xref: /linux/drivers/of/of_reserved_mem.c (revision df24e1783e6e0eb3dc0e3ba5a8df3bb0cc537408)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Device tree based initialization code for reserved memory.
4  *
5  * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
6  * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
7  *		http://www.samsung.com
8  * Author: Marek Szyprowski <m.szyprowski@samsung.com>
9  * Author: Josh Cartwright <joshc@codeaurora.org>
10  */
11 
12 #define pr_fmt(fmt)	"OF: reserved mem: " fmt
13 
14 #include <linux/err.h>
15 #include <linux/of.h>
16 #include <linux/of_fdt.h>
17 #include <linux/of_platform.h>
18 #include <linux/mm.h>
19 #include <linux/sizes.h>
20 #include <linux/of_reserved_mem.h>
21 #include <linux/sort.h>
22 #include <linux/slab.h>
23 #include <linux/memblock.h>
24 #include <linux/kmemleak.h>
25 
26 #include "of_private.h"
27 
28 #define MAX_RESERVED_REGIONS	64
29 static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
30 static int reserved_mem_count;
31 
32 static int __init early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
33 	phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
34 	phys_addr_t *res_base)
35 {
36 	phys_addr_t base;
37 	int err = 0;
38 
39 	end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
40 	align = !align ? SMP_CACHE_BYTES : align;
41 	base = memblock_phys_alloc_range(size, align, start, end);
42 	if (!base)
43 		return -ENOMEM;
44 
45 	*res_base = base;
46 	if (nomap) {
47 		err = memblock_mark_nomap(base, size);
48 		if (err)
49 			memblock_phys_free(base, size);
50 		kmemleak_ignore_phys(base);
51 	}
52 
53 	return err;
54 }
55 
56 /*
57  * fdt_reserved_mem_save_node() - save fdt node for second pass initialization
58  */
59 void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
60 				      phys_addr_t base, phys_addr_t size)
61 {
62 	struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
63 
64 	if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
65 		pr_err("not enough space for all defined regions.\n");
66 		return;
67 	}
68 
69 	rmem->fdt_node = node;
70 	rmem->name = uname;
71 	rmem->base = base;
72 	rmem->size = size;
73 
74 	reserved_mem_count++;
75 	return;
76 }
77 
78 /*
79  * __reserved_mem_alloc_size() - allocate reserved memory described by
80  *	'size', 'alignment'  and 'alloc-ranges' properties.
81  */
82 static int __init __reserved_mem_alloc_size(unsigned long node,
83 	const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
84 {
85 	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
86 	phys_addr_t start = 0, end = 0;
87 	phys_addr_t base = 0, align = 0, size;
88 	int len;
89 	const __be32 *prop;
90 	bool nomap;
91 	int ret;
92 
93 	prop = of_get_flat_dt_prop(node, "size", &len);
94 	if (!prop)
95 		return -EINVAL;
96 
97 	if (len != dt_root_size_cells * sizeof(__be32)) {
98 		pr_err("invalid size property in '%s' node.\n", uname);
99 		return -EINVAL;
100 	}
101 	size = dt_mem_next_cell(dt_root_size_cells, &prop);
102 
103 	prop = of_get_flat_dt_prop(node, "alignment", &len);
104 	if (prop) {
105 		if (len != dt_root_addr_cells * sizeof(__be32)) {
106 			pr_err("invalid alignment property in '%s' node.\n",
107 				uname);
108 			return -EINVAL;
109 		}
110 		align = dt_mem_next_cell(dt_root_addr_cells, &prop);
111 	}
112 
113 	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
114 
115 	/* Need adjust the alignment to satisfy the CMA requirement */
116 	if (IS_ENABLED(CONFIG_CMA)
117 	    && of_flat_dt_is_compatible(node, "shared-dma-pool")
118 	    && of_get_flat_dt_prop(node, "reusable", NULL)
119 	    && !nomap) {
120 		unsigned long order =
121 			max_t(unsigned long, MAX_ORDER - 1, pageblock_order);
122 
123 		align = max(align, (phys_addr_t)PAGE_SIZE << order);
124 	}
125 
126 	prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
127 	if (prop) {
128 
129 		if (len % t_len != 0) {
130 			pr_err("invalid alloc-ranges property in '%s', skipping node.\n",
131 			       uname);
132 			return -EINVAL;
133 		}
134 
135 		base = 0;
136 
137 		while (len > 0) {
138 			start = dt_mem_next_cell(dt_root_addr_cells, &prop);
139 			end = start + dt_mem_next_cell(dt_root_size_cells,
140 						       &prop);
141 
142 			ret = early_init_dt_alloc_reserved_memory_arch(size,
143 					align, start, end, nomap, &base);
144 			if (ret == 0) {
145 				pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
146 					uname, &base,
147 					(unsigned long)(size / SZ_1M));
148 				break;
149 			}
150 			len -= t_len;
151 		}
152 
153 	} else {
154 		ret = early_init_dt_alloc_reserved_memory_arch(size, align,
155 							0, 0, nomap, &base);
156 		if (ret == 0)
157 			pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
158 				uname, &base, (unsigned long)(size / SZ_1M));
159 	}
160 
161 	if (base == 0) {
162 		pr_info("failed to allocate memory for node '%s'\n", uname);
163 		return -ENOMEM;
164 	}
165 
166 	*res_base = base;
167 	*res_size = size;
168 
169 	return 0;
170 }
171 
172 static const struct of_device_id __rmem_of_table_sentinel
173 	__used __section("__reservedmem_of_table_end");
174 
175 /*
176  * __reserved_mem_init_node() - call region specific reserved memory init code
177  */
178 static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
179 {
180 	extern const struct of_device_id __reservedmem_of_table[];
181 	const struct of_device_id *i;
182 	int ret = -ENOENT;
183 
184 	for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
185 		reservedmem_of_init_fn initfn = i->data;
186 		const char *compat = i->compatible;
187 
188 		if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
189 			continue;
190 
191 		ret = initfn(rmem);
192 		if (ret == 0) {
193 			pr_info("initialized node %s, compatible id %s\n",
194 				rmem->name, compat);
195 			break;
196 		}
197 	}
198 	return ret;
199 }
200 
201 static int __init __rmem_cmp(const void *a, const void *b)
202 {
203 	const struct reserved_mem *ra = a, *rb = b;
204 
205 	if (ra->base < rb->base)
206 		return -1;
207 
208 	if (ra->base > rb->base)
209 		return 1;
210 
211 	/*
212 	 * Put the dynamic allocations (address == 0, size == 0) before static
213 	 * allocations at address 0x0 so that overlap detection works
214 	 * correctly.
215 	 */
216 	if (ra->size < rb->size)
217 		return -1;
218 	if (ra->size > rb->size)
219 		return 1;
220 
221 	return 0;
222 }
223 
224 static void __init __rmem_check_for_overlap(void)
225 {
226 	int i;
227 
228 	if (reserved_mem_count < 2)
229 		return;
230 
231 	sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
232 	     __rmem_cmp, NULL);
233 	for (i = 0; i < reserved_mem_count - 1; i++) {
234 		struct reserved_mem *this, *next;
235 
236 		this = &reserved_mem[i];
237 		next = &reserved_mem[i + 1];
238 
239 		if (this->base + this->size > next->base) {
240 			phys_addr_t this_end, next_end;
241 
242 			this_end = this->base + this->size;
243 			next_end = next->base + next->size;
244 			pr_err("OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
245 			       this->name, &this->base, &this_end,
246 			       next->name, &next->base, &next_end);
247 		}
248 	}
249 }
250 
251 /**
252  * fdt_init_reserved_mem() - allocate and init all saved reserved memory regions
253  */
254 void __init fdt_init_reserved_mem(void)
255 {
256 	int i;
257 
258 	/* check for overlapping reserved regions */
259 	__rmem_check_for_overlap();
260 
261 	for (i = 0; i < reserved_mem_count; i++) {
262 		struct reserved_mem *rmem = &reserved_mem[i];
263 		unsigned long node = rmem->fdt_node;
264 		int len;
265 		const __be32 *prop;
266 		int err = 0;
267 		bool nomap;
268 
269 		nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
270 		prop = of_get_flat_dt_prop(node, "phandle", &len);
271 		if (!prop)
272 			prop = of_get_flat_dt_prop(node, "linux,phandle", &len);
273 		if (prop)
274 			rmem->phandle = of_read_number(prop, len/4);
275 
276 		if (rmem->size == 0)
277 			err = __reserved_mem_alloc_size(node, rmem->name,
278 						 &rmem->base, &rmem->size);
279 		if (err == 0) {
280 			err = __reserved_mem_init_node(rmem);
281 			if (err != 0 && err != -ENOENT) {
282 				pr_info("node %s compatible matching fail\n",
283 					rmem->name);
284 				if (nomap)
285 					memblock_clear_nomap(rmem->base, rmem->size);
286 				else
287 					memblock_phys_free(rmem->base,
288 							   rmem->size);
289 			}
290 		}
291 	}
292 }
293 
294 static inline struct reserved_mem *__find_rmem(struct device_node *node)
295 {
296 	unsigned int i;
297 
298 	if (!node->phandle)
299 		return NULL;
300 
301 	for (i = 0; i < reserved_mem_count; i++)
302 		if (reserved_mem[i].phandle == node->phandle)
303 			return &reserved_mem[i];
304 	return NULL;
305 }
306 
307 struct rmem_assigned_device {
308 	struct device *dev;
309 	struct reserved_mem *rmem;
310 	struct list_head list;
311 };
312 
313 static LIST_HEAD(of_rmem_assigned_device_list);
314 static DEFINE_MUTEX(of_rmem_assigned_device_mutex);
315 
316 /**
317  * of_reserved_mem_device_init_by_idx() - assign reserved memory region to
318  *					  given device
319  * @dev:	Pointer to the device to configure
320  * @np:		Pointer to the device_node with 'reserved-memory' property
321  * @idx:	Index of selected region
322  *
323  * This function assigns respective DMA-mapping operations based on reserved
324  * memory region specified by 'memory-region' property in @np node to the @dev
325  * device. When driver needs to use more than one reserved memory region, it
326  * should allocate child devices and initialize regions by name for each of
327  * child device.
328  *
329  * Returns error code or zero on success.
330  */
331 int of_reserved_mem_device_init_by_idx(struct device *dev,
332 				       struct device_node *np, int idx)
333 {
334 	struct rmem_assigned_device *rd;
335 	struct device_node *target;
336 	struct reserved_mem *rmem;
337 	int ret;
338 
339 	if (!np || !dev)
340 		return -EINVAL;
341 
342 	target = of_parse_phandle(np, "memory-region", idx);
343 	if (!target)
344 		return -ENODEV;
345 
346 	if (!of_device_is_available(target)) {
347 		of_node_put(target);
348 		return 0;
349 	}
350 
351 	rmem = __find_rmem(target);
352 	of_node_put(target);
353 
354 	if (!rmem || !rmem->ops || !rmem->ops->device_init)
355 		return -EINVAL;
356 
357 	rd = kmalloc(sizeof(struct rmem_assigned_device), GFP_KERNEL);
358 	if (!rd)
359 		return -ENOMEM;
360 
361 	ret = rmem->ops->device_init(rmem, dev);
362 	if (ret == 0) {
363 		rd->dev = dev;
364 		rd->rmem = rmem;
365 
366 		mutex_lock(&of_rmem_assigned_device_mutex);
367 		list_add(&rd->list, &of_rmem_assigned_device_list);
368 		mutex_unlock(&of_rmem_assigned_device_mutex);
369 
370 		dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
371 	} else {
372 		kfree(rd);
373 	}
374 
375 	return ret;
376 }
377 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_idx);
378 
379 /**
380  * of_reserved_mem_device_init_by_name() - assign named reserved memory region
381  *					   to given device
382  * @dev: pointer to the device to configure
383  * @np: pointer to the device node with 'memory-region' property
384  * @name: name of the selected memory region
385  *
386  * Returns: 0 on success or a negative error-code on failure.
387  */
388 int of_reserved_mem_device_init_by_name(struct device *dev,
389 					struct device_node *np,
390 					const char *name)
391 {
392 	int idx = of_property_match_string(np, "memory-region-names", name);
393 
394 	return of_reserved_mem_device_init_by_idx(dev, np, idx);
395 }
396 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_name);
397 
398 /**
399  * of_reserved_mem_device_release() - release reserved memory device structures
400  * @dev:	Pointer to the device to deconfigure
401  *
402  * This function releases structures allocated for memory region handling for
403  * the given device.
404  */
405 void of_reserved_mem_device_release(struct device *dev)
406 {
407 	struct rmem_assigned_device *rd, *tmp;
408 	LIST_HEAD(release_list);
409 
410 	mutex_lock(&of_rmem_assigned_device_mutex);
411 	list_for_each_entry_safe(rd, tmp, &of_rmem_assigned_device_list, list) {
412 		if (rd->dev == dev)
413 			list_move_tail(&rd->list, &release_list);
414 	}
415 	mutex_unlock(&of_rmem_assigned_device_mutex);
416 
417 	list_for_each_entry_safe(rd, tmp, &release_list, list) {
418 		if (rd->rmem && rd->rmem->ops && rd->rmem->ops->device_release)
419 			rd->rmem->ops->device_release(rd->rmem, dev);
420 
421 		kfree(rd);
422 	}
423 }
424 EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);
425 
426 /**
427  * of_reserved_mem_lookup() - acquire reserved_mem from a device node
428  * @np:		node pointer of the desired reserved-memory region
429  *
430  * This function allows drivers to acquire a reference to the reserved_mem
431  * struct based on a device node handle.
432  *
433  * Returns a reserved_mem reference, or NULL on error.
434  */
435 struct reserved_mem *of_reserved_mem_lookup(struct device_node *np)
436 {
437 	const char *name;
438 	int i;
439 
440 	if (!np->full_name)
441 		return NULL;
442 
443 	name = kbasename(np->full_name);
444 	for (i = 0; i < reserved_mem_count; i++)
445 		if (!strcmp(reserved_mem[i].name, name))
446 			return &reserved_mem[i];
447 
448 	return NULL;
449 }
450 EXPORT_SYMBOL_GPL(of_reserved_mem_lookup);
451