xref: /linux/drivers/of/of_reserved_mem.c (revision 061834624c87282c6d9d8c5395aaff4380e5e1fc)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Device tree based initialization code for reserved memory.
4  *
5  * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
6  * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
7  *		http://www.samsung.com
8  * Author: Marek Szyprowski <m.szyprowski@samsung.com>
9  * Author: Josh Cartwright <joshc@codeaurora.org>
10  */
11 
12 #define pr_fmt(fmt)	"OF: reserved mem: " fmt
13 
14 #include <linux/err.h>
15 #include <linux/of.h>
16 #include <linux/of_fdt.h>
17 #include <linux/of_platform.h>
18 #include <linux/mm.h>
19 #include <linux/sizes.h>
20 #include <linux/of_reserved_mem.h>
21 #include <linux/sort.h>
22 #include <linux/slab.h>
23 #include <linux/memblock.h>
24 #include <linux/kmemleak.h>
25 #include <linux/cma.h>
26 
27 #include "of_private.h"
28 
29 #define MAX_RESERVED_REGIONS	64
30 static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
31 static int reserved_mem_count;
32 
33 static int __init early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
34 	phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
35 	phys_addr_t *res_base)
36 {
37 	phys_addr_t base;
38 	int err = 0;
39 
40 	end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
41 	align = !align ? SMP_CACHE_BYTES : align;
42 	base = memblock_phys_alloc_range(size, align, start, end);
43 	if (!base)
44 		return -ENOMEM;
45 
46 	*res_base = base;
47 	if (nomap) {
48 		err = memblock_mark_nomap(base, size);
49 		if (err)
50 			memblock_phys_free(base, size);
51 		kmemleak_ignore_phys(base);
52 	}
53 
54 	return err;
55 }
56 
57 /*
58  * fdt_reserved_mem_save_node() - save fdt node for second pass initialization
59  */
60 void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
61 				      phys_addr_t base, phys_addr_t size)
62 {
63 	struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
64 
65 	if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
66 		pr_err("not enough space for all defined regions.\n");
67 		return;
68 	}
69 
70 	rmem->fdt_node = node;
71 	rmem->name = uname;
72 	rmem->base = base;
73 	rmem->size = size;
74 
75 	reserved_mem_count++;
76 	return;
77 }
78 
79 /*
80  * __reserved_mem_alloc_size() - allocate reserved memory described by
81  *	'size', 'alignment'  and 'alloc-ranges' properties.
82  */
83 static int __init __reserved_mem_alloc_size(unsigned long node,
84 	const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
85 {
86 	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
87 	phys_addr_t start = 0, end = 0;
88 	phys_addr_t base = 0, align = 0, size;
89 	int len;
90 	const __be32 *prop;
91 	bool nomap;
92 	int ret;
93 
94 	prop = of_get_flat_dt_prop(node, "size", &len);
95 	if (!prop)
96 		return -EINVAL;
97 
98 	if (len != dt_root_size_cells * sizeof(__be32)) {
99 		pr_err("invalid size property in '%s' node.\n", uname);
100 		return -EINVAL;
101 	}
102 	size = dt_mem_next_cell(dt_root_size_cells, &prop);
103 
104 	prop = of_get_flat_dt_prop(node, "alignment", &len);
105 	if (prop) {
106 		if (len != dt_root_addr_cells * sizeof(__be32)) {
107 			pr_err("invalid alignment property in '%s' node.\n",
108 				uname);
109 			return -EINVAL;
110 		}
111 		align = dt_mem_next_cell(dt_root_addr_cells, &prop);
112 	}
113 
114 	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
115 
116 	/* Need adjust the alignment to satisfy the CMA requirement */
117 	if (IS_ENABLED(CONFIG_CMA)
118 	    && of_flat_dt_is_compatible(node, "shared-dma-pool")
119 	    && of_get_flat_dt_prop(node, "reusable", NULL)
120 	    && !nomap)
121 		align = max_t(phys_addr_t, align, CMA_MIN_ALIGNMENT_BYTES);
122 
123 	prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
124 	if (prop) {
125 
126 		if (len % t_len != 0) {
127 			pr_err("invalid alloc-ranges property in '%s', skipping node.\n",
128 			       uname);
129 			return -EINVAL;
130 		}
131 
132 		base = 0;
133 
134 		while (len > 0) {
135 			start = dt_mem_next_cell(dt_root_addr_cells, &prop);
136 			end = start + dt_mem_next_cell(dt_root_size_cells,
137 						       &prop);
138 
139 			ret = early_init_dt_alloc_reserved_memory_arch(size,
140 					align, start, end, nomap, &base);
141 			if (ret == 0) {
142 				pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
143 					uname, &base,
144 					(unsigned long)(size / SZ_1M));
145 				break;
146 			}
147 			len -= t_len;
148 		}
149 
150 	} else {
151 		ret = early_init_dt_alloc_reserved_memory_arch(size, align,
152 							0, 0, nomap, &base);
153 		if (ret == 0)
154 			pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
155 				uname, &base, (unsigned long)(size / SZ_1M));
156 	}
157 
158 	if (base == 0) {
159 		pr_err("failed to allocate memory for node '%s': size %lu MiB\n",
160 		       uname, (unsigned long)(size / SZ_1M));
161 		return -ENOMEM;
162 	}
163 
164 	*res_base = base;
165 	*res_size = size;
166 
167 	return 0;
168 }
169 
170 static const struct of_device_id __rmem_of_table_sentinel
171 	__used __section("__reservedmem_of_table_end");
172 
173 /*
174  * __reserved_mem_init_node() - call region specific reserved memory init code
175  */
176 static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
177 {
178 	extern const struct of_device_id __reservedmem_of_table[];
179 	const struct of_device_id *i;
180 	int ret = -ENOENT;
181 
182 	for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
183 		reservedmem_of_init_fn initfn = i->data;
184 		const char *compat = i->compatible;
185 
186 		if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
187 			continue;
188 
189 		ret = initfn(rmem);
190 		if (ret == 0) {
191 			pr_info("initialized node %s, compatible id %s\n",
192 				rmem->name, compat);
193 			break;
194 		}
195 	}
196 	return ret;
197 }
198 
199 static int __init __rmem_cmp(const void *a, const void *b)
200 {
201 	const struct reserved_mem *ra = a, *rb = b;
202 
203 	if (ra->base < rb->base)
204 		return -1;
205 
206 	if (ra->base > rb->base)
207 		return 1;
208 
209 	/*
210 	 * Put the dynamic allocations (address == 0, size == 0) before static
211 	 * allocations at address 0x0 so that overlap detection works
212 	 * correctly.
213 	 */
214 	if (ra->size < rb->size)
215 		return -1;
216 	if (ra->size > rb->size)
217 		return 1;
218 
219 	return 0;
220 }
221 
222 static void __init __rmem_check_for_overlap(void)
223 {
224 	int i;
225 
226 	if (reserved_mem_count < 2)
227 		return;
228 
229 	sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
230 	     __rmem_cmp, NULL);
231 	for (i = 0; i < reserved_mem_count - 1; i++) {
232 		struct reserved_mem *this, *next;
233 
234 		this = &reserved_mem[i];
235 		next = &reserved_mem[i + 1];
236 
237 		if (this->base + this->size > next->base) {
238 			phys_addr_t this_end, next_end;
239 
240 			this_end = this->base + this->size;
241 			next_end = next->base + next->size;
242 			pr_err("OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
243 			       this->name, &this->base, &this_end,
244 			       next->name, &next->base, &next_end);
245 		}
246 	}
247 }
248 
249 /**
250  * fdt_init_reserved_mem() - allocate and init all saved reserved memory regions
251  */
252 void __init fdt_init_reserved_mem(void)
253 {
254 	int i;
255 
256 	/* check for overlapping reserved regions */
257 	__rmem_check_for_overlap();
258 
259 	for (i = 0; i < reserved_mem_count; i++) {
260 		struct reserved_mem *rmem = &reserved_mem[i];
261 		unsigned long node = rmem->fdt_node;
262 		int len;
263 		const __be32 *prop;
264 		int err = 0;
265 		bool nomap;
266 
267 		nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
268 		prop = of_get_flat_dt_prop(node, "phandle", &len);
269 		if (!prop)
270 			prop = of_get_flat_dt_prop(node, "linux,phandle", &len);
271 		if (prop)
272 			rmem->phandle = of_read_number(prop, len/4);
273 
274 		if (rmem->size == 0)
275 			err = __reserved_mem_alloc_size(node, rmem->name,
276 						 &rmem->base, &rmem->size);
277 		if (err == 0) {
278 			err = __reserved_mem_init_node(rmem);
279 			if (err != 0 && err != -ENOENT) {
280 				pr_info("node %s compatible matching fail\n",
281 					rmem->name);
282 				if (nomap)
283 					memblock_clear_nomap(rmem->base, rmem->size);
284 				else
285 					memblock_phys_free(rmem->base,
286 							   rmem->size);
287 			}
288 		}
289 	}
290 }
291 
292 static inline struct reserved_mem *__find_rmem(struct device_node *node)
293 {
294 	unsigned int i;
295 
296 	if (!node->phandle)
297 		return NULL;
298 
299 	for (i = 0; i < reserved_mem_count; i++)
300 		if (reserved_mem[i].phandle == node->phandle)
301 			return &reserved_mem[i];
302 	return NULL;
303 }
304 
305 struct rmem_assigned_device {
306 	struct device *dev;
307 	struct reserved_mem *rmem;
308 	struct list_head list;
309 };
310 
311 static LIST_HEAD(of_rmem_assigned_device_list);
312 static DEFINE_MUTEX(of_rmem_assigned_device_mutex);
313 
314 /**
315  * of_reserved_mem_device_init_by_idx() - assign reserved memory region to
316  *					  given device
317  * @dev:	Pointer to the device to configure
318  * @np:		Pointer to the device_node with 'reserved-memory' property
319  * @idx:	Index of selected region
320  *
321  * This function assigns respective DMA-mapping operations based on reserved
322  * memory region specified by 'memory-region' property in @np node to the @dev
323  * device. When driver needs to use more than one reserved memory region, it
324  * should allocate child devices and initialize regions by name for each of
325  * child device.
326  *
327  * Returns error code or zero on success.
328  */
329 int of_reserved_mem_device_init_by_idx(struct device *dev,
330 				       struct device_node *np, int idx)
331 {
332 	struct rmem_assigned_device *rd;
333 	struct device_node *target;
334 	struct reserved_mem *rmem;
335 	int ret;
336 
337 	if (!np || !dev)
338 		return -EINVAL;
339 
340 	target = of_parse_phandle(np, "memory-region", idx);
341 	if (!target)
342 		return -ENODEV;
343 
344 	if (!of_device_is_available(target)) {
345 		of_node_put(target);
346 		return 0;
347 	}
348 
349 	rmem = __find_rmem(target);
350 	of_node_put(target);
351 
352 	if (!rmem || !rmem->ops || !rmem->ops->device_init)
353 		return -EINVAL;
354 
355 	rd = kmalloc(sizeof(struct rmem_assigned_device), GFP_KERNEL);
356 	if (!rd)
357 		return -ENOMEM;
358 
359 	ret = rmem->ops->device_init(rmem, dev);
360 	if (ret == 0) {
361 		rd->dev = dev;
362 		rd->rmem = rmem;
363 
364 		mutex_lock(&of_rmem_assigned_device_mutex);
365 		list_add(&rd->list, &of_rmem_assigned_device_list);
366 		mutex_unlock(&of_rmem_assigned_device_mutex);
367 
368 		dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
369 	} else {
370 		kfree(rd);
371 	}
372 
373 	return ret;
374 }
375 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_idx);
376 
377 /**
378  * of_reserved_mem_device_init_by_name() - assign named reserved memory region
379  *					   to given device
380  * @dev: pointer to the device to configure
381  * @np: pointer to the device node with 'memory-region' property
382  * @name: name of the selected memory region
383  *
384  * Returns: 0 on success or a negative error-code on failure.
385  */
386 int of_reserved_mem_device_init_by_name(struct device *dev,
387 					struct device_node *np,
388 					const char *name)
389 {
390 	int idx = of_property_match_string(np, "memory-region-names", name);
391 
392 	return of_reserved_mem_device_init_by_idx(dev, np, idx);
393 }
394 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_name);
395 
396 /**
397  * of_reserved_mem_device_release() - release reserved memory device structures
398  * @dev:	Pointer to the device to deconfigure
399  *
400  * This function releases structures allocated for memory region handling for
401  * the given device.
402  */
403 void of_reserved_mem_device_release(struct device *dev)
404 {
405 	struct rmem_assigned_device *rd, *tmp;
406 	LIST_HEAD(release_list);
407 
408 	mutex_lock(&of_rmem_assigned_device_mutex);
409 	list_for_each_entry_safe(rd, tmp, &of_rmem_assigned_device_list, list) {
410 		if (rd->dev == dev)
411 			list_move_tail(&rd->list, &release_list);
412 	}
413 	mutex_unlock(&of_rmem_assigned_device_mutex);
414 
415 	list_for_each_entry_safe(rd, tmp, &release_list, list) {
416 		if (rd->rmem && rd->rmem->ops && rd->rmem->ops->device_release)
417 			rd->rmem->ops->device_release(rd->rmem, dev);
418 
419 		kfree(rd);
420 	}
421 }
422 EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);
423 
424 /**
425  * of_reserved_mem_lookup() - acquire reserved_mem from a device node
426  * @np:		node pointer of the desired reserved-memory region
427  *
428  * This function allows drivers to acquire a reference to the reserved_mem
429  * struct based on a device node handle.
430  *
431  * Returns a reserved_mem reference, or NULL on error.
432  */
433 struct reserved_mem *of_reserved_mem_lookup(struct device_node *np)
434 {
435 	const char *name;
436 	int i;
437 
438 	if (!np->full_name)
439 		return NULL;
440 
441 	name = kbasename(np->full_name);
442 	for (i = 0; i < reserved_mem_count; i++)
443 		if (!strcmp(reserved_mem[i].name, name))
444 			return &reserved_mem[i];
445 
446 	return NULL;
447 }
448 EXPORT_SYMBOL_GPL(of_reserved_mem_lookup);
449