xref: /linux/drivers/of/fdt.c (revision 95db3b255fde4e830e5f8cc011eb404023f669d4)
1 /*
2  * Functions for working with the Flattened Device Tree data format
3  *
4  * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
5  * benh@kernel.crashing.org
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * version 2 as published by the Free Software Foundation.
10  */
11 
12 #include <linux/crc32.h>
13 #include <linux/kernel.h>
14 #include <linux/initrd.h>
15 #include <linux/memblock.h>
16 #include <linux/mutex.h>
17 #include <linux/of.h>
18 #include <linux/of_fdt.h>
19 #include <linux/of_reserved_mem.h>
20 #include <linux/sizes.h>
21 #include <linux/string.h>
22 #include <linux/errno.h>
23 #include <linux/slab.h>
24 #include <linux/libfdt.h>
25 #include <linux/debugfs.h>
26 #include <linux/serial_core.h>
27 #include <linux/sysfs.h>
28 
29 #include <asm/setup.h>  /* for COMMAND_LINE_SIZE */
30 #include <asm/page.h>
31 
32 /*
33  * of_fdt_limit_memory - limit the number of regions in the /memory node
34  * @limit: maximum entries
35  *
36  * Adjust the flattened device tree to have at most 'limit' number of
37  * memory entries in the /memory node. This function may be called
38  * any time after initial_boot_param is set.
39  */
40 void of_fdt_limit_memory(int limit)
41 {
42 	int memory;
43 	int len;
44 	const void *val;
45 	int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
46 	int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
47 	const uint32_t *addr_prop;
48 	const uint32_t *size_prop;
49 	int root_offset;
50 	int cell_size;
51 
52 	root_offset = fdt_path_offset(initial_boot_params, "/");
53 	if (root_offset < 0)
54 		return;
55 
56 	addr_prop = fdt_getprop(initial_boot_params, root_offset,
57 				"#address-cells", NULL);
58 	if (addr_prop)
59 		nr_address_cells = fdt32_to_cpu(*addr_prop);
60 
61 	size_prop = fdt_getprop(initial_boot_params, root_offset,
62 				"#size-cells", NULL);
63 	if (size_prop)
64 		nr_size_cells = fdt32_to_cpu(*size_prop);
65 
66 	cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells);
67 
68 	memory = fdt_path_offset(initial_boot_params, "/memory");
69 	if (memory > 0) {
70 		val = fdt_getprop(initial_boot_params, memory, "reg", &len);
71 		if (len > limit*cell_size) {
72 			len = limit*cell_size;
73 			pr_debug("Limiting number of entries to %d\n", limit);
74 			fdt_setprop(initial_boot_params, memory, "reg", val,
75 					len);
76 		}
77 	}
78 }
79 
80 /**
81  * of_fdt_is_compatible - Return true if given node from the given blob has
82  * compat in its compatible list
83  * @blob: A device tree blob
84  * @node: node to test
85  * @compat: compatible string to compare with compatible list.
86  *
87  * On match, returns a non-zero value with smaller values returned for more
88  * specific compatible values.
89  */
90 int of_fdt_is_compatible(const void *blob,
91 		      unsigned long node, const char *compat)
92 {
93 	const char *cp;
94 	int cplen;
95 	unsigned long l, score = 0;
96 
97 	cp = fdt_getprop(blob, node, "compatible", &cplen);
98 	if (cp == NULL)
99 		return 0;
100 	while (cplen > 0) {
101 		score++;
102 		if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
103 			return score;
104 		l = strlen(cp) + 1;
105 		cp += l;
106 		cplen -= l;
107 	}
108 
109 	return 0;
110 }
111 
112 /**
113  * of_fdt_is_big_endian - Return true if given node needs BE MMIO accesses
114  * @blob: A device tree blob
115  * @node: node to test
116  *
117  * Returns true if the node has a "big-endian" property, or if the kernel
118  * was compiled for BE *and* the node has a "native-endian" property.
119  * Returns false otherwise.
120  */
121 bool of_fdt_is_big_endian(const void *blob, unsigned long node)
122 {
123 	if (fdt_getprop(blob, node, "big-endian", NULL))
124 		return true;
125 	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
126 	    fdt_getprop(blob, node, "native-endian", NULL))
127 		return true;
128 	return false;
129 }
130 
131 /**
132  * of_fdt_match - Return true if node matches a list of compatible values
133  */
134 int of_fdt_match(const void *blob, unsigned long node,
135                  const char *const *compat)
136 {
137 	unsigned int tmp, score = 0;
138 
139 	if (!compat)
140 		return 0;
141 
142 	while (*compat) {
143 		tmp = of_fdt_is_compatible(blob, node, *compat);
144 		if (tmp && (score == 0 || (tmp < score)))
145 			score = tmp;
146 		compat++;
147 	}
148 
149 	return score;
150 }
151 
152 static void *unflatten_dt_alloc(void **mem, unsigned long size,
153 				       unsigned long align)
154 {
155 	void *res;
156 
157 	*mem = PTR_ALIGN(*mem, align);
158 	res = *mem;
159 	*mem += size;
160 
161 	return res;
162 }
163 
164 static void populate_properties(const void *blob,
165 				int offset,
166 				void **mem,
167 				struct device_node *np,
168 				const char *nodename,
169 				bool dryrun)
170 {
171 	struct property *pp, **pprev = NULL;
172 	int cur;
173 	bool has_name = false;
174 
175 	pprev = &np->properties;
176 	for (cur = fdt_first_property_offset(blob, offset);
177 	     cur >= 0;
178 	     cur = fdt_next_property_offset(blob, cur)) {
179 		const __be32 *val;
180 		const char *pname;
181 		u32 sz;
182 
183 		val = fdt_getprop_by_offset(blob, cur, &pname, &sz);
184 		if (!val) {
185 			pr_warn("%s: Cannot locate property at 0x%x\n",
186 				__func__, cur);
187 			continue;
188 		}
189 
190 		if (!pname) {
191 			pr_warn("%s: Cannot find property name at 0x%x\n",
192 				__func__, cur);
193 			continue;
194 		}
195 
196 		if (!strcmp(pname, "name"))
197 			has_name = true;
198 
199 		pp = unflatten_dt_alloc(mem, sizeof(struct property),
200 					__alignof__(struct property));
201 		if (dryrun)
202 			continue;
203 
204 		/* We accept flattened tree phandles either in
205 		 * ePAPR-style "phandle" properties, or the
206 		 * legacy "linux,phandle" properties.  If both
207 		 * appear and have different values, things
208 		 * will get weird. Don't do that.
209 		 */
210 		if (!strcmp(pname, "phandle") ||
211 		    !strcmp(pname, "linux,phandle")) {
212 			if (!np->phandle)
213 				np->phandle = be32_to_cpup(val);
214 		}
215 
216 		/* And we process the "ibm,phandle" property
217 		 * used in pSeries dynamic device tree
218 		 * stuff
219 		 */
220 		if (!strcmp(pname, "ibm,phandle"))
221 			np->phandle = be32_to_cpup(val);
222 
223 		pp->name   = (char *)pname;
224 		pp->length = sz;
225 		pp->value  = (__be32 *)val;
226 		*pprev     = pp;
227 		pprev      = &pp->next;
228 	}
229 
230 	/* With version 0x10 we may not have the name property,
231 	 * recreate it here from the unit name if absent
232 	 */
233 	if (!has_name) {
234 		const char *p = nodename, *ps = p, *pa = NULL;
235 		int len;
236 
237 		while (*p) {
238 			if ((*p) == '@')
239 				pa = p;
240 			else if ((*p) == '/')
241 				ps = p + 1;
242 			p++;
243 		}
244 
245 		if (pa < ps)
246 			pa = p;
247 		len = (pa - ps) + 1;
248 		pp = unflatten_dt_alloc(mem, sizeof(struct property) + len,
249 					__alignof__(struct property));
250 		if (!dryrun) {
251 			pp->name   = "name";
252 			pp->length = len;
253 			pp->value  = pp + 1;
254 			*pprev     = pp;
255 			pprev      = &pp->next;
256 			memcpy(pp->value, ps, len - 1);
257 			((char *)pp->value)[len - 1] = 0;
258 			pr_debug("fixed up name for %s -> %s\n",
259 				 nodename, (char *)pp->value);
260 		}
261 	}
262 
263 	if (!dryrun)
264 		*pprev = NULL;
265 }
266 
267 static unsigned int populate_node(const void *blob,
268 				  int offset,
269 				  void **mem,
270 				  struct device_node *dad,
271 				  unsigned int fpsize,
272 				  struct device_node **pnp,
273 				  bool dryrun)
274 {
275 	struct device_node *np;
276 	const char *pathp;
277 	unsigned int l, allocl;
278 	int new_format = 0;
279 
280 	pathp = fdt_get_name(blob, offset, &l);
281 	if (!pathp) {
282 		*pnp = NULL;
283 		return 0;
284 	}
285 
286 	allocl = ++l;
287 
288 	/* version 0x10 has a more compact unit name here instead of the full
289 	 * path. we accumulate the full path size using "fpsize", we'll rebuild
290 	 * it later. We detect this because the first character of the name is
291 	 * not '/'.
292 	 */
293 	if ((*pathp) != '/') {
294 		new_format = 1;
295 		if (fpsize == 0) {
296 			/* root node: special case. fpsize accounts for path
297 			 * plus terminating zero. root node only has '/', so
298 			 * fpsize should be 2, but we want to avoid the first
299 			 * level nodes to have two '/' so we use fpsize 1 here
300 			 */
301 			fpsize = 1;
302 			allocl = 2;
303 			l = 1;
304 			pathp = "";
305 		} else {
306 			/* account for '/' and path size minus terminal 0
307 			 * already in 'l'
308 			 */
309 			fpsize += l;
310 			allocl = fpsize;
311 		}
312 	}
313 
314 	np = unflatten_dt_alloc(mem, sizeof(struct device_node) + allocl,
315 				__alignof__(struct device_node));
316 	if (!dryrun) {
317 		char *fn;
318 		of_node_init(np);
319 		np->full_name = fn = ((char *)np) + sizeof(*np);
320 		if (new_format) {
321 			/* rebuild full path for new format */
322 			if (dad && dad->parent) {
323 				strcpy(fn, dad->full_name);
324 #ifdef DEBUG
325 				if ((strlen(fn) + l + 1) != allocl) {
326 					pr_debug("%s: p: %d, l: %d, a: %d\n",
327 						pathp, (int)strlen(fn),
328 						l, allocl);
329 				}
330 #endif
331 				fn += strlen(fn);
332 			}
333 			*(fn++) = '/';
334 		}
335 		memcpy(fn, pathp, l);
336 
337 		if (dad != NULL) {
338 			np->parent = dad;
339 			np->sibling = dad->child;
340 			dad->child = np;
341 		}
342 	}
343 
344 	populate_properties(blob, offset, mem, np, pathp, dryrun);
345 	if (!dryrun) {
346 		np->name = of_get_property(np, "name", NULL);
347 		np->type = of_get_property(np, "device_type", NULL);
348 
349 		if (!np->name)
350 			np->name = "<NULL>";
351 		if (!np->type)
352 			np->type = "<NULL>";
353 	}
354 
355 	*pnp = np;
356 	return fpsize;
357 }
358 
359 static void reverse_nodes(struct device_node *parent)
360 {
361 	struct device_node *child, *next;
362 
363 	/* In-depth first */
364 	child = parent->child;
365 	while (child) {
366 		reverse_nodes(child);
367 
368 		child = child->sibling;
369 	}
370 
371 	/* Reverse the nodes in the child list */
372 	child = parent->child;
373 	parent->child = NULL;
374 	while (child) {
375 		next = child->sibling;
376 
377 		child->sibling = parent->child;
378 		parent->child = child;
379 		child = next;
380 	}
381 }
382 
383 /**
384  * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree
385  * @blob: The parent device tree blob
386  * @mem: Memory chunk to use for allocating device nodes and properties
387  * @dad: Parent struct device_node
388  * @nodepp: The device_node tree created by the call
389  *
390  * It returns the size of unflattened device tree or error code
391  */
392 static int unflatten_dt_nodes(const void *blob,
393 			      void *mem,
394 			      struct device_node *dad,
395 			      struct device_node **nodepp)
396 {
397 	struct device_node *root;
398 	int offset = 0, depth = 0, initial_depth = 0;
399 #define FDT_MAX_DEPTH	64
400 	unsigned int fpsizes[FDT_MAX_DEPTH];
401 	struct device_node *nps[FDT_MAX_DEPTH];
402 	void *base = mem;
403 	bool dryrun = !base;
404 
405 	if (nodepp)
406 		*nodepp = NULL;
407 
408 	/*
409 	 * We're unflattening device sub-tree if @dad is valid. There are
410 	 * possibly multiple nodes in the first level of depth. We need
411 	 * set @depth to 1 to make fdt_next_node() happy as it bails
412 	 * immediately when negative @depth is found. Otherwise, the device
413 	 * nodes except the first one won't be unflattened successfully.
414 	 */
415 	if (dad)
416 		depth = initial_depth = 1;
417 
418 	root = dad;
419 	fpsizes[depth] = dad ? strlen(of_node_full_name(dad)) : 0;
420 	nps[depth] = dad;
421 
422 	for (offset = 0;
423 	     offset >= 0 && depth >= initial_depth;
424 	     offset = fdt_next_node(blob, offset, &depth)) {
425 		if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH))
426 			continue;
427 
428 		fpsizes[depth+1] = populate_node(blob, offset, &mem,
429 						 nps[depth],
430 						 fpsizes[depth],
431 						 &nps[depth+1], dryrun);
432 		if (!fpsizes[depth+1])
433 			return mem - base;
434 
435 		if (!dryrun && nodepp && !*nodepp)
436 			*nodepp = nps[depth+1];
437 		if (!dryrun && !root)
438 			root = nps[depth+1];
439 	}
440 
441 	if (offset < 0 && offset != -FDT_ERR_NOTFOUND) {
442 		pr_err("%s: Error %d processing FDT\n", __func__, offset);
443 		return -EINVAL;
444 	}
445 
446 	/*
447 	 * Reverse the child list. Some drivers assumes node order matches .dts
448 	 * node order
449 	 */
450 	if (!dryrun)
451 		reverse_nodes(root);
452 
453 	return mem - base;
454 }
455 
456 /**
457  * __unflatten_device_tree - create tree of device_nodes from flat blob
458  *
459  * unflattens a device-tree, creating the
460  * tree of struct device_node. It also fills the "name" and "type"
461  * pointers of the nodes so the normal device-tree walking functions
462  * can be used.
463  * @blob: The blob to expand
464  * @dad: Parent device node
465  * @mynodes: The device_node tree created by the call
466  * @dt_alloc: An allocator that provides a virtual address to memory
467  * for the resulting tree
468  *
469  * Returns NULL on failure or the memory chunk containing the unflattened
470  * device tree on success.
471  */
472 static void *__unflatten_device_tree(const void *blob,
473 				     struct device_node *dad,
474 				     struct device_node **mynodes,
475 				     void *(*dt_alloc)(u64 size, u64 align))
476 {
477 	int size;
478 	void *mem;
479 
480 	pr_debug(" -> unflatten_device_tree()\n");
481 
482 	if (!blob) {
483 		pr_debug("No device tree pointer\n");
484 		return NULL;
485 	}
486 
487 	pr_debug("Unflattening device tree:\n");
488 	pr_debug("magic: %08x\n", fdt_magic(blob));
489 	pr_debug("size: %08x\n", fdt_totalsize(blob));
490 	pr_debug("version: %08x\n", fdt_version(blob));
491 
492 	if (fdt_check_header(blob)) {
493 		pr_err("Invalid device tree blob header\n");
494 		return NULL;
495 	}
496 
497 	/* First pass, scan for size */
498 	size = unflatten_dt_nodes(blob, NULL, dad, NULL);
499 	if (size < 0)
500 		return NULL;
501 
502 	size = ALIGN(size, 4);
503 	pr_debug("  size is %d, allocating...\n", size);
504 
505 	/* Allocate memory for the expanded device tree */
506 	mem = dt_alloc(size + 4, __alignof__(struct device_node));
507 	memset(mem, 0, size);
508 
509 	*(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
510 
511 	pr_debug("  unflattening %p...\n", mem);
512 
513 	/* Second pass, do actual unflattening */
514 	unflatten_dt_nodes(blob, mem, dad, mynodes);
515 	if (be32_to_cpup(mem + size) != 0xdeadbeef)
516 		pr_warning("End of tree marker overwritten: %08x\n",
517 			   be32_to_cpup(mem + size));
518 
519 	pr_debug(" <- unflatten_device_tree()\n");
520 	return mem;
521 }
522 
523 static void *kernel_tree_alloc(u64 size, u64 align)
524 {
525 	return kzalloc(size, GFP_KERNEL);
526 }
527 
528 static DEFINE_MUTEX(of_fdt_unflatten_mutex);
529 
530 /**
531  * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
532  * @blob: Flat device tree blob
533  * @dad: Parent device node
534  * @mynodes: The device tree created by the call
535  *
536  * unflattens the device-tree passed by the firmware, creating the
537  * tree of struct device_node. It also fills the "name" and "type"
538  * pointers of the nodes so the normal device-tree walking functions
539  * can be used.
540  *
541  * Returns NULL on failure or the memory chunk containing the unflattened
542  * device tree on success.
543  */
544 void *of_fdt_unflatten_tree(const unsigned long *blob,
545 			    struct device_node *dad,
546 			    struct device_node **mynodes)
547 {
548 	void *mem;
549 
550 	mutex_lock(&of_fdt_unflatten_mutex);
551 	mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc);
552 	mutex_unlock(&of_fdt_unflatten_mutex);
553 
554 	return mem;
555 }
556 EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
557 
558 /* Everything below here references initial_boot_params directly. */
559 int __initdata dt_root_addr_cells;
560 int __initdata dt_root_size_cells;
561 
562 void *initial_boot_params;
563 
564 #ifdef CONFIG_OF_EARLY_FLATTREE
565 
566 static u32 of_fdt_crc32;
567 
568 /**
569  * res_mem_reserve_reg() - reserve all memory described in 'reg' property
570  */
571 static int __init __reserved_mem_reserve_reg(unsigned long node,
572 					     const char *uname)
573 {
574 	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
575 	phys_addr_t base, size;
576 	int len;
577 	const __be32 *prop;
578 	int nomap, first = 1;
579 
580 	prop = of_get_flat_dt_prop(node, "reg", &len);
581 	if (!prop)
582 		return -ENOENT;
583 
584 	if (len && len % t_len != 0) {
585 		pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
586 		       uname);
587 		return -EINVAL;
588 	}
589 
590 	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
591 
592 	while (len >= t_len) {
593 		base = dt_mem_next_cell(dt_root_addr_cells, &prop);
594 		size = dt_mem_next_cell(dt_root_size_cells, &prop);
595 
596 		if (size &&
597 		    early_init_dt_reserve_memory_arch(base, size, nomap) == 0)
598 			pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %ld MiB\n",
599 				uname, &base, (unsigned long)size / SZ_1M);
600 		else
601 			pr_info("Reserved memory: failed to reserve memory for node '%s': base %pa, size %ld MiB\n",
602 				uname, &base, (unsigned long)size / SZ_1M);
603 
604 		len -= t_len;
605 		if (first) {
606 			fdt_reserved_mem_save_node(node, uname, base, size);
607 			first = 0;
608 		}
609 	}
610 	return 0;
611 }
612 
613 /**
614  * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
615  * in /reserved-memory matches the values supported by the current implementation,
616  * also check if ranges property has been provided
617  */
618 static int __init __reserved_mem_check_root(unsigned long node)
619 {
620 	const __be32 *prop;
621 
622 	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
623 	if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
624 		return -EINVAL;
625 
626 	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
627 	if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
628 		return -EINVAL;
629 
630 	prop = of_get_flat_dt_prop(node, "ranges", NULL);
631 	if (!prop)
632 		return -EINVAL;
633 	return 0;
634 }
635 
636 /**
637  * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
638  */
639 static int __init __fdt_scan_reserved_mem(unsigned long node, const char *uname,
640 					  int depth, void *data)
641 {
642 	static int found;
643 	const char *status;
644 	int err;
645 
646 	if (!found && depth == 1 && strcmp(uname, "reserved-memory") == 0) {
647 		if (__reserved_mem_check_root(node) != 0) {
648 			pr_err("Reserved memory: unsupported node format, ignoring\n");
649 			/* break scan */
650 			return 1;
651 		}
652 		found = 1;
653 		/* scan next node */
654 		return 0;
655 	} else if (!found) {
656 		/* scan next node */
657 		return 0;
658 	} else if (found && depth < 2) {
659 		/* scanning of /reserved-memory has been finished */
660 		return 1;
661 	}
662 
663 	status = of_get_flat_dt_prop(node, "status", NULL);
664 	if (status && strcmp(status, "okay") != 0 && strcmp(status, "ok") != 0)
665 		return 0;
666 
667 	err = __reserved_mem_reserve_reg(node, uname);
668 	if (err == -ENOENT && of_get_flat_dt_prop(node, "size", NULL))
669 		fdt_reserved_mem_save_node(node, uname, 0, 0);
670 
671 	/* scan next node */
672 	return 0;
673 }
674 
675 /**
676  * early_init_fdt_scan_reserved_mem() - create reserved memory regions
677  *
678  * This function grabs memory from early allocator for device exclusive use
679  * defined in device tree structures. It should be called by arch specific code
680  * once the early allocator (i.e. memblock) has been fully activated.
681  */
682 void __init early_init_fdt_scan_reserved_mem(void)
683 {
684 	int n;
685 	u64 base, size;
686 
687 	if (!initial_boot_params)
688 		return;
689 
690 	/* Process header /memreserve/ fields */
691 	for (n = 0; ; n++) {
692 		fdt_get_mem_rsv(initial_boot_params, n, &base, &size);
693 		if (!size)
694 			break;
695 		early_init_dt_reserve_memory_arch(base, size, 0);
696 	}
697 
698 	of_scan_flat_dt(__fdt_scan_reserved_mem, NULL);
699 	fdt_init_reserved_mem();
700 }
701 
702 /**
703  * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob
704  */
705 void __init early_init_fdt_reserve_self(void)
706 {
707 	if (!initial_boot_params)
708 		return;
709 
710 	/* Reserve the dtb region */
711 	early_init_dt_reserve_memory_arch(__pa(initial_boot_params),
712 					  fdt_totalsize(initial_boot_params),
713 					  0);
714 }
715 
716 /**
717  * of_scan_flat_dt - scan flattened tree blob and call callback on each.
718  * @it: callback function
719  * @data: context data pointer
720  *
721  * This function is used to scan the flattened device-tree, it is
722  * used to extract the memory information at boot before we can
723  * unflatten the tree
724  */
725 int __init of_scan_flat_dt(int (*it)(unsigned long node,
726 				     const char *uname, int depth,
727 				     void *data),
728 			   void *data)
729 {
730 	const void *blob = initial_boot_params;
731 	const char *pathp;
732 	int offset, rc = 0, depth = -1;
733 
734         for (offset = fdt_next_node(blob, -1, &depth);
735              offset >= 0 && depth >= 0 && !rc;
736              offset = fdt_next_node(blob, offset, &depth)) {
737 
738 		pathp = fdt_get_name(blob, offset, NULL);
739 		if (*pathp == '/')
740 			pathp = kbasename(pathp);
741 		rc = it(offset, pathp, depth, data);
742 	}
743 	return rc;
744 }
745 
746 /**
747  * of_get_flat_dt_root - find the root node in the flat blob
748  */
749 unsigned long __init of_get_flat_dt_root(void)
750 {
751 	return 0;
752 }
753 
754 /**
755  * of_get_flat_dt_size - Return the total size of the FDT
756  */
757 int __init of_get_flat_dt_size(void)
758 {
759 	return fdt_totalsize(initial_boot_params);
760 }
761 
762 /**
763  * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
764  *
765  * This function can be used within scan_flattened_dt callback to get
766  * access to properties
767  */
768 const void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
769 				       int *size)
770 {
771 	return fdt_getprop(initial_boot_params, node, name, size);
772 }
773 
774 /**
775  * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
776  * @node: node to test
777  * @compat: compatible string to compare with compatible list.
778  */
779 int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
780 {
781 	return of_fdt_is_compatible(initial_boot_params, node, compat);
782 }
783 
784 /**
785  * of_flat_dt_match - Return true if node matches a list of compatible values
786  */
787 int __init of_flat_dt_match(unsigned long node, const char *const *compat)
788 {
789 	return of_fdt_match(initial_boot_params, node, compat);
790 }
791 
792 struct fdt_scan_status {
793 	const char *name;
794 	int namelen;
795 	int depth;
796 	int found;
797 	int (*iterator)(unsigned long node, const char *uname, int depth, void *data);
798 	void *data;
799 };
800 
801 const char * __init of_flat_dt_get_machine_name(void)
802 {
803 	const char *name;
804 	unsigned long dt_root = of_get_flat_dt_root();
805 
806 	name = of_get_flat_dt_prop(dt_root, "model", NULL);
807 	if (!name)
808 		name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
809 	return name;
810 }
811 
812 /**
813  * of_flat_dt_match_machine - Iterate match tables to find matching machine.
814  *
815  * @default_match: A machine specific ptr to return in case of no match.
816  * @get_next_compat: callback function to return next compatible match table.
817  *
818  * Iterate through machine match tables to find the best match for the machine
819  * compatible string in the FDT.
820  */
821 const void * __init of_flat_dt_match_machine(const void *default_match,
822 		const void * (*get_next_compat)(const char * const**))
823 {
824 	const void *data = NULL;
825 	const void *best_data = default_match;
826 	const char *const *compat;
827 	unsigned long dt_root;
828 	unsigned int best_score = ~1, score = 0;
829 
830 	dt_root = of_get_flat_dt_root();
831 	while ((data = get_next_compat(&compat))) {
832 		score = of_flat_dt_match(dt_root, compat);
833 		if (score > 0 && score < best_score) {
834 			best_data = data;
835 			best_score = score;
836 		}
837 	}
838 	if (!best_data) {
839 		const char *prop;
840 		int size;
841 
842 		pr_err("\n unrecognized device tree list:\n[ ");
843 
844 		prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
845 		if (prop) {
846 			while (size > 0) {
847 				printk("'%s' ", prop);
848 				size -= strlen(prop) + 1;
849 				prop += strlen(prop) + 1;
850 			}
851 		}
852 		printk("]\n\n");
853 		return NULL;
854 	}
855 
856 	pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
857 
858 	return best_data;
859 }
860 
861 #ifdef CONFIG_BLK_DEV_INITRD
862 #ifndef __early_init_dt_declare_initrd
863 static void __early_init_dt_declare_initrd(unsigned long start,
864 					   unsigned long end)
865 {
866 	initrd_start = (unsigned long)__va(start);
867 	initrd_end = (unsigned long)__va(end);
868 	initrd_below_start_ok = 1;
869 }
870 #endif
871 
872 /**
873  * early_init_dt_check_for_initrd - Decode initrd location from flat tree
874  * @node: reference to node containing initrd location ('chosen')
875  */
876 static void __init early_init_dt_check_for_initrd(unsigned long node)
877 {
878 	u64 start, end;
879 	int len;
880 	const __be32 *prop;
881 
882 	pr_debug("Looking for initrd properties... ");
883 
884 	prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
885 	if (!prop)
886 		return;
887 	start = of_read_number(prop, len/4);
888 
889 	prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
890 	if (!prop)
891 		return;
892 	end = of_read_number(prop, len/4);
893 
894 	__early_init_dt_declare_initrd(start, end);
895 
896 	pr_debug("initrd_start=0x%llx  initrd_end=0x%llx\n",
897 		 (unsigned long long)start, (unsigned long long)end);
898 }
899 #else
900 static inline void early_init_dt_check_for_initrd(unsigned long node)
901 {
902 }
903 #endif /* CONFIG_BLK_DEV_INITRD */
904 
905 #ifdef CONFIG_SERIAL_EARLYCON
906 
907 static int __init early_init_dt_scan_chosen_serial(void)
908 {
909 	int offset;
910 	const char *p, *q, *options = NULL;
911 	int l;
912 	const struct earlycon_id *match;
913 	const void *fdt = initial_boot_params;
914 
915 	offset = fdt_path_offset(fdt, "/chosen");
916 	if (offset < 0)
917 		offset = fdt_path_offset(fdt, "/chosen@0");
918 	if (offset < 0)
919 		return -ENOENT;
920 
921 	p = fdt_getprop(fdt, offset, "stdout-path", &l);
922 	if (!p)
923 		p = fdt_getprop(fdt, offset, "linux,stdout-path", &l);
924 	if (!p || !l)
925 		return -ENOENT;
926 
927 	q = strchrnul(p, ':');
928 	if (*q != '\0')
929 		options = q + 1;
930 	l = q - p;
931 
932 	/* Get the node specified by stdout-path */
933 	offset = fdt_path_offset_namelen(fdt, p, l);
934 	if (offset < 0) {
935 		pr_warn("earlycon: stdout-path %.*s not found\n", l, p);
936 		return 0;
937 	}
938 
939 	for (match = __earlycon_table; match < __earlycon_table_end; match++) {
940 		if (!match->compatible[0])
941 			continue;
942 
943 		if (fdt_node_check_compatible(fdt, offset, match->compatible))
944 			continue;
945 
946 		of_setup_earlycon(match, offset, options);
947 		return 0;
948 	}
949 	return -ENODEV;
950 }
951 
952 static int __init setup_of_earlycon(char *buf)
953 {
954 	if (buf)
955 		return 0;
956 
957 	return early_init_dt_scan_chosen_serial();
958 }
959 early_param("earlycon", setup_of_earlycon);
960 #endif
961 
962 /**
963  * early_init_dt_scan_root - fetch the top level address and size cells
964  */
965 int __init early_init_dt_scan_root(unsigned long node, const char *uname,
966 				   int depth, void *data)
967 {
968 	const __be32 *prop;
969 
970 	if (depth != 0)
971 		return 0;
972 
973 	dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
974 	dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
975 
976 	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
977 	if (prop)
978 		dt_root_size_cells = be32_to_cpup(prop);
979 	pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
980 
981 	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
982 	if (prop)
983 		dt_root_addr_cells = be32_to_cpup(prop);
984 	pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
985 
986 	/* break now */
987 	return 1;
988 }
989 
990 u64 __init dt_mem_next_cell(int s, const __be32 **cellp)
991 {
992 	const __be32 *p = *cellp;
993 
994 	*cellp = p + s;
995 	return of_read_number(p, s);
996 }
997 
998 /**
999  * early_init_dt_scan_memory - Look for an parse memory nodes
1000  */
1001 int __init early_init_dt_scan_memory(unsigned long node, const char *uname,
1002 				     int depth, void *data)
1003 {
1004 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1005 	const __be32 *reg, *endp;
1006 	int l;
1007 
1008 	/* We are scanning "memory" nodes only */
1009 	if (type == NULL) {
1010 		/*
1011 		 * The longtrail doesn't have a device_type on the
1012 		 * /memory node, so look for the node called /memory@0.
1013 		 */
1014 		if (!IS_ENABLED(CONFIG_PPC32) || depth != 1 || strcmp(uname, "memory@0") != 0)
1015 			return 0;
1016 	} else if (strcmp(type, "memory") != 0)
1017 		return 0;
1018 
1019 	reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1020 	if (reg == NULL)
1021 		reg = of_get_flat_dt_prop(node, "reg", &l);
1022 	if (reg == NULL)
1023 		return 0;
1024 
1025 	endp = reg + (l / sizeof(__be32));
1026 
1027 	pr_debug("memory scan node %s, reg size %d,\n", uname, l);
1028 
1029 	while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1030 		u64 base, size;
1031 
1032 		base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1033 		size = dt_mem_next_cell(dt_root_size_cells, &reg);
1034 
1035 		if (size == 0)
1036 			continue;
1037 		pr_debug(" - %llx ,  %llx\n", (unsigned long long)base,
1038 		    (unsigned long long)size);
1039 
1040 		early_init_dt_add_memory_arch(base, size);
1041 	}
1042 
1043 	return 0;
1044 }
1045 
1046 int __init early_init_dt_scan_chosen(unsigned long node, const char *uname,
1047 				     int depth, void *data)
1048 {
1049 	int l;
1050 	const char *p;
1051 
1052 	pr_debug("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1053 
1054 	if (depth != 1 || !data ||
1055 	    (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
1056 		return 0;
1057 
1058 	early_init_dt_check_for_initrd(node);
1059 
1060 	/* Retrieve command line */
1061 	p = of_get_flat_dt_prop(node, "bootargs", &l);
1062 	if (p != NULL && l > 0)
1063 		strlcpy(data, p, min((int)l, COMMAND_LINE_SIZE));
1064 
1065 	/*
1066 	 * CONFIG_CMDLINE is meant to be a default in case nothing else
1067 	 * managed to set the command line, unless CONFIG_CMDLINE_FORCE
1068 	 * is set in which case we override whatever was found earlier.
1069 	 */
1070 #ifdef CONFIG_CMDLINE
1071 #if defined(CONFIG_CMDLINE_EXTEND)
1072 	strlcat(data, " ", COMMAND_LINE_SIZE);
1073 	strlcat(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1074 #elif defined(CONFIG_CMDLINE_FORCE)
1075 	strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1076 #else
1077 	/* No arguments from boot loader, use kernel's  cmdl*/
1078 	if (!((char *)data)[0])
1079 		strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1080 #endif
1081 #endif /* CONFIG_CMDLINE */
1082 
1083 	pr_debug("Command line is: %s\n", (char*)data);
1084 
1085 	/* break now */
1086 	return 1;
1087 }
1088 
1089 #ifdef CONFIG_HAVE_MEMBLOCK
1090 #ifndef MIN_MEMBLOCK_ADDR
1091 #define MIN_MEMBLOCK_ADDR	__pa(PAGE_OFFSET)
1092 #endif
1093 #ifndef MAX_MEMBLOCK_ADDR
1094 #define MAX_MEMBLOCK_ADDR	((phys_addr_t)~0)
1095 #endif
1096 
1097 void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1098 {
1099 	const u64 phys_offset = MIN_MEMBLOCK_ADDR;
1100 
1101 	if (!PAGE_ALIGNED(base)) {
1102 		if (size < PAGE_SIZE - (base & ~PAGE_MASK)) {
1103 			pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1104 				base, base + size);
1105 			return;
1106 		}
1107 		size -= PAGE_SIZE - (base & ~PAGE_MASK);
1108 		base = PAGE_ALIGN(base);
1109 	}
1110 	size &= PAGE_MASK;
1111 
1112 	if (base > MAX_MEMBLOCK_ADDR) {
1113 		pr_warning("Ignoring memory block 0x%llx - 0x%llx\n",
1114 				base, base + size);
1115 		return;
1116 	}
1117 
1118 	if (base + size - 1 > MAX_MEMBLOCK_ADDR) {
1119 		pr_warning("Ignoring memory range 0x%llx - 0x%llx\n",
1120 				((u64)MAX_MEMBLOCK_ADDR) + 1, base + size);
1121 		size = MAX_MEMBLOCK_ADDR - base + 1;
1122 	}
1123 
1124 	if (base + size < phys_offset) {
1125 		pr_warning("Ignoring memory block 0x%llx - 0x%llx\n",
1126 			   base, base + size);
1127 		return;
1128 	}
1129 	if (base < phys_offset) {
1130 		pr_warning("Ignoring memory range 0x%llx - 0x%llx\n",
1131 			   base, phys_offset);
1132 		size -= phys_offset - base;
1133 		base = phys_offset;
1134 	}
1135 	memblock_add(base, size);
1136 }
1137 
1138 int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base,
1139 					phys_addr_t size, bool nomap)
1140 {
1141 	if (nomap)
1142 		return memblock_remove(base, size);
1143 	return memblock_reserve(base, size);
1144 }
1145 
1146 /*
1147  * called from unflatten_device_tree() to bootstrap devicetree itself
1148  * Architectures can override this definition if memblock isn't used
1149  */
1150 void * __init __weak early_init_dt_alloc_memory_arch(u64 size, u64 align)
1151 {
1152 	return __va(memblock_alloc(size, align));
1153 }
1154 #else
1155 void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1156 {
1157 	WARN_ON(1);
1158 }
1159 
1160 int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base,
1161 					phys_addr_t size, bool nomap)
1162 {
1163 	pr_err("Reserved memory not supported, ignoring range %pa - %pa%s\n",
1164 		  &base, &size, nomap ? " (nomap)" : "");
1165 	return -ENOSYS;
1166 }
1167 
1168 void * __init __weak early_init_dt_alloc_memory_arch(u64 size, u64 align)
1169 {
1170 	WARN_ON(1);
1171 	return NULL;
1172 }
1173 #endif
1174 
1175 bool __init early_init_dt_verify(void *params)
1176 {
1177 	if (!params)
1178 		return false;
1179 
1180 	/* check device tree validity */
1181 	if (fdt_check_header(params))
1182 		return false;
1183 
1184 	/* Setup flat device-tree pointer */
1185 	initial_boot_params = params;
1186 	of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1187 				fdt_totalsize(initial_boot_params));
1188 	return true;
1189 }
1190 
1191 
1192 void __init early_init_dt_scan_nodes(void)
1193 {
1194 	/* Retrieve various information from the /chosen node */
1195 	of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line);
1196 
1197 	/* Initialize {size,address}-cells info */
1198 	of_scan_flat_dt(early_init_dt_scan_root, NULL);
1199 
1200 	/* Setup memory, calling early_init_dt_add_memory_arch */
1201 	of_scan_flat_dt(early_init_dt_scan_memory, NULL);
1202 }
1203 
1204 bool __init early_init_dt_scan(void *params)
1205 {
1206 	bool status;
1207 
1208 	status = early_init_dt_verify(params);
1209 	if (!status)
1210 		return false;
1211 
1212 	early_init_dt_scan_nodes();
1213 	return true;
1214 }
1215 
1216 /**
1217  * unflatten_device_tree - create tree of device_nodes from flat blob
1218  *
1219  * unflattens the device-tree passed by the firmware, creating the
1220  * tree of struct device_node. It also fills the "name" and "type"
1221  * pointers of the nodes so the normal device-tree walking functions
1222  * can be used.
1223  */
1224 void __init unflatten_device_tree(void)
1225 {
1226 	__unflatten_device_tree(initial_boot_params, NULL, &of_root,
1227 				early_init_dt_alloc_memory_arch);
1228 
1229 	/* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
1230 	of_alias_scan(early_init_dt_alloc_memory_arch);
1231 }
1232 
1233 /**
1234  * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
1235  *
1236  * Copies and unflattens the device-tree passed by the firmware, creating the
1237  * tree of struct device_node. It also fills the "name" and "type"
1238  * pointers of the nodes so the normal device-tree walking functions
1239  * can be used. This should only be used when the FDT memory has not been
1240  * reserved such is the case when the FDT is built-in to the kernel init
1241  * section. If the FDT memory is reserved already then unflatten_device_tree
1242  * should be used instead.
1243  */
1244 void __init unflatten_and_copy_device_tree(void)
1245 {
1246 	int size;
1247 	void *dt;
1248 
1249 	if (!initial_boot_params) {
1250 		pr_warn("No valid device tree found, continuing without\n");
1251 		return;
1252 	}
1253 
1254 	size = fdt_totalsize(initial_boot_params);
1255 	dt = early_init_dt_alloc_memory_arch(size,
1256 					     roundup_pow_of_two(FDT_V17_SIZE));
1257 
1258 	if (dt) {
1259 		memcpy(dt, initial_boot_params, size);
1260 		initial_boot_params = dt;
1261 	}
1262 	unflatten_device_tree();
1263 }
1264 
1265 #ifdef CONFIG_SYSFS
1266 static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj,
1267 			       struct bin_attribute *bin_attr,
1268 			       char *buf, loff_t off, size_t count)
1269 {
1270 	memcpy(buf, initial_boot_params + off, count);
1271 	return count;
1272 }
1273 
1274 static int __init of_fdt_raw_init(void)
1275 {
1276 	static struct bin_attribute of_fdt_raw_attr =
1277 		__BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0);
1278 
1279 	if (!initial_boot_params)
1280 		return 0;
1281 
1282 	if (of_fdt_crc32 != crc32_be(~0, initial_boot_params,
1283 				     fdt_totalsize(initial_boot_params))) {
1284 		pr_warn("fdt: not creating '/sys/firmware/fdt': CRC check failed\n");
1285 		return 0;
1286 	}
1287 	of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params);
1288 	return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr);
1289 }
1290 late_initcall(of_fdt_raw_init);
1291 #endif
1292 
1293 #endif /* CONFIG_OF_EARLY_FLATTREE */
1294