xref: /linux/drivers/of/of_reserved_mem.c (revision 53ddcc683faef8c730c7162fa1ef2261a385d16d)
1 /*
2  * Device tree based initialization code for reserved memory.
3  *
4  * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
5  * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
6  *		http://www.samsung.com
7  * Author: Marek Szyprowski <m.szyprowski@samsung.com>
8  * Author: Josh Cartwright <joshc@codeaurora.org>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of the
13  * License or (at your optional) any later version of the license.
14  */
15 
16 #include <linux/err.h>
17 #include <linux/of.h>
18 #include <linux/of_fdt.h>
19 #include <linux/of_platform.h>
20 #include <linux/mm.h>
21 #include <linux/sizes.h>
22 #include <linux/of_reserved_mem.h>
23 #include <linux/sort.h>
24 #include <linux/slab.h>
25 
26 #define MAX_RESERVED_REGIONS	16
27 static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
28 static int reserved_mem_count;
29 
30 #if defined(CONFIG_HAVE_MEMBLOCK)
31 #include <linux/memblock.h>
32 int __init __weak early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
33 	phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
34 	phys_addr_t *res_base)
35 {
36 	phys_addr_t base;
37 	/*
38 	 * We use __memblock_alloc_base() because memblock_alloc_base()
39 	 * panic()s on allocation failure.
40 	 */
41 	end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
42 	base = __memblock_alloc_base(size, align, end);
43 	if (!base)
44 		return -ENOMEM;
45 
46 	/*
47 	 * Check if the allocated region fits in to start..end window
48 	 */
49 	if (base < start) {
50 		memblock_free(base, size);
51 		return -ENOMEM;
52 	}
53 
54 	*res_base = base;
55 	if (nomap)
56 		return memblock_remove(base, size);
57 	return 0;
58 }
59 #else
60 int __init __weak early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
61 	phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
62 	phys_addr_t *res_base)
63 {
64 	pr_err("Reserved memory not supported, ignoring region 0x%llx%s\n",
65 		  size, nomap ? " (nomap)" : "");
66 	return -ENOSYS;
67 }
68 #endif
69 
70 /**
71  * res_mem_save_node() - save fdt node for second pass initialization
72  */
73 void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
74 				      phys_addr_t base, phys_addr_t size)
75 {
76 	struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
77 
78 	if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
79 		pr_err("Reserved memory: not enough space all defined regions.\n");
80 		return;
81 	}
82 
83 	rmem->fdt_node = node;
84 	rmem->name = uname;
85 	rmem->base = base;
86 	rmem->size = size;
87 
88 	reserved_mem_count++;
89 	return;
90 }
91 
92 /**
93  * res_mem_alloc_size() - allocate reserved memory described by 'size', 'align'
94  *			  and 'alloc-ranges' properties
95  */
96 static int __init __reserved_mem_alloc_size(unsigned long node,
97 	const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
98 {
99 	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
100 	phys_addr_t start = 0, end = 0;
101 	phys_addr_t base = 0, align = 0, size;
102 	int len;
103 	const __be32 *prop;
104 	int nomap;
105 	int ret;
106 
107 	prop = of_get_flat_dt_prop(node, "size", &len);
108 	if (!prop)
109 		return -EINVAL;
110 
111 	if (len != dt_root_size_cells * sizeof(__be32)) {
112 		pr_err("Reserved memory: invalid size property in '%s' node.\n",
113 				uname);
114 		return -EINVAL;
115 	}
116 	size = dt_mem_next_cell(dt_root_size_cells, &prop);
117 
118 	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
119 
120 	prop = of_get_flat_dt_prop(node, "alignment", &len);
121 	if (prop) {
122 		if (len != dt_root_addr_cells * sizeof(__be32)) {
123 			pr_err("Reserved memory: invalid alignment property in '%s' node.\n",
124 				uname);
125 			return -EINVAL;
126 		}
127 		align = dt_mem_next_cell(dt_root_addr_cells, &prop);
128 	}
129 
130 	/* Need adjust the alignment to satisfy the CMA requirement */
131 	if (IS_ENABLED(CONFIG_CMA) && of_flat_dt_is_compatible(node, "shared-dma-pool"))
132 		align = max(align, (phys_addr_t)PAGE_SIZE << max(MAX_ORDER - 1, pageblock_order));
133 
134 	prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
135 	if (prop) {
136 
137 		if (len % t_len != 0) {
138 			pr_err("Reserved memory: invalid alloc-ranges property in '%s', skipping node.\n",
139 			       uname);
140 			return -EINVAL;
141 		}
142 
143 		base = 0;
144 
145 		while (len > 0) {
146 			start = dt_mem_next_cell(dt_root_addr_cells, &prop);
147 			end = start + dt_mem_next_cell(dt_root_size_cells,
148 						       &prop);
149 
150 			ret = early_init_dt_alloc_reserved_memory_arch(size,
151 					align, start, end, nomap, &base);
152 			if (ret == 0) {
153 				pr_debug("Reserved memory: allocated memory for '%s' node: base %pa, size %ld MiB\n",
154 					uname, &base,
155 					(unsigned long)size / SZ_1M);
156 				break;
157 			}
158 			len -= t_len;
159 		}
160 
161 	} else {
162 		ret = early_init_dt_alloc_reserved_memory_arch(size, align,
163 							0, 0, nomap, &base);
164 		if (ret == 0)
165 			pr_debug("Reserved memory: allocated memory for '%s' node: base %pa, size %ld MiB\n",
166 				uname, &base, (unsigned long)size / SZ_1M);
167 	}
168 
169 	if (base == 0) {
170 		pr_info("Reserved memory: failed to allocate memory for node '%s'\n",
171 			uname);
172 		return -ENOMEM;
173 	}
174 
175 	*res_base = base;
176 	*res_size = size;
177 
178 	return 0;
179 }
180 
181 static const struct of_device_id __rmem_of_table_sentinel
182 	__used __section(__reservedmem_of_table_end);
183 
184 /**
185  * res_mem_init_node() - call region specific reserved memory init code
186  */
187 static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
188 {
189 	extern const struct of_device_id __reservedmem_of_table[];
190 	const struct of_device_id *i;
191 
192 	for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
193 		reservedmem_of_init_fn initfn = i->data;
194 		const char *compat = i->compatible;
195 
196 		if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
197 			continue;
198 
199 		if (initfn(rmem) == 0) {
200 			pr_info("Reserved memory: initialized node %s, compatible id %s\n",
201 				rmem->name, compat);
202 			return 0;
203 		}
204 	}
205 	return -ENOENT;
206 }
207 
208 static int __init __rmem_cmp(const void *a, const void *b)
209 {
210 	const struct reserved_mem *ra = a, *rb = b;
211 
212 	if (ra->base < rb->base)
213 		return -1;
214 
215 	if (ra->base > rb->base)
216 		return 1;
217 
218 	return 0;
219 }
220 
221 static void __init __rmem_check_for_overlap(void)
222 {
223 	int i;
224 
225 	if (reserved_mem_count < 2)
226 		return;
227 
228 	sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
229 	     __rmem_cmp, NULL);
230 	for (i = 0; i < reserved_mem_count - 1; i++) {
231 		struct reserved_mem *this, *next;
232 
233 		this = &reserved_mem[i];
234 		next = &reserved_mem[i + 1];
235 		if (!(this->base && next->base))
236 			continue;
237 		if (this->base + this->size > next->base) {
238 			phys_addr_t this_end, next_end;
239 
240 			this_end = this->base + this->size;
241 			next_end = next->base + next->size;
242 			pr_err("Reserved memory: OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
243 			       this->name, &this->base, &this_end,
244 			       next->name, &next->base, &next_end);
245 		}
246 	}
247 }
248 
249 /**
250  * fdt_init_reserved_mem - allocate and init all saved reserved memory regions
251  */
252 void __init fdt_init_reserved_mem(void)
253 {
254 	int i;
255 
256 	/* check for overlapping reserved regions */
257 	__rmem_check_for_overlap();
258 
259 	for (i = 0; i < reserved_mem_count; i++) {
260 		struct reserved_mem *rmem = &reserved_mem[i];
261 		unsigned long node = rmem->fdt_node;
262 		int len;
263 		const __be32 *prop;
264 		int err = 0;
265 
266 		prop = of_get_flat_dt_prop(node, "phandle", &len);
267 		if (!prop)
268 			prop = of_get_flat_dt_prop(node, "linux,phandle", &len);
269 		if (prop)
270 			rmem->phandle = of_read_number(prop, len/4);
271 
272 		if (rmem->size == 0)
273 			err = __reserved_mem_alloc_size(node, rmem->name,
274 						 &rmem->base, &rmem->size);
275 		if (err == 0)
276 			__reserved_mem_init_node(rmem);
277 	}
278 }
279 
280 static inline struct reserved_mem *__find_rmem(struct device_node *node)
281 {
282 	unsigned int i;
283 
284 	if (!node->phandle)
285 		return NULL;
286 
287 	for (i = 0; i < reserved_mem_count; i++)
288 		if (reserved_mem[i].phandle == node->phandle)
289 			return &reserved_mem[i];
290 	return NULL;
291 }
292 
293 struct rmem_assigned_device {
294 	struct device *dev;
295 	struct reserved_mem *rmem;
296 	struct list_head list;
297 };
298 
299 static LIST_HEAD(of_rmem_assigned_device_list);
300 static DEFINE_MUTEX(of_rmem_assigned_device_mutex);
301 
302 /**
303  * of_reserved_mem_device_init_by_idx() - assign reserved memory region to
304  *					  given device
305  * @dev:	Pointer to the device to configure
306  * @np:		Pointer to the device_node with 'reserved-memory' property
307  * @idx:	Index of selected region
308  *
309  * This function assigns respective DMA-mapping operations based on reserved
310  * memory region specified by 'memory-region' property in @np node to the @dev
311  * device. When driver needs to use more than one reserved memory region, it
312  * should allocate child devices and initialize regions by name for each of
313  * child device.
314  *
315  * Returns error code or zero on success.
316  */
317 int of_reserved_mem_device_init_by_idx(struct device *dev,
318 				       struct device_node *np, int idx)
319 {
320 	struct rmem_assigned_device *rd;
321 	struct device_node *target;
322 	struct reserved_mem *rmem;
323 	int ret;
324 
325 	if (!np || !dev)
326 		return -EINVAL;
327 
328 	target = of_parse_phandle(np, "memory-region", idx);
329 	if (!target)
330 		return -ENODEV;
331 
332 	rmem = __find_rmem(target);
333 	of_node_put(target);
334 
335 	if (!rmem || !rmem->ops || !rmem->ops->device_init)
336 		return -EINVAL;
337 
338 	rd = kmalloc(sizeof(struct rmem_assigned_device), GFP_KERNEL);
339 	if (!rd)
340 		return -ENOMEM;
341 
342 	ret = rmem->ops->device_init(rmem, dev);
343 	if (ret == 0) {
344 		rd->dev = dev;
345 		rd->rmem = rmem;
346 
347 		mutex_lock(&of_rmem_assigned_device_mutex);
348 		list_add(&rd->list, &of_rmem_assigned_device_list);
349 		mutex_unlock(&of_rmem_assigned_device_mutex);
350 
351 		dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
352 	} else {
353 		kfree(rd);
354 	}
355 
356 	return ret;
357 }
358 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_idx);
359 
360 /**
361  * of_reserved_mem_device_release() - release reserved memory device structures
362  * @dev:	Pointer to the device to deconfigure
363  *
364  * This function releases structures allocated for memory region handling for
365  * the given device.
366  */
367 void of_reserved_mem_device_release(struct device *dev)
368 {
369 	struct rmem_assigned_device *rd;
370 	struct reserved_mem *rmem = NULL;
371 
372 	mutex_lock(&of_rmem_assigned_device_mutex);
373 	list_for_each_entry(rd, &of_rmem_assigned_device_list, list) {
374 		if (rd->dev == dev) {
375 			rmem = rd->rmem;
376 			list_del(&rd->list);
377 			kfree(rd);
378 			break;
379 		}
380 	}
381 	mutex_unlock(&of_rmem_assigned_device_mutex);
382 
383 	if (!rmem || !rmem->ops || !rmem->ops->device_release)
384 		return;
385 
386 	rmem->ops->device_release(rmem, dev);
387 }
388 EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);
389