xref: /linux/drivers/of/of_reserved_mem.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Device tree based initialization code for reserved memory.
4  *
5  * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
6  * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
7  *		http://www.samsung.com
8  * Author: Marek Szyprowski <m.szyprowski@samsung.com>
9  * Author: Josh Cartwright <joshc@codeaurora.org>
10  */
11 
12 #define pr_fmt(fmt)	"OF: reserved mem: " fmt
13 
14 #include <linux/err.h>
15 #include <linux/libfdt.h>
16 #include <linux/of.h>
17 #include <linux/of_fdt.h>
18 #include <linux/of_platform.h>
19 #include <linux/mm.h>
20 #include <linux/sizes.h>
21 #include <linux/of_reserved_mem.h>
22 #include <linux/sort.h>
23 #include <linux/slab.h>
24 #include <linux/memblock.h>
25 #include <linux/kmemleak.h>
26 #include <linux/cma.h>
27 
28 #include "of_private.h"
29 
30 #define MAX_RESERVED_REGIONS	64
31 static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
32 static int reserved_mem_count;
33 
34 static int __init early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
35 	phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
36 	phys_addr_t *res_base)
37 {
38 	phys_addr_t base;
39 	int err = 0;
40 
41 	end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
42 	align = !align ? SMP_CACHE_BYTES : align;
43 	base = memblock_phys_alloc_range(size, align, start, end);
44 	if (!base)
45 		return -ENOMEM;
46 
47 	*res_base = base;
48 	if (nomap) {
49 		err = memblock_mark_nomap(base, size);
50 		if (err)
51 			memblock_phys_free(base, size);
52 	}
53 
54 	kmemleak_ignore_phys(base);
55 
56 	return err;
57 }
58 
59 /*
60  * fdt_reserved_mem_save_node() - save fdt node for second pass initialization
61  */
62 static void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
63 					      phys_addr_t base, phys_addr_t size)
64 {
65 	struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
66 
67 	if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
68 		pr_err("not enough space for all defined regions.\n");
69 		return;
70 	}
71 
72 	rmem->fdt_node = node;
73 	rmem->name = uname;
74 	rmem->base = base;
75 	rmem->size = size;
76 
77 	reserved_mem_count++;
78 	return;
79 }
80 
81 static int __init early_init_dt_reserve_memory(phys_addr_t base,
82 					       phys_addr_t size, bool nomap)
83 {
84 	if (nomap) {
85 		/*
86 		 * If the memory is already reserved (by another region), we
87 		 * should not allow it to be marked nomap, but don't worry
88 		 * if the region isn't memory as it won't be mapped.
89 		 */
90 		if (memblock_overlaps_region(&memblock.memory, base, size) &&
91 		    memblock_is_region_reserved(base, size))
92 			return -EBUSY;
93 
94 		return memblock_mark_nomap(base, size);
95 	}
96 	return memblock_reserve(base, size);
97 }
98 
99 /*
100  * __reserved_mem_reserve_reg() - reserve all memory described in 'reg' property
101  */
102 static int __init __reserved_mem_reserve_reg(unsigned long node,
103 					     const char *uname)
104 {
105 	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
106 	phys_addr_t base, size;
107 	int len;
108 	const __be32 *prop;
109 	int first = 1;
110 	bool nomap;
111 
112 	prop = of_get_flat_dt_prop(node, "reg", &len);
113 	if (!prop)
114 		return -ENOENT;
115 
116 	if (len && len % t_len != 0) {
117 		pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
118 		       uname);
119 		return -EINVAL;
120 	}
121 
122 	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
123 
124 	while (len >= t_len) {
125 		base = dt_mem_next_cell(dt_root_addr_cells, &prop);
126 		size = dt_mem_next_cell(dt_root_size_cells, &prop);
127 
128 		if (size &&
129 		    early_init_dt_reserve_memory(base, size, nomap) == 0)
130 			pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %lu MiB\n",
131 				uname, &base, (unsigned long)(size / SZ_1M));
132 		else
133 			pr_err("Reserved memory: failed to reserve memory for node '%s': base %pa, size %lu MiB\n",
134 			       uname, &base, (unsigned long)(size / SZ_1M));
135 
136 		len -= t_len;
137 		if (first) {
138 			fdt_reserved_mem_save_node(node, uname, base, size);
139 			first = 0;
140 		}
141 	}
142 	return 0;
143 }
144 
145 /*
146  * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
147  * in /reserved-memory matches the values supported by the current implementation,
148  * also check if ranges property has been provided
149  */
150 static int __init __reserved_mem_check_root(unsigned long node)
151 {
152 	const __be32 *prop;
153 
154 	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
155 	if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
156 		return -EINVAL;
157 
158 	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
159 	if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
160 		return -EINVAL;
161 
162 	prop = of_get_flat_dt_prop(node, "ranges", NULL);
163 	if (!prop)
164 		return -EINVAL;
165 	return 0;
166 }
167 
168 /*
169  * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
170  */
171 int __init fdt_scan_reserved_mem(void)
172 {
173 	int node, child;
174 	const void *fdt = initial_boot_params;
175 
176 	node = fdt_path_offset(fdt, "/reserved-memory");
177 	if (node < 0)
178 		return -ENODEV;
179 
180 	if (__reserved_mem_check_root(node) != 0) {
181 		pr_err("Reserved memory: unsupported node format, ignoring\n");
182 		return -EINVAL;
183 	}
184 
185 	fdt_for_each_subnode(child, fdt, node) {
186 		const char *uname;
187 		int err;
188 
189 		if (!of_fdt_device_is_available(fdt, child))
190 			continue;
191 
192 		uname = fdt_get_name(fdt, child, NULL);
193 
194 		err = __reserved_mem_reserve_reg(child, uname);
195 		if (err == -ENOENT && of_get_flat_dt_prop(child, "size", NULL))
196 			fdt_reserved_mem_save_node(child, uname, 0, 0);
197 	}
198 	return 0;
199 }
200 
201 /*
202  * __reserved_mem_alloc_in_range() - allocate reserved memory described with
203  *	'alloc-ranges'. Choose bottom-up/top-down depending on nearby existing
204  *	reserved regions to keep the reserved memory contiguous if possible.
205  */
206 static int __init __reserved_mem_alloc_in_range(phys_addr_t size,
207 	phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
208 	phys_addr_t *res_base)
209 {
210 	bool prev_bottom_up = memblock_bottom_up();
211 	bool bottom_up = false, top_down = false;
212 	int ret, i;
213 
214 	for (i = 0; i < reserved_mem_count; i++) {
215 		struct reserved_mem *rmem = &reserved_mem[i];
216 
217 		/* Skip regions that were not reserved yet */
218 		if (rmem->size == 0)
219 			continue;
220 
221 		/*
222 		 * If range starts next to an existing reservation, use bottom-up:
223 		 *	|....RRRR................RRRRRRRR..............|
224 		 *	       --RRRR------
225 		 */
226 		if (start >= rmem->base && start <= (rmem->base + rmem->size))
227 			bottom_up = true;
228 
229 		/*
230 		 * If range ends next to an existing reservation, use top-down:
231 		 *	|....RRRR................RRRRRRRR..............|
232 		 *	              -------RRRR-----
233 		 */
234 		if (end >= rmem->base && end <= (rmem->base + rmem->size))
235 			top_down = true;
236 	}
237 
238 	/* Change setting only if either bottom-up or top-down was selected */
239 	if (bottom_up != top_down)
240 		memblock_set_bottom_up(bottom_up);
241 
242 	ret = early_init_dt_alloc_reserved_memory_arch(size, align,
243 			start, end, nomap, res_base);
244 
245 	/* Restore old setting if needed */
246 	if (bottom_up != top_down)
247 		memblock_set_bottom_up(prev_bottom_up);
248 
249 	return ret;
250 }
251 
252 /*
253  * __reserved_mem_alloc_size() - allocate reserved memory described by
254  *	'size', 'alignment'  and 'alloc-ranges' properties.
255  */
256 static int __init __reserved_mem_alloc_size(unsigned long node,
257 	const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
258 {
259 	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
260 	phys_addr_t start = 0, end = 0;
261 	phys_addr_t base = 0, align = 0, size;
262 	int len;
263 	const __be32 *prop;
264 	bool nomap;
265 	int ret;
266 
267 	prop = of_get_flat_dt_prop(node, "size", &len);
268 	if (!prop)
269 		return -EINVAL;
270 
271 	if (len != dt_root_size_cells * sizeof(__be32)) {
272 		pr_err("invalid size property in '%s' node.\n", uname);
273 		return -EINVAL;
274 	}
275 	size = dt_mem_next_cell(dt_root_size_cells, &prop);
276 
277 	prop = of_get_flat_dt_prop(node, "alignment", &len);
278 	if (prop) {
279 		if (len != dt_root_addr_cells * sizeof(__be32)) {
280 			pr_err("invalid alignment property in '%s' node.\n",
281 				uname);
282 			return -EINVAL;
283 		}
284 		align = dt_mem_next_cell(dt_root_addr_cells, &prop);
285 	}
286 
287 	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
288 
289 	/* Need adjust the alignment to satisfy the CMA requirement */
290 	if (IS_ENABLED(CONFIG_CMA)
291 	    && of_flat_dt_is_compatible(node, "shared-dma-pool")
292 	    && of_get_flat_dt_prop(node, "reusable", NULL)
293 	    && !nomap)
294 		align = max_t(phys_addr_t, align, CMA_MIN_ALIGNMENT_BYTES);
295 
296 	prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
297 	if (prop) {
298 
299 		if (len % t_len != 0) {
300 			pr_err("invalid alloc-ranges property in '%s', skipping node.\n",
301 			       uname);
302 			return -EINVAL;
303 		}
304 
305 		base = 0;
306 
307 		while (len > 0) {
308 			start = dt_mem_next_cell(dt_root_addr_cells, &prop);
309 			end = start + dt_mem_next_cell(dt_root_size_cells,
310 						       &prop);
311 
312 			ret = __reserved_mem_alloc_in_range(size, align,
313 					start, end, nomap, &base);
314 			if (ret == 0) {
315 				pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
316 					uname, &base,
317 					(unsigned long)(size / SZ_1M));
318 				break;
319 			}
320 			len -= t_len;
321 		}
322 
323 	} else {
324 		ret = early_init_dt_alloc_reserved_memory_arch(size, align,
325 							0, 0, nomap, &base);
326 		if (ret == 0)
327 			pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
328 				uname, &base, (unsigned long)(size / SZ_1M));
329 	}
330 
331 	if (base == 0) {
332 		pr_err("failed to allocate memory for node '%s': size %lu MiB\n",
333 		       uname, (unsigned long)(size / SZ_1M));
334 		return -ENOMEM;
335 	}
336 
337 	*res_base = base;
338 	*res_size = size;
339 
340 	return 0;
341 }
342 
343 static const struct of_device_id __rmem_of_table_sentinel
344 	__used __section("__reservedmem_of_table_end");
345 
346 /*
347  * __reserved_mem_init_node() - call region specific reserved memory init code
348  */
349 static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
350 {
351 	extern const struct of_device_id __reservedmem_of_table[];
352 	const struct of_device_id *i;
353 	int ret = -ENOENT;
354 
355 	for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
356 		reservedmem_of_init_fn initfn = i->data;
357 		const char *compat = i->compatible;
358 
359 		if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
360 			continue;
361 
362 		ret = initfn(rmem);
363 		if (ret == 0) {
364 			pr_info("initialized node %s, compatible id %s\n",
365 				rmem->name, compat);
366 			break;
367 		}
368 	}
369 	return ret;
370 }
371 
372 static int __init __rmem_cmp(const void *a, const void *b)
373 {
374 	const struct reserved_mem *ra = a, *rb = b;
375 
376 	if (ra->base < rb->base)
377 		return -1;
378 
379 	if (ra->base > rb->base)
380 		return 1;
381 
382 	/*
383 	 * Put the dynamic allocations (address == 0, size == 0) before static
384 	 * allocations at address 0x0 so that overlap detection works
385 	 * correctly.
386 	 */
387 	if (ra->size < rb->size)
388 		return -1;
389 	if (ra->size > rb->size)
390 		return 1;
391 
392 	if (ra->fdt_node < rb->fdt_node)
393 		return -1;
394 	if (ra->fdt_node > rb->fdt_node)
395 		return 1;
396 
397 	return 0;
398 }
399 
400 static void __init __rmem_check_for_overlap(void)
401 {
402 	int i;
403 
404 	if (reserved_mem_count < 2)
405 		return;
406 
407 	sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
408 	     __rmem_cmp, NULL);
409 	for (i = 0; i < reserved_mem_count - 1; i++) {
410 		struct reserved_mem *this, *next;
411 
412 		this = &reserved_mem[i];
413 		next = &reserved_mem[i + 1];
414 
415 		if (this->base + this->size > next->base) {
416 			phys_addr_t this_end, next_end;
417 
418 			this_end = this->base + this->size;
419 			next_end = next->base + next->size;
420 			pr_err("OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
421 			       this->name, &this->base, &this_end,
422 			       next->name, &next->base, &next_end);
423 		}
424 	}
425 }
426 
427 /**
428  * fdt_init_reserved_mem() - allocate and init all saved reserved memory regions
429  */
430 void __init fdt_init_reserved_mem(void)
431 {
432 	int i;
433 
434 	/* check for overlapping reserved regions */
435 	__rmem_check_for_overlap();
436 
437 	for (i = 0; i < reserved_mem_count; i++) {
438 		struct reserved_mem *rmem = &reserved_mem[i];
439 		unsigned long node = rmem->fdt_node;
440 		int len;
441 		const __be32 *prop;
442 		int err = 0;
443 		bool nomap;
444 
445 		nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
446 		prop = of_get_flat_dt_prop(node, "phandle", &len);
447 		if (!prop)
448 			prop = of_get_flat_dt_prop(node, "linux,phandle", &len);
449 		if (prop)
450 			rmem->phandle = of_read_number(prop, len/4);
451 
452 		if (rmem->size == 0)
453 			err = __reserved_mem_alloc_size(node, rmem->name,
454 						 &rmem->base, &rmem->size);
455 		if (err == 0) {
456 			err = __reserved_mem_init_node(rmem);
457 			if (err != 0 && err != -ENOENT) {
458 				pr_info("node %s compatible matching fail\n",
459 					rmem->name);
460 				if (nomap)
461 					memblock_clear_nomap(rmem->base, rmem->size);
462 				else
463 					memblock_phys_free(rmem->base,
464 							   rmem->size);
465 			} else {
466 				phys_addr_t end = rmem->base + rmem->size - 1;
467 				bool reusable =
468 					(of_get_flat_dt_prop(node, "reusable", NULL)) != NULL;
469 
470 				pr_info("%pa..%pa (%lu KiB) %s %s %s\n",
471 					&rmem->base, &end, (unsigned long)(rmem->size / SZ_1K),
472 					nomap ? "nomap" : "map",
473 					reusable ? "reusable" : "non-reusable",
474 					rmem->name ? rmem->name : "unknown");
475 			}
476 		}
477 	}
478 }
479 
480 static inline struct reserved_mem *__find_rmem(struct device_node *node)
481 {
482 	unsigned int i;
483 
484 	if (!node->phandle)
485 		return NULL;
486 
487 	for (i = 0; i < reserved_mem_count; i++)
488 		if (reserved_mem[i].phandle == node->phandle)
489 			return &reserved_mem[i];
490 	return NULL;
491 }
492 
493 struct rmem_assigned_device {
494 	struct device *dev;
495 	struct reserved_mem *rmem;
496 	struct list_head list;
497 };
498 
499 static LIST_HEAD(of_rmem_assigned_device_list);
500 static DEFINE_MUTEX(of_rmem_assigned_device_mutex);
501 
502 /**
503  * of_reserved_mem_device_init_by_idx() - assign reserved memory region to
504  *					  given device
505  * @dev:	Pointer to the device to configure
506  * @np:		Pointer to the device_node with 'reserved-memory' property
507  * @idx:	Index of selected region
508  *
509  * This function assigns respective DMA-mapping operations based on reserved
510  * memory region specified by 'memory-region' property in @np node to the @dev
511  * device. When driver needs to use more than one reserved memory region, it
512  * should allocate child devices and initialize regions by name for each of
513  * child device.
514  *
515  * Returns error code or zero on success.
516  */
517 int of_reserved_mem_device_init_by_idx(struct device *dev,
518 				       struct device_node *np, int idx)
519 {
520 	struct rmem_assigned_device *rd;
521 	struct device_node *target;
522 	struct reserved_mem *rmem;
523 	int ret;
524 
525 	if (!np || !dev)
526 		return -EINVAL;
527 
528 	target = of_parse_phandle(np, "memory-region", idx);
529 	if (!target)
530 		return -ENODEV;
531 
532 	if (!of_device_is_available(target)) {
533 		of_node_put(target);
534 		return 0;
535 	}
536 
537 	rmem = __find_rmem(target);
538 	of_node_put(target);
539 
540 	if (!rmem || !rmem->ops || !rmem->ops->device_init)
541 		return -EINVAL;
542 
543 	rd = kmalloc(sizeof(struct rmem_assigned_device), GFP_KERNEL);
544 	if (!rd)
545 		return -ENOMEM;
546 
547 	ret = rmem->ops->device_init(rmem, dev);
548 	if (ret == 0) {
549 		rd->dev = dev;
550 		rd->rmem = rmem;
551 
552 		mutex_lock(&of_rmem_assigned_device_mutex);
553 		list_add(&rd->list, &of_rmem_assigned_device_list);
554 		mutex_unlock(&of_rmem_assigned_device_mutex);
555 
556 		dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
557 	} else {
558 		kfree(rd);
559 	}
560 
561 	return ret;
562 }
563 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_idx);
564 
565 /**
566  * of_reserved_mem_device_init_by_name() - assign named reserved memory region
567  *					   to given device
568  * @dev: pointer to the device to configure
569  * @np: pointer to the device node with 'memory-region' property
570  * @name: name of the selected memory region
571  *
572  * Returns: 0 on success or a negative error-code on failure.
573  */
574 int of_reserved_mem_device_init_by_name(struct device *dev,
575 					struct device_node *np,
576 					const char *name)
577 {
578 	int idx = of_property_match_string(np, "memory-region-names", name);
579 
580 	return of_reserved_mem_device_init_by_idx(dev, np, idx);
581 }
582 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_name);
583 
584 /**
585  * of_reserved_mem_device_release() - release reserved memory device structures
586  * @dev:	Pointer to the device to deconfigure
587  *
588  * This function releases structures allocated for memory region handling for
589  * the given device.
590  */
591 void of_reserved_mem_device_release(struct device *dev)
592 {
593 	struct rmem_assigned_device *rd, *tmp;
594 	LIST_HEAD(release_list);
595 
596 	mutex_lock(&of_rmem_assigned_device_mutex);
597 	list_for_each_entry_safe(rd, tmp, &of_rmem_assigned_device_list, list) {
598 		if (rd->dev == dev)
599 			list_move_tail(&rd->list, &release_list);
600 	}
601 	mutex_unlock(&of_rmem_assigned_device_mutex);
602 
603 	list_for_each_entry_safe(rd, tmp, &release_list, list) {
604 		if (rd->rmem && rd->rmem->ops && rd->rmem->ops->device_release)
605 			rd->rmem->ops->device_release(rd->rmem, dev);
606 
607 		kfree(rd);
608 	}
609 }
610 EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);
611 
612 /**
613  * of_reserved_mem_lookup() - acquire reserved_mem from a device node
614  * @np:		node pointer of the desired reserved-memory region
615  *
616  * This function allows drivers to acquire a reference to the reserved_mem
617  * struct based on a device node handle.
618  *
619  * Returns a reserved_mem reference, or NULL on error.
620  */
621 struct reserved_mem *of_reserved_mem_lookup(struct device_node *np)
622 {
623 	const char *name;
624 	int i;
625 
626 	if (!np->full_name)
627 		return NULL;
628 
629 	name = kbasename(np->full_name);
630 	for (i = 0; i < reserved_mem_count; i++)
631 		if (!strcmp(reserved_mem[i].name, name))
632 			return &reserved_mem[i];
633 
634 	return NULL;
635 }
636 EXPORT_SYMBOL_GPL(of_reserved_mem_lookup);
637