1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Derived from arch/i386/kernel/irq.c 4 * Copyright (C) 1992 Linus Torvalds 5 * Adapted from arch/i386 by Gary Thomas 6 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 7 * Updated and modified by Cort Dougan <cort@fsmlabs.com> 8 * Copyright (C) 1996-2001 Cort Dougan 9 * Adapted for Power Macintosh by Paul Mackerras 10 * Copyright (C) 1996 Paul Mackerras (paulus@cs.anu.edu.au) 11 * 12 * This file contains the code used to make IRQ descriptions in the 13 * device tree to actual irq numbers on an interrupt controller 14 * driver. 15 */ 16 17 #define pr_fmt(fmt) "OF: " fmt 18 19 #include <linux/cleanup.h> 20 #include <linux/device.h> 21 #include <linux/errno.h> 22 #include <linux/list.h> 23 #include <linux/module.h> 24 #include <linux/of.h> 25 #include <linux/of_irq.h> 26 #include <linux/string.h> 27 #include <linux/slab.h> 28 29 #include "of_private.h" 30 31 /** 32 * irq_of_parse_and_map - Parse and map an interrupt into linux virq space 33 * @dev: Device node of the device whose interrupt is to be mapped 34 * @index: Index of the interrupt to map 35 * 36 * This function is a wrapper that chains of_irq_parse_one() and 37 * irq_create_of_mapping() to make things easier to callers 38 */ 39 unsigned int irq_of_parse_and_map(struct device_node *dev, int index) 40 { 41 struct of_phandle_args oirq; 42 unsigned int ret; 43 44 if (of_irq_parse_one(dev, index, &oirq)) 45 return 0; 46 47 ret = irq_create_of_mapping(&oirq); 48 of_node_put(oirq.np); 49 50 return ret; 51 } 52 EXPORT_SYMBOL_GPL(irq_of_parse_and_map); 53 54 /** 55 * of_irq_find_parent - Given a device node, find its interrupt parent node 56 * @child: pointer to device node 57 * 58 * Return: A pointer to the interrupt parent node with refcount increased 59 * or NULL if the interrupt parent could not be determined. 60 */ 61 struct device_node *of_irq_find_parent(struct device_node *child) 62 { 63 struct device_node *p; 64 phandle parent; 65 66 if (!of_node_get(child)) 67 return NULL; 68 69 do { 70 if (of_property_read_u32(child, "interrupt-parent", &parent)) { 71 p = of_get_parent(child); 72 } else { 73 if (of_irq_workarounds & OF_IMAP_NO_PHANDLE) 74 p = of_node_get(of_irq_dflt_pic); 75 else 76 p = of_find_node_by_phandle(parent); 77 } 78 of_node_put(child); 79 child = p; 80 } while (p && of_get_property(p, "#interrupt-cells", NULL) == NULL); 81 82 return p; 83 } 84 EXPORT_SYMBOL_GPL(of_irq_find_parent); 85 86 /* 87 * These interrupt controllers abuse interrupt-map for unspeakable 88 * reasons and rely on the core code to *ignore* it (the drivers do 89 * their own parsing of the property). The PAsemi entry covers a 90 * non-sensical interrupt-map that is better left ignored. 91 * 92 * If you think of adding to the list for something *new*, think 93 * again. There is a high chance that you will be sent back to the 94 * drawing board. 95 */ 96 static const char * const of_irq_imap_abusers[] = { 97 "CBEA,platform-spider-pic", 98 "sti,platform-spider-pic", 99 "realtek,rtl-intc", 100 "fsl,ls1021a-extirq", 101 "fsl,ls1043a-extirq", 102 "fsl,ls1088a-extirq", 103 "renesas,rza1-irqc", 104 "pasemi,rootbus", 105 NULL, 106 }; 107 108 const __be32 *of_irq_parse_imap_parent(const __be32 *imap, int len, struct of_phandle_args *out_irq) 109 { 110 u32 intsize, addrsize; 111 struct device_node *np; 112 113 /* Get the interrupt parent */ 114 if (of_irq_workarounds & OF_IMAP_NO_PHANDLE) 115 np = of_node_get(of_irq_dflt_pic); 116 else 117 np = of_find_node_by_phandle(be32_to_cpup(imap)); 118 imap++; 119 len--; 120 121 /* Check if not found */ 122 if (!np) { 123 pr_debug(" -> imap parent not found !\n"); 124 return NULL; 125 } 126 127 /* Get #interrupt-cells and #address-cells of new parent */ 128 if (of_property_read_u32(np, "#interrupt-cells", 129 &intsize)) { 130 pr_debug(" -> parent lacks #interrupt-cells!\n"); 131 of_node_put(np); 132 return NULL; 133 } 134 if (of_property_read_u32(np, "#address-cells", 135 &addrsize)) 136 addrsize = 0; 137 138 pr_debug(" -> intsize=%d, addrsize=%d\n", 139 intsize, addrsize); 140 141 /* Check for malformed properties */ 142 if (WARN_ON(addrsize + intsize > MAX_PHANDLE_ARGS) 143 || (len < (addrsize + intsize))) { 144 of_node_put(np); 145 return NULL; 146 } 147 148 pr_debug(" -> imaplen=%d\n", len); 149 150 imap += addrsize + intsize; 151 152 out_irq->np = np; 153 for (int i = 0; i < intsize; i++) 154 out_irq->args[i] = be32_to_cpup(imap - intsize + i); 155 out_irq->args_count = intsize; 156 157 return imap; 158 } 159 160 /** 161 * of_irq_parse_raw - Low level interrupt tree parsing 162 * @addr: address specifier (start of "reg" property of the device) in be32 format 163 * @out_irq: structure of_phandle_args updated by this function 164 * 165 * This function is a low-level interrupt tree walking function. It 166 * can be used to do a partial walk with synthesized reg and interrupts 167 * properties, for example when resolving PCI interrupts when no device 168 * node exist for the parent. It takes an interrupt specifier structure as 169 * input, walks the tree looking for any interrupt-map properties, translates 170 * the specifier for each map, and then returns the translated map. 171 * 172 * Return: 0 on success and a negative number on error 173 * 174 * Note: refcount of node @out_irq->np is increased by 1 on success. 175 */ 176 int of_irq_parse_raw(const __be32 *addr, struct of_phandle_args *out_irq) 177 { 178 struct device_node *ipar, *tnode, *old = NULL; 179 __be32 initial_match_array[MAX_PHANDLE_ARGS]; 180 const __be32 *match_array = initial_match_array; 181 const __be32 *tmp, dummy_imask[] = { [0 ... (MAX_PHANDLE_ARGS - 1)] = cpu_to_be32(~0) }; 182 u32 intsize = 1, addrsize; 183 int i, rc = -EINVAL; 184 185 #ifdef DEBUG 186 of_print_phandle_args("of_irq_parse_raw: ", out_irq); 187 #endif 188 189 ipar = of_node_get(out_irq->np); 190 191 /* First get the #interrupt-cells property of the current cursor 192 * that tells us how to interpret the passed-in intspec. If there 193 * is none, we are nice and just walk up the tree 194 */ 195 do { 196 if (!of_property_read_u32(ipar, "#interrupt-cells", &intsize)) 197 break; 198 tnode = ipar; 199 ipar = of_irq_find_parent(ipar); 200 of_node_put(tnode); 201 } while (ipar); 202 if (ipar == NULL) { 203 pr_debug(" -> no parent found !\n"); 204 goto fail; 205 } 206 207 pr_debug("of_irq_parse_raw: ipar=%pOF, size=%d\n", ipar, intsize); 208 209 if (out_irq->args_count != intsize) 210 goto fail; 211 212 /* Look for this #address-cells. We have to implement the old linux 213 * trick of looking for the parent here as some device-trees rely on it 214 */ 215 old = of_node_get(ipar); 216 do { 217 tmp = of_get_property(old, "#address-cells", NULL); 218 tnode = of_get_parent(old); 219 of_node_put(old); 220 old = tnode; 221 } while (old && tmp == NULL); 222 of_node_put(old); 223 old = NULL; 224 addrsize = (tmp == NULL) ? 2 : be32_to_cpu(*tmp); 225 226 pr_debug(" -> addrsize=%d\n", addrsize); 227 228 /* Range check so that the temporary buffer doesn't overflow */ 229 if (WARN_ON(addrsize + intsize > MAX_PHANDLE_ARGS)) { 230 rc = -EFAULT; 231 goto fail; 232 } 233 234 /* Precalculate the match array - this simplifies match loop */ 235 for (i = 0; i < addrsize; i++) 236 initial_match_array[i] = addr ? addr[i] : 0; 237 for (i = 0; i < intsize; i++) 238 initial_match_array[addrsize + i] = cpu_to_be32(out_irq->args[i]); 239 240 /* Now start the actual "proper" walk of the interrupt tree */ 241 while (ipar != NULL) { 242 int imaplen, match; 243 const __be32 *imap, *oldimap, *imask; 244 struct device_node *newpar; 245 /* 246 * Now check if cursor is an interrupt-controller and 247 * if it is then we are done, unless there is an 248 * interrupt-map which takes precedence except on one 249 * of these broken platforms that want to parse 250 * interrupt-map themselves for $reason. 251 */ 252 bool intc = of_property_read_bool(ipar, "interrupt-controller"); 253 254 imap = of_get_property(ipar, "interrupt-map", &imaplen); 255 if (intc && 256 (!imap || of_device_compatible_match(ipar, of_irq_imap_abusers))) { 257 pr_debug(" -> got it !\n"); 258 return 0; 259 } 260 261 /* 262 * interrupt-map parsing does not work without a reg 263 * property when #address-cells != 0 264 */ 265 if (addrsize && !addr) { 266 pr_debug(" -> no reg passed in when needed !\n"); 267 goto fail; 268 } 269 270 /* No interrupt map, check for an interrupt parent */ 271 if (imap == NULL) { 272 pr_debug(" -> no map, getting parent\n"); 273 newpar = of_irq_find_parent(ipar); 274 goto skiplevel; 275 } 276 imaplen /= sizeof(u32); 277 278 /* Look for a mask */ 279 imask = of_get_property(ipar, "interrupt-map-mask", NULL); 280 if (!imask) 281 imask = dummy_imask; 282 283 /* Parse interrupt-map */ 284 match = 0; 285 while (imaplen > (addrsize + intsize + 1)) { 286 /* Compare specifiers */ 287 match = 1; 288 for (i = 0; i < (addrsize + intsize); i++, imaplen--) 289 match &= !((match_array[i] ^ *imap++) & imask[i]); 290 291 pr_debug(" -> match=%d (imaplen=%d)\n", match, imaplen); 292 293 oldimap = imap; 294 imap = of_irq_parse_imap_parent(oldimap, imaplen, out_irq); 295 if (!imap) 296 goto fail; 297 298 match &= of_device_is_available(out_irq->np); 299 if (match) 300 break; 301 302 of_node_put(out_irq->np); 303 imaplen -= imap - oldimap; 304 pr_debug(" -> imaplen=%d\n", imaplen); 305 } 306 if (!match) 307 goto fail; 308 309 /* 310 * Successfully parsed an interrupt-map translation; copy new 311 * interrupt specifier into the out_irq structure 312 */ 313 match_array = oldimap + 1; 314 315 newpar = out_irq->np; 316 intsize = out_irq->args_count; 317 addrsize = (imap - match_array) - intsize; 318 319 if (ipar == newpar) { 320 /* 321 * We got @ipar's refcount, but the refcount was 322 * gotten again by of_irq_parse_imap_parent() via its 323 * alias @newpar. 324 */ 325 of_node_put(ipar); 326 pr_debug("%pOF interrupt-map entry to self\n", ipar); 327 return 0; 328 } 329 330 skiplevel: 331 /* Iterate again with new parent */ 332 pr_debug(" -> new parent: %pOF\n", newpar); 333 of_node_put(ipar); 334 ipar = newpar; 335 newpar = NULL; 336 } 337 rc = -ENOENT; /* No interrupt-map found */ 338 339 fail: 340 of_node_put(ipar); 341 342 return rc; 343 } 344 EXPORT_SYMBOL_GPL(of_irq_parse_raw); 345 346 /** 347 * of_irq_parse_one - Resolve an interrupt for a device 348 * @device: the device whose interrupt is to be resolved 349 * @index: index of the interrupt to resolve 350 * @out_irq: structure of_phandle_args filled by this function 351 * 352 * This function resolves an interrupt for a node by walking the interrupt tree, 353 * finding which interrupt controller node it is attached to, and returning the 354 * interrupt specifier that can be used to retrieve a Linux IRQ number. 355 * 356 * Note: refcount of node @out_irq->np is increased by 1 on success. 357 */ 358 int of_irq_parse_one(struct device_node *device, int index, struct of_phandle_args *out_irq) 359 { 360 struct device_node __free(device_node) *p = NULL; 361 const __be32 *addr; 362 u32 intsize; 363 int i, res, addr_len; 364 __be32 addr_buf[3] = { 0 }; 365 366 pr_debug("of_irq_parse_one: dev=%pOF, index=%d\n", device, index); 367 368 /* OldWorld mac stuff is "special", handle out of line */ 369 if (of_irq_workarounds & OF_IMAP_OLDWORLD_MAC) 370 return of_irq_parse_oldworld(device, index, out_irq); 371 372 /* Get the reg property (if any) */ 373 addr_len = 0; 374 addr = of_get_property(device, "reg", &addr_len); 375 376 /* Prevent out-of-bounds read in case of longer interrupt parent address size */ 377 if (addr_len > sizeof(addr_buf)) 378 addr_len = sizeof(addr_buf); 379 if (addr) 380 memcpy(addr_buf, addr, addr_len); 381 382 /* Try the new-style interrupts-extended first */ 383 res = of_parse_phandle_with_args(device, "interrupts-extended", 384 "#interrupt-cells", index, out_irq); 385 if (!res) { 386 p = out_irq->np; 387 } else { 388 /* Look for the interrupt parent. */ 389 p = of_irq_find_parent(device); 390 /* Get size of interrupt specifier */ 391 if (!p || of_property_read_u32(p, "#interrupt-cells", &intsize)) 392 return -EINVAL; 393 394 pr_debug(" parent=%pOF, intsize=%d\n", p, intsize); 395 396 /* Copy intspec into irq structure */ 397 out_irq->np = p; 398 out_irq->args_count = intsize; 399 for (i = 0; i < intsize; i++) { 400 res = of_property_read_u32_index(device, "interrupts", 401 (index * intsize) + i, 402 out_irq->args + i); 403 if (res) 404 return res; 405 } 406 407 pr_debug(" intspec=%d\n", *out_irq->args); 408 } 409 410 /* Check if there are any interrupt-map translations to process */ 411 return of_irq_parse_raw(addr_buf, out_irq); 412 } 413 EXPORT_SYMBOL_GPL(of_irq_parse_one); 414 415 /** 416 * of_irq_to_resource - Decode a node's IRQ and return it as a resource 417 * @dev: pointer to device tree node 418 * @index: zero-based index of the irq 419 * @r: pointer to resource structure to return result into. 420 */ 421 int of_irq_to_resource(struct device_node *dev, int index, struct resource *r) 422 { 423 int irq = of_irq_get(dev, index); 424 425 if (irq < 0) 426 return irq; 427 428 /* Only dereference the resource if both the 429 * resource and the irq are valid. */ 430 if (r && irq) { 431 const char *name = NULL; 432 433 memset(r, 0, sizeof(*r)); 434 /* 435 * Get optional "interrupt-names" property to add a name 436 * to the resource. 437 */ 438 of_property_read_string_index(dev, "interrupt-names", index, 439 &name); 440 441 *r = DEFINE_RES_IRQ_NAMED(irq, name ?: of_node_full_name(dev)); 442 r->flags |= irq_get_trigger_type(irq); 443 } 444 445 return irq; 446 } 447 EXPORT_SYMBOL_GPL(of_irq_to_resource); 448 449 /** 450 * of_irq_get - Decode a node's IRQ and return it as a Linux IRQ number 451 * @dev: pointer to device tree node 452 * @index: zero-based index of the IRQ 453 * 454 * Return: Linux IRQ number on success, or 0 on the IRQ mapping failure, or 455 * -EPROBE_DEFER if the IRQ domain is not yet created, or error code in case 456 * of any other failure. 457 */ 458 int of_irq_get(struct device_node *dev, int index) 459 { 460 int rc; 461 struct of_phandle_args oirq; 462 struct irq_domain *domain; 463 464 rc = of_irq_parse_one(dev, index, &oirq); 465 if (rc) 466 return rc; 467 468 domain = irq_find_host(oirq.np); 469 if (!domain) { 470 rc = -EPROBE_DEFER; 471 goto out; 472 } 473 474 rc = irq_create_of_mapping(&oirq); 475 out: 476 of_node_put(oirq.np); 477 478 return rc; 479 } 480 EXPORT_SYMBOL_GPL(of_irq_get); 481 482 const struct cpumask *of_irq_get_affinity(struct device_node *dev, int index) 483 { 484 struct of_phandle_args oirq; 485 struct irq_fwspec_info info; 486 struct irq_fwspec fwspec; 487 int rc; 488 489 rc = of_irq_parse_one(dev, index, &oirq); 490 if (rc) 491 return NULL; 492 493 of_phandle_args_to_fwspec(oirq.np, oirq.args, oirq.args_count, 494 &fwspec); 495 496 if (irq_populate_fwspec_info(&fwspec, &info)) 497 return NULL; 498 499 return info.affinity; 500 } 501 502 /** 503 * of_irq_get_byname - Decode a node's IRQ and return it as a Linux IRQ number 504 * @dev: pointer to device tree node 505 * @name: IRQ name 506 * 507 * Return: Linux IRQ number on success, or 0 on the IRQ mapping failure, or 508 * -EPROBE_DEFER if the IRQ domain is not yet created, or error code in case 509 * of any other failure. 510 */ 511 int of_irq_get_byname(struct device_node *dev, const char *name) 512 { 513 int index; 514 515 if (unlikely(!name)) 516 return -EINVAL; 517 518 index = of_property_match_string(dev, "interrupt-names", name); 519 if (index < 0) 520 return index; 521 522 return of_irq_get(dev, index); 523 } 524 EXPORT_SYMBOL_GPL(of_irq_get_byname); 525 526 /** 527 * of_irq_count - Count the number of IRQs a node uses 528 * @dev: pointer to device tree node 529 */ 530 int of_irq_count(struct device_node *dev) 531 { 532 struct of_phandle_args irq; 533 int nr = 0; 534 535 while (of_irq_parse_one(dev, nr, &irq) == 0) { 536 of_node_put(irq.np); 537 nr++; 538 } 539 540 return nr; 541 } 542 EXPORT_SYMBOL_GPL(of_irq_count); 543 544 /** 545 * of_irq_to_resource_table - Fill in resource table with node's IRQ info 546 * @dev: pointer to device tree node 547 * @res: array of resources to fill in 548 * @nr_irqs: the number of IRQs (and upper bound for num of @res elements) 549 * 550 * Return: The size of the filled in table (up to @nr_irqs). 551 */ 552 int of_irq_to_resource_table(struct device_node *dev, struct resource *res, 553 int nr_irqs) 554 { 555 int i; 556 557 for (i = 0; i < nr_irqs; i++, res++) 558 if (of_irq_to_resource(dev, i, res) <= 0) 559 break; 560 561 return i; 562 } 563 EXPORT_SYMBOL_GPL(of_irq_to_resource_table); 564 565 struct of_intc_desc { 566 struct list_head list; 567 of_irq_init_cb_t irq_init_cb; 568 struct device_node *dev; 569 struct device_node *interrupt_parent; 570 }; 571 572 /** 573 * of_irq_init - Scan and init matching interrupt controllers in DT 574 * @matches: 0 terminated array of nodes to match and init function to call 575 * 576 * This function scans the device tree for matching interrupt controller nodes, 577 * and calls their initialization functions in order with parents first. 578 */ 579 void __init of_irq_init(const struct of_device_id *matches) 580 { 581 const struct of_device_id *match; 582 struct device_node *np, *parent = NULL; 583 struct of_intc_desc *desc, *temp_desc; 584 struct list_head intc_desc_list, intc_parent_list; 585 586 INIT_LIST_HEAD(&intc_desc_list); 587 INIT_LIST_HEAD(&intc_parent_list); 588 589 for_each_matching_node_and_match(np, matches, &match) { 590 if (!of_property_read_bool(np, "interrupt-controller") || 591 !of_device_is_available(np)) 592 continue; 593 594 if (WARN(!match->data, "of_irq_init: no init function for %s\n", 595 match->compatible)) 596 continue; 597 598 /* 599 * Here, we allocate and populate an of_intc_desc with the node 600 * pointer, interrupt-parent device_node etc. 601 */ 602 desc = kzalloc(sizeof(*desc), GFP_KERNEL); 603 if (!desc) { 604 of_node_put(np); 605 goto err; 606 } 607 608 desc->irq_init_cb = match->data; 609 desc->dev = of_node_get(np); 610 /* 611 * interrupts-extended can reference multiple parent domains. 612 * Arbitrarily pick the first one; assume any other parents 613 * are the same distance away from the root irq controller. 614 */ 615 desc->interrupt_parent = of_parse_phandle(np, "interrupts-extended", 0); 616 if (!desc->interrupt_parent) 617 desc->interrupt_parent = of_irq_find_parent(np); 618 if (desc->interrupt_parent == np) { 619 of_node_put(desc->interrupt_parent); 620 desc->interrupt_parent = NULL; 621 } 622 list_add_tail(&desc->list, &intc_desc_list); 623 } 624 625 /* 626 * The root irq controller is the one without an interrupt-parent. 627 * That one goes first, followed by the controllers that reference it, 628 * followed by the ones that reference the 2nd level controllers, etc. 629 */ 630 while (!list_empty(&intc_desc_list)) { 631 /* 632 * Process all controllers with the current 'parent'. 633 * First pass will be looking for NULL as the parent. 634 * The assumption is that NULL parent means a root controller. 635 */ 636 list_for_each_entry_safe(desc, temp_desc, &intc_desc_list, list) { 637 int ret; 638 639 if (desc->interrupt_parent != parent) 640 continue; 641 642 list_del(&desc->list); 643 644 of_node_set_flag(desc->dev, OF_POPULATED); 645 646 pr_debug("of_irq_init: init %pOF (%p), parent %p\n", 647 desc->dev, 648 desc->dev, desc->interrupt_parent); 649 ret = desc->irq_init_cb(desc->dev, 650 desc->interrupt_parent); 651 if (ret) { 652 pr_err("%s: Failed to init %pOF (%p), parent %p\n", 653 __func__, desc->dev, desc->dev, 654 desc->interrupt_parent); 655 of_node_clear_flag(desc->dev, OF_POPULATED); 656 of_node_put(desc->interrupt_parent); 657 of_node_put(desc->dev); 658 kfree(desc); 659 continue; 660 } 661 662 /* 663 * This one is now set up; add it to the parent list so 664 * its children can get processed in a subsequent pass. 665 */ 666 list_add_tail(&desc->list, &intc_parent_list); 667 } 668 669 /* Get the next pending parent that might have children */ 670 desc = list_first_entry_or_null(&intc_parent_list, 671 typeof(*desc), list); 672 if (!desc) { 673 pr_err("of_irq_init: children remain, but no parents\n"); 674 break; 675 } 676 list_del(&desc->list); 677 parent = desc->dev; 678 kfree(desc); 679 } 680 681 list_for_each_entry_safe(desc, temp_desc, &intc_parent_list, list) { 682 list_del(&desc->list); 683 kfree(desc); 684 } 685 err: 686 list_for_each_entry_safe(desc, temp_desc, &intc_desc_list, list) { 687 list_del(&desc->list); 688 of_node_put(desc->interrupt_parent); 689 of_node_put(desc->dev); 690 kfree(desc); 691 } 692 } 693 694 static int of_check_msi_parent(struct device_node *dev_node, struct device_node **msi_node) 695 { 696 struct of_phandle_args msi_spec; 697 int ret; 698 699 /* 700 * An msi-parent phandle with a missing or == 0 #msi-cells 701 * property identifies a 1:1 ID translation mapping. 702 * 703 * Set the msi controller node if the firmware matches this 704 * condition. 705 */ 706 ret = of_parse_phandle_with_optional_args(dev_node, "msi-parent", "#msi-cells", 707 0, &msi_spec); 708 if (ret) 709 return ret; 710 711 if ((*msi_node && *msi_node != msi_spec.np) || msi_spec.args_count != 0) 712 ret = -EINVAL; 713 714 if (!ret) { 715 /* Return with a node reference held */ 716 *msi_node = msi_spec.np; 717 return 0; 718 } 719 of_node_put(msi_spec.np); 720 721 return ret; 722 } 723 724 /** 725 * of_msi_xlate - map a MSI ID and find relevant MSI controller node 726 * @dev: device for which the mapping is to be done. 727 * @msi_np: Pointer to target MSI controller node 728 * @id_in: Device ID. 729 * 730 * Walk up the device hierarchy looking for devices with a "msi-map" 731 * or "msi-parent" property. If found, apply the mapping to @id_in. 732 * If @msi_np points to a non-NULL device node pointer, only entries targeting 733 * that node will be matched; if it points to a NULL value, it will receive the 734 * device node of the first matching target phandle, with a reference held. 735 * 736 * Returns: The mapped MSI id. 737 */ 738 u32 of_msi_xlate(struct device *dev, struct device_node **msi_np, u32 id_in) 739 { 740 struct device *parent_dev; 741 u32 id_out = id_in; 742 743 /* 744 * Walk up the device parent links looking for one with a 745 * "msi-map" or an "msi-parent" property. 746 */ 747 for (parent_dev = dev; parent_dev; parent_dev = parent_dev->parent) { 748 if (!of_map_id(parent_dev->of_node, id_in, "msi-map", 749 "msi-map-mask", msi_np, &id_out)) 750 break; 751 if (!of_check_msi_parent(parent_dev->of_node, msi_np)) 752 break; 753 } 754 return id_out; 755 } 756 EXPORT_SYMBOL_GPL(of_msi_xlate); 757 758 /** 759 * of_msi_map_get_device_domain - Use msi-map to find the relevant MSI domain 760 * @dev: device for which the mapping is to be done. 761 * @id: Device ID. 762 * @bus_token: Bus token 763 * 764 * Walk up the device hierarchy looking for devices with a "msi-map" 765 * property. 766 * 767 * Returns: the MSI domain for this device (or NULL on failure) 768 */ 769 struct irq_domain *of_msi_map_get_device_domain(struct device *dev, u32 id, 770 u32 bus_token) 771 { 772 struct device_node *np = NULL; 773 774 of_msi_xlate(dev, &np, id); 775 return irq_find_matching_host(np, bus_token); 776 } 777 778 /** 779 * of_msi_get_domain - Use msi-parent to find the relevant MSI domain 780 * @dev: device for which the domain is requested 781 * @np: device node for @dev 782 * @token: bus type for this domain 783 * 784 * Parse the msi-parent property and returns the corresponding MSI domain. 785 * 786 * Returns: the MSI domain for this device (or NULL on failure). 787 */ 788 struct irq_domain *of_msi_get_domain(struct device *dev, 789 const struct device_node *np, 790 enum irq_domain_bus_token token) 791 { 792 struct of_phandle_iterator it; 793 struct irq_domain *d; 794 int err; 795 796 of_for_each_phandle(&it, err, np, "msi-parent", "#msi-cells", 0) { 797 d = irq_find_matching_host(it.node, token); 798 if (d) { 799 of_node_put(it.node); 800 return d; 801 } 802 } 803 804 return NULL; 805 } 806 EXPORT_SYMBOL_GPL(of_msi_get_domain); 807 808 /** 809 * of_msi_configure - Set the msi_domain field of a device 810 * @dev: device structure to associate with an MSI irq domain 811 * @np: device node for that device 812 */ 813 void of_msi_configure(struct device *dev, const struct device_node *np) 814 { 815 dev_set_msi_domain(dev, 816 of_msi_get_domain(dev, np, DOMAIN_BUS_PLATFORM_MSI)); 817 } 818 EXPORT_SYMBOL_GPL(of_msi_configure); 819