xref: /linux/drivers/of/of_reserved_mem.c (revision e251a4e28a27884e8bfb7fccbf53b24736f3ef87)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Device tree based initialization code for reserved memory.
4  *
5  * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
6  * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
7  *		http://www.samsung.com
8  * Author: Marek Szyprowski <m.szyprowski@samsung.com>
9  * Author: Josh Cartwright <joshc@codeaurora.org>
10  */
11 
12 #define pr_fmt(fmt)	"OF: reserved mem: " fmt
13 
14 #include <linux/err.h>
15 #include <linux/of.h>
16 #include <linux/of_fdt.h>
17 #include <linux/of_platform.h>
18 #include <linux/mm.h>
19 #include <linux/sizes.h>
20 #include <linux/of_reserved_mem.h>
21 #include <linux/sort.h>
22 #include <linux/slab.h>
23 #include <linux/memblock.h>
24 #include <linux/kmemleak.h>
25 #include <linux/cma.h>
26 
27 #include "of_private.h"
28 
29 #define MAX_RESERVED_REGIONS	64
30 static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
31 static int reserved_mem_count;
32 
33 static int __init early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
34 	phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
35 	phys_addr_t *res_base)
36 {
37 	phys_addr_t base;
38 	int err = 0;
39 
40 	end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
41 	align = !align ? SMP_CACHE_BYTES : align;
42 	base = memblock_phys_alloc_range(size, align, start, end);
43 	if (!base)
44 		return -ENOMEM;
45 
46 	*res_base = base;
47 	if (nomap) {
48 		err = memblock_mark_nomap(base, size);
49 		if (err)
50 			memblock_phys_free(base, size);
51 	}
52 
53 	kmemleak_ignore_phys(base);
54 
55 	return err;
56 }
57 
58 /*
59  * fdt_reserved_mem_save_node() - save fdt node for second pass initialization
60  */
61 void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
62 				      phys_addr_t base, phys_addr_t size)
63 {
64 	struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
65 
66 	if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
67 		pr_err("not enough space for all defined regions.\n");
68 		return;
69 	}
70 
71 	rmem->fdt_node = node;
72 	rmem->name = uname;
73 	rmem->base = base;
74 	rmem->size = size;
75 
76 	reserved_mem_count++;
77 	return;
78 }
79 
80 /*
81  * __reserved_mem_alloc_in_range() - allocate reserved memory described with
82  *	'alloc-ranges'. Choose bottom-up/top-down depending on nearby existing
83  *	reserved regions to keep the reserved memory contiguous if possible.
84  */
85 static int __init __reserved_mem_alloc_in_range(phys_addr_t size,
86 	phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
87 	phys_addr_t *res_base)
88 {
89 	bool prev_bottom_up = memblock_bottom_up();
90 	bool bottom_up = false, top_down = false;
91 	int ret, i;
92 
93 	for (i = 0; i < reserved_mem_count; i++) {
94 		struct reserved_mem *rmem = &reserved_mem[i];
95 
96 		/* Skip regions that were not reserved yet */
97 		if (rmem->size == 0)
98 			continue;
99 
100 		/*
101 		 * If range starts next to an existing reservation, use bottom-up:
102 		 *	|....RRRR................RRRRRRRR..............|
103 		 *	       --RRRR------
104 		 */
105 		if (start >= rmem->base && start <= (rmem->base + rmem->size))
106 			bottom_up = true;
107 
108 		/*
109 		 * If range ends next to an existing reservation, use top-down:
110 		 *	|....RRRR................RRRRRRRR..............|
111 		 *	              -------RRRR-----
112 		 */
113 		if (end >= rmem->base && end <= (rmem->base + rmem->size))
114 			top_down = true;
115 	}
116 
117 	/* Change setting only if either bottom-up or top-down was selected */
118 	if (bottom_up != top_down)
119 		memblock_set_bottom_up(bottom_up);
120 
121 	ret = early_init_dt_alloc_reserved_memory_arch(size, align,
122 			start, end, nomap, res_base);
123 
124 	/* Restore old setting if needed */
125 	if (bottom_up != top_down)
126 		memblock_set_bottom_up(prev_bottom_up);
127 
128 	return ret;
129 }
130 
131 /*
132  * __reserved_mem_alloc_size() - allocate reserved memory described by
133  *	'size', 'alignment'  and 'alloc-ranges' properties.
134  */
135 static int __init __reserved_mem_alloc_size(unsigned long node,
136 	const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
137 {
138 	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
139 	phys_addr_t start = 0, end = 0;
140 	phys_addr_t base = 0, align = 0, size;
141 	int len;
142 	const __be32 *prop;
143 	bool nomap;
144 	int ret;
145 
146 	prop = of_get_flat_dt_prop(node, "size", &len);
147 	if (!prop)
148 		return -EINVAL;
149 
150 	if (len != dt_root_size_cells * sizeof(__be32)) {
151 		pr_err("invalid size property in '%s' node.\n", uname);
152 		return -EINVAL;
153 	}
154 	size = dt_mem_next_cell(dt_root_size_cells, &prop);
155 
156 	prop = of_get_flat_dt_prop(node, "alignment", &len);
157 	if (prop) {
158 		if (len != dt_root_addr_cells * sizeof(__be32)) {
159 			pr_err("invalid alignment property in '%s' node.\n",
160 				uname);
161 			return -EINVAL;
162 		}
163 		align = dt_mem_next_cell(dt_root_addr_cells, &prop);
164 	}
165 
166 	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
167 
168 	/* Need adjust the alignment to satisfy the CMA requirement */
169 	if (IS_ENABLED(CONFIG_CMA)
170 	    && of_flat_dt_is_compatible(node, "shared-dma-pool")
171 	    && of_get_flat_dt_prop(node, "reusable", NULL)
172 	    && !nomap)
173 		align = max_t(phys_addr_t, align, CMA_MIN_ALIGNMENT_BYTES);
174 
175 	prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
176 	if (prop) {
177 
178 		if (len % t_len != 0) {
179 			pr_err("invalid alloc-ranges property in '%s', skipping node.\n",
180 			       uname);
181 			return -EINVAL;
182 		}
183 
184 		base = 0;
185 
186 		while (len > 0) {
187 			start = dt_mem_next_cell(dt_root_addr_cells, &prop);
188 			end = start + dt_mem_next_cell(dt_root_size_cells,
189 						       &prop);
190 
191 			ret = __reserved_mem_alloc_in_range(size, align,
192 					start, end, nomap, &base);
193 			if (ret == 0) {
194 				pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
195 					uname, &base,
196 					(unsigned long)(size / SZ_1M));
197 				break;
198 			}
199 			len -= t_len;
200 		}
201 
202 	} else {
203 		ret = early_init_dt_alloc_reserved_memory_arch(size, align,
204 							0, 0, nomap, &base);
205 		if (ret == 0)
206 			pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
207 				uname, &base, (unsigned long)(size / SZ_1M));
208 	}
209 
210 	if (base == 0) {
211 		pr_err("failed to allocate memory for node '%s': size %lu MiB\n",
212 		       uname, (unsigned long)(size / SZ_1M));
213 		return -ENOMEM;
214 	}
215 
216 	*res_base = base;
217 	*res_size = size;
218 
219 	return 0;
220 }
221 
222 static const struct of_device_id __rmem_of_table_sentinel
223 	__used __section("__reservedmem_of_table_end");
224 
225 /*
226  * __reserved_mem_init_node() - call region specific reserved memory init code
227  */
228 static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
229 {
230 	extern const struct of_device_id __reservedmem_of_table[];
231 	const struct of_device_id *i;
232 	int ret = -ENOENT;
233 
234 	for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
235 		reservedmem_of_init_fn initfn = i->data;
236 		const char *compat = i->compatible;
237 
238 		if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
239 			continue;
240 
241 		ret = initfn(rmem);
242 		if (ret == 0) {
243 			pr_info("initialized node %s, compatible id %s\n",
244 				rmem->name, compat);
245 			break;
246 		}
247 	}
248 	return ret;
249 }
250 
251 static int __init __rmem_cmp(const void *a, const void *b)
252 {
253 	const struct reserved_mem *ra = a, *rb = b;
254 
255 	if (ra->base < rb->base)
256 		return -1;
257 
258 	if (ra->base > rb->base)
259 		return 1;
260 
261 	/*
262 	 * Put the dynamic allocations (address == 0, size == 0) before static
263 	 * allocations at address 0x0 so that overlap detection works
264 	 * correctly.
265 	 */
266 	if (ra->size < rb->size)
267 		return -1;
268 	if (ra->size > rb->size)
269 		return 1;
270 
271 	if (ra->fdt_node < rb->fdt_node)
272 		return -1;
273 	if (ra->fdt_node > rb->fdt_node)
274 		return 1;
275 
276 	return 0;
277 }
278 
279 static void __init __rmem_check_for_overlap(void)
280 {
281 	int i;
282 
283 	if (reserved_mem_count < 2)
284 		return;
285 
286 	sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
287 	     __rmem_cmp, NULL);
288 	for (i = 0; i < reserved_mem_count - 1; i++) {
289 		struct reserved_mem *this, *next;
290 
291 		this = &reserved_mem[i];
292 		next = &reserved_mem[i + 1];
293 
294 		if (this->base + this->size > next->base) {
295 			phys_addr_t this_end, next_end;
296 
297 			this_end = this->base + this->size;
298 			next_end = next->base + next->size;
299 			pr_err("OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
300 			       this->name, &this->base, &this_end,
301 			       next->name, &next->base, &next_end);
302 		}
303 	}
304 }
305 
306 /**
307  * fdt_init_reserved_mem() - allocate and init all saved reserved memory regions
308  */
309 void __init fdt_init_reserved_mem(void)
310 {
311 	int i;
312 
313 	/* check for overlapping reserved regions */
314 	__rmem_check_for_overlap();
315 
316 	for (i = 0; i < reserved_mem_count; i++) {
317 		struct reserved_mem *rmem = &reserved_mem[i];
318 		unsigned long node = rmem->fdt_node;
319 		int len;
320 		const __be32 *prop;
321 		int err = 0;
322 		bool nomap;
323 
324 		nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
325 		prop = of_get_flat_dt_prop(node, "phandle", &len);
326 		if (!prop)
327 			prop = of_get_flat_dt_prop(node, "linux,phandle", &len);
328 		if (prop)
329 			rmem->phandle = of_read_number(prop, len/4);
330 
331 		if (rmem->size == 0)
332 			err = __reserved_mem_alloc_size(node, rmem->name,
333 						 &rmem->base, &rmem->size);
334 		if (err == 0) {
335 			err = __reserved_mem_init_node(rmem);
336 			if (err != 0 && err != -ENOENT) {
337 				pr_info("node %s compatible matching fail\n",
338 					rmem->name);
339 				if (nomap)
340 					memblock_clear_nomap(rmem->base, rmem->size);
341 				else
342 					memblock_phys_free(rmem->base,
343 							   rmem->size);
344 			} else {
345 				phys_addr_t end = rmem->base + rmem->size - 1;
346 				bool reusable =
347 					(of_get_flat_dt_prop(node, "reusable", NULL)) != NULL;
348 
349 				pr_info("%pa..%pa (%lu KiB) %s %s %s\n",
350 					&rmem->base, &end, (unsigned long)(rmem->size / SZ_1K),
351 					nomap ? "nomap" : "map",
352 					reusable ? "reusable" : "non-reusable",
353 					rmem->name ? rmem->name : "unknown");
354 			}
355 		}
356 	}
357 }
358 
359 static inline struct reserved_mem *__find_rmem(struct device_node *node)
360 {
361 	unsigned int i;
362 
363 	if (!node->phandle)
364 		return NULL;
365 
366 	for (i = 0; i < reserved_mem_count; i++)
367 		if (reserved_mem[i].phandle == node->phandle)
368 			return &reserved_mem[i];
369 	return NULL;
370 }
371 
372 struct rmem_assigned_device {
373 	struct device *dev;
374 	struct reserved_mem *rmem;
375 	struct list_head list;
376 };
377 
378 static LIST_HEAD(of_rmem_assigned_device_list);
379 static DEFINE_MUTEX(of_rmem_assigned_device_mutex);
380 
381 /**
382  * of_reserved_mem_device_init_by_idx() - assign reserved memory region to
383  *					  given device
384  * @dev:	Pointer to the device to configure
385  * @np:		Pointer to the device_node with 'reserved-memory' property
386  * @idx:	Index of selected region
387  *
388  * This function assigns respective DMA-mapping operations based on reserved
389  * memory region specified by 'memory-region' property in @np node to the @dev
390  * device. When driver needs to use more than one reserved memory region, it
391  * should allocate child devices and initialize regions by name for each of
392  * child device.
393  *
394  * Returns error code or zero on success.
395  */
396 int of_reserved_mem_device_init_by_idx(struct device *dev,
397 				       struct device_node *np, int idx)
398 {
399 	struct rmem_assigned_device *rd;
400 	struct device_node *target;
401 	struct reserved_mem *rmem;
402 	int ret;
403 
404 	if (!np || !dev)
405 		return -EINVAL;
406 
407 	target = of_parse_phandle(np, "memory-region", idx);
408 	if (!target)
409 		return -ENODEV;
410 
411 	if (!of_device_is_available(target)) {
412 		of_node_put(target);
413 		return 0;
414 	}
415 
416 	rmem = __find_rmem(target);
417 	of_node_put(target);
418 
419 	if (!rmem || !rmem->ops || !rmem->ops->device_init)
420 		return -EINVAL;
421 
422 	rd = kmalloc(sizeof(struct rmem_assigned_device), GFP_KERNEL);
423 	if (!rd)
424 		return -ENOMEM;
425 
426 	ret = rmem->ops->device_init(rmem, dev);
427 	if (ret == 0) {
428 		rd->dev = dev;
429 		rd->rmem = rmem;
430 
431 		mutex_lock(&of_rmem_assigned_device_mutex);
432 		list_add(&rd->list, &of_rmem_assigned_device_list);
433 		mutex_unlock(&of_rmem_assigned_device_mutex);
434 
435 		dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
436 	} else {
437 		kfree(rd);
438 	}
439 
440 	return ret;
441 }
442 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_idx);
443 
444 /**
445  * of_reserved_mem_device_init_by_name() - assign named reserved memory region
446  *					   to given device
447  * @dev: pointer to the device to configure
448  * @np: pointer to the device node with 'memory-region' property
449  * @name: name of the selected memory region
450  *
451  * Returns: 0 on success or a negative error-code on failure.
452  */
453 int of_reserved_mem_device_init_by_name(struct device *dev,
454 					struct device_node *np,
455 					const char *name)
456 {
457 	int idx = of_property_match_string(np, "memory-region-names", name);
458 
459 	return of_reserved_mem_device_init_by_idx(dev, np, idx);
460 }
461 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_name);
462 
463 /**
464  * of_reserved_mem_device_release() - release reserved memory device structures
465  * @dev:	Pointer to the device to deconfigure
466  *
467  * This function releases structures allocated for memory region handling for
468  * the given device.
469  */
470 void of_reserved_mem_device_release(struct device *dev)
471 {
472 	struct rmem_assigned_device *rd, *tmp;
473 	LIST_HEAD(release_list);
474 
475 	mutex_lock(&of_rmem_assigned_device_mutex);
476 	list_for_each_entry_safe(rd, tmp, &of_rmem_assigned_device_list, list) {
477 		if (rd->dev == dev)
478 			list_move_tail(&rd->list, &release_list);
479 	}
480 	mutex_unlock(&of_rmem_assigned_device_mutex);
481 
482 	list_for_each_entry_safe(rd, tmp, &release_list, list) {
483 		if (rd->rmem && rd->rmem->ops && rd->rmem->ops->device_release)
484 			rd->rmem->ops->device_release(rd->rmem, dev);
485 
486 		kfree(rd);
487 	}
488 }
489 EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);
490 
491 /**
492  * of_reserved_mem_lookup() - acquire reserved_mem from a device node
493  * @np:		node pointer of the desired reserved-memory region
494  *
495  * This function allows drivers to acquire a reference to the reserved_mem
496  * struct based on a device node handle.
497  *
498  * Returns a reserved_mem reference, or NULL on error.
499  */
500 struct reserved_mem *of_reserved_mem_lookup(struct device_node *np)
501 {
502 	const char *name;
503 	int i;
504 
505 	if (!np->full_name)
506 		return NULL;
507 
508 	name = kbasename(np->full_name);
509 	for (i = 0; i < reserved_mem_count; i++)
510 		if (!strcmp(reserved_mem[i].name, name))
511 			return &reserved_mem[i];
512 
513 	return NULL;
514 }
515 EXPORT_SYMBOL_GPL(of_reserved_mem_lookup);
516