xref: /linux/drivers/of/fdt.c (revision c005d3776ac77a168b7a791bfd662e533595cfeb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions for working with the Flattened Device Tree data format
4  *
5  * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
6  * benh@kernel.crashing.org
7  */
8 
9 #define pr_fmt(fmt)	"OF: fdt: " fmt
10 
11 #include <linux/acpi.h>
12 #include <linux/crash_dump.h>
13 #include <linux/crc32.h>
14 #include <linux/kernel.h>
15 #include <linux/initrd.h>
16 #include <linux/memblock.h>
17 #include <linux/mutex.h>
18 #include <linux/of.h>
19 #include <linux/of_fdt.h>
20 #include <linux/sizes.h>
21 #include <linux/string.h>
22 #include <linux/errno.h>
23 #include <linux/slab.h>
24 #include <linux/libfdt.h>
25 #include <linux/debugfs.h>
26 #include <linux/serial_core.h>
27 #include <linux/sysfs.h>
28 #include <linux/random.h>
29 
30 #include <asm/setup.h>  /* for COMMAND_LINE_SIZE */
31 #include <asm/page.h>
32 
33 #include "of_private.h"
34 
35 /*
36  * __dtb_empty_root_begin[] and __dtb_empty_root_end[] magically created by
37  * cmd_wrap_S_dtb in scripts/Makefile.dtbs
38  */
39 extern uint8_t __dtb_empty_root_begin[];
40 extern uint8_t __dtb_empty_root_end[];
41 
42 /*
43  * of_fdt_limit_memory - limit the number of regions in the /memory node
44  * @limit: maximum entries
45  *
46  * Adjust the flattened device tree to have at most 'limit' number of
47  * memory entries in the /memory node. This function may be called
48  * any time after initial_boot_param is set.
49  */
50 void __init of_fdt_limit_memory(int limit)
51 {
52 	int memory;
53 	int len;
54 	const void *val;
55 	int cell_size = sizeof(uint32_t)*(dt_root_addr_cells + dt_root_size_cells);
56 
57 	memory = fdt_path_offset(initial_boot_params, "/memory");
58 	if (memory > 0) {
59 		val = fdt_getprop(initial_boot_params, memory, "reg", &len);
60 		if (len > limit*cell_size) {
61 			len = limit*cell_size;
62 			pr_debug("Limiting number of entries to %d\n", limit);
63 			fdt_setprop(initial_boot_params, memory, "reg", val,
64 					len);
65 		}
66 	}
67 }
68 
69 bool of_fdt_device_is_available(const void *blob, unsigned long node)
70 {
71 	const char *status = fdt_getprop(blob, node, "status", NULL);
72 
73 	if (!status)
74 		return true;
75 
76 	if (!strcmp(status, "ok") || !strcmp(status, "okay"))
77 		return true;
78 
79 	return false;
80 }
81 
82 static void *unflatten_dt_alloc(void **mem, unsigned long size,
83 				       unsigned long align)
84 {
85 	void *res;
86 
87 	*mem = PTR_ALIGN(*mem, align);
88 	res = *mem;
89 	*mem += size;
90 
91 	return res;
92 }
93 
94 static void populate_properties(const void *blob,
95 				int offset,
96 				void **mem,
97 				struct device_node *np,
98 				const char *nodename,
99 				bool dryrun)
100 {
101 	struct property *pp, **pprev = NULL;
102 	int cur;
103 	bool has_name = false;
104 
105 	pprev = &np->properties;
106 	for (cur = fdt_first_property_offset(blob, offset);
107 	     cur >= 0;
108 	     cur = fdt_next_property_offset(blob, cur)) {
109 		const __be32 *val;
110 		const char *pname;
111 		u32 sz;
112 
113 		val = fdt_getprop_by_offset(blob, cur, &pname, &sz);
114 		if (!val) {
115 			pr_warn("Cannot locate property at 0x%x\n", cur);
116 			continue;
117 		}
118 
119 		if (!pname) {
120 			pr_warn("Cannot find property name at 0x%x\n", cur);
121 			continue;
122 		}
123 
124 		if (!strcmp(pname, "name"))
125 			has_name = true;
126 
127 		pp = unflatten_dt_alloc(mem, sizeof(struct property),
128 					__alignof__(struct property));
129 		if (dryrun)
130 			continue;
131 
132 		/* We accept flattened tree phandles either in
133 		 * ePAPR-style "phandle" properties, or the
134 		 * legacy "linux,phandle" properties.  If both
135 		 * appear and have different values, things
136 		 * will get weird. Don't do that.
137 		 */
138 		if (!strcmp(pname, "phandle") ||
139 		    !strcmp(pname, "linux,phandle")) {
140 			if (!np->phandle)
141 				np->phandle = be32_to_cpup(val);
142 		}
143 
144 		/* And we process the "ibm,phandle" property
145 		 * used in pSeries dynamic device tree
146 		 * stuff
147 		 */
148 		if (!strcmp(pname, "ibm,phandle"))
149 			np->phandle = be32_to_cpup(val);
150 
151 		pp->name   = (char *)pname;
152 		pp->length = sz;
153 		pp->value  = (__be32 *)val;
154 		*pprev     = pp;
155 		pprev      = &pp->next;
156 	}
157 
158 	/* With version 0x10 we may not have the name property,
159 	 * recreate it here from the unit name if absent
160 	 */
161 	if (!has_name) {
162 		const char *p = nodename, *ps = p, *pa = NULL;
163 		int len;
164 
165 		while (*p) {
166 			if ((*p) == '@')
167 				pa = p;
168 			else if ((*p) == '/')
169 				ps = p + 1;
170 			p++;
171 		}
172 
173 		if (pa < ps)
174 			pa = p;
175 		len = (pa - ps) + 1;
176 		pp = unflatten_dt_alloc(mem, sizeof(struct property) + len,
177 					__alignof__(struct property));
178 		if (!dryrun) {
179 			pp->name   = "name";
180 			pp->length = len;
181 			pp->value  = pp + 1;
182 			*pprev     = pp;
183 			memcpy(pp->value, ps, len - 1);
184 			((char *)pp->value)[len - 1] = 0;
185 			pr_debug("fixed up name for %s -> %s\n",
186 				 nodename, (char *)pp->value);
187 		}
188 	}
189 }
190 
191 static int populate_node(const void *blob,
192 			  int offset,
193 			  void **mem,
194 			  struct device_node *dad,
195 			  struct device_node **pnp,
196 			  bool dryrun)
197 {
198 	struct device_node *np;
199 	const char *pathp;
200 	int len;
201 
202 	pathp = fdt_get_name(blob, offset, &len);
203 	if (!pathp) {
204 		*pnp = NULL;
205 		return len;
206 	}
207 
208 	len++;
209 
210 	np = unflatten_dt_alloc(mem, sizeof(struct device_node) + len,
211 				__alignof__(struct device_node));
212 	if (!dryrun) {
213 		char *fn;
214 		of_node_init(np);
215 		np->full_name = fn = ((char *)np) + sizeof(*np);
216 
217 		memcpy(fn, pathp, len);
218 
219 		if (dad != NULL) {
220 			np->parent = dad;
221 			np->sibling = dad->child;
222 			dad->child = np;
223 		}
224 	}
225 
226 	populate_properties(blob, offset, mem, np, pathp, dryrun);
227 	if (!dryrun) {
228 		np->name = of_get_property(np, "name", NULL);
229 		if (!np->name)
230 			np->name = "<NULL>";
231 	}
232 
233 	*pnp = np;
234 	return 0;
235 }
236 
237 static void reverse_nodes(struct device_node *parent)
238 {
239 	struct device_node *child, *next;
240 
241 	/* In-depth first */
242 	child = parent->child;
243 	while (child) {
244 		reverse_nodes(child);
245 
246 		child = child->sibling;
247 	}
248 
249 	/* Reverse the nodes in the child list */
250 	child = parent->child;
251 	parent->child = NULL;
252 	while (child) {
253 		next = child->sibling;
254 
255 		child->sibling = parent->child;
256 		parent->child = child;
257 		child = next;
258 	}
259 }
260 
261 /**
262  * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree
263  * @blob: The parent device tree blob
264  * @mem: Memory chunk to use for allocating device nodes and properties
265  * @dad: Parent struct device_node
266  * @nodepp: The device_node tree created by the call
267  *
268  * Return: The size of unflattened device tree or error code
269  */
270 static int unflatten_dt_nodes(const void *blob,
271 			      void *mem,
272 			      struct device_node *dad,
273 			      struct device_node **nodepp)
274 {
275 	struct device_node *root;
276 	int offset = 0, depth = 0, initial_depth = 0;
277 #define FDT_MAX_DEPTH	64
278 	struct device_node *nps[FDT_MAX_DEPTH];
279 	void *base = mem;
280 	bool dryrun = !base;
281 	int ret;
282 
283 	if (nodepp)
284 		*nodepp = NULL;
285 
286 	/*
287 	 * We're unflattening device sub-tree if @dad is valid. There are
288 	 * possibly multiple nodes in the first level of depth. We need
289 	 * set @depth to 1 to make fdt_next_node() happy as it bails
290 	 * immediately when negative @depth is found. Otherwise, the device
291 	 * nodes except the first one won't be unflattened successfully.
292 	 */
293 	if (dad)
294 		depth = initial_depth = 1;
295 
296 	root = dad;
297 	nps[depth] = dad;
298 
299 	for (offset = 0;
300 	     offset >= 0 && depth >= initial_depth;
301 	     offset = fdt_next_node(blob, offset, &depth)) {
302 		if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH - 1))
303 			continue;
304 
305 		if (!IS_ENABLED(CONFIG_OF_KOBJ) &&
306 		    !of_fdt_device_is_available(blob, offset))
307 			continue;
308 
309 		ret = populate_node(blob, offset, &mem, nps[depth],
310 				   &nps[depth+1], dryrun);
311 		if (ret < 0)
312 			return ret;
313 
314 		if (!dryrun && nodepp && !*nodepp)
315 			*nodepp = nps[depth+1];
316 		if (!dryrun && !root)
317 			root = nps[depth+1];
318 	}
319 
320 	if (offset < 0 && offset != -FDT_ERR_NOTFOUND) {
321 		pr_err("Error %d processing FDT\n", offset);
322 		return -EINVAL;
323 	}
324 
325 	/*
326 	 * Reverse the child list. Some drivers assumes node order matches .dts
327 	 * node order
328 	 */
329 	if (!dryrun)
330 		reverse_nodes(root);
331 
332 	return mem - base;
333 }
334 
335 /**
336  * __unflatten_device_tree - create tree of device_nodes from flat blob
337  * @blob: The blob to expand
338  * @dad: Parent device node
339  * @mynodes: The device_node tree created by the call
340  * @dt_alloc: An allocator that provides a virtual address to memory
341  * for the resulting tree
342  * @detached: if true set OF_DETACHED on @mynodes
343  *
344  * unflattens a device-tree, creating the tree of struct device_node. It also
345  * fills the "name" and "type" pointers of the nodes so the normal device-tree
346  * walking functions can be used.
347  *
348  * Return: NULL on failure or the memory chunk containing the unflattened
349  * device tree on success.
350  */
351 void *__unflatten_device_tree(const void *blob,
352 			      struct device_node *dad,
353 			      struct device_node **mynodes,
354 			      void *(*dt_alloc)(u64 size, u64 align),
355 			      bool detached)
356 {
357 	int size;
358 	void *mem;
359 	int ret;
360 
361 	if (mynodes)
362 		*mynodes = NULL;
363 
364 	pr_debug(" -> unflatten_device_tree()\n");
365 
366 	if (!blob) {
367 		pr_debug("No device tree pointer\n");
368 		return NULL;
369 	}
370 
371 	pr_debug("Unflattening device tree:\n");
372 	pr_debug("magic: %08x\n", fdt_magic(blob));
373 	pr_debug("size: %08x\n", fdt_totalsize(blob));
374 	pr_debug("version: %08x\n", fdt_version(blob));
375 
376 	if (fdt_check_header(blob)) {
377 		pr_err("Invalid device tree blob header\n");
378 		return NULL;
379 	}
380 
381 	/* First pass, scan for size */
382 	size = unflatten_dt_nodes(blob, NULL, dad, NULL);
383 	if (size <= 0)
384 		return NULL;
385 
386 	size = ALIGN(size, 4);
387 	pr_debug("  size is %d, allocating...\n", size);
388 
389 	/* Allocate memory for the expanded device tree */
390 	mem = dt_alloc(size + 4, __alignof__(struct device_node));
391 	if (!mem)
392 		return NULL;
393 
394 	memset(mem, 0, size);
395 
396 	*(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
397 
398 	pr_debug("  unflattening %p...\n", mem);
399 
400 	/* Second pass, do actual unflattening */
401 	ret = unflatten_dt_nodes(blob, mem, dad, mynodes);
402 
403 	if (be32_to_cpup(mem + size) != 0xdeadbeef)
404 		pr_warn("End of tree marker overwritten: %08x\n",
405 			be32_to_cpup(mem + size));
406 
407 	if (ret <= 0)
408 		return NULL;
409 
410 	if (detached && mynodes && *mynodes) {
411 		of_node_set_flag(*mynodes, OF_DETACHED);
412 		pr_debug("unflattened tree is detached\n");
413 	}
414 
415 	pr_debug(" <- unflatten_device_tree()\n");
416 	return mem;
417 }
418 
419 static void *kernel_tree_alloc(u64 size, u64 align)
420 {
421 	return kzalloc(size, GFP_KERNEL);
422 }
423 
424 static DEFINE_MUTEX(of_fdt_unflatten_mutex);
425 
426 /**
427  * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
428  * @blob: Flat device tree blob
429  * @dad: Parent device node
430  * @mynodes: The device tree created by the call
431  *
432  * unflattens the device-tree passed by the firmware, creating the
433  * tree of struct device_node. It also fills the "name" and "type"
434  * pointers of the nodes so the normal device-tree walking functions
435  * can be used.
436  *
437  * Return: NULL on failure or the memory chunk containing the unflattened
438  * device tree on success.
439  */
440 void *of_fdt_unflatten_tree(const unsigned long *blob,
441 			    struct device_node *dad,
442 			    struct device_node **mynodes)
443 {
444 	void *mem;
445 
446 	mutex_lock(&of_fdt_unflatten_mutex);
447 	mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc,
448 				      true);
449 	mutex_unlock(&of_fdt_unflatten_mutex);
450 
451 	return mem;
452 }
453 EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
454 
455 /* Everything below here references initial_boot_params directly. */
456 int __initdata dt_root_addr_cells;
457 int __initdata dt_root_size_cells;
458 
459 void *initial_boot_params __ro_after_init;
460 
461 #ifdef CONFIG_OF_EARLY_FLATTREE
462 
463 static u32 of_fdt_crc32;
464 
465 /*
466  * fdt_reserve_elfcorehdr() - reserves memory for elf core header
467  *
468  * This function reserves the memory occupied by an elf core header
469  * described in the device tree. This region contains all the
470  * information about primary kernel's core image and is used by a dump
471  * capture kernel to access the system memory on primary kernel.
472  */
473 static void __init fdt_reserve_elfcorehdr(void)
474 {
475 	if (!IS_ENABLED(CONFIG_CRASH_DUMP) || !elfcorehdr_size)
476 		return;
477 
478 	if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
479 		pr_warn("elfcorehdr is overlapped\n");
480 		return;
481 	}
482 
483 	memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
484 
485 	pr_info("Reserving %llu KiB of memory at 0x%llx for elfcorehdr\n",
486 		elfcorehdr_size >> 10, elfcorehdr_addr);
487 }
488 
489 /**
490  * early_init_fdt_scan_reserved_mem() - create reserved memory regions
491  *
492  * This function grabs memory from early allocator for device exclusive use
493  * defined in device tree structures. It should be called by arch specific code
494  * once the early allocator (i.e. memblock) has been fully activated.
495  */
496 void __init early_init_fdt_scan_reserved_mem(void)
497 {
498 	int n;
499 	u64 base, size;
500 
501 	if (!initial_boot_params)
502 		return;
503 
504 	fdt_scan_reserved_mem();
505 	fdt_reserve_elfcorehdr();
506 
507 	/* Process header /memreserve/ fields */
508 	for (n = 0; ; n++) {
509 		fdt_get_mem_rsv(initial_boot_params, n, &base, &size);
510 		if (!size)
511 			break;
512 		memblock_reserve(base, size);
513 	}
514 }
515 
516 /**
517  * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob
518  */
519 void __init early_init_fdt_reserve_self(void)
520 {
521 	if (!initial_boot_params)
522 		return;
523 
524 	/* Reserve the dtb region */
525 	memblock_reserve(__pa(initial_boot_params),
526 			 fdt_totalsize(initial_boot_params));
527 }
528 
529 /**
530  * of_scan_flat_dt - scan flattened tree blob and call callback on each.
531  * @it: callback function
532  * @data: context data pointer
533  *
534  * This function is used to scan the flattened device-tree, it is
535  * used to extract the memory information at boot before we can
536  * unflatten the tree
537  */
538 int __init of_scan_flat_dt(int (*it)(unsigned long node,
539 				     const char *uname, int depth,
540 				     void *data),
541 			   void *data)
542 {
543 	const void *blob = initial_boot_params;
544 	const char *pathp;
545 	int offset, rc = 0, depth = -1;
546 
547 	if (!blob)
548 		return 0;
549 
550 	for (offset = fdt_next_node(blob, -1, &depth);
551 	     offset >= 0 && depth >= 0 && !rc;
552 	     offset = fdt_next_node(blob, offset, &depth)) {
553 
554 		pathp = fdt_get_name(blob, offset, NULL);
555 		rc = it(offset, pathp, depth, data);
556 	}
557 	return rc;
558 }
559 
560 /**
561  * of_scan_flat_dt_subnodes - scan sub-nodes of a node call callback on each.
562  * @parent: parent node
563  * @it: callback function
564  * @data: context data pointer
565  *
566  * This function is used to scan sub-nodes of a node.
567  */
568 int __init of_scan_flat_dt_subnodes(unsigned long parent,
569 				    int (*it)(unsigned long node,
570 					      const char *uname,
571 					      void *data),
572 				    void *data)
573 {
574 	const void *blob = initial_boot_params;
575 	int node;
576 
577 	fdt_for_each_subnode(node, blob, parent) {
578 		const char *pathp;
579 		int rc;
580 
581 		pathp = fdt_get_name(blob, node, NULL);
582 		rc = it(node, pathp, data);
583 		if (rc)
584 			return rc;
585 	}
586 	return 0;
587 }
588 
589 /**
590  * of_get_flat_dt_subnode_by_name - get the subnode by given name
591  *
592  * @node: the parent node
593  * @uname: the name of subnode
594  * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none
595  */
596 
597 int __init of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname)
598 {
599 	return fdt_subnode_offset(initial_boot_params, node, uname);
600 }
601 
602 /*
603  * of_get_flat_dt_root - find the root node in the flat blob
604  */
605 unsigned long __init of_get_flat_dt_root(void)
606 {
607 	return 0;
608 }
609 
610 /*
611  * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
612  *
613  * This function can be used within scan_flattened_dt callback to get
614  * access to properties
615  */
616 const void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
617 				       int *size)
618 {
619 	return fdt_getprop(initial_boot_params, node, name, size);
620 }
621 
622 /**
623  * of_fdt_is_compatible - Return true if given node from the given blob has
624  * compat in its compatible list
625  * @blob: A device tree blob
626  * @node: node to test
627  * @compat: compatible string to compare with compatible list.
628  *
629  * Return: a non-zero value on match with smaller values returned for more
630  * specific compatible values.
631  */
632 static int of_fdt_is_compatible(const void *blob,
633 		      unsigned long node, const char *compat)
634 {
635 	const char *cp;
636 	int cplen;
637 	unsigned long l, score = 0;
638 
639 	cp = fdt_getprop(blob, node, "compatible", &cplen);
640 	if (cp == NULL)
641 		return 0;
642 	while (cplen > 0) {
643 		score++;
644 		if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
645 			return score;
646 		l = strlen(cp) + 1;
647 		cp += l;
648 		cplen -= l;
649 	}
650 
651 	return 0;
652 }
653 
654 /**
655  * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
656  * @node: node to test
657  * @compat: compatible string to compare with compatible list.
658  */
659 int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
660 {
661 	return of_fdt_is_compatible(initial_boot_params, node, compat);
662 }
663 
664 /*
665  * of_flat_dt_match - Return true if node matches a list of compatible values
666  */
667 static int __init of_flat_dt_match(unsigned long node, const char *const *compat)
668 {
669 	unsigned int tmp, score = 0;
670 
671 	if (!compat)
672 		return 0;
673 
674 	while (*compat) {
675 		tmp = of_fdt_is_compatible(initial_boot_params, node, *compat);
676 		if (tmp && (score == 0 || (tmp < score)))
677 			score = tmp;
678 		compat++;
679 	}
680 
681 	return score;
682 }
683 
684 /*
685  * of_get_flat_dt_phandle - Given a node in the flat blob, return the phandle
686  */
687 uint32_t __init of_get_flat_dt_phandle(unsigned long node)
688 {
689 	return fdt_get_phandle(initial_boot_params, node);
690 }
691 
692 const char * __init of_flat_dt_get_machine_name(void)
693 {
694 	const char *name;
695 	unsigned long dt_root = of_get_flat_dt_root();
696 
697 	name = of_get_flat_dt_prop(dt_root, "model", NULL);
698 	if (!name)
699 		name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
700 	return name;
701 }
702 
703 /**
704  * of_flat_dt_match_machine - Iterate match tables to find matching machine.
705  *
706  * @default_match: A machine specific ptr to return in case of no match.
707  * @get_next_compat: callback function to return next compatible match table.
708  *
709  * Iterate through machine match tables to find the best match for the machine
710  * compatible string in the FDT.
711  */
712 const void * __init of_flat_dt_match_machine(const void *default_match,
713 		const void * (*get_next_compat)(const char * const**))
714 {
715 	const void *data = NULL;
716 	const void *best_data = default_match;
717 	const char *const *compat;
718 	unsigned long dt_root;
719 	unsigned int best_score = ~1, score = 0;
720 
721 	dt_root = of_get_flat_dt_root();
722 	while ((data = get_next_compat(&compat))) {
723 		score = of_flat_dt_match(dt_root, compat);
724 		if (score > 0 && score < best_score) {
725 			best_data = data;
726 			best_score = score;
727 		}
728 	}
729 	if (!best_data) {
730 		const char *prop;
731 		int size;
732 
733 		pr_err("\n unrecognized device tree list:\n[ ");
734 
735 		prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
736 		if (prop) {
737 			while (size > 0) {
738 				printk("'%s' ", prop);
739 				size -= strlen(prop) + 1;
740 				prop += strlen(prop) + 1;
741 			}
742 		}
743 		printk("]\n\n");
744 		return NULL;
745 	}
746 
747 	pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
748 
749 	return best_data;
750 }
751 
752 static void __early_init_dt_declare_initrd(unsigned long start,
753 					   unsigned long end)
754 {
755 	/*
756 	 * __va() is not yet available this early on some platforms. In that
757 	 * case, the platform uses phys_initrd_start/phys_initrd_size instead
758 	 * and does the VA conversion itself.
759 	 */
760 	if (!IS_ENABLED(CONFIG_ARM64) &&
761 	    !(IS_ENABLED(CONFIG_RISCV) && IS_ENABLED(CONFIG_64BIT))) {
762 		initrd_start = (unsigned long)__va(start);
763 		initrd_end = (unsigned long)__va(end);
764 		initrd_below_start_ok = 1;
765 	}
766 }
767 
768 /**
769  * early_init_dt_check_for_initrd - Decode initrd location from flat tree
770  * @node: reference to node containing initrd location ('chosen')
771  */
772 static void __init early_init_dt_check_for_initrd(unsigned long node)
773 {
774 	u64 start, end;
775 	int len;
776 	const __be32 *prop;
777 
778 	if (!IS_ENABLED(CONFIG_BLK_DEV_INITRD))
779 		return;
780 
781 	pr_debug("Looking for initrd properties... ");
782 
783 	prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
784 	if (!prop)
785 		return;
786 	start = of_read_number(prop, len/4);
787 
788 	prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
789 	if (!prop)
790 		return;
791 	end = of_read_number(prop, len/4);
792 	if (start > end)
793 		return;
794 
795 	__early_init_dt_declare_initrd(start, end);
796 	phys_initrd_start = start;
797 	phys_initrd_size = end - start;
798 
799 	pr_debug("initrd_start=0x%llx  initrd_end=0x%llx\n", start, end);
800 }
801 
802 /**
803  * early_init_dt_check_for_elfcorehdr - Decode elfcorehdr location from flat
804  * tree
805  * @node: reference to node containing elfcorehdr location ('chosen')
806  */
807 static void __init early_init_dt_check_for_elfcorehdr(unsigned long node)
808 {
809 	const __be32 *prop;
810 	int len;
811 
812 	if (!IS_ENABLED(CONFIG_CRASH_DUMP))
813 		return;
814 
815 	pr_debug("Looking for elfcorehdr property... ");
816 
817 	prop = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
818 	if (!prop || (len < (dt_root_addr_cells + dt_root_size_cells)))
819 		return;
820 
821 	elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &prop);
822 	elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &prop);
823 
824 	pr_debug("elfcorehdr_start=0x%llx elfcorehdr_size=0x%llx\n",
825 		 elfcorehdr_addr, elfcorehdr_size);
826 }
827 
828 static unsigned long chosen_node_offset = -FDT_ERR_NOTFOUND;
829 
830 /*
831  * The main usage of linux,usable-memory-range is for crash dump kernel.
832  * Originally, the number of usable-memory regions is one. Now there may
833  * be two regions, low region and high region.
834  * To make compatibility with existing user-space and older kdump, the low
835  * region is always the last range of linux,usable-memory-range if exist.
836  */
837 #define MAX_USABLE_RANGES		2
838 
839 /**
840  * early_init_dt_check_for_usable_mem_range - Decode usable memory range
841  * location from flat tree
842  */
843 void __init early_init_dt_check_for_usable_mem_range(void)
844 {
845 	struct memblock_region rgn[MAX_USABLE_RANGES] = {0};
846 	const __be32 *prop, *endp;
847 	int len, i;
848 	unsigned long node = chosen_node_offset;
849 
850 	if ((long)node < 0)
851 		return;
852 
853 	pr_debug("Looking for usable-memory-range property... ");
854 
855 	prop = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
856 	if (!prop || (len % (dt_root_addr_cells + dt_root_size_cells)))
857 		return;
858 
859 	endp = prop + (len / sizeof(__be32));
860 	for (i = 0; i < MAX_USABLE_RANGES && prop < endp; i++) {
861 		rgn[i].base = dt_mem_next_cell(dt_root_addr_cells, &prop);
862 		rgn[i].size = dt_mem_next_cell(dt_root_size_cells, &prop);
863 
864 		pr_debug("cap_mem_regions[%d]: base=%pa, size=%pa\n",
865 			 i, &rgn[i].base, &rgn[i].size);
866 	}
867 
868 	memblock_cap_memory_range(rgn[0].base, rgn[0].size);
869 	for (i = 1; i < MAX_USABLE_RANGES && rgn[i].size; i++)
870 		memblock_add(rgn[i].base, rgn[i].size);
871 }
872 
873 #ifdef CONFIG_SERIAL_EARLYCON
874 
875 int __init early_init_dt_scan_chosen_stdout(void)
876 {
877 	int offset;
878 	const char *p, *q, *options = NULL;
879 	int l;
880 	const struct earlycon_id *match;
881 	const void *fdt = initial_boot_params;
882 	int ret;
883 
884 	offset = fdt_path_offset(fdt, "/chosen");
885 	if (offset < 0)
886 		offset = fdt_path_offset(fdt, "/chosen@0");
887 	if (offset < 0)
888 		return -ENOENT;
889 
890 	p = fdt_getprop(fdt, offset, "stdout-path", &l);
891 	if (!p)
892 		p = fdt_getprop(fdt, offset, "linux,stdout-path", &l);
893 	if (!p || !l)
894 		return -ENOENT;
895 
896 	q = strchrnul(p, ':');
897 	if (*q != '\0')
898 		options = q + 1;
899 	l = q - p;
900 
901 	/* Get the node specified by stdout-path */
902 	offset = fdt_path_offset_namelen(fdt, p, l);
903 	if (offset < 0) {
904 		pr_warn("earlycon: stdout-path %.*s not found\n", l, p);
905 		return 0;
906 	}
907 
908 	for (match = __earlycon_table; match < __earlycon_table_end; match++) {
909 		if (!match->compatible[0])
910 			continue;
911 
912 		if (fdt_node_check_compatible(fdt, offset, match->compatible))
913 			continue;
914 
915 		ret = of_setup_earlycon(match, offset, options);
916 		if (!ret || ret == -EALREADY)
917 			return 0;
918 	}
919 	return -ENODEV;
920 }
921 #endif
922 
923 /*
924  * early_init_dt_scan_root - fetch the top level address and size cells
925  */
926 int __init early_init_dt_scan_root(void)
927 {
928 	const __be32 *prop;
929 	const void *fdt = initial_boot_params;
930 	int node = fdt_path_offset(fdt, "/");
931 
932 	if (node < 0)
933 		return -ENODEV;
934 
935 	dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
936 	dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
937 
938 	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
939 	if (prop)
940 		dt_root_size_cells = be32_to_cpup(prop);
941 	pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
942 
943 	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
944 	if (prop)
945 		dt_root_addr_cells = be32_to_cpup(prop);
946 	pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
947 
948 	return 0;
949 }
950 
951 u64 __init dt_mem_next_cell(int s, const __be32 **cellp)
952 {
953 	const __be32 *p = *cellp;
954 
955 	*cellp = p + s;
956 	return of_read_number(p, s);
957 }
958 
959 /*
960  * early_init_dt_scan_memory - Look for and parse memory nodes
961  */
962 int __init early_init_dt_scan_memory(void)
963 {
964 	int node, found_memory = 0;
965 	const void *fdt = initial_boot_params;
966 
967 	fdt_for_each_subnode(node, fdt, 0) {
968 		const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
969 		const __be32 *reg, *endp;
970 		int l;
971 		bool hotpluggable;
972 
973 		/* We are scanning "memory" nodes only */
974 		if (type == NULL || strcmp(type, "memory") != 0)
975 			continue;
976 
977 		if (!of_fdt_device_is_available(fdt, node))
978 			continue;
979 
980 		reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
981 		if (reg == NULL)
982 			reg = of_get_flat_dt_prop(node, "reg", &l);
983 		if (reg == NULL)
984 			continue;
985 
986 		endp = reg + (l / sizeof(__be32));
987 		hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL);
988 
989 		pr_debug("memory scan node %s, reg size %d,\n",
990 			 fdt_get_name(fdt, node, NULL), l);
991 
992 		while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
993 			u64 base, size;
994 
995 			base = dt_mem_next_cell(dt_root_addr_cells, &reg);
996 			size = dt_mem_next_cell(dt_root_size_cells, &reg);
997 
998 			if (size == 0)
999 				continue;
1000 			pr_debug(" - %llx, %llx\n", base, size);
1001 
1002 			early_init_dt_add_memory_arch(base, size);
1003 
1004 			found_memory = 1;
1005 
1006 			if (!hotpluggable)
1007 				continue;
1008 
1009 			if (memblock_mark_hotplug(base, size))
1010 				pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n",
1011 					base, base + size);
1012 		}
1013 	}
1014 	return found_memory;
1015 }
1016 
1017 int __init early_init_dt_scan_chosen(char *cmdline)
1018 {
1019 	int l, node;
1020 	const char *p;
1021 	const void *rng_seed;
1022 	const void *fdt = initial_boot_params;
1023 
1024 	node = fdt_path_offset(fdt, "/chosen");
1025 	if (node < 0)
1026 		node = fdt_path_offset(fdt, "/chosen@0");
1027 	if (node < 0)
1028 		/* Handle the cmdline config options even if no /chosen node */
1029 		goto handle_cmdline;
1030 
1031 	chosen_node_offset = node;
1032 
1033 	early_init_dt_check_for_initrd(node);
1034 	early_init_dt_check_for_elfcorehdr(node);
1035 
1036 	rng_seed = of_get_flat_dt_prop(node, "rng-seed", &l);
1037 	if (rng_seed && l > 0) {
1038 		add_bootloader_randomness(rng_seed, l);
1039 
1040 		/* try to clear seed so it won't be found. */
1041 		fdt_nop_property(initial_boot_params, node, "rng-seed");
1042 
1043 		/* update CRC check value */
1044 		of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1045 				fdt_totalsize(initial_boot_params));
1046 	}
1047 
1048 	/* Retrieve command line */
1049 	p = of_get_flat_dt_prop(node, "bootargs", &l);
1050 	if (p != NULL && l > 0)
1051 		strscpy(cmdline, p, min(l, COMMAND_LINE_SIZE));
1052 
1053 handle_cmdline:
1054 	/*
1055 	 * CONFIG_CMDLINE is meant to be a default in case nothing else
1056 	 * managed to set the command line, unless CONFIG_CMDLINE_FORCE
1057 	 * is set in which case we override whatever was found earlier.
1058 	 */
1059 #ifdef CONFIG_CMDLINE
1060 #if defined(CONFIG_CMDLINE_EXTEND)
1061 	strlcat(cmdline, " ", COMMAND_LINE_SIZE);
1062 	strlcat(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1063 #elif defined(CONFIG_CMDLINE_FORCE)
1064 	strscpy(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1065 #else
1066 	/* No arguments from boot loader, use kernel's  cmdl*/
1067 	if (!((char *)cmdline)[0])
1068 		strscpy(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1069 #endif
1070 #endif /* CONFIG_CMDLINE */
1071 
1072 	pr_debug("Command line is: %s\n", (char *)cmdline);
1073 
1074 	return 0;
1075 }
1076 
1077 #ifndef MIN_MEMBLOCK_ADDR
1078 #define MIN_MEMBLOCK_ADDR	__pa(PAGE_OFFSET)
1079 #endif
1080 #ifndef MAX_MEMBLOCK_ADDR
1081 #define MAX_MEMBLOCK_ADDR	((phys_addr_t)~0)
1082 #endif
1083 
1084 void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1085 {
1086 	const u64 phys_offset = MIN_MEMBLOCK_ADDR;
1087 
1088 	if (size < PAGE_SIZE - (base & ~PAGE_MASK)) {
1089 		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1090 			base, base + size);
1091 		return;
1092 	}
1093 
1094 	if (!PAGE_ALIGNED(base)) {
1095 		size -= PAGE_SIZE - (base & ~PAGE_MASK);
1096 		base = PAGE_ALIGN(base);
1097 	}
1098 	size &= PAGE_MASK;
1099 
1100 	if (base > MAX_MEMBLOCK_ADDR) {
1101 		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1102 			base, base + size);
1103 		return;
1104 	}
1105 
1106 	if (base + size - 1 > MAX_MEMBLOCK_ADDR) {
1107 		pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1108 			((u64)MAX_MEMBLOCK_ADDR) + 1, base + size);
1109 		size = MAX_MEMBLOCK_ADDR - base + 1;
1110 	}
1111 
1112 	if (base + size < phys_offset) {
1113 		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1114 			base, base + size);
1115 		return;
1116 	}
1117 	if (base < phys_offset) {
1118 		pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1119 			base, phys_offset);
1120 		size -= phys_offset - base;
1121 		base = phys_offset;
1122 	}
1123 	memblock_add(base, size);
1124 }
1125 
1126 static void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align)
1127 {
1128 	void *ptr = memblock_alloc(size, align);
1129 
1130 	if (!ptr)
1131 		panic("%s: Failed to allocate %llu bytes align=0x%llx\n",
1132 		      __func__, size, align);
1133 
1134 	return ptr;
1135 }
1136 
1137 bool __init early_init_dt_verify(void *params)
1138 {
1139 	if (!params)
1140 		return false;
1141 
1142 	/* check device tree validity */
1143 	if (fdt_check_header(params))
1144 		return false;
1145 
1146 	/* Setup flat device-tree pointer */
1147 	initial_boot_params = params;
1148 	of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1149 				fdt_totalsize(initial_boot_params));
1150 
1151 	/* Initialize {size,address}-cells info */
1152 	early_init_dt_scan_root();
1153 
1154 	return true;
1155 }
1156 
1157 
1158 void __init early_init_dt_scan_nodes(void)
1159 {
1160 	int rc;
1161 
1162 	/* Retrieve various information from the /chosen node */
1163 	rc = early_init_dt_scan_chosen(boot_command_line);
1164 	if (rc)
1165 		pr_warn("No chosen node found, continuing without\n");
1166 
1167 	/* Setup memory, calling early_init_dt_add_memory_arch */
1168 	early_init_dt_scan_memory();
1169 
1170 	/* Handle linux,usable-memory-range property */
1171 	early_init_dt_check_for_usable_mem_range();
1172 }
1173 
1174 bool __init early_init_dt_scan(void *params)
1175 {
1176 	bool status;
1177 
1178 	status = early_init_dt_verify(params);
1179 	if (!status)
1180 		return false;
1181 
1182 	early_init_dt_scan_nodes();
1183 	return true;
1184 }
1185 
1186 static void *__init copy_device_tree(void *fdt)
1187 {
1188 	int size;
1189 	void *dt;
1190 
1191 	size = fdt_totalsize(fdt);
1192 	dt = early_init_dt_alloc_memory_arch(size,
1193 					     roundup_pow_of_two(FDT_V17_SIZE));
1194 
1195 	if (dt)
1196 		memcpy(dt, fdt, size);
1197 
1198 	return dt;
1199 }
1200 
1201 /**
1202  * unflatten_device_tree - create tree of device_nodes from flat blob
1203  *
1204  * unflattens the device-tree passed by the firmware, creating the
1205  * tree of struct device_node. It also fills the "name" and "type"
1206  * pointers of the nodes so the normal device-tree walking functions
1207  * can be used.
1208  */
1209 void __init unflatten_device_tree(void)
1210 {
1211 	void *fdt = initial_boot_params;
1212 
1213 	/* Save the statically-placed regions in the reserved_mem array */
1214 	fdt_scan_reserved_mem_reg_nodes();
1215 
1216 	/* Don't use the bootloader provided DTB if ACPI is enabled */
1217 	if (!acpi_disabled)
1218 		fdt = NULL;
1219 
1220 	/*
1221 	 * Populate an empty root node when ACPI is enabled or bootloader
1222 	 * doesn't provide one.
1223 	 */
1224 	if (!fdt) {
1225 		fdt = (void *) __dtb_empty_root_begin;
1226 		/* fdt_totalsize() will be used for copy size */
1227 		if (fdt_totalsize(fdt) >
1228 		    __dtb_empty_root_end - __dtb_empty_root_begin) {
1229 			pr_err("invalid size in dtb_empty_root\n");
1230 			return;
1231 		}
1232 		of_fdt_crc32 = crc32_be(~0, fdt, fdt_totalsize(fdt));
1233 		fdt = copy_device_tree(fdt);
1234 	}
1235 
1236 	__unflatten_device_tree(fdt, NULL, &of_root,
1237 				early_init_dt_alloc_memory_arch, false);
1238 
1239 	/* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
1240 	of_alias_scan(early_init_dt_alloc_memory_arch);
1241 
1242 	unittest_unflatten_overlay_base();
1243 }
1244 
1245 /**
1246  * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
1247  *
1248  * Copies and unflattens the device-tree passed by the firmware, creating the
1249  * tree of struct device_node. It also fills the "name" and "type"
1250  * pointers of the nodes so the normal device-tree walking functions
1251  * can be used. This should only be used when the FDT memory has not been
1252  * reserved such is the case when the FDT is built-in to the kernel init
1253  * section. If the FDT memory is reserved already then unflatten_device_tree
1254  * should be used instead.
1255  */
1256 void __init unflatten_and_copy_device_tree(void)
1257 {
1258 	if (initial_boot_params)
1259 		initial_boot_params = copy_device_tree(initial_boot_params);
1260 
1261 	unflatten_device_tree();
1262 }
1263 
1264 #ifdef CONFIG_SYSFS
1265 static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj,
1266 			       struct bin_attribute *bin_attr,
1267 			       char *buf, loff_t off, size_t count)
1268 {
1269 	memcpy(buf, initial_boot_params + off, count);
1270 	return count;
1271 }
1272 
1273 static int __init of_fdt_raw_init(void)
1274 {
1275 	static struct bin_attribute of_fdt_raw_attr =
1276 		__BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0);
1277 
1278 	if (!initial_boot_params)
1279 		return 0;
1280 
1281 	if (of_fdt_crc32 != crc32_be(~0, initial_boot_params,
1282 				     fdt_totalsize(initial_boot_params))) {
1283 		pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n");
1284 		return 0;
1285 	}
1286 	of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params);
1287 	return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr);
1288 }
1289 late_initcall(of_fdt_raw_init);
1290 #endif
1291 
1292 #endif /* CONFIG_OF_EARLY_FLATTREE */
1293