz_max * sizeof(*out_values)), 379 &sz); 380 381 if (IS_ERR(val)) 382 return PTR_ERR(val); 383 384 if (!sz_max) 385 sz = sz_min; 386 else 387 sz /= sizeof(*out_values); 388 389 count = sz; 390 while (count--) 391 *out_values++ = be32_to_cpup(val++); 392 393 return sz; 394 } 395 EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array); 396 397 /** 398 * of_property_read_u64 - Find and read a 64 bit integer from a property 399 * @np: device node from which the property value is to be read. 400 * @propname: name of the property to be searched. 401 * @out_value: pointer to return value, modified only if return value is 0. 402 * 403 * Search for a property in a device node and read a 64-bit value from 404 * it. 405 * 406 * Return: 0 on success, -EINVAL if the property does not exist, 407 * -ENODATA if property does not have a value, and -EOVERFLOW if the 408 * property data isn't large enough. 409 * 410 * The out_value is modified only if a valid u64 value can be decoded. 411 */ 412 int of_property_read_u64(const struct device_node *np, const char *propname, 413 u64 *out_value) 414 { 415 const __be32 *val = of_find_property_value_of_size(np, propname, 416 sizeof(*out_value), 417 0, 418 NULL); 419 420 if (IS_ERR(val)) 421 return PTR_ERR(val); 422 423 *out_value = of_read_number(val, 2); 424 return 0; 425 } 426 EXPORT_SYMBOL_GPL(of_property_read_u64); 427 428 /** 429 * of_property_read_variable_u64_array - Find and read an array of 64 bit 430 * integers from a property, with bounds on the minimum and maximum array size. 431 * 432 * @np: device node from which the property value is to be read. 433 * @propname: name of the property to be searched. 434 * @out_values: pointer to found values. 435 * @sz_min: minimum number of array elements to read 436 * @sz_max: maximum number of array elements to read, if zero there is no 437 * upper limit on the number of elements in the dts entry but only 438 * sz_min will be read. 439 * 440 * Search for a property in a device node and read 64-bit value(s) from 441 * it. 442 * 443 * Return: The number of elements read on success, -EINVAL if the property 444 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 445 * if the property data is smaller than sz_min or longer than sz_max. 446 * 447 * The out_values is modified only if a valid u64 value can be decoded. 448 */ 449 int of_property_read_variable_u64_array(const struct device_node *np, 450 const char *propname, u64 *out_values, 451 size_t sz_min, size_t sz_max) 452 { 453 size_t sz, count; 454 const __be32 *val = of_find_property_value_of_size(np, propname, 455 (sz_min * sizeof(*out_values)), 456 (sz_max * sizeof(*out_values)), 457 &sz); 458 459 if (IS_ERR(val)) 460 return PTR_ERR(val); 461 462 if (!sz_max) 463 sz = sz_min; 464 else 465 sz /= sizeof(*out_values); 466 467 count = sz; 468 while (count--) { 469 *out_values++ = of_read_number(val, 2); 470 val += 2; 471 } 472 473 return sz; 474 } 475 EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array); 476 477 /** 478 * of_property_read_string - Find and read a string from a property 479 * @np: device node from which the property value is to be read. 480 * @propname: name of the property to be searched. 481 * @out_string: pointer to null terminated return string, modified only if 482 * return value is 0. 483 * 484 * Search for a property in a device tree node and retrieve a null 485 * terminated string value (pointer to data, not a copy). 486 * 487 * Return: 0 on success, -EINVAL if the property does not exist, -ENODATA if 488 * property does not have a value, and -EILSEQ if the string is not 489 * null-terminated within the length of the property data. 490 * 491 * Note that the empty string "" has length of 1, thus -ENODATA cannot 492 * be interpreted as an empty string. 493 * 494 * The out_string pointer is modified only if a valid string can be decoded. 495 */ 496 int of_property_read_string(const struct device_node *np, const char *propname, 497 const char **out_string) 498 { 499 const struct property *prop = of_find_property(np, propname, NULL); 500 501 if (!prop) 502 return -EINVAL; 503 if (!prop->length) 504 return -ENODATA; 505 if (strnlen(prop->value, prop->length) >= prop->length) 506 return -EILSEQ; 507 *out_string = prop->value; 508 return 0; 509 } 510 EXPORT_SYMBOL_GPL(of_property_read_string); 511 512 /** 513 * of_property_match_string() - Find string in a list and return index 514 * @np: pointer to the node containing the string list property 515 * @propname: string list property name 516 * @string: pointer to the string to search for in the string list 517 * 518 * Search for an exact match of string in a device node property which is a 519 * string of lists. 520 * 521 * Return: the index of the first occurrence of the string on success, -EINVAL 522 * if the property does not exist, -ENODATA if the property does not have a 523 * value, and -EILSEQ if the string is not null-terminated within the length of 524 * the property data. 525 */ 526 int of_property_match_string(const struct device_node *np, const char *propname, 527 const char *string) 528 { 529 const struct property *prop = of_find_property(np, propname, NULL); 530 size_t l; 531 int i; 532 const char *p, *end; 533 534 if (!prop) 535 return -EINVAL; 536 if (!prop->value) 537 return -ENODATA; 538 539 p = prop->value; 540 end = p + prop->length; 541 542 for (i = 0; p < end; i++, p += l) { 543 l = strnlen(p, end - p) + 1; 544 if (p + l > end) 545 return -EILSEQ; 546 pr_debug("comparing %s with %s\n", string, p); 547 if (strcmp(string, p) == 0) 548 return i; /* Found it; return index */ 549 } 550 return -ENODATA; 551 } 552 EXPORT_SYMBOL_GPL(of_property_match_string); 553 554 /** 555 * of_property_read_string_helper() - Utility helper for parsing string properties 556 * @np: device node from which the property value is to be read. 557 * @propname: name of the property to be searched. 558 * @out_strs: output array of string pointers. 559 * @sz: number of array elements to read. 560 * @skip: Number of strings to skip over at beginning of list. 561 * 562 * Don't call this function directly. It is a utility helper for the 563 * of_property_read_string*() family of functions. 564 */ 565 int of_property_read_string_helper(const struct device_node *np, 566 const char *propname, const char **out_strs, 567 size_t sz, int skip) 568 { 569 const struct property *prop = of_find_property(np, propname, NULL); 570 int l = 0, i = 0; 571 const char *p, *end; 572 573 if (!prop) 574 return -EINVAL; 575 if (!prop->value) 576 return -ENODATA; 577 p = prop->value; 578 end = p + prop->length; 579 580 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) { 581 l = strnlen(p, end - p) + 1; 582 if (p + l > end) 583 return -EILSEQ; 584 if (out_strs && i >= skip) 585 *out_strs++ = p; 586 } 587 i -= skip; 588 return i <= 0 ? -ENODATA : i; 589 } 590 EXPORT_SYMBOL_GPL(of_property_read_string_helper); 591 592 const __be32 *of_prop_next_u32(const struct property *prop, const __be32 *cur, 593 u32 *pu) 594 { 595 const void *curv = cur; 596 597 if (!prop) 598 return NULL; 599 600 if (!cur) { 601 curv = prop->value; 602 goto out_val; 603 } 604 605 curv += sizeof(*cur); 606 if (curv >= prop->value + prop->length) 607 return NULL; 608 609 out_val: 610 *pu = be32_to_cpup(curv); 611 return curv; 612 } 613 EXPORT_SYMBOL_GPL(of_prop_next_u32); 614 615 const char *of_prop_next_string(const struct property *prop, const char *cur) 616 { 617 const void *curv = cur; 618 619 if (!prop) 620 return NULL; 621 622 if (!cur) 623 return prop->value; 624 625 curv += strlen(cur) + 1; 626 if (curv >= prop->value + prop->length) 627 return NULL; 628 629 return curv; 630 } 631 EXPORT_SYMBOL_GPL(of_prop_next_string); 632 633 /** 634 * of_graph_parse_endpoint() - parse common endpoint node properties 635 * @node: pointer to endpoint device_node 636 * @endpoint: pointer to the OF endpoint data structure 637 * 638 * The caller should hold a reference to @node. 639 */ 640 int of_graph_parse_endpoint(const struct device_node *node, 641 struct of_endpoint *endpoint) 642 { 643 struct device_node *port_node __free(device_node) = 644 of_get_parent(node); 645 646 WARN_ONCE(!port_node, "%s(): endpoint %pOF has no parent node\n", 647 __func__, node); 648 649 memset(endpoint, 0, sizeof(*endpoint)); 650 651 endpoint->local_node = node; 652 /* 653 * It doesn't matter whether the two calls below succeed. 654 * If they don't then the default value 0 is used. 655 */ 656 of_property_read_u32(port_node, "reg", &endpoint->port); 657 of_property_read_u32(node, "reg", &endpoint->id); 658 659 return 0; 660 } 661 EXPORT_SYMBOL(of_graph_parse_endpoint); 662 663 /** 664 * of_graph_get_port_by_id() - get the port matching a given id 665 * @parent: pointer to the parent device node 666 * @id: id of the port 667 * 668 * Return: A 'port' node pointer with refcount incremented. The caller 669 * has to use of_node_put() on it when done. 670 */ 671 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id) 672 { 673 struct device_node *node __free(device_node) = of_get_child_by_name(parent, "ports"); 674 675 if (node) 676 parent = node; 677 678 for_each_child_of_node_scoped(parent, port) { 679 u32 port_id = 0; 680 681 if (!of_node_name_eq(port, "port")) 682 continue; 683 of_property_read_u32(port, "reg", &port_id); 684 if (id == port_id) 685 return_ptr(port); 686 } 687 688 return NULL; 689 } 690 EXPORT_SYMBOL(of_graph_get_port_by_id); 691 692 /** 693 * of_graph_get_next_port() - get next port node. 694 * @parent: pointer to the parent device node, or parent ports node 695 * @prev: previous port node, or NULL to get first 696 * 697 * Parent device node can be used as @parent whether device node has ports node 698 * or not. It will work same as ports@0 node. 699 * 700 * Return: A 'port' node pointer with refcount incremented. Refcount 701 * of the passed @prev node is decremented. 702 */ 703 struct device_node *of_graph_get_next_port(const struct device_node *parent, 704 struct device_node *prev) 705 { 706 if (!parent) 707 return NULL; 708 709 if (!prev) { 710 struct device_node *node __free(device_node) = 711 of_get_child_by_name(parent, "ports"); 712 713 if (node) 714 parent = node; 715 716 return of_get_child_by_name(parent, "port"); 717 } 718 719 do { 720 prev = of_get_next_child(parent, prev); 721 if (!prev) 722 break; 723 } while (!of_node_name_eq(prev, "port")); 724 725 return prev; 726 } 727 EXPORT_SYMBOL(of_graph_get_next_port); 728 729 /** 730 * of_graph_get_next_port_endpoint() - get next endpoint node in port. 731 * If it reached to end of the port, it will return NULL. 732 * @port: pointer to the target port node 733 * @prev: previous endpoint node, or NULL to get first 734 * 735 * Return: An 'endpoint' node pointer with refcount incremented. Refcount 736 * of the passed @prev node is decremented. 737 */ 738 struct device_node *of_graph_get_next_port_endpoint(const struct device_node *port, 739 struct device_node *prev) 740 { 741 while (1) { 742 prev = of_get_next_child(port, prev); 743 if (!prev) 744 break; 745 if (WARN(!of_node_name_eq(prev, "endpoint"), 746 "non endpoint node is used (%pOF)", prev)) 747 continue; 748 749 break; 750 } 751 752 return prev; 753 } 754 EXPORT_SYMBOL(of_graph_get_next_port_endpoint); 755 756 /** 757 * of_graph_get_next_endpoint() - get next endpoint node 758 * @parent: pointer to the parent device node 759 * @prev: previous endpoint node, or NULL to get first 760 * 761 * Return: An 'endpoint' node pointer with refcount incremented. Refcount 762 * of the passed @prev node is decremented. 763 */ 764 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent, 765 struct device_node *prev) 766 { 767 struct device_node *endpoint; 768 struct device_node *port; 769 770 if (!parent) 771 return NULL; 772 773 /* 774 * Start by locating the port node. If no previous endpoint is specified 775 * search for the first port node, otherwise get the previous endpoint 776 * parent port node. 777 */ 778 if (!prev) { 779 port = of_graph_get_next_port(parent, NULL); 780 if (!port) { 781 pr_debug("graph: no port node found in %pOF\n", parent); 782 return NULL; 783 } 784 } else { 785 port = of_get_parent(prev); 786 if (WARN_ONCE(!port, "%s(): endpoint %pOF has no parent node\n", 787 __func__, prev)) 788 return NULL; 789 } 790 791 while (1) { 792 /* 793 * Now that we have a port node, get the next endpoint by 794 * getting the next child. If the previous endpoint is NULL this 795 * will return the first child. 796 */ 797 endpoint = of_graph_get_next_port_endpoint(port, prev); 798 if (endpoint) { 799 of_node_put(port); 800 return endpoint; 801 } 802 803 /* No more endpoints under this port, try the next one. */ 804 prev = NULL; 805 806 port = of_graph_get_next_port(parent, port); 807 if (!port) 808 return NULL; 809 } 810 } 811 EXPORT_SYMBOL(of_graph_get_next_endpoint); 812 813 /** 814 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers 815 * @parent: pointer to the parent device node 816 * @port_reg: identifier (value of reg property) of the parent port node 817 * @reg: identifier (value of reg property) of the endpoint node 818 * 819 * Return: An 'endpoint' node pointer which is identified by reg and at the same 820 * is the child of a port node identified by port_reg. reg and port_reg are 821 * ignored when they are -1. Use of_node_put() on the pointer when done. 822 */ 823 struct device_node *of_graph_get_endpoint_by_regs( 824 const struct device_node *parent, int port_reg, int reg) 825 { 826 struct of_endpoint endpoint; 827 struct device_node *node = NULL; 828 829 for_each_endpoint_of_node(parent, node) { 830 of_graph_parse_endpoint(node, &endpoint); 831 if (((port_reg == -1) || (endpoint.port == port_reg)) && 832 ((reg == -1) || (endpoint.id == reg))) 833 return node; 834 } 835 836 return NULL; 837 } 838 EXPORT_SYMBOL(of_graph_get_endpoint_by_regs); 839 840 /** 841 * of_graph_get_remote_endpoint() - get remote endpoint node 842 * @node: pointer to a local endpoint device_node 843 * 844 * Return: Remote endpoint node associated with remote endpoint node linked 845 * to @node. Use of_node_put() on it when done. 846 */ 847 struct device_node *of_graph_get_remote_endpoint(const struct device_node *node) 848 { 849 /* Get remote endpoint node. */ 850 return of_parse_phandle(node, "remote-endpoint", 0); 851 } 852 EXPORT_SYMBOL(of_graph_get_remote_endpoint); 853 854 /** 855 * of_graph_get_port_parent() - get port's parent node 856 * @node: pointer to a local endpoint device_node 857 * 858 * Return: device node associated with endpoint node linked 859 * to @node. Use of_node_put() on it when done. 860 */ 861 struct device_node *of_graph_get_port_parent(struct device_node *node) 862 { 863 unsigned int depth; 864 865 if (!node) 866 return NULL; 867 868 /* 869 * Preserve usecount for passed in node as of_get_next_parent() 870 * will do of_node_put() on it. 871 */ 872 of_node_get(node); 873 874 /* Walk 3 levels up only if there is 'ports' node. */ 875 for (depth = 3; depth && node; depth--) { 876 node = of_get_next_parent(node); 877 if (depth == 2 && !of_node_name_eq(node, "ports") && 878 !of_node_name_eq(node, "in-ports") && 879 !of_node_name_eq(node, "out-ports")) 880 break; 881 } 882 return node; 883 } 884 EXPORT_SYMBOL(of_graph_get_port_parent); 885 886 /** 887 * of_graph_get_remote_port_parent() - get remote port's parent node 888 * @node: pointer to a local endpoint device_node 889 * 890 * Return: Remote device node associated with remote endpoint node linked 891 * to @node. Use of_node_put() on it when done. 892 */ 893 struct device_node *of_graph_get_remote_port_parent( 894 const struct device_node *node) 895 { 896 /* Get remote endpoint node. */ 897 struct device_node *np __free(device_node) = 898 of_graph_get_remote_endpoint(node); 899 900 return of_graph_get_port_parent(np); 901 } 902 EXPORT_SYMBOL(of_graph_get_remote_port_parent); 903 904 /** 905 * of_graph_get_remote_port() - get remote port node 906 * @node: pointer to a local endpoint device_node 907 * 908 * Return: Remote port node associated with remote endpoint node linked 909 * to @node. Use of_node_put() on it when done. 910 */ 911 struct device_node *of_graph_get_remote_port(const struct device_node *node) 912 { 913 struct device_node *np; 914 915 /* Get remote endpoint node. */ 916 np = of_graph_get_remote_endpoint(node); 917 if (!np) 918 return NULL; 919 return of_get_next_parent(np); 920 } 921 EXPORT_SYMBOL(of_graph_get_remote_port); 922 923 /** 924 * of_graph_get_endpoint_count() - get the number of endpoints in a device node 925 * @np: parent device node containing ports and endpoints 926 * 927 * Return: count of endpoint of this device node 928 */ 929 unsigned int of_graph_get_endpoint_count(const struct device_node *np) 930 { 931 struct device_node *endpoint; 932 unsigned int num = 0; 933 934 for_each_endpoint_of_node(np, endpoint) 935 num++; 936 937 return num; 938 } 939 EXPORT_SYMBOL(of_graph_get_endpoint_count); 940 941 /** 942 * of_graph_get_port_count() - get the number of port in a device or ports node 943 * @np: pointer to the device or ports node 944 * 945 * Return: count of port of this device or ports node 946 */ 947 unsigned int of_graph_get_port_count(struct device_node *np) 948 { 949 unsigned int num = 0; 950 951 for_each_of_graph_port(np, port) 952 num++; 953 954 return num; 955 } 956 EXPORT_SYMBOL(of_graph_get_port_count); 957 958 /** 959 * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint 960 * @node: pointer to parent device_node containing graph port/endpoint 961 * @port: identifier (value of reg property) of the parent port node 962 * @endpoint: identifier (value of reg property) of the endpoint node 963 * 964 * Return: Remote device node associated with remote endpoint node linked 965 * to @node. Use of_node_put() on it when done. 966 */ 967 struct device_node *of_graph_get_remote_node(const struct device_node *node, 968 u32 port, u32 endpoint) 969 { 970 struct device_node *endpoint_node, *remote; 971 972 endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint); 973 if (!endpoint_node) { 974 pr_debug("no valid endpoint (%d, %d) for node %pOF\n", 975 port, endpoint, node); 976 return NULL; 977 } 978 979 remote = of_graph_get_remote_port_parent(endpoint_node); 980 of_node_put(endpoint_node); 981 if (!remote) { 982 pr_debug("no valid remote node\n"); 983 return NULL; 984 } 985 986 if (!of_device_is_available(remote)) { 987 pr_debug("not available for remote node\n"); 988 of_node_put(remote); 989 return NULL; 990 } 991 992 return remote; 993 } 994 EXPORT_SYMBOL(of_graph_get_remote_node); 995 996 static struct fwnode_handle *of_fwnode_get(struct fwnode_handle *fwnode) 997 { 998 return of_fwnode_handle(of_node_get(to_of_node(fwnode))); 999 } 1000 1001 static void of_fwnode_put(struct fwnode_handle *fwnode) 1002 { 1003 of_node_put(to_of_node(fwnode)); 1004 } 1005 1006 static bool of_fwnode_device_is_available(const struct fwnode_handle *fwnode) 1007 { 1008 return of_device_is_available(to_of_node(fwnode)); 1009 } 1010 1011 static bool of_fwnode_device_dma_supported(const struct fwnode_handle *fwnode) 1012 { 1013 return true; 1014 } 1015 1016 static enum dev_dma_attr 1017 of_fwnode_device_get_dma_attr(const struct fwnode_handle *fwnode) 1018 { 1019 if (of_dma_is_coherent(to_of_node(fwnode))) 1020 return DEV_DMA_COHERENT; 1021 else 1022 return DEV_DMA_NON_COHERENT; 1023 } 1024 1025 static bool of_fwnode_property_present(const struct fwnode_handle *fwnode, 1026 const char *propname) 1027 { 1028 return of_property_present(to_of_node(fwnode), propname); 1029 } 1030 1031 static bool of_fwnode_property_read_bool(const struct fwnode_handle *fwnode, 1032 const char *propname) 1033 { 1034 return of_property_read_bool(to_of_node(fwnode), propname); 1035 } 1036 1037 static int of_fwnode_property_read_int_array(const struct fwnode_handle *fwnode, 1038 const char *propname, 1039 unsigned int elem_size, void *val, 1040 size_t nval) 1041 { 1042 const struct device_node *node = to_of_node(fwnode); 1043 1044 if (!val) 1045 return of_property_count_elems_of_size(node, propname, 1046 elem_size); 1047 1048 switch (elem_size) { 1049 case sizeof(u8): 1050 return of_property_read_u8_array(node, propname, val, nval); 1051 case sizeof(u16): 1052 return of_property_read_u16_array(node, propname, val, nval); 1053 case sizeof(u32): 1054 return of_property_read_u32_array(node, propname, val, nval); 1055 case sizeof(u64): 1056 return of_property_read_u64_array(node, propname, val, nval); 1057 } 1058 1059 return -ENXIO; 1060 } 1061 1062 static int 1063 of_fwnode_property_read_string_array(const struct fwnode_handle *fwnode, 1064 const char *propname, const char **val, 1065 size_t nval) 1066 { 1067 const struct device_node *node = to_of_node(fwnode); 1068 1069 return val ? 1070 of_property_read_string_array(node, propname, val, nval) : 1071 of_property_count_strings(node, propname); 1072 } 1073 1074 static const char *of_fwnode_get_name(const struct fwnode_handle *fwnode) 1075 { 1076 return kbasename(to_of_node(fwnode)->full_name); 1077 } 1078 1079 static const char *of_fwnode_get_name_prefix(const struct fwnode_handle *fwnode) 1080 { 1081 /* Root needs no prefix here (its name is "/"). */ 1082 if (!to_of_node(fwnode)->parent) 1083 return ""; 1084 1085 return "/"; 1086 } 1087 1088 static struct fwnode_handle * 1089 of_fwnode_get_parent(const struct fwnode_handle *fwnode) 1090 { 1091 return of_fwnode_handle(of_get_parent(to_of_node(fwnode))); 1092 } 1093 1094 static struct fwnode_handle * 1095 of_fwnode_get_next_child_node(const struct fwnode_handle *fwnode, 1096 struct fwnode_handle *child) 1097 { 1098 return of_fwnode_handle(of_get_next_available_child(to_of_node(fwnode), 1099 to_of_node(child))); 1100 } 1101 1102 static struct fwnode_handle * 1103 of_fwnode_get_named_child_node(const struct fwnode_handle *fwnode, 1104 const char *childname) 1105 { 1106 const struct device_node *node = to_of_node(fwnode); 1107 struct device_node *child; 1108 1109 for_each_available_child_of_node(node, child) 1110 if (of_node_name_eq(child, childname)) 1111 return of_fwnode_handle(child); 1112 1113 return NULL; 1114 } 1115 1116 static int 1117 of_fwnode_get_reference_args(const struct fwnode_handle *fwnode, 1118 const char *prop, const char *nargs_prop, 1119 unsigned int nargs, unsigned int index, 1120 struct fwnode_reference_args *args) 1121 { 1122 struct of_phandle_args of_args; 1123 unsigned int i; 1124 int ret; 1125 1126 if (nargs_prop) 1127 ret = of_parse_phandle_with_args(to_of_node(fwnode), prop, 1128 nargs_prop, index, &of_args); 1129 else 1130 ret = of_parse_phandle_with_fixed_args(to_of_node(fwnode), prop, 1131 nargs, index, &of_args); 1132 if (ret < 0) 1133 return ret; 1134 if (!args) { 1135 of_node_put(of_args.np); 1136 return 0; 1137 } 1138 1139 args->nargs = of_args.args_count; 1140 args->fwnode = of_fwnode_handle(of_args.np); 1141 1142 for (i = 0; i < NR_FWNODE_REFERENCE_ARGS; i++) 1143 args->args[i] = i < of_args.args_count ? of_args.args[i] : 0; 1144 1145 return 0; 1146 } 1147 1148 static struct fwnode_handle * 1149 of_fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode, 1150 struct fwnode_handle *prev) 1151 { 1152 return of_fwnode_handle(of_graph_get_next_endpoint(to_of_node(fwnode), 1153 to_of_node(prev))); 1154 } 1155 1156 static struct fwnode_handle * 1157 of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode) 1158 { 1159 return of_fwnode_handle( 1160 of_graph_get_remote_endpoint(to_of_node(fwnode))); 1161 } 1162 1163 static struct fwnode_handle * 1164 of_fwnode_graph_get_port_parent(struct fwnode_handle *fwnode) 1165 { 1166 struct device_node *np; 1167 1168 /* Get the parent of the port */ 1169 np = of_get_parent(to_of_node(fwnode)); 1170 if (!np) 1171 return NULL; 1172 1173 /* Is this the "ports" node? If not, it's the port parent. */ 1174 if (!of_node_name_eq(np, "ports")) 1175 return of_fwnode_handle(np); 1176 1177 return of_fwnode_handle(of_get_next_parent(np)); 1178 } 1179 1180 static int of_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode, 1181 struct fwnode_endpoint *endpoint) 1182 { 1183 const struct device_node *node = to_of_node(fwnode); 1184 struct device_node *port_node __free(device_node) = of_get_parent(node); 1185 1186 endpoint->local_fwnode = fwnode; 1187 1188 of_property_read_u32(port_node, "reg", &endpoint->port); 1189 of_property_read_u32(node, "reg", &endpoint->id); 1190 1191 return 0; 1192 } 1193 1194 static const void * 1195 of_fwnode_device_get_match_data(const struct fwnode_handle *fwnode, 1196 const struct device *dev) 1197 { 1198 return of_device_get_match_data(dev); 1199 } 1200 1201 static void of_link_to_phandle(struct device_node *con_np, 1202 struct device_node *sup_np, 1203 u8 flags) 1204 { 1205 struct device_node *tmp_np __free(device_node) = of_node_get(sup_np); 1206 1207 /* Check that sup_np and its ancestors are available. */ 1208 while (tmp_np) { 1209 if (of_fwnode_handle(tmp_np)->dev) 1210 break; 1211 1212 if (!of_device_is_available(tmp_np)) 1213 return; 1214 1215 tmp_np = of_get_next_parent(tmp_np); 1216 } 1217 1218 fwnode_link_add(of_fwnode_handle(con_np), of_fwnode_handle(sup_np), flags); 1219 } 1220 1221 /** 1222 * parse_prop_cells - Property parsing function for suppliers 1223 * 1224 * @np: Pointer to device tree node containing a list 1225 * @prop_name: Name of property to be parsed. Expected to hold phandle values 1226 * @index: For properties holding a list of phandles, this is the index 1227 * into the list. 1228 * @list_name: Property name that is known to contain list of phandle(s) to 1229 * supplier(s) 1230 * @cells_name: property name that specifies phandles' arguments count 1231 * 1232 * This is a helper function to parse properties that have a known fixed name 1233 * and are a list of phandles and phandle arguments. 1234 * 1235 * Returns: 1236 * - phandle node pointer with refcount incremented. Caller must of_node_put() 1237 * on it when done. 1238 * - NULL if no phandle found at index 1239 */ 1240 static struct device_node *parse_prop_cells(struct device_node *np, 1241 const char *prop_name, int index, 1242 const char *list_name, 1243 const char *cells_name) 1244 { 1245 struct of_phandle_args sup_args; 1246 1247 if (strcmp(prop_name, list_name)) 1248 return NULL; 1249 1250 if (__of_parse_phandle_with_args(np, list_name, cells_name, 0, index, 1251 &sup_args)) 1252 return NULL; 1253 1254 return sup_args.np; 1255 } 1256 1257 #define DEFINE_SIMPLE_PROP(fname, name, cells) \ 1258 static struct device_node *parse_##fname(struct device_node *np, \ 1259 const char *prop_name, int index) \ 1260 { \ 1261 return parse_prop_cells(np, prop_name, index, name, cells); \ 1262 } 1263 1264 static int strcmp_suffix(const char *str, const char *suffix) 1265 { 1266 unsigned int len, suffix_len; 1267 1268 len = strlen(str); 1269 suffix_len = strlen(suffix); 1270 if (len <= suffix_len) 1271 return -1; 1272 return strcmp(str + len - suffix_len, suffix); 1273 } 1274 1275 /** 1276 * parse_suffix_prop_cells - Suffix property parsing function for suppliers 1277 * 1278 * @np: Pointer to device tree node containing a list 1279 * @prop_name: Name of property to be parsed. Expected to hold phandle values 1280 * @index: For properties holding a list of phandles, this is the index 1281 * into the list. 1282 * @suffix: Property suffix that is known to contain list of phandle(s) to 1283 * supplier(s) 1284 * @cells_name: property name that specifies phandles' arguments count 1285 * 1286 * This is a helper function to parse properties that have a known fixed suffix 1287 * and are a list of phandles and phandle arguments. 1288 * 1289 * Returns: 1290 * - phandle node pointer with refcount incremented. Caller must of_node_put() 1291 * on it when done. 1292 * - NULL if no phandle found at index 1293 */ 1294 static struct device_node *parse_suffix_prop_cells(struct device_node *np, 1295 const char *prop_name, int index, 1296 const char *suffix, 1297 const char *cells_name) 1298 { 1299 struct of_phandle_args sup_args; 1300 1301 if (strcmp_suffix(prop_name, suffix)) 1302 return NULL; 1303 1304 if (of_parse_phandle_with_args(np, prop_name, cells_name, index, 1305 &sup_args)) 1306 return NULL; 1307 1308 return sup_args.np; 1309 } 1310 1311 #define DEFINE_SUFFIX_PROP(fname, suffix, cells) \ 1312 static struct device_node *parse_##fname(struct device_node *np, \ 1313 const char *prop_name, int index) \ 1314 { \ 1315 return parse_suffix_prop_cells(np, prop_name, index, suffix, cells); \ 1316 } 1317 1318 /** 1319 * struct supplier_bindings - Property parsing functions for suppliers 1320 * 1321 * @parse_prop: function name 1322 * parse_prop() finds the node corresponding to a supplier phandle 1323 * parse_prop.np: Pointer to device node holding supplier phandle property 1324 * parse_prop.prop_name: Name of property holding a phandle value 1325 * parse_prop.index: For properties holding a list of phandles, this is the 1326 * index into the list 1327 * @get_con_dev: If the consumer node containing the property is never converted 1328 * to a struct device, implement this ops so fw_devlink can use it 1329 * to find the true consumer. 1330 * @optional: Describes whether a supplier is mandatory or not 1331 * @fwlink_flags: Optional fwnode link flags to use when creating a fwnode link 1332 * for this property. 1333 * 1334 * Returns: 1335 * parse_prop() return values are 1336 * - phandle node pointer with refcount incremented. Caller must of_node_put() 1337 * on it when done. 1338 * - NULL if no phandle found at index 1339 */ 1340 struct supplier_bindings { 1341 struct device_node *(*parse_prop)(struct device_node *np, 1342 const char *prop_name, int index); 1343 struct device_node *(*get_con_dev)(struct device_node *np); 1344 bool optional; 1345 u8 fwlink_flags; 1346 }; 1347 1348 DEFINE_SIMPLE_PROP(clocks, "clocks", "#clock-cells") 1349 DEFINE_SIMPLE_PROP(interconnects, "interconnects", "#interconnect-cells") 1350 DEFINE_SIMPLE_PROP(iommus, "iommus", "#iommu-cells") 1351 DEFINE_SIMPLE_PROP(mboxes, "mboxes", "#mbox-cells") 1352 DEFINE_SIMPLE_PROP(io_channels, "io-channels", "#io-channel-cells") 1353 DEFINE_SIMPLE_PROP(io_backends, "io-backends", "#io-backend-cells") 1354 DEFINE_SIMPLE_PROP(dmas, "dmas", "#dma-cells") 1355 DEFINE_SIMPLE_PROP(power_domains, "power-domains", "#power-domain-cells") 1356 DEFINE_SIMPLE_PROP(hwlocks, "hwlocks", "#hwlock-cells") 1357 DEFINE_SIMPLE_PROP(extcon, "extcon", NULL) 1358 DEFINE_SIMPLE_PROP(nvmem_cells, "nvmem-cells", "#nvmem-cell-cells") 1359 DEFINE_SIMPLE_PROP(phys, "phys", "#phy-cells") 1360 DEFINE_SIMPLE_PROP(wakeup_parent, "wakeup-parent", NULL) 1361 DEFINE_SIMPLE_PROP(pinctrl0, "pinctrl-0", NULL) 1362 DEFINE_SIMPLE_PROP(pinctrl1, "pinctrl-1", NULL) 1363 DEFINE_SIMPLE_PROP(pinctrl2, "pinctrl-2", NULL) 1364 DEFINE_SIMPLE_PROP(pinctrl3, "pinctrl-3", NULL) 1365 DEFINE_SIMPLE_PROP(pinctrl4, "pinctrl-4", NULL) 1366 DEFINE_SIMPLE_PROP(pinctrl5, "pinctrl-5", NULL) 1367 DEFINE_SIMPLE_PROP(pinctrl6, "pinctrl-6", NULL) 1368 DEFINE_SIMPLE_PROP(pinctrl7, "pinctrl-7", NULL) 1369 DEFINE_SIMPLE_PROP(pinctrl8, "pinctrl-8", NULL) 1370 DEFINE_SIMPLE_PROP(pwms, "pwms", "#pwm-cells") 1371 DEFINE_SIMPLE_PROP(resets, "resets", "#reset-cells") 1372 DEFINE_SIMPLE_PROP(leds, "leds", NULL) 1373 DEFINE_SIMPLE_PROP(backlight, "backlight", NULL) 1374 DEFINE_SIMPLE_PROP(panel, "panel", NULL) 1375 DEFINE_SIMPLE_PROP(msi_parent, "msi-parent", "#msi-cells") 1376 DEFINE_SIMPLE_PROP(post_init_providers, "post-init-providers", NULL) 1377 DEFINE_SIMPLE_PROP(access_controllers, "access-controllers", "#access-controller-cells") 1378 DEFINE_SIMPLE_PROP(pses, "pses", "#pse-cells") 1379 DEFINE_SIMPLE_PROP(power_supplies, "power-supplies", NULL) 1380 DEFINE_SUFFIX_PROP(regulators, "-supply", NULL) 1381 DEFINE_SUFFIX_PROP(gpio, "-gpio", "#gpio-cells") 1382 1383 static struct device_node *parse_gpios(struct device_node *np, 1384 const char *prop_name, int index) 1385 { 1386 if (!strcmp_suffix(prop_name, ",nr-gpios")) 1387 return NULL; 1388 1389 return parse_suffix_prop_cells(np, prop_name, index, "-gpios", 1390 "#gpio-cells"); 1391 } 1392 1393 static struct device_node *parse_iommu_maps(struct device_node *np, 1394 const char *prop_name, int index) 1395 { 1396 if (strcmp(prop_name, "iommu-map")) 1397 return NULL; 1398 1399 return of_parse_phandle(np, prop_name, (index * 4) + 1); 1400 } 1401 1402 static struct device_node *parse_gpio_compat(struct device_node *np, 1403 const char *prop_name, int index) 1404 { 1405 struct of_phandle_args sup_args; 1406 1407 if (strcmp(prop_name, "gpio") && strcmp(prop_name, "gpios")) 1408 return NULL; 1409 1410 /* 1411 * Ignore node with gpio-hog property since its gpios are all provided 1412 * by its parent. 1413 */ 1414 if (of_property_read_bool(np, "gpio-hog")) 1415 return NULL; 1416 1417 if (of_parse_phandle_with_args(np, prop_name, "#gpio-cells", index, 1418 &sup_args)) 1419 return NULL; 1420 1421 return sup_args.np; 1422 } 1423 1424 static struct device_node *parse_interrupts(struct device_node *np, 1425 const char *prop_name, int index) 1426 { 1427 struct of_phandle_args sup_args; 1428 1429 if (!IS_ENABLED(CONFIG_OF_IRQ) || IS_ENABLED(CONFIG_PPC)) 1430 return NULL; 1431 1432 if (strcmp(prop_name, "interrupts") && 1433 strcmp(prop_name, "interrupts-extended")) 1434 return NULL; 1435 1436 return of_irq_parse_one(np, index, &sup_args) ? NULL : sup_args.np; 1437 } 1438 1439 static struct device_node *parse_interrupt_map(struct device_node *np, 1440 const char *prop_name, int index) 1441 { 1442 const __be32 *imap, *imap_end; 1443 struct of_phandle_args sup_args; 1444 u32 addrcells, intcells; 1445 int imaplen; 1446 1447 if (!IS_ENABLED(CONFIG_OF_IRQ)) 1448 return NULL; 1449 1450 if (strcmp(prop_name, "interrupt-map")) 1451 return NULL; 1452 1453 if (of_property_read_u32(np, "#interrupt-cells", &intcells)) 1454 return NULL; 1455 addrcells = of_bus_n_addr_cells(np); 1456 1457 imap = of_get_property(np, "interrupt-map", &imaplen); 1458 if (!imap) 1459 return NULL; 1460 imaplen /= sizeof(*imap); 1461 1462 imap_end = imap + imaplen; 1463 1464 for (int i = 0; imap + addrcells + intcells + 1 < imap_end; i++) { 1465 imap += addrcells + intcells; 1466 1467 imap = of_irq_parse_imap_parent(imap, imap_end - imap, &sup_args); 1468 if (!imap) 1469 return NULL; 1470 1471 if (i == index) 1472 return sup_args.np; 1473 1474 of_node_put(sup_args.np); 1475 } 1476 1477 return NULL; 1478 } 1479 1480 static struct device_node *parse_remote_endpoint(struct device_node *np, 1481 const char *prop_name, 1482 int index) 1483 { 1484 /* Return NULL for index > 0 to signify end of remote-endpoints. */ 1485 if (index > 0 || strcmp(prop_name, "remote-endpoint")) 1486 return NULL; 1487 1488 return of_graph_get_remote_port_parent(np); 1489 } 1490 1491 static const struct supplier_bindings of_supplier_bindings[] = { 1492 { .parse_prop = parse_clocks, }, 1493 { .parse_prop = parse_interconnects, }, 1494 { .parse_prop = parse_iommus, .optional = true, }, 1495 { .parse_prop = parse_iommu_maps, .optional = true, }, 1496 { .parse_prop = parse_mboxes, }, 1497 { .parse_prop = parse_io_channels, }, 1498 { .parse_prop = parse_io_backends, }, 1499 { .parse_prop = parse_dmas, .optional = true, }, 1500 { .parse_prop = parse_power_domains, }, 1501 { .parse_prop = parse_hwlocks, }, 1502 { .parse_prop = parse_extcon, }, 1503 { .parse_prop = parse_nvmem_cells, }, 1504 { .parse_prop = parse_phys, }, 1505 { .parse_prop = parse_wakeup_parent, }, 1506 { .parse_prop = parse_pinctrl0, }, 1507 { .parse_prop = parse_pinctrl1, }, 1508 { .parse_prop = parse_pinctrl2, }, 1509 { .parse_prop = parse_pinctrl3, }, 1510 { .parse_prop = parse_pinctrl4, }, 1511 { .parse_prop = parse_pinctrl5, }, 1512 { .parse_prop = parse_pinctrl6, }, 1513 { .parse_prop = parse_pinctrl7, }, 1514 { .parse_prop = parse_pinctrl8, }, 1515 { 1516 .parse_prop = parse_remote_endpoint, 1517 .get_con_dev = of_graph_get_port_parent, 1518 }, 1519 { .parse_prop = parse_pwms, }, 1520 { .parse_prop = parse_resets, }, 1521 { .parse_prop = parse_leds, }, 1522 { .parse_prop = parse_backlight, }, 1523 { .parse_prop = parse_panel, }, 1524 { .parse_prop = parse_msi_parent, }, 1525 { .parse_prop = parse_pses, }, 1526 { .parse_prop = parse_power_supplies, }, 1527 { .parse_prop = parse_gpio_compat, }, 1528 { .parse_prop = parse_interrupts, }, 1529 { .parse_prop = parse_interrupt_map, }, 1530 { .parse_prop = parse_access_controllers, }, 1531 { .parse_prop = parse_regulators, }, 1532 { .parse_prop = parse_gpio, }, 1533 { .parse_prop = parse_gpios, }, 1534 { 1535 .parse_prop = parse_post_init_providers, 1536 .fwlink_flags = FWLINK_FLAG_IGNORE, 1537 }, 1538 {} 1539 }; 1540 1541 /** 1542 * of_link_property - Create device links to suppliers listed in a property 1543 * @con_np: The consumer device tree node which contains the property 1544 * @prop_name: Name of property to be parsed 1545 * 1546 * This function checks if the property @prop_name that is present in the 1547 * @con_np device tree node is one of the known common device tree bindings 1548 * that list phandles to suppliers. If @prop_name isn't one, this function 1549 * doesn't do anything. 1550 * 1551 * If @prop_name is one, this function attempts to create fwnode links from the 1552 * consumer device tree node @con_np to all the suppliers device tree nodes 1553 * listed in @prop_name. 1554 * 1555 * Any failed attempt to create a fwnode link will NOT result in an immediate 1556 * return. of_link_property() must create links to all the available supplier 1557 * device tree nodes even when attempts to create a link to one or more 1558 * suppliers fail. 1559 */ 1560 static int of_link_property(struct device_node *con_np, const char *prop_name) 1561 { 1562 struct device_node *phandle; 1563 const struct supplier_bindings *s = of_supplier_bindings; 1564 unsigned int i = 0; 1565 bool matched = false; 1566 1567 /* Do not stop at first failed link, link all available suppliers. */ 1568 while (!matched && s->parse_prop) { 1569 if (s->optional && !fw_devlink_is_strict()) { 1570 s++; 1571 continue; 1572 } 1573 1574 while ((phandle = s->parse_prop(con_np, prop_name, i))) { 1575 struct device_node *con_dev_np __free(device_node) = 1576 s->get_con_dev ? s->get_con_dev(con_np) : of_node_get(con_np); 1577 1578 matched = true; 1579 i++; 1580 of_link_to_phandle(con_dev_np, phandle, s->fwlink_flags); 1581 of_node_put(phandle); 1582 } 1583 s++; 1584 } 1585 return 0; 1586 } 1587 1588 static void __iomem *of_fwnode_iomap(struct fwnode_handle *fwnode, int index) 1589 { 1590 #ifdef CONFIG_OF_ADDRESS 1591 return of_iomap(to_of_node(fwnode), index); 1592 #else 1593 return NULL; 1594 #endif 1595 } 1596 1597 static int of_fwnode_irq_get(const struct fwnode_handle *fwnode, 1598 unsigned int index) 1599 { 1600 return of_irq_get(to_of_node(fwnode), index); 1601 } 1602 1603 static int of_fwnode_add_links(struct fwnode_handle *fwnode) 1604 { 1605 const struct property *p; 1606 struct device_node *con_np = to_of_node(fwnode); 1607 1608 if (IS_ENABLED(CONFIG_X86)) 1609 return 0; 1610 1611 if (!con_np) 1612 return -EINVAL; 1613 1614 for_each_property_of_node(con_np, p) 1615 of_link_property(con_np, p->name); 1616 1617 return 0; 1618 } 1619 1620 const struct fwnode_operations of_fwnode_ops = { 1621 .get = of_fwnode_get, 1622 .put = of_fwnode_put, 1623 .device_is_available = of_fwnode_device_is_available, 1624 .device_get_match_data = of_fwnode_device_get_match_data, 1625 .device_dma_supported = of_fwnode_device_dma_supported, 1626 .device_get_dma_attr = of_fwnode_device_get_dma_attr, 1627 .property_present = of_fwnode_property_present, 1628 .property_read_bool = of_fwnode_property_read_bool, 1629 .property_read_int_array = of_fwnode_property_read_int_array, 1630 .property_read_string_array = of_fwnode_property_read_string_array, 1631 .get_name = of_fwnode_get_name, 1632 .get_name_prefix = of_fwnode_get_name_prefix, 1633 .get_parent = of_fwnode_get_parent, 1634 .get_next_child_node = of_fwnode_get_next_child_node, 1635 .get_named_child_node = of_fwnode_get_named_child_node, 1636 .get_reference_args = of_fwnode_get_reference_args, 1637 .graph_get_next_endpoint = of_fwnode_graph_get_next_endpoint, 1638 .graph_get_remote_endpoint = of_fwnode_graph_get_remote_endpoint, 1639 .graph_get_port_parent = of_fwnode_graph_get_port_parent, 1640 .graph_parse_endpoint = of_fwnode_graph_parse_endpoint, 1641 .iomap = of_fwnode_iomap, 1642 .irq_get = of_fwnode_irq_get, 1643 .add_links = of_fwnode_add_links, 1644 }; 1645 EXPORT_SYMBOL_GPL(of_fwnode_ops); 1646