xref: /linux/drivers/of/of_reserved_mem.c (revision fc4fa6e112c0f999fab022a4eb7f6614bb47c7ab)
1 /*
2  * Device tree based initialization code for reserved memory.
3  *
4  * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
5  * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
6  *		http://www.samsung.com
7  * Author: Marek Szyprowski <m.szyprowski@samsung.com>
8  * Author: Josh Cartwright <joshc@codeaurora.org>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of the
13  * License or (at your optional) any later version of the license.
14  */
15 
16 #include <linux/err.h>
17 #include <linux/of.h>
18 #include <linux/of_fdt.h>
19 #include <linux/of_platform.h>
20 #include <linux/mm.h>
21 #include <linux/sizes.h>
22 #include <linux/of_reserved_mem.h>
23 #include <linux/sort.h>
24 
25 #define MAX_RESERVED_REGIONS	16
26 static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
27 static int reserved_mem_count;
28 
29 #if defined(CONFIG_HAVE_MEMBLOCK)
30 #include <linux/memblock.h>
31 int __init __weak early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
32 	phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
33 	phys_addr_t *res_base)
34 {
35 	/*
36 	 * We use __memblock_alloc_base() because memblock_alloc_base()
37 	 * panic()s on allocation failure.
38 	 */
39 	phys_addr_t base = __memblock_alloc_base(size, align, end);
40 	if (!base)
41 		return -ENOMEM;
42 
43 	/*
44 	 * Check if the allocated region fits in to start..end window
45 	 */
46 	if (base < start) {
47 		memblock_free(base, size);
48 		return -ENOMEM;
49 	}
50 
51 	*res_base = base;
52 	if (nomap)
53 		return memblock_remove(base, size);
54 	return 0;
55 }
56 #else
57 int __init __weak early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
58 	phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
59 	phys_addr_t *res_base)
60 {
61 	pr_err("Reserved memory not supported, ignoring region 0x%llx%s\n",
62 		  size, nomap ? " (nomap)" : "");
63 	return -ENOSYS;
64 }
65 #endif
66 
67 /**
68  * res_mem_save_node() - save fdt node for second pass initialization
69  */
70 void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
71 				      phys_addr_t base, phys_addr_t size)
72 {
73 	struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
74 
75 	if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
76 		pr_err("Reserved memory: not enough space all defined regions.\n");
77 		return;
78 	}
79 
80 	rmem->fdt_node = node;
81 	rmem->name = uname;
82 	rmem->base = base;
83 	rmem->size = size;
84 
85 	reserved_mem_count++;
86 	return;
87 }
88 
89 /**
90  * res_mem_alloc_size() - allocate reserved memory described by 'size', 'align'
91  *			  and 'alloc-ranges' properties
92  */
93 static int __init __reserved_mem_alloc_size(unsigned long node,
94 	const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
95 {
96 	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
97 	phys_addr_t start = 0, end = 0;
98 	phys_addr_t base = 0, align = 0, size;
99 	int len;
100 	const __be32 *prop;
101 	int nomap;
102 	int ret;
103 
104 	prop = of_get_flat_dt_prop(node, "size", &len);
105 	if (!prop)
106 		return -EINVAL;
107 
108 	if (len != dt_root_size_cells * sizeof(__be32)) {
109 		pr_err("Reserved memory: invalid size property in '%s' node.\n",
110 				uname);
111 		return -EINVAL;
112 	}
113 	size = dt_mem_next_cell(dt_root_size_cells, &prop);
114 
115 	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
116 
117 	prop = of_get_flat_dt_prop(node, "alignment", &len);
118 	if (prop) {
119 		if (len != dt_root_addr_cells * sizeof(__be32)) {
120 			pr_err("Reserved memory: invalid alignment property in '%s' node.\n",
121 				uname);
122 			return -EINVAL;
123 		}
124 		align = dt_mem_next_cell(dt_root_addr_cells, &prop);
125 	}
126 
127 	prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
128 	if (prop) {
129 
130 		if (len % t_len != 0) {
131 			pr_err("Reserved memory: invalid alloc-ranges property in '%s', skipping node.\n",
132 			       uname);
133 			return -EINVAL;
134 		}
135 
136 		base = 0;
137 
138 		while (len > 0) {
139 			start = dt_mem_next_cell(dt_root_addr_cells, &prop);
140 			end = start + dt_mem_next_cell(dt_root_size_cells,
141 						       &prop);
142 
143 			ret = early_init_dt_alloc_reserved_memory_arch(size,
144 					align, start, end, nomap, &base);
145 			if (ret == 0) {
146 				pr_debug("Reserved memory: allocated memory for '%s' node: base %pa, size %ld MiB\n",
147 					uname, &base,
148 					(unsigned long)size / SZ_1M);
149 				break;
150 			}
151 			len -= t_len;
152 		}
153 
154 	} else {
155 		ret = early_init_dt_alloc_reserved_memory_arch(size, align,
156 							0, 0, nomap, &base);
157 		if (ret == 0)
158 			pr_debug("Reserved memory: allocated memory for '%s' node: base %pa, size %ld MiB\n",
159 				uname, &base, (unsigned long)size / SZ_1M);
160 	}
161 
162 	if (base == 0) {
163 		pr_info("Reserved memory: failed to allocate memory for node '%s'\n",
164 			uname);
165 		return -ENOMEM;
166 	}
167 
168 	*res_base = base;
169 	*res_size = size;
170 
171 	return 0;
172 }
173 
174 static const struct of_device_id __rmem_of_table_sentinel
175 	__used __section(__reservedmem_of_table_end);
176 
177 /**
178  * res_mem_init_node() - call region specific reserved memory init code
179  */
180 static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
181 {
182 	extern const struct of_device_id __reservedmem_of_table[];
183 	const struct of_device_id *i;
184 
185 	for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
186 		reservedmem_of_init_fn initfn = i->data;
187 		const char *compat = i->compatible;
188 
189 		if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
190 			continue;
191 
192 		if (initfn(rmem) == 0) {
193 			pr_info("Reserved memory: initialized node %s, compatible id %s\n",
194 				rmem->name, compat);
195 			return 0;
196 		}
197 	}
198 	return -ENOENT;
199 }
200 
201 static int __init __rmem_cmp(const void *a, const void *b)
202 {
203 	const struct reserved_mem *ra = a, *rb = b;
204 
205 	return ra->base - rb->base;
206 }
207 
208 static void __init __rmem_check_for_overlap(void)
209 {
210 	int i;
211 
212 	if (reserved_mem_count < 2)
213 		return;
214 
215 	sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
216 	     __rmem_cmp, NULL);
217 	for (i = 0; i < reserved_mem_count - 1; i++) {
218 		struct reserved_mem *this, *next;
219 
220 		this = &reserved_mem[i];
221 		next = &reserved_mem[i + 1];
222 		if (!(this->base && next->base))
223 			continue;
224 		if (this->base + this->size > next->base) {
225 			phys_addr_t this_end, next_end;
226 
227 			this_end = this->base + this->size;
228 			next_end = next->base + next->size;
229 			WARN(1,
230 			     "Reserved memory: OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
231 			     this->name, &this->base, &this_end,
232 			     next->name, &next->base, &next_end);
233 		}
234 	}
235 }
236 
237 /**
238  * fdt_init_reserved_mem - allocate and init all saved reserved memory regions
239  */
240 void __init fdt_init_reserved_mem(void)
241 {
242 	int i;
243 
244 	/* check for overlapping reserved regions */
245 	__rmem_check_for_overlap();
246 
247 	for (i = 0; i < reserved_mem_count; i++) {
248 		struct reserved_mem *rmem = &reserved_mem[i];
249 		unsigned long node = rmem->fdt_node;
250 		int len;
251 		const __be32 *prop;
252 		int err = 0;
253 
254 		prop = of_get_flat_dt_prop(node, "phandle", &len);
255 		if (!prop)
256 			prop = of_get_flat_dt_prop(node, "linux,phandle", &len);
257 		if (prop)
258 			rmem->phandle = of_read_number(prop, len/4);
259 
260 		if (rmem->size == 0)
261 			err = __reserved_mem_alloc_size(node, rmem->name,
262 						 &rmem->base, &rmem->size);
263 		if (err == 0)
264 			__reserved_mem_init_node(rmem);
265 	}
266 }
267 
268 static inline struct reserved_mem *__find_rmem(struct device_node *node)
269 {
270 	unsigned int i;
271 
272 	if (!node->phandle)
273 		return NULL;
274 
275 	for (i = 0; i < reserved_mem_count; i++)
276 		if (reserved_mem[i].phandle == node->phandle)
277 			return &reserved_mem[i];
278 	return NULL;
279 }
280 
281 /**
282  * of_reserved_mem_device_init() - assign reserved memory region to given device
283  *
284  * This function assign memory region pointed by "memory-region" device tree
285  * property to the given device.
286  */
287 int of_reserved_mem_device_init(struct device *dev)
288 {
289 	struct reserved_mem *rmem;
290 	struct device_node *np;
291 	int ret;
292 
293 	np = of_parse_phandle(dev->of_node, "memory-region", 0);
294 	if (!np)
295 		return -ENODEV;
296 
297 	rmem = __find_rmem(np);
298 	of_node_put(np);
299 
300 	if (!rmem || !rmem->ops || !rmem->ops->device_init)
301 		return -EINVAL;
302 
303 	ret = rmem->ops->device_init(rmem, dev);
304 	if (ret == 0)
305 		dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
306 
307 	return ret;
308 }
309 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init);
310 
311 /**
312  * of_reserved_mem_device_release() - release reserved memory device structures
313  *
314  * This function releases structures allocated for memory region handling for
315  * the given device.
316  */
317 void of_reserved_mem_device_release(struct device *dev)
318 {
319 	struct reserved_mem *rmem;
320 	struct device_node *np;
321 
322 	np = of_parse_phandle(dev->of_node, "memory-region", 0);
323 	if (!np)
324 		return;
325 
326 	rmem = __find_rmem(np);
327 	of_node_put(np);
328 
329 	if (!rmem || !rmem->ops || !rmem->ops->device_release)
330 		return;
331 
332 	rmem->ops->device_release(rmem, dev);
333 }
334 EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);
335