xref: /linux/drivers/of/irq.c (revision 068df0f34e81bc06c5eb5012ec2eda25624e87aa)
1 /*
2  *  Derived from arch/i386/kernel/irq.c
3  *    Copyright (C) 1992 Linus Torvalds
4  *  Adapted from arch/i386 by Gary Thomas
5  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
6  *  Updated and modified by Cort Dougan <cort@fsmlabs.com>
7  *    Copyright (C) 1996-2001 Cort Dougan
8  *  Adapted for Power Macintosh by Paul Mackerras
9  *    Copyright (C) 1996 Paul Mackerras (paulus@cs.anu.edu.au)
10  *
11  * This program is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU General Public License
13  * as published by the Free Software Foundation; either version
14  * 2 of the License, or (at your option) any later version.
15  *
16  * This file contains the code used to make IRQ descriptions in the
17  * device tree to actual irq numbers on an interrupt controller
18  * driver.
19  */
20 
21 #include <linux/errno.h>
22 #include <linux/list.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_irq.h>
26 #include <linux/string.h>
27 #include <linux/slab.h>
28 
29 /* For archs that don't support NO_IRQ (such as x86), provide a dummy value */
30 #ifndef NO_IRQ
31 #define NO_IRQ 0
32 #endif
33 
34 /**
35  * irq_of_parse_and_map - Parse and map an interrupt into linux virq space
36  * @device: Device node of the device whose interrupt is to be mapped
37  * @index: Index of the interrupt to map
38  *
39  * This function is a wrapper that chains of_irq_map_one() and
40  * irq_create_of_mapping() to make things easier to callers
41  */
42 unsigned int irq_of_parse_and_map(struct device_node *dev, int index)
43 {
44 	struct of_irq oirq;
45 
46 	if (of_irq_map_one(dev, index, &oirq))
47 		return NO_IRQ;
48 
49 	return irq_create_of_mapping(oirq.controller, oirq.specifier,
50 				     oirq.size);
51 }
52 EXPORT_SYMBOL_GPL(irq_of_parse_and_map);
53 
54 /**
55  * of_irq_find_parent - Given a device node, find its interrupt parent node
56  * @child: pointer to device node
57  *
58  * Returns a pointer to the interrupt parent node, or NULL if the interrupt
59  * parent could not be determined.
60  */
61 struct device_node *of_irq_find_parent(struct device_node *child)
62 {
63 	struct device_node *p, *c = child;
64 	const __be32 *parp;
65 
66 	if (!of_node_get(c))
67 		return NULL;
68 
69 	do {
70 		parp = of_get_property(c, "interrupt-parent", NULL);
71 		if (parp == NULL)
72 			p = of_get_parent(c);
73 		else {
74 			if (of_irq_workarounds & OF_IMAP_NO_PHANDLE)
75 				p = of_node_get(of_irq_dflt_pic);
76 			else
77 				p = of_find_node_by_phandle(be32_to_cpup(parp));
78 		}
79 		of_node_put(c);
80 		c = p;
81 	} while (p && of_get_property(p, "#interrupt-cells", NULL) == NULL);
82 
83 	return (p == child) ? NULL : p;
84 }
85 
86 /**
87  * of_irq_map_raw - Low level interrupt tree parsing
88  * @parent:	the device interrupt parent
89  * @intspec:	interrupt specifier ("interrupts" property of the device)
90  * @ointsize:   size of the passed in interrupt specifier
91  * @addr:	address specifier (start of "reg" property of the device)
92  * @out_irq:	structure of_irq filled by this function
93  *
94  * Returns 0 on success and a negative number on error
95  *
96  * This function is a low-level interrupt tree walking function. It
97  * can be used to do a partial walk with synthetized reg and interrupts
98  * properties, for example when resolving PCI interrupts when no device
99  * node exist for the parent.
100  */
101 int of_irq_map_raw(struct device_node *parent, const __be32 *intspec,
102 		   u32 ointsize, const __be32 *addr, struct of_irq *out_irq)
103 {
104 	struct device_node *ipar, *tnode, *old = NULL, *newpar = NULL;
105 	const __be32 *tmp, *imap, *imask;
106 	u32 intsize = 1, addrsize, newintsize = 0, newaddrsize = 0;
107 	int imaplen, match, i;
108 
109 	pr_debug("of_irq_map_raw: par=%s,intspec=[0x%08x 0x%08x...],ointsize=%d\n",
110 		 parent->full_name, be32_to_cpup(intspec),
111 		 be32_to_cpup(intspec + 1), ointsize);
112 
113 	ipar = of_node_get(parent);
114 
115 	/* First get the #interrupt-cells property of the current cursor
116 	 * that tells us how to interpret the passed-in intspec. If there
117 	 * is none, we are nice and just walk up the tree
118 	 */
119 	do {
120 		tmp = of_get_property(ipar, "#interrupt-cells", NULL);
121 		if (tmp != NULL) {
122 			intsize = be32_to_cpu(*tmp);
123 			break;
124 		}
125 		tnode = ipar;
126 		ipar = of_irq_find_parent(ipar);
127 		of_node_put(tnode);
128 	} while (ipar);
129 	if (ipar == NULL) {
130 		pr_debug(" -> no parent found !\n");
131 		goto fail;
132 	}
133 
134 	pr_debug("of_irq_map_raw: ipar=%s, size=%d\n", ipar->full_name, intsize);
135 
136 	if (ointsize != intsize)
137 		return -EINVAL;
138 
139 	/* Look for this #address-cells. We have to implement the old linux
140 	 * trick of looking for the parent here as some device-trees rely on it
141 	 */
142 	old = of_node_get(ipar);
143 	do {
144 		tmp = of_get_property(old, "#address-cells", NULL);
145 		tnode = of_get_parent(old);
146 		of_node_put(old);
147 		old = tnode;
148 	} while (old && tmp == NULL);
149 	of_node_put(old);
150 	old = NULL;
151 	addrsize = (tmp == NULL) ? 2 : be32_to_cpu(*tmp);
152 
153 	pr_debug(" -> addrsize=%d\n", addrsize);
154 
155 	/* Now start the actual "proper" walk of the interrupt tree */
156 	while (ipar != NULL) {
157 		/* Now check if cursor is an interrupt-controller and if it is
158 		 * then we are done
159 		 */
160 		if (of_get_property(ipar, "interrupt-controller", NULL) !=
161 				NULL) {
162 			pr_debug(" -> got it !\n");
163 			for (i = 0; i < intsize; i++)
164 				out_irq->specifier[i] =
165 						of_read_number(intspec +i, 1);
166 			out_irq->size = intsize;
167 			out_irq->controller = ipar;
168 			of_node_put(old);
169 			return 0;
170 		}
171 
172 		/* Now look for an interrupt-map */
173 		imap = of_get_property(ipar, "interrupt-map", &imaplen);
174 		/* No interrupt map, check for an interrupt parent */
175 		if (imap == NULL) {
176 			pr_debug(" -> no map, getting parent\n");
177 			newpar = of_irq_find_parent(ipar);
178 			goto skiplevel;
179 		}
180 		imaplen /= sizeof(u32);
181 
182 		/* Look for a mask */
183 		imask = of_get_property(ipar, "interrupt-map-mask", NULL);
184 
185 		/* If we were passed no "reg" property and we attempt to parse
186 		 * an interrupt-map, then #address-cells must be 0.
187 		 * Fail if it's not.
188 		 */
189 		if (addr == NULL && addrsize != 0) {
190 			pr_debug(" -> no reg passed in when needed !\n");
191 			goto fail;
192 		}
193 
194 		/* Parse interrupt-map */
195 		match = 0;
196 		while (imaplen > (addrsize + intsize + 1) && !match) {
197 			/* Compare specifiers */
198 			match = 1;
199 			for (i = 0; i < addrsize && match; ++i) {
200 				u32 mask = imask ? imask[i] : 0xffffffffu;
201 				match = ((addr[i] ^ imap[i]) & mask) == 0;
202 			}
203 			for (; i < (addrsize + intsize) && match; ++i) {
204 				u32 mask = imask ? imask[i] : 0xffffffffu;
205 				match =
206 				   ((intspec[i-addrsize] ^ imap[i]) & mask) == 0;
207 			}
208 			imap += addrsize + intsize;
209 			imaplen -= addrsize + intsize;
210 
211 			pr_debug(" -> match=%d (imaplen=%d)\n", match, imaplen);
212 
213 			/* Get the interrupt parent */
214 			if (of_irq_workarounds & OF_IMAP_NO_PHANDLE)
215 				newpar = of_node_get(of_irq_dflt_pic);
216 			else
217 				newpar = of_find_node_by_phandle(be32_to_cpup(imap));
218 			imap++;
219 			--imaplen;
220 
221 			/* Check if not found */
222 			if (newpar == NULL) {
223 				pr_debug(" -> imap parent not found !\n");
224 				goto fail;
225 			}
226 
227 			/* Get #interrupt-cells and #address-cells of new
228 			 * parent
229 			 */
230 			tmp = of_get_property(newpar, "#interrupt-cells", NULL);
231 			if (tmp == NULL) {
232 				pr_debug(" -> parent lacks #interrupt-cells!\n");
233 				goto fail;
234 			}
235 			newintsize = be32_to_cpu(*tmp);
236 			tmp = of_get_property(newpar, "#address-cells", NULL);
237 			newaddrsize = (tmp == NULL) ? 0 : be32_to_cpu(*tmp);
238 
239 			pr_debug(" -> newintsize=%d, newaddrsize=%d\n",
240 			    newintsize, newaddrsize);
241 
242 			/* Check for malformed properties */
243 			if (imaplen < (newaddrsize + newintsize))
244 				goto fail;
245 
246 			imap += newaddrsize + newintsize;
247 			imaplen -= newaddrsize + newintsize;
248 
249 			pr_debug(" -> imaplen=%d\n", imaplen);
250 		}
251 		if (!match)
252 			goto fail;
253 
254 		of_node_put(old);
255 		old = of_node_get(newpar);
256 		addrsize = newaddrsize;
257 		intsize = newintsize;
258 		intspec = imap - intsize;
259 		addr = intspec - addrsize;
260 
261 	skiplevel:
262 		/* Iterate again with new parent */
263 		pr_debug(" -> new parent: %s\n", newpar ? newpar->full_name : "<>");
264 		of_node_put(ipar);
265 		ipar = newpar;
266 		newpar = NULL;
267 	}
268  fail:
269 	of_node_put(ipar);
270 	of_node_put(old);
271 	of_node_put(newpar);
272 
273 	return -EINVAL;
274 }
275 EXPORT_SYMBOL_GPL(of_irq_map_raw);
276 
277 /**
278  * of_irq_map_one - Resolve an interrupt for a device
279  * @device: the device whose interrupt is to be resolved
280  * @index: index of the interrupt to resolve
281  * @out_irq: structure of_irq filled by this function
282  *
283  * This function resolves an interrupt, walking the tree, for a given
284  * device-tree node. It's the high level pendant to of_irq_map_raw().
285  */
286 int of_irq_map_one(struct device_node *device, int index, struct of_irq *out_irq)
287 {
288 	struct device_node *p;
289 	const __be32 *intspec, *tmp, *addr;
290 	u32 intsize, intlen;
291 	int res = -EINVAL;
292 
293 	pr_debug("of_irq_map_one: dev=%s, index=%d\n", device->full_name, index);
294 
295 	/* OldWorld mac stuff is "special", handle out of line */
296 	if (of_irq_workarounds & OF_IMAP_OLDWORLD_MAC)
297 		return of_irq_map_oldworld(device, index, out_irq);
298 
299 	/* Get the interrupts property */
300 	intspec = of_get_property(device, "interrupts", &intlen);
301 	if (intspec == NULL)
302 		return -EINVAL;
303 	intlen /= sizeof(*intspec);
304 
305 	pr_debug(" intspec=%d intlen=%d\n", be32_to_cpup(intspec), intlen);
306 
307 	/* Get the reg property (if any) */
308 	addr = of_get_property(device, "reg", NULL);
309 
310 	/* Look for the interrupt parent. */
311 	p = of_irq_find_parent(device);
312 	if (p == NULL)
313 		return -EINVAL;
314 
315 	/* Get size of interrupt specifier */
316 	tmp = of_get_property(p, "#interrupt-cells", NULL);
317 	if (tmp == NULL)
318 		goto out;
319 	intsize = be32_to_cpu(*tmp);
320 
321 	pr_debug(" intsize=%d intlen=%d\n", intsize, intlen);
322 
323 	/* Check index */
324 	if ((index + 1) * intsize > intlen)
325 		goto out;
326 
327 	/* Get new specifier and map it */
328 	res = of_irq_map_raw(p, intspec + index * intsize, intsize,
329 			     addr, out_irq);
330  out:
331 	of_node_put(p);
332 	return res;
333 }
334 EXPORT_SYMBOL_GPL(of_irq_map_one);
335 
336 /**
337  * of_irq_to_resource - Decode a node's IRQ and return it as a resource
338  * @dev: pointer to device tree node
339  * @index: zero-based index of the irq
340  * @r: pointer to resource structure to return result into.
341  */
342 int of_irq_to_resource(struct device_node *dev, int index, struct resource *r)
343 {
344 	int irq = irq_of_parse_and_map(dev, index);
345 
346 	/* Only dereference the resource if both the
347 	 * resource and the irq are valid. */
348 	if (r && irq != NO_IRQ) {
349 		r->start = r->end = irq;
350 		r->flags = IORESOURCE_IRQ;
351 		r->name = dev->full_name;
352 	}
353 
354 	return irq;
355 }
356 EXPORT_SYMBOL_GPL(of_irq_to_resource);
357 
358 /**
359  * of_irq_count - Count the number of IRQs a node uses
360  * @dev: pointer to device tree node
361  */
362 int of_irq_count(struct device_node *dev)
363 {
364 	int nr = 0;
365 
366 	while (of_irq_to_resource(dev, nr, NULL) != NO_IRQ)
367 		nr++;
368 
369 	return nr;
370 }
371 
372 /**
373  * of_irq_to_resource_table - Fill in resource table with node's IRQ info
374  * @dev: pointer to device tree node
375  * @res: array of resources to fill in
376  * @nr_irqs: the number of IRQs (and upper bound for num of @res elements)
377  *
378  * Returns the size of the filled in table (up to @nr_irqs).
379  */
380 int of_irq_to_resource_table(struct device_node *dev, struct resource *res,
381 		int nr_irqs)
382 {
383 	int i;
384 
385 	for (i = 0; i < nr_irqs; i++, res++)
386 		if (of_irq_to_resource(dev, i, res) == NO_IRQ)
387 			break;
388 
389 	return i;
390 }
391 
392 struct intc_desc {
393 	struct list_head	list;
394 	struct device_node	*dev;
395 	struct device_node	*interrupt_parent;
396 };
397 
398 /**
399  * of_irq_init - Scan and init matching interrupt controllers in DT
400  * @matches: 0 terminated array of nodes to match and init function to call
401  *
402  * This function scans the device tree for matching interrupt controller nodes,
403  * and calls their initialization functions in order with parents first.
404  */
405 void __init of_irq_init(const struct of_device_id *matches)
406 {
407 	struct device_node *np, *parent = NULL;
408 	struct intc_desc *desc, *temp_desc;
409 	struct list_head intc_desc_list, intc_parent_list;
410 
411 	INIT_LIST_HEAD(&intc_desc_list);
412 	INIT_LIST_HEAD(&intc_parent_list);
413 
414 	for_each_matching_node(np, matches) {
415 		if (!of_find_property(np, "interrupt-controller", NULL))
416 			continue;
417 		/*
418 		 * Here, we allocate and populate an intc_desc with the node
419 		 * pointer, interrupt-parent device_node etc.
420 		 */
421 		desc = kzalloc(sizeof(*desc), GFP_KERNEL);
422 		if (WARN_ON(!desc))
423 			goto err;
424 
425 		desc->dev = np;
426 		desc->interrupt_parent = of_irq_find_parent(np);
427 		list_add_tail(&desc->list, &intc_desc_list);
428 	}
429 
430 	/*
431 	 * The root irq controller is the one without an interrupt-parent.
432 	 * That one goes first, followed by the controllers that reference it,
433 	 * followed by the ones that reference the 2nd level controllers, etc.
434 	 */
435 	while (!list_empty(&intc_desc_list)) {
436 		/*
437 		 * Process all controllers with the current 'parent'.
438 		 * First pass will be looking for NULL as the parent.
439 		 * The assumption is that NULL parent means a root controller.
440 		 */
441 		list_for_each_entry_safe(desc, temp_desc, &intc_desc_list, list) {
442 			const struct of_device_id *match;
443 			int ret;
444 			of_irq_init_cb_t irq_init_cb;
445 
446 			if (desc->interrupt_parent != parent)
447 				continue;
448 
449 			list_del(&desc->list);
450 			match = of_match_node(matches, desc->dev);
451 			if (WARN(!match->data,
452 			    "of_irq_init: no init function for %s\n",
453 			    match->compatible)) {
454 				kfree(desc);
455 				continue;
456 			}
457 
458 			pr_debug("of_irq_init: init %s @ %p, parent %p\n",
459 				 match->compatible,
460 				 desc->dev, desc->interrupt_parent);
461 			irq_init_cb = match->data;
462 			ret = irq_init_cb(desc->dev, desc->interrupt_parent);
463 			if (ret) {
464 				kfree(desc);
465 				continue;
466 			}
467 
468 			/*
469 			 * This one is now set up; add it to the parent list so
470 			 * its children can get processed in a subsequent pass.
471 			 */
472 			list_add_tail(&desc->list, &intc_parent_list);
473 		}
474 
475 		/* Get the next pending parent that might have children */
476 		desc = list_first_entry(&intc_parent_list, typeof(*desc), list);
477 		if (list_empty(&intc_parent_list) || !desc) {
478 			pr_err("of_irq_init: children remain, but no parents\n");
479 			break;
480 		}
481 		list_del(&desc->list);
482 		parent = desc->dev;
483 		kfree(desc);
484 	}
485 
486 	list_for_each_entry_safe(desc, temp_desc, &intc_parent_list, list) {
487 		list_del(&desc->list);
488 		kfree(desc);
489 	}
490 err:
491 	list_for_each_entry_safe(desc, temp_desc, &intc_desc_list, list) {
492 		list_del(&desc->list);
493 		kfree(desc);
494 	}
495 }
496