xref: /linux/drivers/of/of_reserved_mem.c (revision 57c8a661d95dff48dd9c2f2496139082bbaf241a)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Device tree based initialization code for reserved memory.
4  *
5  * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
6  * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
7  *		http://www.samsung.com
8  * Author: Marek Szyprowski <m.szyprowski@samsung.com>
9  * Author: Josh Cartwright <joshc@codeaurora.org>
10  */
11 
12 #define pr_fmt(fmt)	"OF: reserved mem: " fmt
13 
14 #include <linux/err.h>
15 #include <linux/of.h>
16 #include <linux/of_fdt.h>
17 #include <linux/of_platform.h>
18 #include <linux/mm.h>
19 #include <linux/sizes.h>
20 #include <linux/of_reserved_mem.h>
21 #include <linux/sort.h>
22 #include <linux/slab.h>
23 #include <linux/memblock.h>
24 
25 #define MAX_RESERVED_REGIONS	32
26 static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
27 static int reserved_mem_count;
28 
29 int __init __weak early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
30 	phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
31 	phys_addr_t *res_base)
32 {
33 	phys_addr_t base;
34 	/*
35 	 * We use __memblock_alloc_base() because memblock_alloc_base()
36 	 * panic()s on allocation failure.
37 	 */
38 	end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
39 	base = __memblock_alloc_base(size, align, end);
40 	if (!base)
41 		return -ENOMEM;
42 
43 	/*
44 	 * Check if the allocated region fits in to start..end window
45 	 */
46 	if (base < start) {
47 		memblock_free(base, size);
48 		return -ENOMEM;
49 	}
50 
51 	*res_base = base;
52 	if (nomap)
53 		return memblock_remove(base, size);
54 	return 0;
55 }
56 
57 /**
58  * res_mem_save_node() - save fdt node for second pass initialization
59  */
60 void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
61 				      phys_addr_t base, phys_addr_t size)
62 {
63 	struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
64 
65 	if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
66 		pr_err("not enough space all defined regions.\n");
67 		return;
68 	}
69 
70 	rmem->fdt_node = node;
71 	rmem->name = uname;
72 	rmem->base = base;
73 	rmem->size = size;
74 
75 	reserved_mem_count++;
76 	return;
77 }
78 
79 /**
80  * res_mem_alloc_size() - allocate reserved memory described by 'size', 'align'
81  *			  and 'alloc-ranges' properties
82  */
83 static int __init __reserved_mem_alloc_size(unsigned long node,
84 	const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
85 {
86 	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
87 	phys_addr_t start = 0, end = 0;
88 	phys_addr_t base = 0, align = 0, size;
89 	int len;
90 	const __be32 *prop;
91 	int nomap;
92 	int ret;
93 
94 	prop = of_get_flat_dt_prop(node, "size", &len);
95 	if (!prop)
96 		return -EINVAL;
97 
98 	if (len != dt_root_size_cells * sizeof(__be32)) {
99 		pr_err("invalid size property in '%s' node.\n", uname);
100 		return -EINVAL;
101 	}
102 	size = dt_mem_next_cell(dt_root_size_cells, &prop);
103 
104 	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
105 
106 	prop = of_get_flat_dt_prop(node, "alignment", &len);
107 	if (prop) {
108 		if (len != dt_root_addr_cells * sizeof(__be32)) {
109 			pr_err("invalid alignment property in '%s' node.\n",
110 				uname);
111 			return -EINVAL;
112 		}
113 		align = dt_mem_next_cell(dt_root_addr_cells, &prop);
114 	}
115 
116 	/* Need adjust the alignment to satisfy the CMA requirement */
117 	if (IS_ENABLED(CONFIG_CMA)
118 	    && of_flat_dt_is_compatible(node, "shared-dma-pool")
119 	    && of_get_flat_dt_prop(node, "reusable", NULL)
120 	    && !of_get_flat_dt_prop(node, "no-map", NULL)) {
121 		unsigned long order =
122 			max_t(unsigned long, MAX_ORDER - 1, pageblock_order);
123 
124 		align = max(align, (phys_addr_t)PAGE_SIZE << order);
125 	}
126 
127 	prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
128 	if (prop) {
129 
130 		if (len % t_len != 0) {
131 			pr_err("invalid alloc-ranges property in '%s', skipping node.\n",
132 			       uname);
133 			return -EINVAL;
134 		}
135 
136 		base = 0;
137 
138 		while (len > 0) {
139 			start = dt_mem_next_cell(dt_root_addr_cells, &prop);
140 			end = start + dt_mem_next_cell(dt_root_size_cells,
141 						       &prop);
142 
143 			ret = early_init_dt_alloc_reserved_memory_arch(size,
144 					align, start, end, nomap, &base);
145 			if (ret == 0) {
146 				pr_debug("allocated memory for '%s' node: base %pa, size %ld MiB\n",
147 					uname, &base,
148 					(unsigned long)size / SZ_1M);
149 				break;
150 			}
151 			len -= t_len;
152 		}
153 
154 	} else {
155 		ret = early_init_dt_alloc_reserved_memory_arch(size, align,
156 							0, 0, nomap, &base);
157 		if (ret == 0)
158 			pr_debug("allocated memory for '%s' node: base %pa, size %ld MiB\n",
159 				uname, &base, (unsigned long)size / SZ_1M);
160 	}
161 
162 	if (base == 0) {
163 		pr_info("failed to allocate memory for node '%s'\n", uname);
164 		return -ENOMEM;
165 	}
166 
167 	*res_base = base;
168 	*res_size = size;
169 
170 	return 0;
171 }
172 
173 static const struct of_device_id __rmem_of_table_sentinel
174 	__used __section(__reservedmem_of_table_end);
175 
176 /**
177  * res_mem_init_node() - call region specific reserved memory init code
178  */
179 static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
180 {
181 	extern const struct of_device_id __reservedmem_of_table[];
182 	const struct of_device_id *i;
183 
184 	for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
185 		reservedmem_of_init_fn initfn = i->data;
186 		const char *compat = i->compatible;
187 
188 		if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
189 			continue;
190 
191 		if (initfn(rmem) == 0) {
192 			pr_info("initialized node %s, compatible id %s\n",
193 				rmem->name, compat);
194 			return 0;
195 		}
196 	}
197 	return -ENOENT;
198 }
199 
200 static int __init __rmem_cmp(const void *a, const void *b)
201 {
202 	const struct reserved_mem *ra = a, *rb = b;
203 
204 	if (ra->base < rb->base)
205 		return -1;
206 
207 	if (ra->base > rb->base)
208 		return 1;
209 
210 	return 0;
211 }
212 
213 static void __init __rmem_check_for_overlap(void)
214 {
215 	int i;
216 
217 	if (reserved_mem_count < 2)
218 		return;
219 
220 	sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
221 	     __rmem_cmp, NULL);
222 	for (i = 0; i < reserved_mem_count - 1; i++) {
223 		struct reserved_mem *this, *next;
224 
225 		this = &reserved_mem[i];
226 		next = &reserved_mem[i + 1];
227 		if (!(this->base && next->base))
228 			continue;
229 		if (this->base + this->size > next->base) {
230 			phys_addr_t this_end, next_end;
231 
232 			this_end = this->base + this->size;
233 			next_end = next->base + next->size;
234 			pr_err("OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
235 			       this->name, &this->base, &this_end,
236 			       next->name, &next->base, &next_end);
237 		}
238 	}
239 }
240 
241 /**
242  * fdt_init_reserved_mem - allocate and init all saved reserved memory regions
243  */
244 void __init fdt_init_reserved_mem(void)
245 {
246 	int i;
247 
248 	/* check for overlapping reserved regions */
249 	__rmem_check_for_overlap();
250 
251 	for (i = 0; i < reserved_mem_count; i++) {
252 		struct reserved_mem *rmem = &reserved_mem[i];
253 		unsigned long node = rmem->fdt_node;
254 		int len;
255 		const __be32 *prop;
256 		int err = 0;
257 
258 		prop = of_get_flat_dt_prop(node, "phandle", &len);
259 		if (!prop)
260 			prop = of_get_flat_dt_prop(node, "linux,phandle", &len);
261 		if (prop)
262 			rmem->phandle = of_read_number(prop, len/4);
263 
264 		if (rmem->size == 0)
265 			err = __reserved_mem_alloc_size(node, rmem->name,
266 						 &rmem->base, &rmem->size);
267 		if (err == 0)
268 			__reserved_mem_init_node(rmem);
269 	}
270 }
271 
272 static inline struct reserved_mem *__find_rmem(struct device_node *node)
273 {
274 	unsigned int i;
275 
276 	if (!node->phandle)
277 		return NULL;
278 
279 	for (i = 0; i < reserved_mem_count; i++)
280 		if (reserved_mem[i].phandle == node->phandle)
281 			return &reserved_mem[i];
282 	return NULL;
283 }
284 
285 struct rmem_assigned_device {
286 	struct device *dev;
287 	struct reserved_mem *rmem;
288 	struct list_head list;
289 };
290 
291 static LIST_HEAD(of_rmem_assigned_device_list);
292 static DEFINE_MUTEX(of_rmem_assigned_device_mutex);
293 
294 /**
295  * of_reserved_mem_device_init_by_idx() - assign reserved memory region to
296  *					  given device
297  * @dev:	Pointer to the device to configure
298  * @np:		Pointer to the device_node with 'reserved-memory' property
299  * @idx:	Index of selected region
300  *
301  * This function assigns respective DMA-mapping operations based on reserved
302  * memory region specified by 'memory-region' property in @np node to the @dev
303  * device. When driver needs to use more than one reserved memory region, it
304  * should allocate child devices and initialize regions by name for each of
305  * child device.
306  *
307  * Returns error code or zero on success.
308  */
309 int of_reserved_mem_device_init_by_idx(struct device *dev,
310 				       struct device_node *np, int idx)
311 {
312 	struct rmem_assigned_device *rd;
313 	struct device_node *target;
314 	struct reserved_mem *rmem;
315 	int ret;
316 
317 	if (!np || !dev)
318 		return -EINVAL;
319 
320 	target = of_parse_phandle(np, "memory-region", idx);
321 	if (!target)
322 		return -ENODEV;
323 
324 	rmem = __find_rmem(target);
325 	of_node_put(target);
326 
327 	if (!rmem || !rmem->ops || !rmem->ops->device_init)
328 		return -EINVAL;
329 
330 	rd = kmalloc(sizeof(struct rmem_assigned_device), GFP_KERNEL);
331 	if (!rd)
332 		return -ENOMEM;
333 
334 	ret = rmem->ops->device_init(rmem, dev);
335 	if (ret == 0) {
336 		rd->dev = dev;
337 		rd->rmem = rmem;
338 
339 		mutex_lock(&of_rmem_assigned_device_mutex);
340 		list_add(&rd->list, &of_rmem_assigned_device_list);
341 		mutex_unlock(&of_rmem_assigned_device_mutex);
342 		/* ensure that dma_ops is set for virtual devices
343 		 * using reserved memory
344 		 */
345 		of_dma_configure(dev, np, true);
346 
347 		dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
348 	} else {
349 		kfree(rd);
350 	}
351 
352 	return ret;
353 }
354 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_idx);
355 
356 /**
357  * of_reserved_mem_device_release() - release reserved memory device structures
358  * @dev:	Pointer to the device to deconfigure
359  *
360  * This function releases structures allocated for memory region handling for
361  * the given device.
362  */
363 void of_reserved_mem_device_release(struct device *dev)
364 {
365 	struct rmem_assigned_device *rd;
366 	struct reserved_mem *rmem = NULL;
367 
368 	mutex_lock(&of_rmem_assigned_device_mutex);
369 	list_for_each_entry(rd, &of_rmem_assigned_device_list, list) {
370 		if (rd->dev == dev) {
371 			rmem = rd->rmem;
372 			list_del(&rd->list);
373 			kfree(rd);
374 			break;
375 		}
376 	}
377 	mutex_unlock(&of_rmem_assigned_device_mutex);
378 
379 	if (!rmem || !rmem->ops || !rmem->ops->device_release)
380 		return;
381 
382 	rmem->ops->device_release(rmem, dev);
383 }
384 EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);
385 
386 /**
387  * of_reserved_mem_lookup() - acquire reserved_mem from a device node
388  * @np:		node pointer of the desired reserved-memory region
389  *
390  * This function allows drivers to acquire a reference to the reserved_mem
391  * struct based on a device node handle.
392  *
393  * Returns a reserved_mem reference, or NULL on error.
394  */
395 struct reserved_mem *of_reserved_mem_lookup(struct device_node *np)
396 {
397 	const char *name;
398 	int i;
399 
400 	if (!np->full_name)
401 		return NULL;
402 
403 	name = kbasename(np->full_name);
404 	for (i = 0; i < reserved_mem_count; i++)
405 		if (!strcmp(reserved_mem[i].name, name))
406 			return &reserved_mem[i];
407 
408 	return NULL;
409 }
410 EXPORT_SYMBOL_GPL(of_reserved_mem_lookup);
411