xref: /linux/drivers/of/of_reserved_mem.c (revision cdd30ebb1b9f36159d66f088b61aee264e649d7a)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Device tree based initialization code for reserved memory.
4  *
5  * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
6  * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
7  *		http://www.samsung.com
8  * Author: Marek Szyprowski <m.szyprowski@samsung.com>
9  * Author: Josh Cartwright <joshc@codeaurora.org>
10  */
11 
12 #define pr_fmt(fmt)	"OF: reserved mem: " fmt
13 
14 #include <linux/err.h>
15 #include <linux/libfdt.h>
16 #include <linux/of.h>
17 #include <linux/of_fdt.h>
18 #include <linux/of_platform.h>
19 #include <linux/mm.h>
20 #include <linux/sizes.h>
21 #include <linux/of_reserved_mem.h>
22 #include <linux/sort.h>
23 #include <linux/slab.h>
24 #include <linux/memblock.h>
25 #include <linux/kmemleak.h>
26 #include <linux/cma.h>
27 
28 #include "of_private.h"
29 
30 static struct reserved_mem reserved_mem_array[MAX_RESERVED_REGIONS] __initdata;
31 static struct reserved_mem *reserved_mem __refdata = reserved_mem_array;
32 static int total_reserved_mem_cnt = MAX_RESERVED_REGIONS;
33 static int reserved_mem_count;
34 
35 static int __init early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
36 	phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
37 	phys_addr_t *res_base)
38 {
39 	phys_addr_t base;
40 	int err = 0;
41 
42 	end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
43 	align = !align ? SMP_CACHE_BYTES : align;
44 	base = memblock_phys_alloc_range(size, align, start, end);
45 	if (!base)
46 		return -ENOMEM;
47 
48 	*res_base = base;
49 	if (nomap) {
50 		err = memblock_mark_nomap(base, size);
51 		if (err)
52 			memblock_phys_free(base, size);
53 	}
54 
55 	kmemleak_ignore_phys(base);
56 
57 	return err;
58 }
59 
60 /*
61  * alloc_reserved_mem_array() - allocate memory for the reserved_mem
62  * array using memblock
63  *
64  * This function is used to allocate memory for the reserved_mem
65  * array according to the total number of reserved memory regions
66  * defined in the DT.
67  * After the new array is allocated, the information stored in
68  * the initial static array is copied over to this new array and
69  * the new array is used from this point on.
70  */
71 static void __init alloc_reserved_mem_array(void)
72 {
73 	struct reserved_mem *new_array;
74 	size_t alloc_size, copy_size, memset_size;
75 
76 	alloc_size = array_size(total_reserved_mem_cnt, sizeof(*new_array));
77 	if (alloc_size == SIZE_MAX) {
78 		pr_err("Failed to allocate memory for reserved_mem array with err: %d", -EOVERFLOW);
79 		return;
80 	}
81 
82 	new_array = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
83 	if (!new_array) {
84 		pr_err("Failed to allocate memory for reserved_mem array with err: %d", -ENOMEM);
85 		return;
86 	}
87 
88 	copy_size = array_size(reserved_mem_count, sizeof(*new_array));
89 	if (copy_size == SIZE_MAX) {
90 		memblock_free(new_array, alloc_size);
91 		total_reserved_mem_cnt = MAX_RESERVED_REGIONS;
92 		pr_err("Failed to allocate memory for reserved_mem array with err: %d", -EOVERFLOW);
93 		return;
94 	}
95 
96 	memset_size = alloc_size - copy_size;
97 
98 	memcpy(new_array, reserved_mem, copy_size);
99 	memset(new_array + reserved_mem_count, 0, memset_size);
100 
101 	reserved_mem = new_array;
102 }
103 
104 static void __init fdt_init_reserved_mem_node(struct reserved_mem *rmem);
105 /*
106  * fdt_reserved_mem_save_node() - save fdt node for second pass initialization
107  */
108 static void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
109 					      phys_addr_t base, phys_addr_t size)
110 {
111 	struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
112 
113 	if (reserved_mem_count == total_reserved_mem_cnt) {
114 		pr_err("not enough space for all defined regions.\n");
115 		return;
116 	}
117 
118 	rmem->fdt_node = node;
119 	rmem->name = uname;
120 	rmem->base = base;
121 	rmem->size = size;
122 
123 	/* Call the region specific initialization function */
124 	fdt_init_reserved_mem_node(rmem);
125 
126 	reserved_mem_count++;
127 	return;
128 }
129 
130 static int __init early_init_dt_reserve_memory(phys_addr_t base,
131 					       phys_addr_t size, bool nomap)
132 {
133 	if (nomap) {
134 		/*
135 		 * If the memory is already reserved (by another region), we
136 		 * should not allow it to be marked nomap, but don't worry
137 		 * if the region isn't memory as it won't be mapped.
138 		 */
139 		if (memblock_overlaps_region(&memblock.memory, base, size) &&
140 		    memblock_is_region_reserved(base, size))
141 			return -EBUSY;
142 
143 		return memblock_mark_nomap(base, size);
144 	}
145 	return memblock_reserve(base, size);
146 }
147 
148 /*
149  * __reserved_mem_reserve_reg() - reserve all memory described in 'reg' property
150  */
151 static int __init __reserved_mem_reserve_reg(unsigned long node,
152 					     const char *uname)
153 {
154 	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
155 	phys_addr_t base, size;
156 	int len;
157 	const __be32 *prop;
158 	bool nomap;
159 
160 	prop = of_get_flat_dt_prop(node, "reg", &len);
161 	if (!prop)
162 		return -ENOENT;
163 
164 	if (len && len % t_len != 0) {
165 		pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
166 		       uname);
167 		return -EINVAL;
168 	}
169 
170 	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
171 
172 	while (len >= t_len) {
173 		base = dt_mem_next_cell(dt_root_addr_cells, &prop);
174 		size = dt_mem_next_cell(dt_root_size_cells, &prop);
175 
176 		if (size &&
177 		    early_init_dt_reserve_memory(base, size, nomap) == 0)
178 			pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %lu MiB\n",
179 				uname, &base, (unsigned long)(size / SZ_1M));
180 		else
181 			pr_err("Reserved memory: failed to reserve memory for node '%s': base %pa, size %lu MiB\n",
182 			       uname, &base, (unsigned long)(size / SZ_1M));
183 
184 		len -= t_len;
185 	}
186 	return 0;
187 }
188 
189 /*
190  * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
191  * in /reserved-memory matches the values supported by the current implementation,
192  * also check if ranges property has been provided
193  */
194 static int __init __reserved_mem_check_root(unsigned long node)
195 {
196 	const __be32 *prop;
197 
198 	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
199 	if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
200 		return -EINVAL;
201 
202 	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
203 	if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
204 		return -EINVAL;
205 
206 	prop = of_get_flat_dt_prop(node, "ranges", NULL);
207 	if (!prop)
208 		return -EINVAL;
209 	return 0;
210 }
211 
212 static void __init __rmem_check_for_overlap(void);
213 
214 /**
215  * fdt_scan_reserved_mem_reg_nodes() - Store info for the "reg" defined
216  * reserved memory regions.
217  *
218  * This function is used to scan through the DT and store the
219  * information for the reserved memory regions that are defined using
220  * the "reg" property. The region node number, name, base address, and
221  * size are all stored in the reserved_mem array by calling the
222  * fdt_reserved_mem_save_node() function.
223  */
224 void __init fdt_scan_reserved_mem_reg_nodes(void)
225 {
226 	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
227 	const void *fdt = initial_boot_params;
228 	phys_addr_t base, size;
229 	const __be32 *prop;
230 	int node, child;
231 	int len;
232 
233 	if (!fdt)
234 		return;
235 
236 	node = fdt_path_offset(fdt, "/reserved-memory");
237 	if (node < 0) {
238 		pr_info("Reserved memory: No reserved-memory node in the DT\n");
239 		return;
240 	}
241 
242 	/* Attempt dynamic allocation of a new reserved_mem array */
243 	alloc_reserved_mem_array();
244 
245 	if (__reserved_mem_check_root(node)) {
246 		pr_err("Reserved memory: unsupported node format, ignoring\n");
247 		return;
248 	}
249 
250 	fdt_for_each_subnode(child, fdt, node) {
251 		const char *uname;
252 
253 		prop = of_get_flat_dt_prop(child, "reg", &len);
254 		if (!prop)
255 			continue;
256 		if (!of_fdt_device_is_available(fdt, child))
257 			continue;
258 
259 		uname = fdt_get_name(fdt, child, NULL);
260 		if (len && len % t_len != 0) {
261 			pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
262 			       uname);
263 			continue;
264 		}
265 		base = dt_mem_next_cell(dt_root_addr_cells, &prop);
266 		size = dt_mem_next_cell(dt_root_size_cells, &prop);
267 
268 		if (size)
269 			fdt_reserved_mem_save_node(child, uname, base, size);
270 	}
271 
272 	/* check for overlapping reserved regions */
273 	__rmem_check_for_overlap();
274 }
275 
276 static int __init __reserved_mem_alloc_size(unsigned long node, const char *uname);
277 
278 /*
279  * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
280  */
281 int __init fdt_scan_reserved_mem(void)
282 {
283 	int node, child;
284 	int dynamic_nodes_cnt = 0, count = 0;
285 	int dynamic_nodes[MAX_RESERVED_REGIONS];
286 	const void *fdt = initial_boot_params;
287 
288 	node = fdt_path_offset(fdt, "/reserved-memory");
289 	if (node < 0)
290 		return -ENODEV;
291 
292 	if (__reserved_mem_check_root(node) != 0) {
293 		pr_err("Reserved memory: unsupported node format, ignoring\n");
294 		return -EINVAL;
295 	}
296 
297 	fdt_for_each_subnode(child, fdt, node) {
298 		const char *uname;
299 		int err;
300 
301 		if (!of_fdt_device_is_available(fdt, child))
302 			continue;
303 
304 		uname = fdt_get_name(fdt, child, NULL);
305 
306 		err = __reserved_mem_reserve_reg(child, uname);
307 		if (!err)
308 			count++;
309 		/*
310 		 * Save the nodes for the dynamically-placed regions
311 		 * into an array which will be used for allocation right
312 		 * after all the statically-placed regions are reserved
313 		 * or marked as no-map. This is done to avoid dynamically
314 		 * allocating from one of the statically-placed regions.
315 		 */
316 		if (err == -ENOENT && of_get_flat_dt_prop(child, "size", NULL)) {
317 			dynamic_nodes[dynamic_nodes_cnt] = child;
318 			dynamic_nodes_cnt++;
319 		}
320 	}
321 	for (int i = 0; i < dynamic_nodes_cnt; i++) {
322 		const char *uname;
323 		int err;
324 
325 		child = dynamic_nodes[i];
326 		uname = fdt_get_name(fdt, child, NULL);
327 		err = __reserved_mem_alloc_size(child, uname);
328 		if (!err)
329 			count++;
330 	}
331 	total_reserved_mem_cnt = count;
332 	return 0;
333 }
334 
335 /*
336  * __reserved_mem_alloc_in_range() - allocate reserved memory described with
337  *	'alloc-ranges'. Choose bottom-up/top-down depending on nearby existing
338  *	reserved regions to keep the reserved memory contiguous if possible.
339  */
340 static int __init __reserved_mem_alloc_in_range(phys_addr_t size,
341 	phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
342 	phys_addr_t *res_base)
343 {
344 	bool prev_bottom_up = memblock_bottom_up();
345 	bool bottom_up = false, top_down = false;
346 	int ret, i;
347 
348 	for (i = 0; i < reserved_mem_count; i++) {
349 		struct reserved_mem *rmem = &reserved_mem[i];
350 
351 		/* Skip regions that were not reserved yet */
352 		if (rmem->size == 0)
353 			continue;
354 
355 		/*
356 		 * If range starts next to an existing reservation, use bottom-up:
357 		 *	|....RRRR................RRRRRRRR..............|
358 		 *	       --RRRR------
359 		 */
360 		if (start >= rmem->base && start <= (rmem->base + rmem->size))
361 			bottom_up = true;
362 
363 		/*
364 		 * If range ends next to an existing reservation, use top-down:
365 		 *	|....RRRR................RRRRRRRR..............|
366 		 *	              -------RRRR-----
367 		 */
368 		if (end >= rmem->base && end <= (rmem->base + rmem->size))
369 			top_down = true;
370 	}
371 
372 	/* Change setting only if either bottom-up or top-down was selected */
373 	if (bottom_up != top_down)
374 		memblock_set_bottom_up(bottom_up);
375 
376 	ret = early_init_dt_alloc_reserved_memory_arch(size, align,
377 			start, end, nomap, res_base);
378 
379 	/* Restore old setting if needed */
380 	if (bottom_up != top_down)
381 		memblock_set_bottom_up(prev_bottom_up);
382 
383 	return ret;
384 }
385 
386 /*
387  * __reserved_mem_alloc_size() - allocate reserved memory described by
388  *	'size', 'alignment'  and 'alloc-ranges' properties.
389  */
390 static int __init __reserved_mem_alloc_size(unsigned long node, const char *uname)
391 {
392 	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
393 	phys_addr_t start = 0, end = 0;
394 	phys_addr_t base = 0, align = 0, size;
395 	int len;
396 	const __be32 *prop;
397 	bool nomap;
398 	int ret;
399 
400 	prop = of_get_flat_dt_prop(node, "size", &len);
401 	if (!prop)
402 		return -EINVAL;
403 
404 	if (len != dt_root_size_cells * sizeof(__be32)) {
405 		pr_err("invalid size property in '%s' node.\n", uname);
406 		return -EINVAL;
407 	}
408 	size = dt_mem_next_cell(dt_root_size_cells, &prop);
409 
410 	prop = of_get_flat_dt_prop(node, "alignment", &len);
411 	if (prop) {
412 		if (len != dt_root_addr_cells * sizeof(__be32)) {
413 			pr_err("invalid alignment property in '%s' node.\n",
414 				uname);
415 			return -EINVAL;
416 		}
417 		align = dt_mem_next_cell(dt_root_addr_cells, &prop);
418 	}
419 
420 	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
421 
422 	/* Need adjust the alignment to satisfy the CMA requirement */
423 	if (IS_ENABLED(CONFIG_CMA)
424 	    && of_flat_dt_is_compatible(node, "shared-dma-pool")
425 	    && of_get_flat_dt_prop(node, "reusable", NULL)
426 	    && !nomap)
427 		align = max_t(phys_addr_t, align, CMA_MIN_ALIGNMENT_BYTES);
428 
429 	prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
430 	if (prop) {
431 
432 		if (len % t_len != 0) {
433 			pr_err("invalid alloc-ranges property in '%s', skipping node.\n",
434 			       uname);
435 			return -EINVAL;
436 		}
437 
438 		base = 0;
439 
440 		while (len > 0) {
441 			start = dt_mem_next_cell(dt_root_addr_cells, &prop);
442 			end = start + dt_mem_next_cell(dt_root_size_cells,
443 						       &prop);
444 
445 			ret = __reserved_mem_alloc_in_range(size, align,
446 					start, end, nomap, &base);
447 			if (ret == 0) {
448 				pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
449 					uname, &base,
450 					(unsigned long)(size / SZ_1M));
451 				break;
452 			}
453 			len -= t_len;
454 		}
455 
456 	} else {
457 		ret = early_init_dt_alloc_reserved_memory_arch(size, align,
458 							0, 0, nomap, &base);
459 		if (ret == 0)
460 			pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
461 				uname, &base, (unsigned long)(size / SZ_1M));
462 	}
463 
464 	if (base == 0) {
465 		pr_err("failed to allocate memory for node '%s': size %lu MiB\n",
466 		       uname, (unsigned long)(size / SZ_1M));
467 		return -ENOMEM;
468 	}
469 
470 	/* Save region in the reserved_mem array */
471 	fdt_reserved_mem_save_node(node, uname, base, size);
472 	return 0;
473 }
474 
475 static const struct of_device_id __rmem_of_table_sentinel
476 	__used __section("__reservedmem_of_table_end");
477 
478 /*
479  * __reserved_mem_init_node() - call region specific reserved memory init code
480  */
481 static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
482 {
483 	extern const struct of_device_id __reservedmem_of_table[];
484 	const struct of_device_id *i;
485 	int ret = -ENOENT;
486 
487 	for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
488 		reservedmem_of_init_fn initfn = i->data;
489 		const char *compat = i->compatible;
490 
491 		if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
492 			continue;
493 
494 		ret = initfn(rmem);
495 		if (ret == 0) {
496 			pr_info("initialized node %s, compatible id %s\n",
497 				rmem->name, compat);
498 			break;
499 		}
500 	}
501 	return ret;
502 }
503 
504 static int __init __rmem_cmp(const void *a, const void *b)
505 {
506 	const struct reserved_mem *ra = a, *rb = b;
507 
508 	if (ra->base < rb->base)
509 		return -1;
510 
511 	if (ra->base > rb->base)
512 		return 1;
513 
514 	/*
515 	 * Put the dynamic allocations (address == 0, size == 0) before static
516 	 * allocations at address 0x0 so that overlap detection works
517 	 * correctly.
518 	 */
519 	if (ra->size < rb->size)
520 		return -1;
521 	if (ra->size > rb->size)
522 		return 1;
523 
524 	if (ra->fdt_node < rb->fdt_node)
525 		return -1;
526 	if (ra->fdt_node > rb->fdt_node)
527 		return 1;
528 
529 	return 0;
530 }
531 
532 static void __init __rmem_check_for_overlap(void)
533 {
534 	int i;
535 
536 	if (reserved_mem_count < 2)
537 		return;
538 
539 	sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
540 	     __rmem_cmp, NULL);
541 	for (i = 0; i < reserved_mem_count - 1; i++) {
542 		struct reserved_mem *this, *next;
543 
544 		this = &reserved_mem[i];
545 		next = &reserved_mem[i + 1];
546 
547 		if (this->base + this->size > next->base) {
548 			phys_addr_t this_end, next_end;
549 
550 			this_end = this->base + this->size;
551 			next_end = next->base + next->size;
552 			pr_err("OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
553 			       this->name, &this->base, &this_end,
554 			       next->name, &next->base, &next_end);
555 		}
556 	}
557 }
558 
559 /**
560  * fdt_init_reserved_mem_node() - Initialize a reserved memory region
561  * @rmem: reserved_mem struct of the memory region to be initialized.
562  *
563  * This function is used to call the region specific initialization
564  * function for a reserved memory region.
565  */
566 static void __init fdt_init_reserved_mem_node(struct reserved_mem *rmem)
567 {
568 	unsigned long node = rmem->fdt_node;
569 	int err = 0;
570 	bool nomap;
571 
572 	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
573 
574 	err = __reserved_mem_init_node(rmem);
575 	if (err != 0 && err != -ENOENT) {
576 		pr_info("node %s compatible matching fail\n", rmem->name);
577 		if (nomap)
578 			memblock_clear_nomap(rmem->base, rmem->size);
579 		else
580 			memblock_phys_free(rmem->base, rmem->size);
581 	} else {
582 		phys_addr_t end = rmem->base + rmem->size - 1;
583 		bool reusable =
584 			(of_get_flat_dt_prop(node, "reusable", NULL)) != NULL;
585 
586 		pr_info("%pa..%pa (%lu KiB) %s %s %s\n",
587 			&rmem->base, &end, (unsigned long)(rmem->size / SZ_1K),
588 			nomap ? "nomap" : "map",
589 			reusable ? "reusable" : "non-reusable",
590 			rmem->name ? rmem->name : "unknown");
591 	}
592 }
593 
594 struct rmem_assigned_device {
595 	struct device *dev;
596 	struct reserved_mem *rmem;
597 	struct list_head list;
598 };
599 
600 static LIST_HEAD(of_rmem_assigned_device_list);
601 static DEFINE_MUTEX(of_rmem_assigned_device_mutex);
602 
603 /**
604  * of_reserved_mem_device_init_by_idx() - assign reserved memory region to
605  *					  given device
606  * @dev:	Pointer to the device to configure
607  * @np:		Pointer to the device_node with 'reserved-memory' property
608  * @idx:	Index of selected region
609  *
610  * This function assigns respective DMA-mapping operations based on reserved
611  * memory region specified by 'memory-region' property in @np node to the @dev
612  * device. When driver needs to use more than one reserved memory region, it
613  * should allocate child devices and initialize regions by name for each of
614  * child device.
615  *
616  * Returns error code or zero on success.
617  */
618 int of_reserved_mem_device_init_by_idx(struct device *dev,
619 				       struct device_node *np, int idx)
620 {
621 	struct rmem_assigned_device *rd;
622 	struct device_node *target;
623 	struct reserved_mem *rmem;
624 	int ret;
625 
626 	if (!np || !dev)
627 		return -EINVAL;
628 
629 	target = of_parse_phandle(np, "memory-region", idx);
630 	if (!target)
631 		return -ENODEV;
632 
633 	if (!of_device_is_available(target)) {
634 		of_node_put(target);
635 		return 0;
636 	}
637 
638 	rmem = of_reserved_mem_lookup(target);
639 	of_node_put(target);
640 
641 	if (!rmem || !rmem->ops || !rmem->ops->device_init)
642 		return -EINVAL;
643 
644 	rd = kmalloc(sizeof(struct rmem_assigned_device), GFP_KERNEL);
645 	if (!rd)
646 		return -ENOMEM;
647 
648 	ret = rmem->ops->device_init(rmem, dev);
649 	if (ret == 0) {
650 		rd->dev = dev;
651 		rd->rmem = rmem;
652 
653 		mutex_lock(&of_rmem_assigned_device_mutex);
654 		list_add(&rd->list, &of_rmem_assigned_device_list);
655 		mutex_unlock(&of_rmem_assigned_device_mutex);
656 
657 		dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
658 	} else {
659 		kfree(rd);
660 	}
661 
662 	return ret;
663 }
664 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_idx);
665 
666 /**
667  * of_reserved_mem_device_init_by_name() - assign named reserved memory region
668  *					   to given device
669  * @dev: pointer to the device to configure
670  * @np: pointer to the device node with 'memory-region' property
671  * @name: name of the selected memory region
672  *
673  * Returns: 0 on success or a negative error-code on failure.
674  */
675 int of_reserved_mem_device_init_by_name(struct device *dev,
676 					struct device_node *np,
677 					const char *name)
678 {
679 	int idx = of_property_match_string(np, "memory-region-names", name);
680 
681 	return of_reserved_mem_device_init_by_idx(dev, np, idx);
682 }
683 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_name);
684 
685 /**
686  * of_reserved_mem_device_release() - release reserved memory device structures
687  * @dev:	Pointer to the device to deconfigure
688  *
689  * This function releases structures allocated for memory region handling for
690  * the given device.
691  */
692 void of_reserved_mem_device_release(struct device *dev)
693 {
694 	struct rmem_assigned_device *rd, *tmp;
695 	LIST_HEAD(release_list);
696 
697 	mutex_lock(&of_rmem_assigned_device_mutex);
698 	list_for_each_entry_safe(rd, tmp, &of_rmem_assigned_device_list, list) {
699 		if (rd->dev == dev)
700 			list_move_tail(&rd->list, &release_list);
701 	}
702 	mutex_unlock(&of_rmem_assigned_device_mutex);
703 
704 	list_for_each_entry_safe(rd, tmp, &release_list, list) {
705 		if (rd->rmem && rd->rmem->ops && rd->rmem->ops->device_release)
706 			rd->rmem->ops->device_release(rd->rmem, dev);
707 
708 		kfree(rd);
709 	}
710 }
711 EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);
712 
713 /**
714  * of_reserved_mem_lookup() - acquire reserved_mem from a device node
715  * @np:		node pointer of the desired reserved-memory region
716  *
717  * This function allows drivers to acquire a reference to the reserved_mem
718  * struct based on a device node handle.
719  *
720  * Returns a reserved_mem reference, or NULL on error.
721  */
722 struct reserved_mem *of_reserved_mem_lookup(struct device_node *np)
723 {
724 	const char *name;
725 	int i;
726 
727 	if (!np->full_name)
728 		return NULL;
729 
730 	name = kbasename(np->full_name);
731 	for (i = 0; i < reserved_mem_count; i++)
732 		if (!strcmp(reserved_mem[i].name, name))
733 			return &reserved_mem[i];
734 
735 	return NULL;
736 }
737 EXPORT_SYMBOL_GPL(of_reserved_mem_lookup);
738