1 /* 2 * Derived from arch/i386/kernel/irq.c 3 * Copyright (C) 1992 Linus Torvalds 4 * Adapted from arch/i386 by Gary Thomas 5 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 6 * Updated and modified by Cort Dougan <cort@fsmlabs.com> 7 * Copyright (C) 1996-2001 Cort Dougan 8 * Adapted for Power Macintosh by Paul Mackerras 9 * Copyright (C) 1996 Paul Mackerras (paulus@cs.anu.edu.au) 10 * 11 * This program is free software; you can redistribute it and/or 12 * modify it under the terms of the GNU General Public License 13 * as published by the Free Software Foundation; either version 14 * 2 of the License, or (at your option) any later version. 15 * 16 * This file contains the code used to make IRQ descriptions in the 17 * device tree to actual irq numbers on an interrupt controller 18 * driver. 19 */ 20 21 #include <linux/device.h> 22 #include <linux/errno.h> 23 #include <linux/list.h> 24 #include <linux/module.h> 25 #include <linux/of.h> 26 #include <linux/of_irq.h> 27 #include <linux/string.h> 28 #include <linux/slab.h> 29 30 /** 31 * irq_of_parse_and_map - Parse and map an interrupt into linux virq space 32 * @dev: Device node of the device whose interrupt is to be mapped 33 * @index: Index of the interrupt to map 34 * 35 * This function is a wrapper that chains of_irq_parse_one() and 36 * irq_create_of_mapping() to make things easier to callers 37 */ 38 unsigned int irq_of_parse_and_map(struct device_node *dev, int index) 39 { 40 struct of_phandle_args oirq; 41 42 if (of_irq_parse_one(dev, index, &oirq)) 43 return 0; 44 45 return irq_create_of_mapping(&oirq); 46 } 47 EXPORT_SYMBOL_GPL(irq_of_parse_and_map); 48 49 /** 50 * of_irq_find_parent - Given a device node, find its interrupt parent node 51 * @child: pointer to device node 52 * 53 * Returns a pointer to the interrupt parent node, or NULL if the interrupt 54 * parent could not be determined. 55 */ 56 struct device_node *of_irq_find_parent(struct device_node *child) 57 { 58 struct device_node *p; 59 const __be32 *parp; 60 61 if (!of_node_get(child)) 62 return NULL; 63 64 do { 65 parp = of_get_property(child, "interrupt-parent", NULL); 66 if (parp == NULL) 67 p = of_get_parent(child); 68 else { 69 if (of_irq_workarounds & OF_IMAP_NO_PHANDLE) 70 p = of_node_get(of_irq_dflt_pic); 71 else 72 p = of_find_node_by_phandle(be32_to_cpup(parp)); 73 } 74 of_node_put(child); 75 child = p; 76 } while (p && of_get_property(p, "#interrupt-cells", NULL) == NULL); 77 78 return p; 79 } 80 EXPORT_SYMBOL_GPL(of_irq_find_parent); 81 82 /** 83 * of_irq_parse_raw - Low level interrupt tree parsing 84 * @parent: the device interrupt parent 85 * @addr: address specifier (start of "reg" property of the device) in be32 format 86 * @out_irq: structure of_irq updated by this function 87 * 88 * Returns 0 on success and a negative number on error 89 * 90 * This function is a low-level interrupt tree walking function. It 91 * can be used to do a partial walk with synthetized reg and interrupts 92 * properties, for example when resolving PCI interrupts when no device 93 * node exist for the parent. It takes an interrupt specifier structure as 94 * input, walks the tree looking for any interrupt-map properties, translates 95 * the specifier for each map, and then returns the translated map. 96 */ 97 int of_irq_parse_raw(const __be32 *addr, struct of_phandle_args *out_irq) 98 { 99 struct device_node *ipar, *tnode, *old = NULL, *newpar = NULL; 100 __be32 initial_match_array[MAX_PHANDLE_ARGS]; 101 const __be32 *match_array = initial_match_array; 102 const __be32 *tmp, *imap, *imask, dummy_imask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 }; 103 u32 intsize = 1, addrsize, newintsize = 0, newaddrsize = 0; 104 int imaplen, match, i; 105 106 #ifdef DEBUG 107 of_print_phandle_args("of_irq_parse_raw: ", out_irq); 108 #endif 109 110 ipar = of_node_get(out_irq->np); 111 112 /* First get the #interrupt-cells property of the current cursor 113 * that tells us how to interpret the passed-in intspec. If there 114 * is none, we are nice and just walk up the tree 115 */ 116 do { 117 tmp = of_get_property(ipar, "#interrupt-cells", NULL); 118 if (tmp != NULL) { 119 intsize = be32_to_cpu(*tmp); 120 break; 121 } 122 tnode = ipar; 123 ipar = of_irq_find_parent(ipar); 124 of_node_put(tnode); 125 } while (ipar); 126 if (ipar == NULL) { 127 pr_debug(" -> no parent found !\n"); 128 goto fail; 129 } 130 131 pr_debug("of_irq_parse_raw: ipar=%s, size=%d\n", of_node_full_name(ipar), intsize); 132 133 if (out_irq->args_count != intsize) 134 return -EINVAL; 135 136 /* Look for this #address-cells. We have to implement the old linux 137 * trick of looking for the parent here as some device-trees rely on it 138 */ 139 old = of_node_get(ipar); 140 do { 141 tmp = of_get_property(old, "#address-cells", NULL); 142 tnode = of_get_parent(old); 143 of_node_put(old); 144 old = tnode; 145 } while (old && tmp == NULL); 146 of_node_put(old); 147 old = NULL; 148 addrsize = (tmp == NULL) ? 2 : be32_to_cpu(*tmp); 149 150 pr_debug(" -> addrsize=%d\n", addrsize); 151 152 /* Range check so that the temporary buffer doesn't overflow */ 153 if (WARN_ON(addrsize + intsize > MAX_PHANDLE_ARGS)) 154 goto fail; 155 156 /* Precalculate the match array - this simplifies match loop */ 157 for (i = 0; i < addrsize; i++) 158 initial_match_array[i] = addr ? addr[i] : 0; 159 for (i = 0; i < intsize; i++) 160 initial_match_array[addrsize + i] = cpu_to_be32(out_irq->args[i]); 161 162 /* Now start the actual "proper" walk of the interrupt tree */ 163 while (ipar != NULL) { 164 /* Now check if cursor is an interrupt-controller and if it is 165 * then we are done 166 */ 167 if (of_get_property(ipar, "interrupt-controller", NULL) != 168 NULL) { 169 pr_debug(" -> got it !\n"); 170 return 0; 171 } 172 173 /* 174 * interrupt-map parsing does not work without a reg 175 * property when #address-cells != 0 176 */ 177 if (addrsize && !addr) { 178 pr_debug(" -> no reg passed in when needed !\n"); 179 goto fail; 180 } 181 182 /* Now look for an interrupt-map */ 183 imap = of_get_property(ipar, "interrupt-map", &imaplen); 184 /* No interrupt map, check for an interrupt parent */ 185 if (imap == NULL) { 186 pr_debug(" -> no map, getting parent\n"); 187 newpar = of_irq_find_parent(ipar); 188 goto skiplevel; 189 } 190 imaplen /= sizeof(u32); 191 192 /* Look for a mask */ 193 imask = of_get_property(ipar, "interrupt-map-mask", NULL); 194 if (!imask) 195 imask = dummy_imask; 196 197 /* Parse interrupt-map */ 198 match = 0; 199 while (imaplen > (addrsize + intsize + 1) && !match) { 200 /* Compare specifiers */ 201 match = 1; 202 for (i = 0; i < (addrsize + intsize); i++, imaplen--) 203 match &= !((match_array[i] ^ *imap++) & imask[i]); 204 205 pr_debug(" -> match=%d (imaplen=%d)\n", match, imaplen); 206 207 /* Get the interrupt parent */ 208 if (of_irq_workarounds & OF_IMAP_NO_PHANDLE) 209 newpar = of_node_get(of_irq_dflt_pic); 210 else 211 newpar = of_find_node_by_phandle(be32_to_cpup(imap)); 212 imap++; 213 --imaplen; 214 215 /* Check if not found */ 216 if (newpar == NULL) { 217 pr_debug(" -> imap parent not found !\n"); 218 goto fail; 219 } 220 221 if (!of_device_is_available(newpar)) 222 match = 0; 223 224 /* Get #interrupt-cells and #address-cells of new 225 * parent 226 */ 227 tmp = of_get_property(newpar, "#interrupt-cells", NULL); 228 if (tmp == NULL) { 229 pr_debug(" -> parent lacks #interrupt-cells!\n"); 230 goto fail; 231 } 232 newintsize = be32_to_cpu(*tmp); 233 tmp = of_get_property(newpar, "#address-cells", NULL); 234 newaddrsize = (tmp == NULL) ? 0 : be32_to_cpu(*tmp); 235 236 pr_debug(" -> newintsize=%d, newaddrsize=%d\n", 237 newintsize, newaddrsize); 238 239 /* Check for malformed properties */ 240 if (WARN_ON(newaddrsize + newintsize > MAX_PHANDLE_ARGS)) 241 goto fail; 242 if (imaplen < (newaddrsize + newintsize)) 243 goto fail; 244 245 imap += newaddrsize + newintsize; 246 imaplen -= newaddrsize + newintsize; 247 248 pr_debug(" -> imaplen=%d\n", imaplen); 249 } 250 if (!match) 251 goto fail; 252 253 /* 254 * Successfully parsed an interrrupt-map translation; copy new 255 * interrupt specifier into the out_irq structure 256 */ 257 match_array = imap - newaddrsize - newintsize; 258 for (i = 0; i < newintsize; i++) 259 out_irq->args[i] = be32_to_cpup(imap - newintsize + i); 260 out_irq->args_count = intsize = newintsize; 261 addrsize = newaddrsize; 262 263 skiplevel: 264 /* Iterate again with new parent */ 265 out_irq->np = newpar; 266 pr_debug(" -> new parent: %s\n", of_node_full_name(newpar)); 267 of_node_put(ipar); 268 ipar = newpar; 269 newpar = NULL; 270 } 271 fail: 272 of_node_put(ipar); 273 of_node_put(newpar); 274 275 return -EINVAL; 276 } 277 EXPORT_SYMBOL_GPL(of_irq_parse_raw); 278 279 /** 280 * of_irq_parse_one - Resolve an interrupt for a device 281 * @device: the device whose interrupt is to be resolved 282 * @index: index of the interrupt to resolve 283 * @out_irq: structure of_irq filled by this function 284 * 285 * This function resolves an interrupt for a node by walking the interrupt tree, 286 * finding which interrupt controller node it is attached to, and returning the 287 * interrupt specifier that can be used to retrieve a Linux IRQ number. 288 */ 289 int of_irq_parse_one(struct device_node *device, int index, struct of_phandle_args *out_irq) 290 { 291 struct device_node *p; 292 const __be32 *intspec, *tmp, *addr; 293 u32 intsize, intlen; 294 int i, res; 295 296 pr_debug("of_irq_parse_one: dev=%s, index=%d\n", of_node_full_name(device), index); 297 298 /* OldWorld mac stuff is "special", handle out of line */ 299 if (of_irq_workarounds & OF_IMAP_OLDWORLD_MAC) 300 return of_irq_parse_oldworld(device, index, out_irq); 301 302 /* Get the reg property (if any) */ 303 addr = of_get_property(device, "reg", NULL); 304 305 /* Try the new-style interrupts-extended first */ 306 res = of_parse_phandle_with_args(device, "interrupts-extended", 307 "#interrupt-cells", index, out_irq); 308 if (!res) 309 return of_irq_parse_raw(addr, out_irq); 310 311 /* Get the interrupts property */ 312 intspec = of_get_property(device, "interrupts", &intlen); 313 if (intspec == NULL) 314 return -EINVAL; 315 316 intlen /= sizeof(*intspec); 317 318 pr_debug(" intspec=%d intlen=%d\n", be32_to_cpup(intspec), intlen); 319 320 /* Look for the interrupt parent. */ 321 p = of_irq_find_parent(device); 322 if (p == NULL) 323 return -EINVAL; 324 325 /* Get size of interrupt specifier */ 326 tmp = of_get_property(p, "#interrupt-cells", NULL); 327 if (tmp == NULL) { 328 res = -EINVAL; 329 goto out; 330 } 331 intsize = be32_to_cpu(*tmp); 332 333 pr_debug(" intsize=%d intlen=%d\n", intsize, intlen); 334 335 /* Check index */ 336 if ((index + 1) * intsize > intlen) { 337 res = -EINVAL; 338 goto out; 339 } 340 341 /* Copy intspec into irq structure */ 342 intspec += index * intsize; 343 out_irq->np = p; 344 out_irq->args_count = intsize; 345 for (i = 0; i < intsize; i++) 346 out_irq->args[i] = be32_to_cpup(intspec++); 347 348 /* Check if there are any interrupt-map translations to process */ 349 res = of_irq_parse_raw(addr, out_irq); 350 out: 351 of_node_put(p); 352 return res; 353 } 354 EXPORT_SYMBOL_GPL(of_irq_parse_one); 355 356 /** 357 * of_irq_to_resource - Decode a node's IRQ and return it as a resource 358 * @dev: pointer to device tree node 359 * @index: zero-based index of the irq 360 * @r: pointer to resource structure to return result into. 361 */ 362 int of_irq_to_resource(struct device_node *dev, int index, struct resource *r) 363 { 364 int irq = irq_of_parse_and_map(dev, index); 365 366 /* Only dereference the resource if both the 367 * resource and the irq are valid. */ 368 if (r && irq) { 369 const char *name = NULL; 370 371 memset(r, 0, sizeof(*r)); 372 /* 373 * Get optional "interrupt-names" property to add a name 374 * to the resource. 375 */ 376 of_property_read_string_index(dev, "interrupt-names", index, 377 &name); 378 379 r->start = r->end = irq; 380 r->flags = IORESOURCE_IRQ | irqd_get_trigger_type(irq_get_irq_data(irq)); 381 r->name = name ? name : of_node_full_name(dev); 382 } 383 384 return irq; 385 } 386 EXPORT_SYMBOL_GPL(of_irq_to_resource); 387 388 /** 389 * of_irq_get - Decode a node's IRQ and return it as a Linux irq number 390 * @dev: pointer to device tree node 391 * @index: zero-based index of the irq 392 * 393 * Returns Linux irq number on success, or -EPROBE_DEFER if the irq domain 394 * is not yet created. 395 * 396 */ 397 int of_irq_get(struct device_node *dev, int index) 398 { 399 int rc; 400 struct of_phandle_args oirq; 401 struct irq_domain *domain; 402 403 rc = of_irq_parse_one(dev, index, &oirq); 404 if (rc) 405 return rc; 406 407 domain = irq_find_host(oirq.np); 408 if (!domain) 409 return -EPROBE_DEFER; 410 411 return irq_create_of_mapping(&oirq); 412 } 413 EXPORT_SYMBOL_GPL(of_irq_get); 414 415 /** 416 * of_irq_get_byname - Decode a node's IRQ and return it as a Linux irq number 417 * @dev: pointer to device tree node 418 * @name: irq name 419 * 420 * Returns Linux irq number on success, or -EPROBE_DEFER if the irq domain 421 * is not yet created, or error code in case of any other failure. 422 */ 423 int of_irq_get_byname(struct device_node *dev, const char *name) 424 { 425 int index; 426 427 if (unlikely(!name)) 428 return -EINVAL; 429 430 index = of_property_match_string(dev, "interrupt-names", name); 431 if (index < 0) 432 return index; 433 434 return of_irq_get(dev, index); 435 } 436 EXPORT_SYMBOL_GPL(of_irq_get_byname); 437 438 /** 439 * of_irq_count - Count the number of IRQs a node uses 440 * @dev: pointer to device tree node 441 */ 442 int of_irq_count(struct device_node *dev) 443 { 444 struct of_phandle_args irq; 445 int nr = 0; 446 447 while (of_irq_parse_one(dev, nr, &irq) == 0) 448 nr++; 449 450 return nr; 451 } 452 453 /** 454 * of_irq_to_resource_table - Fill in resource table with node's IRQ info 455 * @dev: pointer to device tree node 456 * @res: array of resources to fill in 457 * @nr_irqs: the number of IRQs (and upper bound for num of @res elements) 458 * 459 * Returns the size of the filled in table (up to @nr_irqs). 460 */ 461 int of_irq_to_resource_table(struct device_node *dev, struct resource *res, 462 int nr_irqs) 463 { 464 int i; 465 466 for (i = 0; i < nr_irqs; i++, res++) 467 if (!of_irq_to_resource(dev, i, res)) 468 break; 469 470 return i; 471 } 472 EXPORT_SYMBOL_GPL(of_irq_to_resource_table); 473 474 struct of_intc_desc { 475 struct list_head list; 476 of_irq_init_cb_t irq_init_cb; 477 struct device_node *dev; 478 struct device_node *interrupt_parent; 479 }; 480 481 /** 482 * of_irq_init - Scan and init matching interrupt controllers in DT 483 * @matches: 0 terminated array of nodes to match and init function to call 484 * 485 * This function scans the device tree for matching interrupt controller nodes, 486 * and calls their initialization functions in order with parents first. 487 */ 488 void __init of_irq_init(const struct of_device_id *matches) 489 { 490 const struct of_device_id *match; 491 struct device_node *np, *parent = NULL; 492 struct of_intc_desc *desc, *temp_desc; 493 struct list_head intc_desc_list, intc_parent_list; 494 495 INIT_LIST_HEAD(&intc_desc_list); 496 INIT_LIST_HEAD(&intc_parent_list); 497 498 for_each_matching_node_and_match(np, matches, &match) { 499 if (!of_find_property(np, "interrupt-controller", NULL) || 500 !of_device_is_available(np)) 501 continue; 502 503 if (WARN(!match->data, "of_irq_init: no init function for %s\n", 504 match->compatible)) 505 continue; 506 507 /* 508 * Here, we allocate and populate an of_intc_desc with the node 509 * pointer, interrupt-parent device_node etc. 510 */ 511 desc = kzalloc(sizeof(*desc), GFP_KERNEL); 512 if (WARN_ON(!desc)) { 513 of_node_put(np); 514 goto err; 515 } 516 517 desc->irq_init_cb = match->data; 518 desc->dev = of_node_get(np); 519 desc->interrupt_parent = of_irq_find_parent(np); 520 if (desc->interrupt_parent == np) 521 desc->interrupt_parent = NULL; 522 list_add_tail(&desc->list, &intc_desc_list); 523 } 524 525 /* 526 * The root irq controller is the one without an interrupt-parent. 527 * That one goes first, followed by the controllers that reference it, 528 * followed by the ones that reference the 2nd level controllers, etc. 529 */ 530 while (!list_empty(&intc_desc_list)) { 531 /* 532 * Process all controllers with the current 'parent'. 533 * First pass will be looking for NULL as the parent. 534 * The assumption is that NULL parent means a root controller. 535 */ 536 list_for_each_entry_safe(desc, temp_desc, &intc_desc_list, list) { 537 int ret; 538 539 if (desc->interrupt_parent != parent) 540 continue; 541 542 list_del(&desc->list); 543 544 pr_debug("of_irq_init: init %s (%p), parent %p\n", 545 desc->dev->full_name, 546 desc->dev, desc->interrupt_parent); 547 ret = desc->irq_init_cb(desc->dev, 548 desc->interrupt_parent); 549 if (ret) { 550 kfree(desc); 551 continue; 552 } 553 554 /* 555 * This one is now set up; add it to the parent list so 556 * its children can get processed in a subsequent pass. 557 */ 558 list_add_tail(&desc->list, &intc_parent_list); 559 } 560 561 /* Get the next pending parent that might have children */ 562 desc = list_first_entry_or_null(&intc_parent_list, 563 typeof(*desc), list); 564 if (!desc) { 565 pr_err("of_irq_init: children remain, but no parents\n"); 566 break; 567 } 568 list_del(&desc->list); 569 parent = desc->dev; 570 kfree(desc); 571 } 572 573 list_for_each_entry_safe(desc, temp_desc, &intc_parent_list, list) { 574 list_del(&desc->list); 575 kfree(desc); 576 } 577 err: 578 list_for_each_entry_safe(desc, temp_desc, &intc_desc_list, list) { 579 list_del(&desc->list); 580 of_node_put(desc->dev); 581 kfree(desc); 582 } 583 } 584 585 static u32 __of_msi_map_rid(struct device *dev, struct device_node **np, 586 u32 rid_in) 587 { 588 struct device *parent_dev; 589 struct device_node *msi_controller_node; 590 struct device_node *msi_np = *np; 591 u32 map_mask, masked_rid, rid_base, msi_base, rid_len, phandle; 592 int msi_map_len; 593 bool matched; 594 u32 rid_out = rid_in; 595 const __be32 *msi_map = NULL; 596 597 /* 598 * Walk up the device parent links looking for one with a 599 * "msi-map" property. 600 */ 601 for (parent_dev = dev; parent_dev; parent_dev = parent_dev->parent) { 602 if (!parent_dev->of_node) 603 continue; 604 605 msi_map = of_get_property(parent_dev->of_node, 606 "msi-map", &msi_map_len); 607 if (!msi_map) 608 continue; 609 610 if (msi_map_len % (4 * sizeof(__be32))) { 611 dev_err(parent_dev, "Error: Bad msi-map length: %d\n", 612 msi_map_len); 613 return rid_out; 614 } 615 /* We have a good parent_dev and msi_map, let's use them. */ 616 break; 617 } 618 if (!msi_map) 619 return rid_out; 620 621 /* The default is to select all bits. */ 622 map_mask = 0xffffffff; 623 624 /* 625 * Can be overridden by "msi-map-mask" property. If 626 * of_property_read_u32() fails, the default is used. 627 */ 628 of_property_read_u32(parent_dev->of_node, "msi-map-mask", &map_mask); 629 630 masked_rid = map_mask & rid_in; 631 matched = false; 632 while (!matched && msi_map_len >= 4 * sizeof(__be32)) { 633 rid_base = be32_to_cpup(msi_map + 0); 634 phandle = be32_to_cpup(msi_map + 1); 635 msi_base = be32_to_cpup(msi_map + 2); 636 rid_len = be32_to_cpup(msi_map + 3); 637 638 msi_controller_node = of_find_node_by_phandle(phandle); 639 640 matched = (masked_rid >= rid_base && 641 masked_rid < rid_base + rid_len); 642 if (msi_np) 643 matched &= msi_np == msi_controller_node; 644 645 if (matched && !msi_np) { 646 *np = msi_np = msi_controller_node; 647 break; 648 } 649 650 of_node_put(msi_controller_node); 651 msi_map_len -= 4 * sizeof(__be32); 652 msi_map += 4; 653 } 654 if (!matched) 655 return rid_out; 656 657 rid_out = masked_rid + msi_base; 658 dev_dbg(dev, 659 "msi-map at: %s, using mask %08x, rid-base: %08x, msi-base: %08x, length: %08x, rid: %08x -> %08x\n", 660 dev_name(parent_dev), map_mask, rid_base, msi_base, 661 rid_len, rid_in, rid_out); 662 663 return rid_out; 664 } 665 666 /** 667 * of_msi_map_rid - Map a MSI requester ID for a device. 668 * @dev: device for which the mapping is to be done. 669 * @msi_np: device node of the expected msi controller. 670 * @rid_in: unmapped MSI requester ID for the device. 671 * 672 * Walk up the device hierarchy looking for devices with a "msi-map" 673 * property. If found, apply the mapping to @rid_in. 674 * 675 * Returns the mapped MSI requester ID. 676 */ 677 u32 of_msi_map_rid(struct device *dev, struct device_node *msi_np, u32 rid_in) 678 { 679 return __of_msi_map_rid(dev, &msi_np, rid_in); 680 } 681 682 /** 683 * of_msi_map_get_device_domain - Use msi-map to find the relevant MSI domain 684 * @dev: device for which the mapping is to be done. 685 * @rid: Requester ID for the device. 686 * 687 * Walk up the device hierarchy looking for devices with a "msi-map" 688 * property. 689 * 690 * Returns: the MSI domain for this device (or NULL on failure) 691 */ 692 struct irq_domain *of_msi_map_get_device_domain(struct device *dev, u32 rid) 693 { 694 struct device_node *np = NULL; 695 696 __of_msi_map_rid(dev, &np, rid); 697 return irq_find_matching_host(np, DOMAIN_BUS_PCI_MSI); 698 } 699 700 /** 701 * of_msi_get_domain - Use msi-parent to find the relevant MSI domain 702 * @dev: device for which the domain is requested 703 * @np: device node for @dev 704 * @token: bus type for this domain 705 * 706 * Parse the msi-parent property (both the simple and the complex 707 * versions), and returns the corresponding MSI domain. 708 * 709 * Returns: the MSI domain for this device (or NULL on failure). 710 */ 711 struct irq_domain *of_msi_get_domain(struct device *dev, 712 struct device_node *np, 713 enum irq_domain_bus_token token) 714 { 715 struct device_node *msi_np; 716 struct irq_domain *d; 717 718 /* Check for a single msi-parent property */ 719 msi_np = of_parse_phandle(np, "msi-parent", 0); 720 if (msi_np && !of_property_read_bool(msi_np, "#msi-cells")) { 721 d = irq_find_matching_host(msi_np, token); 722 if (!d) 723 of_node_put(msi_np); 724 return d; 725 } 726 727 if (token == DOMAIN_BUS_PLATFORM_MSI) { 728 /* Check for the complex msi-parent version */ 729 struct of_phandle_args args; 730 int index = 0; 731 732 while (!of_parse_phandle_with_args(np, "msi-parent", 733 "#msi-cells", 734 index, &args)) { 735 d = irq_find_matching_host(args.np, token); 736 if (d) 737 return d; 738 739 of_node_put(args.np); 740 index++; 741 } 742 } 743 744 return NULL; 745 } 746 747 /** 748 * of_msi_configure - Set the msi_domain field of a device 749 * @dev: device structure to associate with an MSI irq domain 750 * @np: device node for that device 751 */ 752 void of_msi_configure(struct device *dev, struct device_node *np) 753 { 754 dev_set_msi_domain(dev, 755 of_msi_get_domain(dev, np, DOMAIN_BUS_PLATFORM_MSI)); 756 } 757