xref: /linux/drivers/of/of_reserved_mem.c (revision c5d3cdad688ed75fb311a3a671eb30ba7106d7d3)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Device tree based initialization code for reserved memory.
4  *
5  * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
6  * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
7  *		http://www.samsung.com
8  * Author: Marek Szyprowski <m.szyprowski@samsung.com>
9  * Author: Josh Cartwright <joshc@codeaurora.org>
10  */
11 
12 #define pr_fmt(fmt)	"OF: reserved mem: " fmt
13 
14 #include <linux/err.h>
15 #include <linux/of.h>
16 #include <linux/of_fdt.h>
17 #include <linux/of_platform.h>
18 #include <linux/mm.h>
19 #include <linux/sizes.h>
20 #include <linux/of_reserved_mem.h>
21 #include <linux/sort.h>
22 #include <linux/slab.h>
23 #include <linux/memblock.h>
24 
25 #define MAX_RESERVED_REGIONS	64
26 static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
27 static int reserved_mem_count;
28 
29 static int __init early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
30 	phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
31 	phys_addr_t *res_base)
32 {
33 	phys_addr_t base;
34 
35 	end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
36 	align = !align ? SMP_CACHE_BYTES : align;
37 	base = memblock_find_in_range(start, end, size, align);
38 	if (!base)
39 		return -ENOMEM;
40 
41 	*res_base = base;
42 	if (nomap)
43 		return memblock_remove(base, size);
44 
45 	return memblock_reserve(base, size);
46 }
47 
48 /**
49  * res_mem_save_node() - save fdt node for second pass initialization
50  */
51 void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
52 				      phys_addr_t base, phys_addr_t size)
53 {
54 	struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
55 
56 	if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
57 		pr_err("not enough space all defined regions.\n");
58 		return;
59 	}
60 
61 	rmem->fdt_node = node;
62 	rmem->name = uname;
63 	rmem->base = base;
64 	rmem->size = size;
65 
66 	reserved_mem_count++;
67 	return;
68 }
69 
70 /**
71  * res_mem_alloc_size() - allocate reserved memory described by 'size', 'align'
72  *			  and 'alloc-ranges' properties
73  */
74 static int __init __reserved_mem_alloc_size(unsigned long node,
75 	const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
76 {
77 	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
78 	phys_addr_t start = 0, end = 0;
79 	phys_addr_t base = 0, align = 0, size;
80 	int len;
81 	const __be32 *prop;
82 	int nomap;
83 	int ret;
84 
85 	prop = of_get_flat_dt_prop(node, "size", &len);
86 	if (!prop)
87 		return -EINVAL;
88 
89 	if (len != dt_root_size_cells * sizeof(__be32)) {
90 		pr_err("invalid size property in '%s' node.\n", uname);
91 		return -EINVAL;
92 	}
93 	size = dt_mem_next_cell(dt_root_size_cells, &prop);
94 
95 	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
96 
97 	prop = of_get_flat_dt_prop(node, "alignment", &len);
98 	if (prop) {
99 		if (len != dt_root_addr_cells * sizeof(__be32)) {
100 			pr_err("invalid alignment property in '%s' node.\n",
101 				uname);
102 			return -EINVAL;
103 		}
104 		align = dt_mem_next_cell(dt_root_addr_cells, &prop);
105 	}
106 
107 	/* Need adjust the alignment to satisfy the CMA requirement */
108 	if (IS_ENABLED(CONFIG_CMA)
109 	    && of_flat_dt_is_compatible(node, "shared-dma-pool")
110 	    && of_get_flat_dt_prop(node, "reusable", NULL)
111 	    && !of_get_flat_dt_prop(node, "no-map", NULL)) {
112 		unsigned long order =
113 			max_t(unsigned long, MAX_ORDER - 1, pageblock_order);
114 
115 		align = max(align, (phys_addr_t)PAGE_SIZE << order);
116 	}
117 
118 	prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
119 	if (prop) {
120 
121 		if (len % t_len != 0) {
122 			pr_err("invalid alloc-ranges property in '%s', skipping node.\n",
123 			       uname);
124 			return -EINVAL;
125 		}
126 
127 		base = 0;
128 
129 		while (len > 0) {
130 			start = dt_mem_next_cell(dt_root_addr_cells, &prop);
131 			end = start + dt_mem_next_cell(dt_root_size_cells,
132 						       &prop);
133 
134 			ret = early_init_dt_alloc_reserved_memory_arch(size,
135 					align, start, end, nomap, &base);
136 			if (ret == 0) {
137 				pr_debug("allocated memory for '%s' node: base %pa, size %ld MiB\n",
138 					uname, &base,
139 					(unsigned long)size / SZ_1M);
140 				break;
141 			}
142 			len -= t_len;
143 		}
144 
145 	} else {
146 		ret = early_init_dt_alloc_reserved_memory_arch(size, align,
147 							0, 0, nomap, &base);
148 		if (ret == 0)
149 			pr_debug("allocated memory for '%s' node: base %pa, size %ld MiB\n",
150 				uname, &base, (unsigned long)size / SZ_1M);
151 	}
152 
153 	if (base == 0) {
154 		pr_info("failed to allocate memory for node '%s'\n", uname);
155 		return -ENOMEM;
156 	}
157 
158 	*res_base = base;
159 	*res_size = size;
160 
161 	return 0;
162 }
163 
164 static const struct of_device_id __rmem_of_table_sentinel
165 	__used __section(__reservedmem_of_table_end);
166 
167 /**
168  * res_mem_init_node() - call region specific reserved memory init code
169  */
170 static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
171 {
172 	extern const struct of_device_id __reservedmem_of_table[];
173 	const struct of_device_id *i;
174 	int ret = -ENOENT;
175 
176 	for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
177 		reservedmem_of_init_fn initfn = i->data;
178 		const char *compat = i->compatible;
179 
180 		if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
181 			continue;
182 
183 		ret = initfn(rmem);
184 		if (ret == 0) {
185 			pr_info("initialized node %s, compatible id %s\n",
186 				rmem->name, compat);
187 			break;
188 		}
189 	}
190 	return ret;
191 }
192 
193 static int __init __rmem_cmp(const void *a, const void *b)
194 {
195 	const struct reserved_mem *ra = a, *rb = b;
196 
197 	if (ra->base < rb->base)
198 		return -1;
199 
200 	if (ra->base > rb->base)
201 		return 1;
202 
203 	return 0;
204 }
205 
206 static void __init __rmem_check_for_overlap(void)
207 {
208 	int i;
209 
210 	if (reserved_mem_count < 2)
211 		return;
212 
213 	sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
214 	     __rmem_cmp, NULL);
215 	for (i = 0; i < reserved_mem_count - 1; i++) {
216 		struct reserved_mem *this, *next;
217 
218 		this = &reserved_mem[i];
219 		next = &reserved_mem[i + 1];
220 		if (!(this->base && next->base))
221 			continue;
222 		if (this->base + this->size > next->base) {
223 			phys_addr_t this_end, next_end;
224 
225 			this_end = this->base + this->size;
226 			next_end = next->base + next->size;
227 			pr_err("OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
228 			       this->name, &this->base, &this_end,
229 			       next->name, &next->base, &next_end);
230 		}
231 	}
232 }
233 
234 /**
235  * fdt_init_reserved_mem - allocate and init all saved reserved memory regions
236  */
237 void __init fdt_init_reserved_mem(void)
238 {
239 	int i;
240 
241 	/* check for overlapping reserved regions */
242 	__rmem_check_for_overlap();
243 
244 	for (i = 0; i < reserved_mem_count; i++) {
245 		struct reserved_mem *rmem = &reserved_mem[i];
246 		unsigned long node = rmem->fdt_node;
247 		int len;
248 		const __be32 *prop;
249 		int err = 0;
250 		int nomap;
251 
252 		nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
253 		prop = of_get_flat_dt_prop(node, "phandle", &len);
254 		if (!prop)
255 			prop = of_get_flat_dt_prop(node, "linux,phandle", &len);
256 		if (prop)
257 			rmem->phandle = of_read_number(prop, len/4);
258 
259 		if (rmem->size == 0)
260 			err = __reserved_mem_alloc_size(node, rmem->name,
261 						 &rmem->base, &rmem->size);
262 		if (err == 0) {
263 			err = __reserved_mem_init_node(rmem);
264 			if (err != 0 && err != -ENOENT) {
265 				pr_info("node %s compatible matching fail\n",
266 					rmem->name);
267 				memblock_free(rmem->base, rmem->size);
268 				if (nomap)
269 					memblock_add(rmem->base, rmem->size);
270 			}
271 		}
272 	}
273 }
274 
275 static inline struct reserved_mem *__find_rmem(struct device_node *node)
276 {
277 	unsigned int i;
278 
279 	if (!node->phandle)
280 		return NULL;
281 
282 	for (i = 0; i < reserved_mem_count; i++)
283 		if (reserved_mem[i].phandle == node->phandle)
284 			return &reserved_mem[i];
285 	return NULL;
286 }
287 
288 struct rmem_assigned_device {
289 	struct device *dev;
290 	struct reserved_mem *rmem;
291 	struct list_head list;
292 };
293 
294 static LIST_HEAD(of_rmem_assigned_device_list);
295 static DEFINE_MUTEX(of_rmem_assigned_device_mutex);
296 
297 /**
298  * of_reserved_mem_device_init_by_idx() - assign reserved memory region to
299  *					  given device
300  * @dev:	Pointer to the device to configure
301  * @np:		Pointer to the device_node with 'reserved-memory' property
302  * @idx:	Index of selected region
303  *
304  * This function assigns respective DMA-mapping operations based on reserved
305  * memory region specified by 'memory-region' property in @np node to the @dev
306  * device. When driver needs to use more than one reserved memory region, it
307  * should allocate child devices and initialize regions by name for each of
308  * child device.
309  *
310  * Returns error code or zero on success.
311  */
312 int of_reserved_mem_device_init_by_idx(struct device *dev,
313 				       struct device_node *np, int idx)
314 {
315 	struct rmem_assigned_device *rd;
316 	struct device_node *target;
317 	struct reserved_mem *rmem;
318 	int ret;
319 
320 	if (!np || !dev)
321 		return -EINVAL;
322 
323 	target = of_parse_phandle(np, "memory-region", idx);
324 	if (!target)
325 		return -ENODEV;
326 
327 	if (!of_device_is_available(target)) {
328 		of_node_put(target);
329 		return 0;
330 	}
331 
332 	rmem = __find_rmem(target);
333 	of_node_put(target);
334 
335 	if (!rmem || !rmem->ops || !rmem->ops->device_init)
336 		return -EINVAL;
337 
338 	rd = kmalloc(sizeof(struct rmem_assigned_device), GFP_KERNEL);
339 	if (!rd)
340 		return -ENOMEM;
341 
342 	ret = rmem->ops->device_init(rmem, dev);
343 	if (ret == 0) {
344 		rd->dev = dev;
345 		rd->rmem = rmem;
346 
347 		mutex_lock(&of_rmem_assigned_device_mutex);
348 		list_add(&rd->list, &of_rmem_assigned_device_list);
349 		mutex_unlock(&of_rmem_assigned_device_mutex);
350 
351 		dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
352 	} else {
353 		kfree(rd);
354 	}
355 
356 	return ret;
357 }
358 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_idx);
359 
360 /**
361  * of_reserved_mem_device_release() - release reserved memory device structures
362  * @dev:	Pointer to the device to deconfigure
363  *
364  * This function releases structures allocated for memory region handling for
365  * the given device.
366  */
367 void of_reserved_mem_device_release(struct device *dev)
368 {
369 	struct rmem_assigned_device *rd;
370 	struct reserved_mem *rmem = NULL;
371 
372 	mutex_lock(&of_rmem_assigned_device_mutex);
373 	list_for_each_entry(rd, &of_rmem_assigned_device_list, list) {
374 		if (rd->dev == dev) {
375 			rmem = rd->rmem;
376 			list_del(&rd->list);
377 			kfree(rd);
378 			break;
379 		}
380 	}
381 	mutex_unlock(&of_rmem_assigned_device_mutex);
382 
383 	if (!rmem || !rmem->ops || !rmem->ops->device_release)
384 		return;
385 
386 	rmem->ops->device_release(rmem, dev);
387 }
388 EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);
389 
390 /**
391  * of_reserved_mem_lookup() - acquire reserved_mem from a device node
392  * @np:		node pointer of the desired reserved-memory region
393  *
394  * This function allows drivers to acquire a reference to the reserved_mem
395  * struct based on a device node handle.
396  *
397  * Returns a reserved_mem reference, or NULL on error.
398  */
399 struct reserved_mem *of_reserved_mem_lookup(struct device_node *np)
400 {
401 	const char *name;
402 	int i;
403 
404 	if (!np->full_name)
405 		return NULL;
406 
407 	name = kbasename(np->full_name);
408 	for (i = 0; i < reserved_mem_count; i++)
409 		if (!strcmp(reserved_mem[i].name, name))
410 			return &reserved_mem[i];
411 
412 	return NULL;
413 }
414 EXPORT_SYMBOL_GPL(of_reserved_mem_lookup);
415