xref: /linux/drivers/of/property.c (revision 79d2e1919a2728ef49d938eb20ebd5903c14dfb0)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * drivers/of/property.c - Procedures for accessing and interpreting
4  *			   Devicetree properties and graphs.
5  *
6  * Initially created by copying procedures from drivers/of/base.c. This
7  * file contains the OF property as well as the OF graph interface
8  * functions.
9  *
10  * Paul Mackerras	August 1996.
11  * Copyright (C) 1996-2005 Paul Mackerras.
12  *
13  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
14  *    {engebret|bergner}@us.ibm.com
15  *
16  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
17  *
18  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
19  *  Grant Likely.
20  */
21 
22 #define pr_fmt(fmt)	"OF: " fmt
23 
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_device.h>
27 #include <linux/of_graph.h>
28 #include <linux/of_irq.h>
29 #include <linux/string.h>
30 #include <linux/moduleparam.h>
31 
32 #include "of_private.h"
33 
34 /**
35  * of_graph_is_present() - check graph's presence
36  * @node: pointer to device_node containing graph port
37  *
38  * Return: True if @node has a port or ports (with a port) sub-node,
39  * false otherwise.
40  */
41 bool of_graph_is_present(const struct device_node *node)
42 {
43 	struct device_node *ports __free(device_node) = of_get_child_by_name(node, "ports");
44 
45 	if (ports)
46 		node = ports;
47 
48 	struct device_node *port __free(device_node) = of_get_child_by_name(node, "port");
49 
50 	return !!port;
51 }
52 EXPORT_SYMBOL(of_graph_is_present);
53 
54 /**
55  * of_property_count_elems_of_size - Count the number of elements in a property
56  *
57  * @np:		device node from which the property value is to be read.
58  * @propname:	name of the property to be searched.
59  * @elem_size:	size of the individual element
60  *
61  * Search for a property in a device node and count the number of elements of
62  * size elem_size in it.
63  *
64  * Return: The number of elements on sucess, -EINVAL if the property does not
65  * exist or its length does not match a multiple of elem_size and -ENODATA if
66  * the property does not have a value.
67  */
68 int of_property_count_elems_of_size(const struct device_node *np,
69 				const char *propname, int elem_size)
70 {
71 	const struct property *prop = of_find_property(np, propname, NULL);
72 
73 	if (!prop)
74 		return -EINVAL;
75 	if (!prop->value)
76 		return -ENODATA;
77 
78 	if (prop->length % elem_size != 0) {
79 		pr_err("size of %s in node %pOF is not a multiple of %d\n",
80 		       propname, np, elem_size);
81 		return -EINVAL;
82 	}
83 
84 	return prop->length / elem_size;
85 }
86 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
87 
88 /**
89  * of_find_property_value_of_size
90  *
91  * @np:		device node from which the property value is to be read.
92  * @propname:	name of the property to be searched.
93  * @min:	minimum allowed length of property value
94  * @max:	maximum allowed length of property value (0 means unlimited)
95  * @len:	if !=NULL, actual length is written to here
96  *
97  * Search for a property in a device node and valid the requested size.
98  *
99  * Return: The property value on success, -EINVAL if the property does not
100  * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
101  * property data is too small or too large.
102  *
103  */
104 static void *of_find_property_value_of_size(const struct device_node *np,
105 			const char *propname, u32 min, u32 max, size_t *len)
106 {
107 	const struct property *prop = of_find_property(np, propname, NULL);
108 
109 	if (!prop)
110 		return ERR_PTR(-EINVAL);
111 	if (!prop->value)
112 		return ERR_PTR(-ENODATA);
113 	if (prop->length < min)
114 		return ERR_PTR(-EOVERFLOW);
115 	if (max && prop->length > max)
116 		return ERR_PTR(-EOVERFLOW);
117 
118 	if (len)
119 		*len = prop->length;
120 
121 	return prop->value;
122 }
123 
124 /**
125  * of_property_read_u32_index - Find and read a u32 from a multi-value property.
126  *
127  * @np:		device node from which the property value is to be read.
128  * @propname:	name of the property to be searched.
129  * @index:	index of the u32 in the list of values
130  * @out_value:	pointer to return value, modified only if no error.
131  *
132  * Search for a property in a device node and read nth 32-bit value from
133  * it.
134  *
135  * Return: 0 on success, -EINVAL if the property does not exist,
136  * -ENODATA if property does not have a value, and -EOVERFLOW if the
137  * property data isn't large enough.
138  *
139  * The out_value is modified only if a valid u32 value can be decoded.
140  */
141 int of_property_read_u32_index(const struct device_node *np,
142 				       const char *propname,
143 				       u32 index, u32 *out_value)
144 {
145 	const u32 *val = of_find_property_value_of_size(np, propname,
146 					((index + 1) * sizeof(*out_value)),
147 					0,
148 					NULL);
149 
150 	if (IS_ERR(val))
151 		return PTR_ERR(val);
152 
153 	*out_value = be32_to_cpup(((__be32 *)val) + index);
154 	return 0;
155 }
156 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
157 
158 /**
159  * of_property_read_u64_index - Find and read a u64 from a multi-value property.
160  *
161  * @np:		device node from which the property value is to be read.
162  * @propname:	name of the property to be searched.
163  * @index:	index of the u64 in the list of values
164  * @out_value:	pointer to return value, modified only if no error.
165  *
166  * Search for a property in a device node and read nth 64-bit value from
167  * it.
168  *
169  * Return: 0 on success, -EINVAL if the property does not exist,
170  * -ENODATA if property does not have a value, and -EOVERFLOW if the
171  * property data isn't large enough.
172  *
173  * The out_value is modified only if a valid u64 value can be decoded.
174  */
175 int of_property_read_u64_index(const struct device_node *np,
176 				       const char *propname,
177 				       u32 index, u64 *out_value)
178 {
179 	const u64 *val = of_find_property_value_of_size(np, propname,
180 					((index + 1) * sizeof(*out_value)),
181 					0, NULL);
182 
183 	if (IS_ERR(val))
184 		return PTR_ERR(val);
185 
186 	*out_value = be64_to_cpup(((__be64 *)val) + index);
187 	return 0;
188 }
189 EXPORT_SYMBOL_GPL(of_property_read_u64_index);
190 
191 /**
192  * of_property_read_variable_u8_array - Find and read an array of u8 from a
193  * property, with bounds on the minimum and maximum array size.
194  *
195  * @np:		device node from which the property value is to be read.
196  * @propname:	name of the property to be searched.
197  * @out_values:	pointer to found values.
198  * @sz_min:	minimum number of array elements to read
199  * @sz_max:	maximum number of array elements to read, if zero there is no
200  *		upper limit on the number of elements in the dts entry but only
201  *		sz_min will be read.
202  *
203  * Search for a property in a device node and read 8-bit value(s) from
204  * it.
205  *
206  * dts entry of array should be like:
207  *  ``property = /bits/ 8 <0x50 0x60 0x70>;``
208  *
209  * Return: The number of elements read on success, -EINVAL if the property
210  * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
211  * if the property data is smaller than sz_min or longer than sz_max.
212  *
213  * The out_values is modified only if a valid u8 value can be decoded.
214  */
215 int of_property_read_variable_u8_array(const struct device_node *np,
216 					const char *propname, u8 *out_values,
217 					size_t sz_min, size_t sz_max)
218 {
219 	size_t sz, count;
220 	const u8 *val = of_find_property_value_of_size(np, propname,
221 						(sz_min * sizeof(*out_values)),
222 						(sz_max * sizeof(*out_values)),
223 						&sz);
224 
225 	if (IS_ERR(val))
226 		return PTR_ERR(val);
227 
228 	if (!sz_max)
229 		sz = sz_min;
230 	else
231 		sz /= sizeof(*out_values);
232 
233 	count = sz;
234 	while (count--)
235 		*out_values++ = *val++;
236 
237 	return sz;
238 }
239 EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array);
240 
241 /**
242  * of_property_read_variable_u16_array - Find and read an array of u16 from a
243  * property, with bounds on the minimum and maximum array size.
244  *
245  * @np:		device node from which the property value is to be read.
246  * @propname:	name of the property to be searched.
247  * @out_values:	pointer to found values.
248  * @sz_min:	minimum number of array elements to read
249  * @sz_max:	maximum number of array elements to read, if zero there is no
250  *		upper limit on the number of elements in the dts entry but only
251  *		sz_min will be read.
252  *
253  * Search for a property in a device node and read 16-bit value(s) from
254  * it.
255  *
256  * dts entry of array should be like:
257  *  ``property = /bits/ 16 <0x5000 0x6000 0x7000>;``
258  *
259  * Return: The number of elements read on success, -EINVAL if the property
260  * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
261  * if the property data is smaller than sz_min or longer than sz_max.
262  *
263  * The out_values is modified only if a valid u16 value can be decoded.
264  */
265 int of_property_read_variable_u16_array(const struct device_node *np,
266 					const char *propname, u16 *out_values,
267 					size_t sz_min, size_t sz_max)
268 {
269 	size_t sz, count;
270 	const __be16 *val = of_find_property_value_of_size(np, propname,
271 						(sz_min * sizeof(*out_values)),
272 						(sz_max * sizeof(*out_values)),
273 						&sz);
274 
275 	if (IS_ERR(val))
276 		return PTR_ERR(val);
277 
278 	if (!sz_max)
279 		sz = sz_min;
280 	else
281 		sz /= sizeof(*out_values);
282 
283 	count = sz;
284 	while (count--)
285 		*out_values++ = be16_to_cpup(val++);
286 
287 	return sz;
288 }
289 EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array);
290 
291 /**
292  * of_property_read_variable_u32_array - Find and read an array of 32 bit
293  * integers from a property, with bounds on the minimum and maximum array size.
294  *
295  * @np:		device node from which the property value is to be read.
296  * @propname:	name of the property to be searched.
297  * @out_values:	pointer to return found values.
298  * @sz_min:	minimum number of array elements to read
299  * @sz_max:	maximum number of array elements to read, if zero there is no
300  *		upper limit on the number of elements in the dts entry but only
301  *		sz_min will be read.
302  *
303  * Search for a property in a device node and read 32-bit value(s) from
304  * it.
305  *
306  * Return: The number of elements read on success, -EINVAL if the property
307  * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
308  * if the property data is smaller than sz_min or longer than sz_max.
309  *
310  * The out_values is modified only if a valid u32 value can be decoded.
311  */
312 int of_property_read_variable_u32_array(const struct device_node *np,
313 			       const char *propname, u32 *out_values,
314 			       size_t sz_min, size_t sz_max)
315 {
316 	size_t sz, count;
317 	const __be32 *val = of_find_property_value_of_size(np, propname,
318 						(sz_min * sizeof(*out_values)),
319 						(sz_max * sizeof(*out_values)),
320 						&sz);
321 
322 	if (IS_ERR(val))
323 		return PTR_ERR(val);
324 
325 	if (!sz_max)
326 		sz = sz_min;
327 	else
328 		sz /= sizeof(*out_values);
329 
330 	count = sz;
331 	while (count--)
332 		*out_values++ = be32_to_cpup(val++);
333 
334 	return sz;
335 }
336 EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array);
337 
338 /**
339  * of_property_read_u64 - Find and read a 64 bit integer from a property
340  * @np:		device node from which the property value is to be read.
341  * @propname:	name of the property to be searched.
342  * @out_value:	pointer to return value, modified only if return value is 0.
343  *
344  * Search for a property in a device node and read a 64-bit value from
345  * it.
346  *
347  * Return: 0 on success, -EINVAL if the property does not exist,
348  * -ENODATA if property does not have a value, and -EOVERFLOW if the
349  * property data isn't large enough.
350  *
351  * The out_value is modified only if a valid u64 value can be decoded.
352  */
353 int of_property_read_u64(const struct device_node *np, const char *propname,
354 			 u64 *out_value)
355 {
356 	const __be32 *val = of_find_property_value_of_size(np, propname,
357 						sizeof(*out_value),
358 						0,
359 						NULL);
360 
361 	if (IS_ERR(val))
362 		return PTR_ERR(val);
363 
364 	*out_value = of_read_number(val, 2);
365 	return 0;
366 }
367 EXPORT_SYMBOL_GPL(of_property_read_u64);
368 
369 /**
370  * of_property_read_variable_u64_array - Find and read an array of 64 bit
371  * integers from a property, with bounds on the minimum and maximum array size.
372  *
373  * @np:		device node from which the property value is to be read.
374  * @propname:	name of the property to be searched.
375  * @out_values:	pointer to found values.
376  * @sz_min:	minimum number of array elements to read
377  * @sz_max:	maximum number of array elements to read, if zero there is no
378  *		upper limit on the number of elements in the dts entry but only
379  *		sz_min will be read.
380  *
381  * Search for a property in a device node and read 64-bit value(s) from
382  * it.
383  *
384  * Return: The number of elements read on success, -EINVAL if the property
385  * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
386  * if the property data is smaller than sz_min or longer than sz_max.
387  *
388  * The out_values is modified only if a valid u64 value can be decoded.
389  */
390 int of_property_read_variable_u64_array(const struct device_node *np,
391 			       const char *propname, u64 *out_values,
392 			       size_t sz_min, size_t sz_max)
393 {
394 	size_t sz, count;
395 	const __be32 *val = of_find_property_value_of_size(np, propname,
396 						(sz_min * sizeof(*out_values)),
397 						(sz_max * sizeof(*out_values)),
398 						&sz);
399 
400 	if (IS_ERR(val))
401 		return PTR_ERR(val);
402 
403 	if (!sz_max)
404 		sz = sz_min;
405 	else
406 		sz /= sizeof(*out_values);
407 
408 	count = sz;
409 	while (count--) {
410 		*out_values++ = of_read_number(val, 2);
411 		val += 2;
412 	}
413 
414 	return sz;
415 }
416 EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array);
417 
418 /**
419  * of_property_read_string - Find and read a string from a property
420  * @np:		device node from which the property value is to be read.
421  * @propname:	name of the property to be searched.
422  * @out_string:	pointer to null terminated return string, modified only if
423  *		return value is 0.
424  *
425  * Search for a property in a device tree node and retrieve a null
426  * terminated string value (pointer to data, not a copy).
427  *
428  * Return: 0 on success, -EINVAL if the property does not exist, -ENODATA if
429  * property does not have a value, and -EILSEQ if the string is not
430  * null-terminated within the length of the property data.
431  *
432  * Note that the empty string "" has length of 1, thus -ENODATA cannot
433  * be interpreted as an empty string.
434  *
435  * The out_string pointer is modified only if a valid string can be decoded.
436  */
437 int of_property_read_string(const struct device_node *np, const char *propname,
438 				const char **out_string)
439 {
440 	const struct property *prop = of_find_property(np, propname, NULL);
441 
442 	if (!prop)
443 		return -EINVAL;
444 	if (!prop->length)
445 		return -ENODATA;
446 	if (strnlen(prop->value, prop->length) >= prop->length)
447 		return -EILSEQ;
448 	*out_string = prop->value;
449 	return 0;
450 }
451 EXPORT_SYMBOL_GPL(of_property_read_string);
452 
453 /**
454  * of_property_match_string() - Find string in a list and return index
455  * @np: pointer to the node containing the string list property
456  * @propname: string list property name
457  * @string: pointer to the string to search for in the string list
458  *
459  * Search for an exact match of string in a device node property which is a
460  * string of lists.
461  *
462  * Return: the index of the first occurrence of the string on success, -EINVAL
463  * if the property does not exist, -ENODATA if the property does not have a
464  * value, and -EILSEQ if the string is not null-terminated within the length of
465  * the property data.
466  */
467 int of_property_match_string(const struct device_node *np, const char *propname,
468 			     const char *string)
469 {
470 	const struct property *prop = of_find_property(np, propname, NULL);
471 	size_t l;
472 	int i;
473 	const char *p, *end;
474 
475 	if (!prop)
476 		return -EINVAL;
477 	if (!prop->value)
478 		return -ENODATA;
479 
480 	p = prop->value;
481 	end = p + prop->length;
482 
483 	for (i = 0; p < end; i++, p += l) {
484 		l = strnlen(p, end - p) + 1;
485 		if (p + l > end)
486 			return -EILSEQ;
487 		pr_debug("comparing %s with %s\n", string, p);
488 		if (strcmp(string, p) == 0)
489 			return i; /* Found it; return index */
490 	}
491 	return -ENODATA;
492 }
493 EXPORT_SYMBOL_GPL(of_property_match_string);
494 
495 /**
496  * of_property_read_string_helper() - Utility helper for parsing string properties
497  * @np:		device node from which the property value is to be read.
498  * @propname:	name of the property to be searched.
499  * @out_strs:	output array of string pointers.
500  * @sz:		number of array elements to read.
501  * @skip:	Number of strings to skip over at beginning of list.
502  *
503  * Don't call this function directly. It is a utility helper for the
504  * of_property_read_string*() family of functions.
505  */
506 int of_property_read_string_helper(const struct device_node *np,
507 				   const char *propname, const char **out_strs,
508 				   size_t sz, int skip)
509 {
510 	const struct property *prop = of_find_property(np, propname, NULL);
511 	int l = 0, i = 0;
512 	const char *p, *end;
513 
514 	if (!prop)
515 		return -EINVAL;
516 	if (!prop->value)
517 		return -ENODATA;
518 	p = prop->value;
519 	end = p + prop->length;
520 
521 	for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
522 		l = strnlen(p, end - p) + 1;
523 		if (p + l > end)
524 			return -EILSEQ;
525 		if (out_strs && i >= skip)
526 			*out_strs++ = p;
527 	}
528 	i -= skip;
529 	return i <= 0 ? -ENODATA : i;
530 }
531 EXPORT_SYMBOL_GPL(of_property_read_string_helper);
532 
533 const __be32 *of_prop_next_u32(const struct property *prop, const __be32 *cur,
534 			       u32 *pu)
535 {
536 	const void *curv = cur;
537 
538 	if (!prop)
539 		return NULL;
540 
541 	if (!cur) {
542 		curv = prop->value;
543 		goto out_val;
544 	}
545 
546 	curv += sizeof(*cur);
547 	if (curv >= prop->value + prop->length)
548 		return NULL;
549 
550 out_val:
551 	*pu = be32_to_cpup(curv);
552 	return curv;
553 }
554 EXPORT_SYMBOL_GPL(of_prop_next_u32);
555 
556 const char *of_prop_next_string(const struct property *prop, const char *cur)
557 {
558 	const void *curv = cur;
559 
560 	if (!prop)
561 		return NULL;
562 
563 	if (!cur)
564 		return prop->value;
565 
566 	curv += strlen(cur) + 1;
567 	if (curv >= prop->value + prop->length)
568 		return NULL;
569 
570 	return curv;
571 }
572 EXPORT_SYMBOL_GPL(of_prop_next_string);
573 
574 /**
575  * of_graph_parse_endpoint() - parse common endpoint node properties
576  * @node: pointer to endpoint device_node
577  * @endpoint: pointer to the OF endpoint data structure
578  *
579  * The caller should hold a reference to @node.
580  */
581 int of_graph_parse_endpoint(const struct device_node *node,
582 			    struct of_endpoint *endpoint)
583 {
584 	struct device_node *port_node __free(device_node) =
585 			    of_get_parent(node);
586 
587 	WARN_ONCE(!port_node, "%s(): endpoint %pOF has no parent node\n",
588 		  __func__, node);
589 
590 	memset(endpoint, 0, sizeof(*endpoint));
591 
592 	endpoint->local_node = node;
593 	/*
594 	 * It doesn't matter whether the two calls below succeed.
595 	 * If they don't then the default value 0 is used.
596 	 */
597 	of_property_read_u32(port_node, "reg", &endpoint->port);
598 	of_property_read_u32(node, "reg", &endpoint->id);
599 
600 	return 0;
601 }
602 EXPORT_SYMBOL(of_graph_parse_endpoint);
603 
604 /**
605  * of_graph_get_port_by_id() - get the port matching a given id
606  * @parent: pointer to the parent device node
607  * @id: id of the port
608  *
609  * Return: A 'port' node pointer with refcount incremented. The caller
610  * has to use of_node_put() on it when done.
611  */
612 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
613 {
614 	struct device_node *node __free(device_node) = of_get_child_by_name(parent, "ports");
615 
616 	if (node)
617 		parent = node;
618 
619 	for_each_child_of_node_scoped(parent, port) {
620 		u32 port_id = 0;
621 
622 		if (!of_node_name_eq(port, "port"))
623 			continue;
624 		of_property_read_u32(port, "reg", &port_id);
625 		if (id == port_id)
626 			return_ptr(port);
627 	}
628 
629 	return NULL;
630 }
631 EXPORT_SYMBOL(of_graph_get_port_by_id);
632 
633 /**
634  * of_graph_get_next_port() - get next port node.
635  * @parent: pointer to the parent device node, or parent ports node
636  * @prev: previous port node, or NULL to get first
637  *
638  * Parent device node can be used as @parent whether device node has ports node
639  * or not. It will work same as ports@0 node.
640  *
641  * Return: A 'port' node pointer with refcount incremented. Refcount
642  * of the passed @prev node is decremented.
643  */
644 struct device_node *of_graph_get_next_port(const struct device_node *parent,
645 					   struct device_node *prev)
646 {
647 	if (!parent)
648 		return NULL;
649 
650 	if (!prev) {
651 		struct device_node *node __free(device_node) =
652 			of_get_child_by_name(parent, "ports");
653 
654 		if (node)
655 			parent = node;
656 
657 		return of_get_child_by_name(parent, "port");
658 	}
659 
660 	do {
661 		prev = of_get_next_child(parent, prev);
662 		if (!prev)
663 			break;
664 	} while (!of_node_name_eq(prev, "port"));
665 
666 	return prev;
667 }
668 EXPORT_SYMBOL(of_graph_get_next_port);
669 
670 /**
671  * of_graph_get_next_port_endpoint() - get next endpoint node in port.
672  * If it reached to end of the port, it will return NULL.
673  * @port: pointer to the target port node
674  * @prev: previous endpoint node, or NULL to get first
675  *
676  * Return: An 'endpoint' node pointer with refcount incremented. Refcount
677  * of the passed @prev node is decremented.
678  */
679 struct device_node *of_graph_get_next_port_endpoint(const struct device_node *port,
680 						    struct device_node *prev)
681 {
682 	while (1) {
683 		prev = of_get_next_child(port, prev);
684 		if (!prev)
685 			break;
686 		if (WARN(!of_node_name_eq(prev, "endpoint"),
687 			 "non endpoint node is used (%pOF)", prev))
688 			continue;
689 
690 		break;
691 	}
692 
693 	return prev;
694 }
695 EXPORT_SYMBOL(of_graph_get_next_port_endpoint);
696 
697 /**
698  * of_graph_get_next_endpoint() - get next endpoint node
699  * @parent: pointer to the parent device node
700  * @prev: previous endpoint node, or NULL to get first
701  *
702  * Return: An 'endpoint' node pointer with refcount incremented. Refcount
703  * of the passed @prev node is decremented.
704  */
705 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
706 					struct device_node *prev)
707 {
708 	struct device_node *endpoint;
709 	struct device_node *port;
710 
711 	if (!parent)
712 		return NULL;
713 
714 	/*
715 	 * Start by locating the port node. If no previous endpoint is specified
716 	 * search for the first port node, otherwise get the previous endpoint
717 	 * parent port node.
718 	 */
719 	if (!prev) {
720 		port = of_graph_get_next_port(parent, NULL);
721 		if (!port) {
722 			pr_debug("graph: no port node found in %pOF\n", parent);
723 			return NULL;
724 		}
725 	} else {
726 		port = of_get_parent(prev);
727 		if (WARN_ONCE(!port, "%s(): endpoint %pOF has no parent node\n",
728 			      __func__, prev))
729 			return NULL;
730 	}
731 
732 	while (1) {
733 		/*
734 		 * Now that we have a port node, get the next endpoint by
735 		 * getting the next child. If the previous endpoint is NULL this
736 		 * will return the first child.
737 		 */
738 		endpoint = of_graph_get_next_port_endpoint(port, prev);
739 		if (endpoint) {
740 			of_node_put(port);
741 			return endpoint;
742 		}
743 
744 		/* No more endpoints under this port, try the next one. */
745 		prev = NULL;
746 
747 		port = of_graph_get_next_port(parent, port);
748 		if (!port)
749 			return NULL;
750 	}
751 }
752 EXPORT_SYMBOL(of_graph_get_next_endpoint);
753 
754 /**
755  * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
756  * @parent: pointer to the parent device node
757  * @port_reg: identifier (value of reg property) of the parent port node
758  * @reg: identifier (value of reg property) of the endpoint node
759  *
760  * Return: An 'endpoint' node pointer which is identified by reg and at the same
761  * is the child of a port node identified by port_reg. reg and port_reg are
762  * ignored when they are -1. Use of_node_put() on the pointer when done.
763  */
764 struct device_node *of_graph_get_endpoint_by_regs(
765 	const struct device_node *parent, int port_reg, int reg)
766 {
767 	struct of_endpoint endpoint;
768 	struct device_node *node = NULL;
769 
770 	for_each_endpoint_of_node(parent, node) {
771 		of_graph_parse_endpoint(node, &endpoint);
772 		if (((port_reg == -1) || (endpoint.port == port_reg)) &&
773 			((reg == -1) || (endpoint.id == reg)))
774 			return node;
775 	}
776 
777 	return NULL;
778 }
779 EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
780 
781 /**
782  * of_graph_get_remote_endpoint() - get remote endpoint node
783  * @node: pointer to a local endpoint device_node
784  *
785  * Return: Remote endpoint node associated with remote endpoint node linked
786  *	   to @node. Use of_node_put() on it when done.
787  */
788 struct device_node *of_graph_get_remote_endpoint(const struct device_node *node)
789 {
790 	/* Get remote endpoint node. */
791 	return of_parse_phandle(node, "remote-endpoint", 0);
792 }
793 EXPORT_SYMBOL(of_graph_get_remote_endpoint);
794 
795 /**
796  * of_graph_get_port_parent() - get port's parent node
797  * @node: pointer to a local endpoint device_node
798  *
799  * Return: device node associated with endpoint node linked
800  *	   to @node. Use of_node_put() on it when done.
801  */
802 struct device_node *of_graph_get_port_parent(struct device_node *node)
803 {
804 	unsigned int depth;
805 
806 	if (!node)
807 		return NULL;
808 
809 	/*
810 	 * Preserve usecount for passed in node as of_get_next_parent()
811 	 * will do of_node_put() on it.
812 	 */
813 	of_node_get(node);
814 
815 	/* Walk 3 levels up only if there is 'ports' node. */
816 	for (depth = 3; depth && node; depth--) {
817 		node = of_get_next_parent(node);
818 		if (depth == 2 && !of_node_name_eq(node, "ports") &&
819 		    !of_node_name_eq(node, "in-ports") &&
820 		    !of_node_name_eq(node, "out-ports"))
821 			break;
822 	}
823 	return node;
824 }
825 EXPORT_SYMBOL(of_graph_get_port_parent);
826 
827 /**
828  * of_graph_get_remote_port_parent() - get remote port's parent node
829  * @node: pointer to a local endpoint device_node
830  *
831  * Return: Remote device node associated with remote endpoint node linked
832  *	   to @node. Use of_node_put() on it when done.
833  */
834 struct device_node *of_graph_get_remote_port_parent(
835 			       const struct device_node *node)
836 {
837 	/* Get remote endpoint node. */
838 	struct device_node *np __free(device_node) =
839 		of_graph_get_remote_endpoint(node);
840 
841 	return of_graph_get_port_parent(np);
842 }
843 EXPORT_SYMBOL(of_graph_get_remote_port_parent);
844 
845 /**
846  * of_graph_get_remote_port() - get remote port node
847  * @node: pointer to a local endpoint device_node
848  *
849  * Return: Remote port node associated with remote endpoint node linked
850  * to @node. Use of_node_put() on it when done.
851  */
852 struct device_node *of_graph_get_remote_port(const struct device_node *node)
853 {
854 	struct device_node *np;
855 
856 	/* Get remote endpoint node. */
857 	np = of_graph_get_remote_endpoint(node);
858 	if (!np)
859 		return NULL;
860 	return of_get_next_parent(np);
861 }
862 EXPORT_SYMBOL(of_graph_get_remote_port);
863 
864 /**
865  * of_graph_get_endpoint_count() - get the number of endpoints in a device node
866  * @np: parent device node containing ports and endpoints
867  *
868  * Return: count of endpoint of this device node
869  */
870 unsigned int of_graph_get_endpoint_count(const struct device_node *np)
871 {
872 	struct device_node *endpoint;
873 	unsigned int num = 0;
874 
875 	for_each_endpoint_of_node(np, endpoint)
876 		num++;
877 
878 	return num;
879 }
880 EXPORT_SYMBOL(of_graph_get_endpoint_count);
881 
882 /**
883  * of_graph_get_port_count() - get the number of port in a device or ports node
884  * @np: pointer to the device or ports node
885  *
886  * Return: count of port of this device or ports node
887  */
888 unsigned int of_graph_get_port_count(struct device_node *np)
889 {
890 	unsigned int num = 0;
891 
892 	for_each_of_graph_port(np, port)
893 		num++;
894 
895 	return num;
896 }
897 EXPORT_SYMBOL(of_graph_get_port_count);
898 
899 /**
900  * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint
901  * @node: pointer to parent device_node containing graph port/endpoint
902  * @port: identifier (value of reg property) of the parent port node
903  * @endpoint: identifier (value of reg property) of the endpoint node
904  *
905  * Return: Remote device node associated with remote endpoint node linked
906  * to @node. Use of_node_put() on it when done.
907  */
908 struct device_node *of_graph_get_remote_node(const struct device_node *node,
909 					     u32 port, u32 endpoint)
910 {
911 	struct device_node *endpoint_node, *remote;
912 
913 	endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint);
914 	if (!endpoint_node) {
915 		pr_debug("no valid endpoint (%d, %d) for node %pOF\n",
916 			 port, endpoint, node);
917 		return NULL;
918 	}
919 
920 	remote = of_graph_get_remote_port_parent(endpoint_node);
921 	of_node_put(endpoint_node);
922 	if (!remote) {
923 		pr_debug("no valid remote node\n");
924 		return NULL;
925 	}
926 
927 	if (!of_device_is_available(remote)) {
928 		pr_debug("not available for remote node\n");
929 		of_node_put(remote);
930 		return NULL;
931 	}
932 
933 	return remote;
934 }
935 EXPORT_SYMBOL(of_graph_get_remote_node);
936 
937 static struct fwnode_handle *of_fwnode_get(struct fwnode_handle *fwnode)
938 {
939 	return of_fwnode_handle(of_node_get(to_of_node(fwnode)));
940 }
941 
942 static void of_fwnode_put(struct fwnode_handle *fwnode)
943 {
944 	of_node_put(to_of_node(fwnode));
945 }
946 
947 static bool of_fwnode_device_is_available(const struct fwnode_handle *fwnode)
948 {
949 	return of_device_is_available(to_of_node(fwnode));
950 }
951 
952 static bool of_fwnode_device_dma_supported(const struct fwnode_handle *fwnode)
953 {
954 	return true;
955 }
956 
957 static enum dev_dma_attr
958 of_fwnode_device_get_dma_attr(const struct fwnode_handle *fwnode)
959 {
960 	if (of_dma_is_coherent(to_of_node(fwnode)))
961 		return DEV_DMA_COHERENT;
962 	else
963 		return DEV_DMA_NON_COHERENT;
964 }
965 
966 static bool of_fwnode_property_present(const struct fwnode_handle *fwnode,
967 				       const char *propname)
968 {
969 	return of_property_read_bool(to_of_node(fwnode), propname);
970 }
971 
972 static int of_fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
973 					     const char *propname,
974 					     unsigned int elem_size, void *val,
975 					     size_t nval)
976 {
977 	const struct device_node *node = to_of_node(fwnode);
978 
979 	if (!val)
980 		return of_property_count_elems_of_size(node, propname,
981 						       elem_size);
982 
983 	switch (elem_size) {
984 	case sizeof(u8):
985 		return of_property_read_u8_array(node, propname, val, nval);
986 	case sizeof(u16):
987 		return of_property_read_u16_array(node, propname, val, nval);
988 	case sizeof(u32):
989 		return of_property_read_u32_array(node, propname, val, nval);
990 	case sizeof(u64):
991 		return of_property_read_u64_array(node, propname, val, nval);
992 	}
993 
994 	return -ENXIO;
995 }
996 
997 static int
998 of_fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
999 				     const char *propname, const char **val,
1000 				     size_t nval)
1001 {
1002 	const struct device_node *node = to_of_node(fwnode);
1003 
1004 	return val ?
1005 		of_property_read_string_array(node, propname, val, nval) :
1006 		of_property_count_strings(node, propname);
1007 }
1008 
1009 static const char *of_fwnode_get_name(const struct fwnode_handle *fwnode)
1010 {
1011 	return kbasename(to_of_node(fwnode)->full_name);
1012 }
1013 
1014 static const char *of_fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
1015 {
1016 	/* Root needs no prefix here (its name is "/"). */
1017 	if (!to_of_node(fwnode)->parent)
1018 		return "";
1019 
1020 	return "/";
1021 }
1022 
1023 static struct fwnode_handle *
1024 of_fwnode_get_parent(const struct fwnode_handle *fwnode)
1025 {
1026 	return of_fwnode_handle(of_get_parent(to_of_node(fwnode)));
1027 }
1028 
1029 static struct fwnode_handle *
1030 of_fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
1031 			      struct fwnode_handle *child)
1032 {
1033 	return of_fwnode_handle(of_get_next_available_child(to_of_node(fwnode),
1034 							    to_of_node(child)));
1035 }
1036 
1037 static struct fwnode_handle *
1038 of_fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
1039 			       const char *childname)
1040 {
1041 	const struct device_node *node = to_of_node(fwnode);
1042 	struct device_node *child;
1043 
1044 	for_each_available_child_of_node(node, child)
1045 		if (of_node_name_eq(child, childname))
1046 			return of_fwnode_handle(child);
1047 
1048 	return NULL;
1049 }
1050 
1051 static int
1052 of_fwnode_get_reference_args(const struct fwnode_handle *fwnode,
1053 			     const char *prop, const char *nargs_prop,
1054 			     unsigned int nargs, unsigned int index,
1055 			     struct fwnode_reference_args *args)
1056 {
1057 	struct of_phandle_args of_args;
1058 	unsigned int i;
1059 	int ret;
1060 
1061 	if (nargs_prop)
1062 		ret = of_parse_phandle_with_args(to_of_node(fwnode), prop,
1063 						 nargs_prop, index, &of_args);
1064 	else
1065 		ret = of_parse_phandle_with_fixed_args(to_of_node(fwnode), prop,
1066 						       nargs, index, &of_args);
1067 	if (ret < 0)
1068 		return ret;
1069 	if (!args) {
1070 		of_node_put(of_args.np);
1071 		return 0;
1072 	}
1073 
1074 	args->nargs = of_args.args_count;
1075 	args->fwnode = of_fwnode_handle(of_args.np);
1076 
1077 	for (i = 0; i < NR_FWNODE_REFERENCE_ARGS; i++)
1078 		args->args[i] = i < of_args.args_count ? of_args.args[i] : 0;
1079 
1080 	return 0;
1081 }
1082 
1083 static struct fwnode_handle *
1084 of_fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1085 				  struct fwnode_handle *prev)
1086 {
1087 	return of_fwnode_handle(of_graph_get_next_endpoint(to_of_node(fwnode),
1088 							   to_of_node(prev)));
1089 }
1090 
1091 static struct fwnode_handle *
1092 of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1093 {
1094 	return of_fwnode_handle(
1095 		of_graph_get_remote_endpoint(to_of_node(fwnode)));
1096 }
1097 
1098 static struct fwnode_handle *
1099 of_fwnode_graph_get_port_parent(struct fwnode_handle *fwnode)
1100 {
1101 	struct device_node *np;
1102 
1103 	/* Get the parent of the port */
1104 	np = of_get_parent(to_of_node(fwnode));
1105 	if (!np)
1106 		return NULL;
1107 
1108 	/* Is this the "ports" node? If not, it's the port parent. */
1109 	if (!of_node_name_eq(np, "ports"))
1110 		return of_fwnode_handle(np);
1111 
1112 	return of_fwnode_handle(of_get_next_parent(np));
1113 }
1114 
1115 static int of_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1116 					  struct fwnode_endpoint *endpoint)
1117 {
1118 	const struct device_node *node = to_of_node(fwnode);
1119 	struct device_node *port_node __free(device_node) = of_get_parent(node);
1120 
1121 	endpoint->local_fwnode = fwnode;
1122 
1123 	of_property_read_u32(port_node, "reg", &endpoint->port);
1124 	of_property_read_u32(node, "reg", &endpoint->id);
1125 
1126 	return 0;
1127 }
1128 
1129 static const void *
1130 of_fwnode_device_get_match_data(const struct fwnode_handle *fwnode,
1131 				const struct device *dev)
1132 {
1133 	return of_device_get_match_data(dev);
1134 }
1135 
1136 static void of_link_to_phandle(struct device_node *con_np,
1137 			      struct device_node *sup_np,
1138 			      u8 flags)
1139 {
1140 	struct device_node *tmp_np __free(device_node) = of_node_get(sup_np);
1141 
1142 	/* Check that sup_np and its ancestors are available. */
1143 	while (tmp_np) {
1144 		if (of_fwnode_handle(tmp_np)->dev)
1145 			break;
1146 
1147 		if (!of_device_is_available(tmp_np))
1148 			return;
1149 
1150 		tmp_np = of_get_next_parent(tmp_np);
1151 	}
1152 
1153 	fwnode_link_add(of_fwnode_handle(con_np), of_fwnode_handle(sup_np), flags);
1154 }
1155 
1156 /**
1157  * parse_prop_cells - Property parsing function for suppliers
1158  *
1159  * @np:		Pointer to device tree node containing a list
1160  * @prop_name:	Name of property to be parsed. Expected to hold phandle values
1161  * @index:	For properties holding a list of phandles, this is the index
1162  *		into the list.
1163  * @list_name:	Property name that is known to contain list of phandle(s) to
1164  *		supplier(s)
1165  * @cells_name:	property name that specifies phandles' arguments count
1166  *
1167  * This is a helper function to parse properties that have a known fixed name
1168  * and are a list of phandles and phandle arguments.
1169  *
1170  * Returns:
1171  * - phandle node pointer with refcount incremented. Caller must of_node_put()
1172  *   on it when done.
1173  * - NULL if no phandle found at index
1174  */
1175 static struct device_node *parse_prop_cells(struct device_node *np,
1176 					    const char *prop_name, int index,
1177 					    const char *list_name,
1178 					    const char *cells_name)
1179 {
1180 	struct of_phandle_args sup_args;
1181 
1182 	if (strcmp(prop_name, list_name))
1183 		return NULL;
1184 
1185 	if (__of_parse_phandle_with_args(np, list_name, cells_name, 0, index,
1186 					 &sup_args))
1187 		return NULL;
1188 
1189 	return sup_args.np;
1190 }
1191 
1192 #define DEFINE_SIMPLE_PROP(fname, name, cells)				  \
1193 static struct device_node *parse_##fname(struct device_node *np,	  \
1194 					const char *prop_name, int index) \
1195 {									  \
1196 	return parse_prop_cells(np, prop_name, index, name, cells);	  \
1197 }
1198 
1199 static int strcmp_suffix(const char *str, const char *suffix)
1200 {
1201 	unsigned int len, suffix_len;
1202 
1203 	len = strlen(str);
1204 	suffix_len = strlen(suffix);
1205 	if (len <= suffix_len)
1206 		return -1;
1207 	return strcmp(str + len - suffix_len, suffix);
1208 }
1209 
1210 /**
1211  * parse_suffix_prop_cells - Suffix property parsing function for suppliers
1212  *
1213  * @np:		Pointer to device tree node containing a list
1214  * @prop_name:	Name of property to be parsed. Expected to hold phandle values
1215  * @index:	For properties holding a list of phandles, this is the index
1216  *		into the list.
1217  * @suffix:	Property suffix that is known to contain list of phandle(s) to
1218  *		supplier(s)
1219  * @cells_name:	property name that specifies phandles' arguments count
1220  *
1221  * This is a helper function to parse properties that have a known fixed suffix
1222  * and are a list of phandles and phandle arguments.
1223  *
1224  * Returns:
1225  * - phandle node pointer with refcount incremented. Caller must of_node_put()
1226  *   on it when done.
1227  * - NULL if no phandle found at index
1228  */
1229 static struct device_node *parse_suffix_prop_cells(struct device_node *np,
1230 					    const char *prop_name, int index,
1231 					    const char *suffix,
1232 					    const char *cells_name)
1233 {
1234 	struct of_phandle_args sup_args;
1235 
1236 	if (strcmp_suffix(prop_name, suffix))
1237 		return NULL;
1238 
1239 	if (of_parse_phandle_with_args(np, prop_name, cells_name, index,
1240 				       &sup_args))
1241 		return NULL;
1242 
1243 	return sup_args.np;
1244 }
1245 
1246 #define DEFINE_SUFFIX_PROP(fname, suffix, cells)			     \
1247 static struct device_node *parse_##fname(struct device_node *np,	     \
1248 					const char *prop_name, int index)    \
1249 {									     \
1250 	return parse_suffix_prop_cells(np, prop_name, index, suffix, cells); \
1251 }
1252 
1253 /**
1254  * struct supplier_bindings - Property parsing functions for suppliers
1255  *
1256  * @parse_prop: function name
1257  *	parse_prop() finds the node corresponding to a supplier phandle
1258  *  parse_prop.np: Pointer to device node holding supplier phandle property
1259  *  parse_prop.prop_name: Name of property holding a phandle value
1260  *  parse_prop.index: For properties holding a list of phandles, this is the
1261  *		      index into the list
1262  * @get_con_dev: If the consumer node containing the property is never converted
1263  *		 to a struct device, implement this ops so fw_devlink can use it
1264  *		 to find the true consumer.
1265  * @optional: Describes whether a supplier is mandatory or not
1266  * @fwlink_flags: Optional fwnode link flags to use when creating a fwnode link
1267  *		  for this property.
1268  *
1269  * Returns:
1270  * parse_prop() return values are
1271  * - phandle node pointer with refcount incremented. Caller must of_node_put()
1272  *   on it when done.
1273  * - NULL if no phandle found at index
1274  */
1275 struct supplier_bindings {
1276 	struct device_node *(*parse_prop)(struct device_node *np,
1277 					  const char *prop_name, int index);
1278 	struct device_node *(*get_con_dev)(struct device_node *np);
1279 	bool optional;
1280 	u8 fwlink_flags;
1281 };
1282 
1283 DEFINE_SIMPLE_PROP(clocks, "clocks", "#clock-cells")
1284 DEFINE_SIMPLE_PROP(interconnects, "interconnects", "#interconnect-cells")
1285 DEFINE_SIMPLE_PROP(iommus, "iommus", "#iommu-cells")
1286 DEFINE_SIMPLE_PROP(mboxes, "mboxes", "#mbox-cells")
1287 DEFINE_SIMPLE_PROP(io_channels, "io-channels", "#io-channel-cells")
1288 DEFINE_SIMPLE_PROP(io_backends, "io-backends", "#io-backend-cells")
1289 DEFINE_SIMPLE_PROP(interrupt_parent, "interrupt-parent", NULL)
1290 DEFINE_SIMPLE_PROP(dmas, "dmas", "#dma-cells")
1291 DEFINE_SIMPLE_PROP(power_domains, "power-domains", "#power-domain-cells")
1292 DEFINE_SIMPLE_PROP(hwlocks, "hwlocks", "#hwlock-cells")
1293 DEFINE_SIMPLE_PROP(extcon, "extcon", NULL)
1294 DEFINE_SIMPLE_PROP(nvmem_cells, "nvmem-cells", "#nvmem-cell-cells")
1295 DEFINE_SIMPLE_PROP(phys, "phys", "#phy-cells")
1296 DEFINE_SIMPLE_PROP(wakeup_parent, "wakeup-parent", NULL)
1297 DEFINE_SIMPLE_PROP(pinctrl0, "pinctrl-0", NULL)
1298 DEFINE_SIMPLE_PROP(pinctrl1, "pinctrl-1", NULL)
1299 DEFINE_SIMPLE_PROP(pinctrl2, "pinctrl-2", NULL)
1300 DEFINE_SIMPLE_PROP(pinctrl3, "pinctrl-3", NULL)
1301 DEFINE_SIMPLE_PROP(pinctrl4, "pinctrl-4", NULL)
1302 DEFINE_SIMPLE_PROP(pinctrl5, "pinctrl-5", NULL)
1303 DEFINE_SIMPLE_PROP(pinctrl6, "pinctrl-6", NULL)
1304 DEFINE_SIMPLE_PROP(pinctrl7, "pinctrl-7", NULL)
1305 DEFINE_SIMPLE_PROP(pinctrl8, "pinctrl-8", NULL)
1306 DEFINE_SIMPLE_PROP(pwms, "pwms", "#pwm-cells")
1307 DEFINE_SIMPLE_PROP(resets, "resets", "#reset-cells")
1308 DEFINE_SIMPLE_PROP(leds, "leds", NULL)
1309 DEFINE_SIMPLE_PROP(backlight, "backlight", NULL)
1310 DEFINE_SIMPLE_PROP(panel, "panel", NULL)
1311 DEFINE_SIMPLE_PROP(msi_parent, "msi-parent", "#msi-cells")
1312 DEFINE_SIMPLE_PROP(post_init_providers, "post-init-providers", NULL)
1313 DEFINE_SIMPLE_PROP(access_controllers, "access-controllers", "#access-controller-cells")
1314 DEFINE_SIMPLE_PROP(pses, "pses", "#pse-cells")
1315 DEFINE_SIMPLE_PROP(power_supplies, "power-supplies", NULL)
1316 DEFINE_SUFFIX_PROP(regulators, "-supply", NULL)
1317 DEFINE_SUFFIX_PROP(gpio, "-gpio", "#gpio-cells")
1318 
1319 static struct device_node *parse_gpios(struct device_node *np,
1320 				       const char *prop_name, int index)
1321 {
1322 	if (!strcmp_suffix(prop_name, ",nr-gpios"))
1323 		return NULL;
1324 
1325 	return parse_suffix_prop_cells(np, prop_name, index, "-gpios",
1326 				       "#gpio-cells");
1327 }
1328 
1329 static struct device_node *parse_iommu_maps(struct device_node *np,
1330 					    const char *prop_name, int index)
1331 {
1332 	if (strcmp(prop_name, "iommu-map"))
1333 		return NULL;
1334 
1335 	return of_parse_phandle(np, prop_name, (index * 4) + 1);
1336 }
1337 
1338 static struct device_node *parse_gpio_compat(struct device_node *np,
1339 					     const char *prop_name, int index)
1340 {
1341 	struct of_phandle_args sup_args;
1342 
1343 	if (strcmp(prop_name, "gpio") && strcmp(prop_name, "gpios"))
1344 		return NULL;
1345 
1346 	/*
1347 	 * Ignore node with gpio-hog property since its gpios are all provided
1348 	 * by its parent.
1349 	 */
1350 	if (of_property_read_bool(np, "gpio-hog"))
1351 		return NULL;
1352 
1353 	if (of_parse_phandle_with_args(np, prop_name, "#gpio-cells", index,
1354 				       &sup_args))
1355 		return NULL;
1356 
1357 	return sup_args.np;
1358 }
1359 
1360 static struct device_node *parse_interrupts(struct device_node *np,
1361 					    const char *prop_name, int index)
1362 {
1363 	struct of_phandle_args sup_args;
1364 
1365 	if (!IS_ENABLED(CONFIG_OF_IRQ) || IS_ENABLED(CONFIG_PPC))
1366 		return NULL;
1367 
1368 	if (strcmp(prop_name, "interrupts") &&
1369 	    strcmp(prop_name, "interrupts-extended"))
1370 		return NULL;
1371 
1372 	return of_irq_parse_one(np, index, &sup_args) ? NULL : sup_args.np;
1373 }
1374 
1375 static struct device_node *parse_interrupt_map(struct device_node *np,
1376 					       const char *prop_name, int index)
1377 {
1378 	const __be32 *imap, *imap_end;
1379 	struct of_phandle_args sup_args;
1380 	u32 addrcells, intcells;
1381 	int imaplen;
1382 
1383 	if (!IS_ENABLED(CONFIG_OF_IRQ))
1384 		return NULL;
1385 
1386 	if (strcmp(prop_name, "interrupt-map"))
1387 		return NULL;
1388 
1389 	if (of_property_read_u32(np, "#interrupt-cells", &intcells))
1390 		return NULL;
1391 	addrcells = of_bus_n_addr_cells(np);
1392 
1393 	imap = of_get_property(np, "interrupt-map", &imaplen);
1394 	imaplen /= sizeof(*imap);
1395 	if (!imap)
1396 		return NULL;
1397 
1398 	imap_end = imap + imaplen;
1399 
1400 	for (int i = 0; imap + addrcells + intcells + 1 < imap_end; i++) {
1401 		imap += addrcells + intcells;
1402 
1403 		imap = of_irq_parse_imap_parent(imap, imap_end - imap, &sup_args);
1404 		if (!imap)
1405 			return NULL;
1406 
1407 		if (i == index)
1408 			return sup_args.np;
1409 
1410 		of_node_put(sup_args.np);
1411 	}
1412 
1413 	return NULL;
1414 }
1415 
1416 static struct device_node *parse_remote_endpoint(struct device_node *np,
1417 						 const char *prop_name,
1418 						 int index)
1419 {
1420 	/* Return NULL for index > 0 to signify end of remote-endpoints. */
1421 	if (index > 0 || strcmp(prop_name, "remote-endpoint"))
1422 		return NULL;
1423 
1424 	return of_graph_get_remote_port_parent(np);
1425 }
1426 
1427 static const struct supplier_bindings of_supplier_bindings[] = {
1428 	{ .parse_prop = parse_clocks, },
1429 	{ .parse_prop = parse_interconnects, },
1430 	{ .parse_prop = parse_iommus, .optional = true, },
1431 	{ .parse_prop = parse_iommu_maps, .optional = true, },
1432 	{ .parse_prop = parse_mboxes, },
1433 	{ .parse_prop = parse_io_channels, },
1434 	{ .parse_prop = parse_io_backends, },
1435 	{ .parse_prop = parse_interrupt_parent, },
1436 	{ .parse_prop = parse_dmas, .optional = true, },
1437 	{ .parse_prop = parse_power_domains, },
1438 	{ .parse_prop = parse_hwlocks, },
1439 	{ .parse_prop = parse_extcon, },
1440 	{ .parse_prop = parse_nvmem_cells, },
1441 	{ .parse_prop = parse_phys, },
1442 	{ .parse_prop = parse_wakeup_parent, },
1443 	{ .parse_prop = parse_pinctrl0, },
1444 	{ .parse_prop = parse_pinctrl1, },
1445 	{ .parse_prop = parse_pinctrl2, },
1446 	{ .parse_prop = parse_pinctrl3, },
1447 	{ .parse_prop = parse_pinctrl4, },
1448 	{ .parse_prop = parse_pinctrl5, },
1449 	{ .parse_prop = parse_pinctrl6, },
1450 	{ .parse_prop = parse_pinctrl7, },
1451 	{ .parse_prop = parse_pinctrl8, },
1452 	{
1453 		.parse_prop = parse_remote_endpoint,
1454 		.get_con_dev = of_graph_get_port_parent,
1455 	},
1456 	{ .parse_prop = parse_pwms, },
1457 	{ .parse_prop = parse_resets, },
1458 	{ .parse_prop = parse_leds, },
1459 	{ .parse_prop = parse_backlight, },
1460 	{ .parse_prop = parse_panel, },
1461 	{ .parse_prop = parse_msi_parent, },
1462 	{ .parse_prop = parse_pses, },
1463 	{ .parse_prop = parse_power_supplies, },
1464 	{ .parse_prop = parse_gpio_compat, },
1465 	{ .parse_prop = parse_interrupts, },
1466 	{ .parse_prop = parse_interrupt_map, },
1467 	{ .parse_prop = parse_access_controllers, },
1468 	{ .parse_prop = parse_regulators, },
1469 	{ .parse_prop = parse_gpio, },
1470 	{ .parse_prop = parse_gpios, },
1471 	{
1472 		.parse_prop = parse_post_init_providers,
1473 		.fwlink_flags = FWLINK_FLAG_IGNORE,
1474 	},
1475 	{}
1476 };
1477 
1478 /**
1479  * of_link_property - Create device links to suppliers listed in a property
1480  * @con_np: The consumer device tree node which contains the property
1481  * @prop_name: Name of property to be parsed
1482  *
1483  * This function checks if the property @prop_name that is present in the
1484  * @con_np device tree node is one of the known common device tree bindings
1485  * that list phandles to suppliers. If @prop_name isn't one, this function
1486  * doesn't do anything.
1487  *
1488  * If @prop_name is one, this function attempts to create fwnode links from the
1489  * consumer device tree node @con_np to all the suppliers device tree nodes
1490  * listed in @prop_name.
1491  *
1492  * Any failed attempt to create a fwnode link will NOT result in an immediate
1493  * return.  of_link_property() must create links to all the available supplier
1494  * device tree nodes even when attempts to create a link to one or more
1495  * suppliers fail.
1496  */
1497 static int of_link_property(struct device_node *con_np, const char *prop_name)
1498 {
1499 	struct device_node *phandle;
1500 	const struct supplier_bindings *s = of_supplier_bindings;
1501 	unsigned int i = 0;
1502 	bool matched = false;
1503 
1504 	/* Do not stop at first failed link, link all available suppliers. */
1505 	while (!matched && s->parse_prop) {
1506 		if (s->optional && !fw_devlink_is_strict()) {
1507 			s++;
1508 			continue;
1509 		}
1510 
1511 		while ((phandle = s->parse_prop(con_np, prop_name, i))) {
1512 			struct device_node *con_dev_np __free(device_node) =
1513 				s->get_con_dev ? s->get_con_dev(con_np) : of_node_get(con_np);
1514 
1515 			matched = true;
1516 			i++;
1517 			of_link_to_phandle(con_dev_np, phandle, s->fwlink_flags);
1518 			of_node_put(phandle);
1519 		}
1520 		s++;
1521 	}
1522 	return 0;
1523 }
1524 
1525 static void __iomem *of_fwnode_iomap(struct fwnode_handle *fwnode, int index)
1526 {
1527 #ifdef CONFIG_OF_ADDRESS
1528 	return of_iomap(to_of_node(fwnode), index);
1529 #else
1530 	return NULL;
1531 #endif
1532 }
1533 
1534 static int of_fwnode_irq_get(const struct fwnode_handle *fwnode,
1535 			     unsigned int index)
1536 {
1537 	return of_irq_get(to_of_node(fwnode), index);
1538 }
1539 
1540 static int of_fwnode_add_links(struct fwnode_handle *fwnode)
1541 {
1542 	const struct property *p;
1543 	struct device_node *con_np = to_of_node(fwnode);
1544 
1545 	if (IS_ENABLED(CONFIG_X86))
1546 		return 0;
1547 
1548 	if (!con_np)
1549 		return -EINVAL;
1550 
1551 	for_each_property_of_node(con_np, p)
1552 		of_link_property(con_np, p->name);
1553 
1554 	return 0;
1555 }
1556 
1557 const struct fwnode_operations of_fwnode_ops = {
1558 	.get = of_fwnode_get,
1559 	.put = of_fwnode_put,
1560 	.device_is_available = of_fwnode_device_is_available,
1561 	.device_get_match_data = of_fwnode_device_get_match_data,
1562 	.device_dma_supported = of_fwnode_device_dma_supported,
1563 	.device_get_dma_attr = of_fwnode_device_get_dma_attr,
1564 	.property_present = of_fwnode_property_present,
1565 	.property_read_int_array = of_fwnode_property_read_int_array,
1566 	.property_read_string_array = of_fwnode_property_read_string_array,
1567 	.get_name = of_fwnode_get_name,
1568 	.get_name_prefix = of_fwnode_get_name_prefix,
1569 	.get_parent = of_fwnode_get_parent,
1570 	.get_next_child_node = of_fwnode_get_next_child_node,
1571 	.get_named_child_node = of_fwnode_get_named_child_node,
1572 	.get_reference_args = of_fwnode_get_reference_args,
1573 	.graph_get_next_endpoint = of_fwnode_graph_get_next_endpoint,
1574 	.graph_get_remote_endpoint = of_fwnode_graph_get_remote_endpoint,
1575 	.graph_get_port_parent = of_fwnode_graph_get_port_parent,
1576 	.graph_parse_endpoint = of_fwnode_graph_parse_endpoint,
1577 	.iomap = of_fwnode_iomap,
1578 	.irq_get = of_fwnode_irq_get,
1579 	.add_links = of_fwnode_add_links,
1580 };
1581 EXPORT_SYMBOL_GPL(of_fwnode_ops);
1582