1 /* 2 * Device tree based initialization code for reserved memory. 3 * 4 * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved. 5 * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com 7 * Author: Marek Szyprowski <m.szyprowski@samsung.com> 8 * Author: Josh Cartwright <joshc@codeaurora.org> 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License as 12 * published by the Free Software Foundation; either version 2 of the 13 * License or (at your optional) any later version of the license. 14 */ 15 16 #include <linux/err.h> 17 #include <linux/of.h> 18 #include <linux/of_fdt.h> 19 #include <linux/of_platform.h> 20 #include <linux/mm.h> 21 #include <linux/sizes.h> 22 #include <linux/of_reserved_mem.h> 23 #include <linux/sort.h> 24 25 #define MAX_RESERVED_REGIONS 16 26 static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS]; 27 static int reserved_mem_count; 28 29 #if defined(CONFIG_HAVE_MEMBLOCK) 30 #include <linux/memblock.h> 31 int __init __weak early_init_dt_alloc_reserved_memory_arch(phys_addr_t size, 32 phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap, 33 phys_addr_t *res_base) 34 { 35 phys_addr_t base; 36 /* 37 * We use __memblock_alloc_base() because memblock_alloc_base() 38 * panic()s on allocation failure. 39 */ 40 end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end; 41 base = __memblock_alloc_base(size, align, end); 42 if (!base) 43 return -ENOMEM; 44 45 /* 46 * Check if the allocated region fits in to start..end window 47 */ 48 if (base < start) { 49 memblock_free(base, size); 50 return -ENOMEM; 51 } 52 53 *res_base = base; 54 if (nomap) 55 return memblock_remove(base, size); 56 return 0; 57 } 58 #else 59 int __init __weak early_init_dt_alloc_reserved_memory_arch(phys_addr_t size, 60 phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap, 61 phys_addr_t *res_base) 62 { 63 pr_err("Reserved memory not supported, ignoring region 0x%llx%s\n", 64 size, nomap ? " (nomap)" : ""); 65 return -ENOSYS; 66 } 67 #endif 68 69 /** 70 * res_mem_save_node() - save fdt node for second pass initialization 71 */ 72 void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname, 73 phys_addr_t base, phys_addr_t size) 74 { 75 struct reserved_mem *rmem = &reserved_mem[reserved_mem_count]; 76 77 if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) { 78 pr_err("Reserved memory: not enough space all defined regions.\n"); 79 return; 80 } 81 82 rmem->fdt_node = node; 83 rmem->name = uname; 84 rmem->base = base; 85 rmem->size = size; 86 87 reserved_mem_count++; 88 return; 89 } 90 91 /** 92 * res_mem_alloc_size() - allocate reserved memory described by 'size', 'align' 93 * and 'alloc-ranges' properties 94 */ 95 static int __init __reserved_mem_alloc_size(unsigned long node, 96 const char *uname, phys_addr_t *res_base, phys_addr_t *res_size) 97 { 98 int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32); 99 phys_addr_t start = 0, end = 0; 100 phys_addr_t base = 0, align = 0, size; 101 int len; 102 const __be32 *prop; 103 int nomap; 104 int ret; 105 106 prop = of_get_flat_dt_prop(node, "size", &len); 107 if (!prop) 108 return -EINVAL; 109 110 if (len != dt_root_size_cells * sizeof(__be32)) { 111 pr_err("Reserved memory: invalid size property in '%s' node.\n", 112 uname); 113 return -EINVAL; 114 } 115 size = dt_mem_next_cell(dt_root_size_cells, &prop); 116 117 nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL; 118 119 prop = of_get_flat_dt_prop(node, "alignment", &len); 120 if (prop) { 121 if (len != dt_root_addr_cells * sizeof(__be32)) { 122 pr_err("Reserved memory: invalid alignment property in '%s' node.\n", 123 uname); 124 return -EINVAL; 125 } 126 align = dt_mem_next_cell(dt_root_addr_cells, &prop); 127 } 128 129 /* Need adjust the alignment to satisfy the CMA requirement */ 130 if (IS_ENABLED(CONFIG_CMA) 131 && of_flat_dt_is_compatible(node, "shared-dma-pool") 132 && of_get_flat_dt_prop(node, "reusable", NULL) 133 && !of_get_flat_dt_prop(node, "no-map", NULL)) { 134 unsigned long order = 135 max_t(unsigned long, MAX_ORDER - 1, pageblock_order); 136 137 align = max(align, (phys_addr_t)PAGE_SIZE << order); 138 } 139 140 prop = of_get_flat_dt_prop(node, "alloc-ranges", &len); 141 if (prop) { 142 143 if (len % t_len != 0) { 144 pr_err("Reserved memory: invalid alloc-ranges property in '%s', skipping node.\n", 145 uname); 146 return -EINVAL; 147 } 148 149 base = 0; 150 151 while (len > 0) { 152 start = dt_mem_next_cell(dt_root_addr_cells, &prop); 153 end = start + dt_mem_next_cell(dt_root_size_cells, 154 &prop); 155 156 ret = early_init_dt_alloc_reserved_memory_arch(size, 157 align, start, end, nomap, &base); 158 if (ret == 0) { 159 pr_debug("Reserved memory: allocated memory for '%s' node: base %pa, size %ld MiB\n", 160 uname, &base, 161 (unsigned long)size / SZ_1M); 162 break; 163 } 164 len -= t_len; 165 } 166 167 } else { 168 ret = early_init_dt_alloc_reserved_memory_arch(size, align, 169 0, 0, nomap, &base); 170 if (ret == 0) 171 pr_debug("Reserved memory: allocated memory for '%s' node: base %pa, size %ld MiB\n", 172 uname, &base, (unsigned long)size / SZ_1M); 173 } 174 175 if (base == 0) { 176 pr_info("Reserved memory: failed to allocate memory for node '%s'\n", 177 uname); 178 return -ENOMEM; 179 } 180 181 *res_base = base; 182 *res_size = size; 183 184 return 0; 185 } 186 187 static const struct of_device_id __rmem_of_table_sentinel 188 __used __section(__reservedmem_of_table_end); 189 190 /** 191 * res_mem_init_node() - call region specific reserved memory init code 192 */ 193 static int __init __reserved_mem_init_node(struct reserved_mem *rmem) 194 { 195 extern const struct of_device_id __reservedmem_of_table[]; 196 const struct of_device_id *i; 197 198 for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) { 199 reservedmem_of_init_fn initfn = i->data; 200 const char *compat = i->compatible; 201 202 if (!of_flat_dt_is_compatible(rmem->fdt_node, compat)) 203 continue; 204 205 if (initfn(rmem) == 0) { 206 pr_info("Reserved memory: initialized node %s, compatible id %s\n", 207 rmem->name, compat); 208 return 0; 209 } 210 } 211 return -ENOENT; 212 } 213 214 static int __init __rmem_cmp(const void *a, const void *b) 215 { 216 const struct reserved_mem *ra = a, *rb = b; 217 218 if (ra->base < rb->base) 219 return -1; 220 221 if (ra->base > rb->base) 222 return 1; 223 224 return 0; 225 } 226 227 static void __init __rmem_check_for_overlap(void) 228 { 229 int i; 230 231 if (reserved_mem_count < 2) 232 return; 233 234 sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]), 235 __rmem_cmp, NULL); 236 for (i = 0; i < reserved_mem_count - 1; i++) { 237 struct reserved_mem *this, *next; 238 239 this = &reserved_mem[i]; 240 next = &reserved_mem[i + 1]; 241 if (!(this->base && next->base)) 242 continue; 243 if (this->base + this->size > next->base) { 244 phys_addr_t this_end, next_end; 245 246 this_end = this->base + this->size; 247 next_end = next->base + next->size; 248 pr_err("Reserved memory: OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n", 249 this->name, &this->base, &this_end, 250 next->name, &next->base, &next_end); 251 } 252 } 253 } 254 255 /** 256 * fdt_init_reserved_mem - allocate and init all saved reserved memory regions 257 */ 258 void __init fdt_init_reserved_mem(void) 259 { 260 int i; 261 262 /* check for overlapping reserved regions */ 263 __rmem_check_for_overlap(); 264 265 for (i = 0; i < reserved_mem_count; i++) { 266 struct reserved_mem *rmem = &reserved_mem[i]; 267 unsigned long node = rmem->fdt_node; 268 int len; 269 const __be32 *prop; 270 int err = 0; 271 272 prop = of_get_flat_dt_prop(node, "phandle", &len); 273 if (!prop) 274 prop = of_get_flat_dt_prop(node, "linux,phandle", &len); 275 if (prop) 276 rmem->phandle = of_read_number(prop, len/4); 277 278 if (rmem->size == 0) 279 err = __reserved_mem_alloc_size(node, rmem->name, 280 &rmem->base, &rmem->size); 281 if (err == 0) 282 __reserved_mem_init_node(rmem); 283 } 284 } 285 286 static inline struct reserved_mem *__find_rmem(struct device_node *node) 287 { 288 unsigned int i; 289 290 if (!node->phandle) 291 return NULL; 292 293 for (i = 0; i < reserved_mem_count; i++) 294 if (reserved_mem[i].phandle == node->phandle) 295 return &reserved_mem[i]; 296 return NULL; 297 } 298 299 /** 300 * of_reserved_mem_device_init() - assign reserved memory region to given device 301 * 302 * This function assign memory region pointed by "memory-region" device tree 303 * property to the given device. 304 */ 305 int of_reserved_mem_device_init(struct device *dev) 306 { 307 struct reserved_mem *rmem; 308 struct device_node *np; 309 int ret; 310 311 np = of_parse_phandle(dev->of_node, "memory-region", 0); 312 if (!np) 313 return -ENODEV; 314 315 rmem = __find_rmem(np); 316 of_node_put(np); 317 318 if (!rmem || !rmem->ops || !rmem->ops->device_init) 319 return -EINVAL; 320 321 ret = rmem->ops->device_init(rmem, dev); 322 if (ret == 0) 323 dev_info(dev, "assigned reserved memory node %s\n", rmem->name); 324 325 return ret; 326 } 327 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init); 328 329 /** 330 * of_reserved_mem_device_release() - release reserved memory device structures 331 * 332 * This function releases structures allocated for memory region handling for 333 * the given device. 334 */ 335 void of_reserved_mem_device_release(struct device *dev) 336 { 337 struct reserved_mem *rmem; 338 struct device_node *np; 339 340 np = of_parse_phandle(dev->of_node, "memory-region", 0); 341 if (!np) 342 return; 343 344 rmem = __find_rmem(np); 345 of_node_put(np); 346 347 if (!rmem || !rmem->ops || !rmem->ops->device_release) 348 return; 349 350 rmem->ops->device_release(rmem, dev); 351 } 352 EXPORT_SYMBOL_GPL(of_reserved_mem_device_release); 353