xref: /linux/drivers/of/irq.c (revision 8a2094d679d921d104d3296528d4fa419702ce1c)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *  Derived from arch/i386/kernel/irq.c
4  *    Copyright (C) 1992 Linus Torvalds
5  *  Adapted from arch/i386 by Gary Thomas
6  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
7  *  Updated and modified by Cort Dougan <cort@fsmlabs.com>
8  *    Copyright (C) 1996-2001 Cort Dougan
9  *  Adapted for Power Macintosh by Paul Mackerras
10  *    Copyright (C) 1996 Paul Mackerras (paulus@cs.anu.edu.au)
11  *
12  * This file contains the code used to make IRQ descriptions in the
13  * device tree to actual irq numbers on an interrupt controller
14  * driver.
15  */
16 
17 #define pr_fmt(fmt)	"OF: " fmt
18 
19 #include <linux/device.h>
20 #include <linux/errno.h>
21 #include <linux/list.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/of_irq.h>
25 #include <linux/string.h>
26 #include <linux/slab.h>
27 
28 /**
29  * irq_of_parse_and_map - Parse and map an interrupt into linux virq space
30  * @dev: Device node of the device whose interrupt is to be mapped
31  * @index: Index of the interrupt to map
32  *
33  * This function is a wrapper that chains of_irq_parse_one() and
34  * irq_create_of_mapping() to make things easier to callers
35  */
36 unsigned int irq_of_parse_and_map(struct device_node *dev, int index)
37 {
38 	struct of_phandle_args oirq;
39 
40 	if (of_irq_parse_one(dev, index, &oirq))
41 		return 0;
42 
43 	return irq_create_of_mapping(&oirq);
44 }
45 EXPORT_SYMBOL_GPL(irq_of_parse_and_map);
46 
47 /**
48  * of_irq_find_parent - Given a device node, find its interrupt parent node
49  * @child: pointer to device node
50  *
51  * Return: A pointer to the interrupt parent node, or NULL if the interrupt
52  * parent could not be determined.
53  */
54 struct device_node *of_irq_find_parent(struct device_node *child)
55 {
56 	struct device_node *p;
57 	phandle parent;
58 
59 	if (!of_node_get(child))
60 		return NULL;
61 
62 	do {
63 		if (of_property_read_u32(child, "interrupt-parent", &parent)) {
64 			p = of_get_parent(child);
65 		} else	{
66 			if (of_irq_workarounds & OF_IMAP_NO_PHANDLE)
67 				p = of_node_get(of_irq_dflt_pic);
68 			else
69 				p = of_find_node_by_phandle(parent);
70 		}
71 		of_node_put(child);
72 		child = p;
73 	} while (p && of_get_property(p, "#interrupt-cells", NULL) == NULL);
74 
75 	return p;
76 }
77 EXPORT_SYMBOL_GPL(of_irq_find_parent);
78 
79 /**
80  * of_irq_parse_raw - Low level interrupt tree parsing
81  * @addr:	address specifier (start of "reg" property of the device) in be32 format
82  * @out_irq:	structure of_phandle_args updated by this function
83  *
84  * This function is a low-level interrupt tree walking function. It
85  * can be used to do a partial walk with synthetized reg and interrupts
86  * properties, for example when resolving PCI interrupts when no device
87  * node exist for the parent. It takes an interrupt specifier structure as
88  * input, walks the tree looking for any interrupt-map properties, translates
89  * the specifier for each map, and then returns the translated map.
90  *
91  * Return: 0 on success and a negative number on error
92  */
93 int of_irq_parse_raw(const __be32 *addr, struct of_phandle_args *out_irq)
94 {
95 	struct device_node *ipar, *tnode, *old = NULL, *newpar = NULL;
96 	__be32 initial_match_array[MAX_PHANDLE_ARGS];
97 	const __be32 *match_array = initial_match_array;
98 	const __be32 *tmp, *imap, *imask, dummy_imask[] = { [0 ... MAX_PHANDLE_ARGS] = cpu_to_be32(~0) };
99 	u32 intsize = 1, addrsize, newintsize = 0, newaddrsize = 0;
100 	int imaplen, match, i, rc = -EINVAL;
101 
102 #ifdef DEBUG
103 	of_print_phandle_args("of_irq_parse_raw: ", out_irq);
104 #endif
105 
106 	ipar = of_node_get(out_irq->np);
107 
108 	/* First get the #interrupt-cells property of the current cursor
109 	 * that tells us how to interpret the passed-in intspec. If there
110 	 * is none, we are nice and just walk up the tree
111 	 */
112 	do {
113 		if (!of_property_read_u32(ipar, "#interrupt-cells", &intsize))
114 			break;
115 		tnode = ipar;
116 		ipar = of_irq_find_parent(ipar);
117 		of_node_put(tnode);
118 	} while (ipar);
119 	if (ipar == NULL) {
120 		pr_debug(" -> no parent found !\n");
121 		goto fail;
122 	}
123 
124 	pr_debug("of_irq_parse_raw: ipar=%pOF, size=%d\n", ipar, intsize);
125 
126 	if (out_irq->args_count != intsize)
127 		goto fail;
128 
129 	/* Look for this #address-cells. We have to implement the old linux
130 	 * trick of looking for the parent here as some device-trees rely on it
131 	 */
132 	old = of_node_get(ipar);
133 	do {
134 		tmp = of_get_property(old, "#address-cells", NULL);
135 		tnode = of_get_parent(old);
136 		of_node_put(old);
137 		old = tnode;
138 	} while (old && tmp == NULL);
139 	of_node_put(old);
140 	old = NULL;
141 	addrsize = (tmp == NULL) ? 2 : be32_to_cpu(*tmp);
142 
143 	pr_debug(" -> addrsize=%d\n", addrsize);
144 
145 	/* Range check so that the temporary buffer doesn't overflow */
146 	if (WARN_ON(addrsize + intsize > MAX_PHANDLE_ARGS)) {
147 		rc = -EFAULT;
148 		goto fail;
149 	}
150 
151 	/* Precalculate the match array - this simplifies match loop */
152 	for (i = 0; i < addrsize; i++)
153 		initial_match_array[i] = addr ? addr[i] : 0;
154 	for (i = 0; i < intsize; i++)
155 		initial_match_array[addrsize + i] = cpu_to_be32(out_irq->args[i]);
156 
157 	/* Now start the actual "proper" walk of the interrupt tree */
158 	while (ipar != NULL) {
159 		/*
160 		 * Now check if cursor is an interrupt-controller and
161 		 * if it is then we are done, unless there is an
162 		 * interrupt-map which takes precedence.
163 		 */
164 		bool intc = of_property_read_bool(ipar, "interrupt-controller");
165 
166 		imap = of_get_property(ipar, "interrupt-map", &imaplen);
167 		if (imap == NULL && intc) {
168 			pr_debug(" -> got it !\n");
169 			return 0;
170 		}
171 
172 		/*
173 		 * interrupt-map parsing does not work without a reg
174 		 * property when #address-cells != 0
175 		 */
176 		if (addrsize && !addr) {
177 			pr_debug(" -> no reg passed in when needed !\n");
178 			goto fail;
179 		}
180 
181 		/* No interrupt map, check for an interrupt parent */
182 		if (imap == NULL) {
183 			pr_debug(" -> no map, getting parent\n");
184 			newpar = of_irq_find_parent(ipar);
185 			goto skiplevel;
186 		}
187 		imaplen /= sizeof(u32);
188 
189 		/* Look for a mask */
190 		imask = of_get_property(ipar, "interrupt-map-mask", NULL);
191 		if (!imask)
192 			imask = dummy_imask;
193 
194 		/* Parse interrupt-map */
195 		match = 0;
196 		while (imaplen > (addrsize + intsize + 1) && !match) {
197 			/* Compare specifiers */
198 			match = 1;
199 			for (i = 0; i < (addrsize + intsize); i++, imaplen--)
200 				match &= !((match_array[i] ^ *imap++) & imask[i]);
201 
202 			pr_debug(" -> match=%d (imaplen=%d)\n", match, imaplen);
203 
204 			/* Get the interrupt parent */
205 			if (of_irq_workarounds & OF_IMAP_NO_PHANDLE)
206 				newpar = of_node_get(of_irq_dflt_pic);
207 			else
208 				newpar = of_find_node_by_phandle(be32_to_cpup(imap));
209 			imap++;
210 			--imaplen;
211 
212 			/* Check if not found */
213 			if (newpar == NULL) {
214 				pr_debug(" -> imap parent not found !\n");
215 				goto fail;
216 			}
217 
218 			if (!of_device_is_available(newpar))
219 				match = 0;
220 
221 			/* Get #interrupt-cells and #address-cells of new
222 			 * parent
223 			 */
224 			if (of_property_read_u32(newpar, "#interrupt-cells",
225 						 &newintsize)) {
226 				pr_debug(" -> parent lacks #interrupt-cells!\n");
227 				goto fail;
228 			}
229 			if (of_property_read_u32(newpar, "#address-cells",
230 						 &newaddrsize))
231 				newaddrsize = 0;
232 
233 			pr_debug(" -> newintsize=%d, newaddrsize=%d\n",
234 			    newintsize, newaddrsize);
235 
236 			/* Check for malformed properties */
237 			if (WARN_ON(newaddrsize + newintsize > MAX_PHANDLE_ARGS)
238 			    || (imaplen < (newaddrsize + newintsize))) {
239 				rc = -EFAULT;
240 				goto fail;
241 			}
242 
243 			imap += newaddrsize + newintsize;
244 			imaplen -= newaddrsize + newintsize;
245 
246 			pr_debug(" -> imaplen=%d\n", imaplen);
247 		}
248 		if (!match) {
249 			if (intc) {
250 				/*
251 				 * The PASEMI Nemo is a known offender, so
252 				 * let's only warn for anyone else.
253 				 */
254 				WARN(!IS_ENABLED(CONFIG_PPC_PASEMI),
255 				     "%pOF interrupt-map failed, using interrupt-controller\n",
256 				     ipar);
257 				return 0;
258 			}
259 
260 			goto fail;
261 		}
262 
263 		/*
264 		 * Successfully parsed an interrrupt-map translation; copy new
265 		 * interrupt specifier into the out_irq structure
266 		 */
267 		match_array = imap - newaddrsize - newintsize;
268 		for (i = 0; i < newintsize; i++)
269 			out_irq->args[i] = be32_to_cpup(imap - newintsize + i);
270 		out_irq->args_count = intsize = newintsize;
271 		addrsize = newaddrsize;
272 
273 		if (ipar == newpar) {
274 			pr_debug("%pOF interrupt-map entry to self\n", ipar);
275 			return 0;
276 		}
277 
278 	skiplevel:
279 		/* Iterate again with new parent */
280 		out_irq->np = newpar;
281 		pr_debug(" -> new parent: %pOF\n", newpar);
282 		of_node_put(ipar);
283 		ipar = newpar;
284 		newpar = NULL;
285 	}
286 	rc = -ENOENT; /* No interrupt-map found */
287 
288  fail:
289 	of_node_put(ipar);
290 	of_node_put(newpar);
291 
292 	return rc;
293 }
294 EXPORT_SYMBOL_GPL(of_irq_parse_raw);
295 
296 /**
297  * of_irq_parse_one - Resolve an interrupt for a device
298  * @device: the device whose interrupt is to be resolved
299  * @index: index of the interrupt to resolve
300  * @out_irq: structure of_phandle_args filled by this function
301  *
302  * This function resolves an interrupt for a node by walking the interrupt tree,
303  * finding which interrupt controller node it is attached to, and returning the
304  * interrupt specifier that can be used to retrieve a Linux IRQ number.
305  */
306 int of_irq_parse_one(struct device_node *device, int index, struct of_phandle_args *out_irq)
307 {
308 	struct device_node *p;
309 	const __be32 *addr;
310 	u32 intsize;
311 	int i, res;
312 
313 	pr_debug("of_irq_parse_one: dev=%pOF, index=%d\n", device, index);
314 
315 	/* OldWorld mac stuff is "special", handle out of line */
316 	if (of_irq_workarounds & OF_IMAP_OLDWORLD_MAC)
317 		return of_irq_parse_oldworld(device, index, out_irq);
318 
319 	/* Get the reg property (if any) */
320 	addr = of_get_property(device, "reg", NULL);
321 
322 	/* Try the new-style interrupts-extended first */
323 	res = of_parse_phandle_with_args(device, "interrupts-extended",
324 					"#interrupt-cells", index, out_irq);
325 	if (!res)
326 		return of_irq_parse_raw(addr, out_irq);
327 
328 	/* Look for the interrupt parent. */
329 	p = of_irq_find_parent(device);
330 	if (p == NULL)
331 		return -EINVAL;
332 
333 	/* Get size of interrupt specifier */
334 	if (of_property_read_u32(p, "#interrupt-cells", &intsize)) {
335 		res = -EINVAL;
336 		goto out;
337 	}
338 
339 	pr_debug(" parent=%pOF, intsize=%d\n", p, intsize);
340 
341 	/* Copy intspec into irq structure */
342 	out_irq->np = p;
343 	out_irq->args_count = intsize;
344 	for (i = 0; i < intsize; i++) {
345 		res = of_property_read_u32_index(device, "interrupts",
346 						 (index * intsize) + i,
347 						 out_irq->args + i);
348 		if (res)
349 			goto out;
350 	}
351 
352 	pr_debug(" intspec=%d\n", *out_irq->args);
353 
354 
355 	/* Check if there are any interrupt-map translations to process */
356 	res = of_irq_parse_raw(addr, out_irq);
357  out:
358 	of_node_put(p);
359 	return res;
360 }
361 EXPORT_SYMBOL_GPL(of_irq_parse_one);
362 
363 /**
364  * of_irq_to_resource - Decode a node's IRQ and return it as a resource
365  * @dev: pointer to device tree node
366  * @index: zero-based index of the irq
367  * @r: pointer to resource structure to return result into.
368  */
369 int of_irq_to_resource(struct device_node *dev, int index, struct resource *r)
370 {
371 	int irq = of_irq_get(dev, index);
372 
373 	if (irq < 0)
374 		return irq;
375 
376 	/* Only dereference the resource if both the
377 	 * resource and the irq are valid. */
378 	if (r && irq) {
379 		const char *name = NULL;
380 
381 		memset(r, 0, sizeof(*r));
382 		/*
383 		 * Get optional "interrupt-names" property to add a name
384 		 * to the resource.
385 		 */
386 		of_property_read_string_index(dev, "interrupt-names", index,
387 					      &name);
388 
389 		r->start = r->end = irq;
390 		r->flags = IORESOURCE_IRQ | irqd_get_trigger_type(irq_get_irq_data(irq));
391 		r->name = name ? name : of_node_full_name(dev);
392 	}
393 
394 	return irq;
395 }
396 EXPORT_SYMBOL_GPL(of_irq_to_resource);
397 
398 /**
399  * of_irq_get - Decode a node's IRQ and return it as a Linux IRQ number
400  * @dev: pointer to device tree node
401  * @index: zero-based index of the IRQ
402  *
403  * Return: Linux IRQ number on success, or 0 on the IRQ mapping failure, or
404  * -EPROBE_DEFER if the IRQ domain is not yet created, or error code in case
405  * of any other failure.
406  */
407 int of_irq_get(struct device_node *dev, int index)
408 {
409 	int rc;
410 	struct of_phandle_args oirq;
411 	struct irq_domain *domain;
412 
413 	rc = of_irq_parse_one(dev, index, &oirq);
414 	if (rc)
415 		return rc;
416 
417 	domain = irq_find_host(oirq.np);
418 	if (!domain)
419 		return -EPROBE_DEFER;
420 
421 	return irq_create_of_mapping(&oirq);
422 }
423 EXPORT_SYMBOL_GPL(of_irq_get);
424 
425 /**
426  * of_irq_get_byname - Decode a node's IRQ and return it as a Linux IRQ number
427  * @dev: pointer to device tree node
428  * @name: IRQ name
429  *
430  * Return: Linux IRQ number on success, or 0 on the IRQ mapping failure, or
431  * -EPROBE_DEFER if the IRQ domain is not yet created, or error code in case
432  * of any other failure.
433  */
434 int of_irq_get_byname(struct device_node *dev, const char *name)
435 {
436 	int index;
437 
438 	if (unlikely(!name))
439 		return -EINVAL;
440 
441 	index = of_property_match_string(dev, "interrupt-names", name);
442 	if (index < 0)
443 		return index;
444 
445 	return of_irq_get(dev, index);
446 }
447 EXPORT_SYMBOL_GPL(of_irq_get_byname);
448 
449 /**
450  * of_irq_count - Count the number of IRQs a node uses
451  * @dev: pointer to device tree node
452  */
453 int of_irq_count(struct device_node *dev)
454 {
455 	struct of_phandle_args irq;
456 	int nr = 0;
457 
458 	while (of_irq_parse_one(dev, nr, &irq) == 0)
459 		nr++;
460 
461 	return nr;
462 }
463 
464 /**
465  * of_irq_to_resource_table - Fill in resource table with node's IRQ info
466  * @dev: pointer to device tree node
467  * @res: array of resources to fill in
468  * @nr_irqs: the number of IRQs (and upper bound for num of @res elements)
469  *
470  * Return: The size of the filled in table (up to @nr_irqs).
471  */
472 int of_irq_to_resource_table(struct device_node *dev, struct resource *res,
473 		int nr_irqs)
474 {
475 	int i;
476 
477 	for (i = 0; i < nr_irqs; i++, res++)
478 		if (of_irq_to_resource(dev, i, res) <= 0)
479 			break;
480 
481 	return i;
482 }
483 EXPORT_SYMBOL_GPL(of_irq_to_resource_table);
484 
485 struct of_intc_desc {
486 	struct list_head	list;
487 	of_irq_init_cb_t	irq_init_cb;
488 	struct device_node	*dev;
489 	struct device_node	*interrupt_parent;
490 };
491 
492 /**
493  * of_irq_init - Scan and init matching interrupt controllers in DT
494  * @matches: 0 terminated array of nodes to match and init function to call
495  *
496  * This function scans the device tree for matching interrupt controller nodes,
497  * and calls their initialization functions in order with parents first.
498  */
499 void __init of_irq_init(const struct of_device_id *matches)
500 {
501 	const struct of_device_id *match;
502 	struct device_node *np, *parent = NULL;
503 	struct of_intc_desc *desc, *temp_desc;
504 	struct list_head intc_desc_list, intc_parent_list;
505 
506 	INIT_LIST_HEAD(&intc_desc_list);
507 	INIT_LIST_HEAD(&intc_parent_list);
508 
509 	for_each_matching_node_and_match(np, matches, &match) {
510 		if (!of_property_read_bool(np, "interrupt-controller") ||
511 				!of_device_is_available(np))
512 			continue;
513 
514 		if (WARN(!match->data, "of_irq_init: no init function for %s\n",
515 			 match->compatible))
516 			continue;
517 
518 		/*
519 		 * Here, we allocate and populate an of_intc_desc with the node
520 		 * pointer, interrupt-parent device_node etc.
521 		 */
522 		desc = kzalloc(sizeof(*desc), GFP_KERNEL);
523 		if (!desc) {
524 			of_node_put(np);
525 			goto err;
526 		}
527 
528 		desc->irq_init_cb = match->data;
529 		desc->dev = of_node_get(np);
530 		desc->interrupt_parent = of_irq_find_parent(np);
531 		if (desc->interrupt_parent == np)
532 			desc->interrupt_parent = NULL;
533 		list_add_tail(&desc->list, &intc_desc_list);
534 	}
535 
536 	/*
537 	 * The root irq controller is the one without an interrupt-parent.
538 	 * That one goes first, followed by the controllers that reference it,
539 	 * followed by the ones that reference the 2nd level controllers, etc.
540 	 */
541 	while (!list_empty(&intc_desc_list)) {
542 		/*
543 		 * Process all controllers with the current 'parent'.
544 		 * First pass will be looking for NULL as the parent.
545 		 * The assumption is that NULL parent means a root controller.
546 		 */
547 		list_for_each_entry_safe(desc, temp_desc, &intc_desc_list, list) {
548 			int ret;
549 
550 			if (desc->interrupt_parent != parent)
551 				continue;
552 
553 			list_del(&desc->list);
554 
555 			of_node_set_flag(desc->dev, OF_POPULATED);
556 
557 			pr_debug("of_irq_init: init %pOF (%p), parent %p\n",
558 				 desc->dev,
559 				 desc->dev, desc->interrupt_parent);
560 			ret = desc->irq_init_cb(desc->dev,
561 						desc->interrupt_parent);
562 			if (ret) {
563 				of_node_clear_flag(desc->dev, OF_POPULATED);
564 				kfree(desc);
565 				continue;
566 			}
567 
568 			/*
569 			 * This one is now set up; add it to the parent list so
570 			 * its children can get processed in a subsequent pass.
571 			 */
572 			list_add_tail(&desc->list, &intc_parent_list);
573 		}
574 
575 		/* Get the next pending parent that might have children */
576 		desc = list_first_entry_or_null(&intc_parent_list,
577 						typeof(*desc), list);
578 		if (!desc) {
579 			pr_err("of_irq_init: children remain, but no parents\n");
580 			break;
581 		}
582 		list_del(&desc->list);
583 		parent = desc->dev;
584 		kfree(desc);
585 	}
586 
587 	list_for_each_entry_safe(desc, temp_desc, &intc_parent_list, list) {
588 		list_del(&desc->list);
589 		kfree(desc);
590 	}
591 err:
592 	list_for_each_entry_safe(desc, temp_desc, &intc_desc_list, list) {
593 		list_del(&desc->list);
594 		of_node_put(desc->dev);
595 		kfree(desc);
596 	}
597 }
598 
599 static u32 __of_msi_map_id(struct device *dev, struct device_node **np,
600 			    u32 id_in)
601 {
602 	struct device *parent_dev;
603 	u32 id_out = id_in;
604 
605 	/*
606 	 * Walk up the device parent links looking for one with a
607 	 * "msi-map" property.
608 	 */
609 	for (parent_dev = dev; parent_dev; parent_dev = parent_dev->parent)
610 		if (!of_map_id(parent_dev->of_node, id_in, "msi-map",
611 				"msi-map-mask", np, &id_out))
612 			break;
613 	return id_out;
614 }
615 
616 /**
617  * of_msi_map_id - Map a MSI ID for a device.
618  * @dev: device for which the mapping is to be done.
619  * @msi_np: device node of the expected msi controller.
620  * @id_in: unmapped MSI ID for the device.
621  *
622  * Walk up the device hierarchy looking for devices with a "msi-map"
623  * property.  If found, apply the mapping to @id_in.
624  *
625  * Return: The mapped MSI ID.
626  */
627 u32 of_msi_map_id(struct device *dev, struct device_node *msi_np, u32 id_in)
628 {
629 	return __of_msi_map_id(dev, &msi_np, id_in);
630 }
631 
632 /**
633  * of_msi_map_get_device_domain - Use msi-map to find the relevant MSI domain
634  * @dev: device for which the mapping is to be done.
635  * @id: Device ID.
636  * @bus_token: Bus token
637  *
638  * Walk up the device hierarchy looking for devices with a "msi-map"
639  * property.
640  *
641  * Returns: the MSI domain for this device (or NULL on failure)
642  */
643 struct irq_domain *of_msi_map_get_device_domain(struct device *dev, u32 id,
644 						u32 bus_token)
645 {
646 	struct device_node *np = NULL;
647 
648 	__of_msi_map_id(dev, &np, id);
649 	return irq_find_matching_host(np, bus_token);
650 }
651 
652 /**
653  * of_msi_get_domain - Use msi-parent to find the relevant MSI domain
654  * @dev: device for which the domain is requested
655  * @np: device node for @dev
656  * @token: bus type for this domain
657  *
658  * Parse the msi-parent property (both the simple and the complex
659  * versions), and returns the corresponding MSI domain.
660  *
661  * Returns: the MSI domain for this device (or NULL on failure).
662  */
663 struct irq_domain *of_msi_get_domain(struct device *dev,
664 				     struct device_node *np,
665 				     enum irq_domain_bus_token token)
666 {
667 	struct device_node *msi_np;
668 	struct irq_domain *d;
669 
670 	/* Check for a single msi-parent property */
671 	msi_np = of_parse_phandle(np, "msi-parent", 0);
672 	if (msi_np && !of_property_read_bool(msi_np, "#msi-cells")) {
673 		d = irq_find_matching_host(msi_np, token);
674 		if (!d)
675 			of_node_put(msi_np);
676 		return d;
677 	}
678 
679 	if (token == DOMAIN_BUS_PLATFORM_MSI) {
680 		/* Check for the complex msi-parent version */
681 		struct of_phandle_args args;
682 		int index = 0;
683 
684 		while (!of_parse_phandle_with_args(np, "msi-parent",
685 						   "#msi-cells",
686 						   index, &args)) {
687 			d = irq_find_matching_host(args.np, token);
688 			if (d)
689 				return d;
690 
691 			of_node_put(args.np);
692 			index++;
693 		}
694 	}
695 
696 	return NULL;
697 }
698 
699 /**
700  * of_msi_configure - Set the msi_domain field of a device
701  * @dev: device structure to associate with an MSI irq domain
702  * @np: device node for that device
703  */
704 void of_msi_configure(struct device *dev, struct device_node *np)
705 {
706 	dev_set_msi_domain(dev,
707 			   of_msi_get_domain(dev, np, DOMAIN_BUS_PLATFORM_MSI));
708 }
709 EXPORT_SYMBOL_GPL(of_msi_configure);
710