xref: /linux/drivers/of/fdt.c (revision 2fe256a429cb6c0b0064563af4158470143a363c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions for working with the Flattened Device Tree data format
4  *
5  * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
6  * benh@kernel.crashing.org
7  */
8 
9 #define pr_fmt(fmt)	"OF: fdt: " fmt
10 
11 #include <linux/crash_dump.h>
12 #include <linux/crc32.h>
13 #include <linux/kernel.h>
14 #include <linux/initrd.h>
15 #include <linux/memblock.h>
16 #include <linux/mutex.h>
17 #include <linux/of.h>
18 #include <linux/of_fdt.h>
19 #include <linux/of_reserved_mem.h>
20 #include <linux/sizes.h>
21 #include <linux/string.h>
22 #include <linux/errno.h>
23 #include <linux/slab.h>
24 #include <linux/libfdt.h>
25 #include <linux/debugfs.h>
26 #include <linux/serial_core.h>
27 #include <linux/sysfs.h>
28 #include <linux/random.h>
29 
30 #include <asm/setup.h>  /* for COMMAND_LINE_SIZE */
31 #include <asm/page.h>
32 
33 #include "of_private.h"
34 
35 /*
36  * of_fdt_limit_memory - limit the number of regions in the /memory node
37  * @limit: maximum entries
38  *
39  * Adjust the flattened device tree to have at most 'limit' number of
40  * memory entries in the /memory node. This function may be called
41  * any time after initial_boot_param is set.
42  */
43 void __init of_fdt_limit_memory(int limit)
44 {
45 	int memory;
46 	int len;
47 	const void *val;
48 	int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
49 	int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
50 	const __be32 *addr_prop;
51 	const __be32 *size_prop;
52 	int root_offset;
53 	int cell_size;
54 
55 	root_offset = fdt_path_offset(initial_boot_params, "/");
56 	if (root_offset < 0)
57 		return;
58 
59 	addr_prop = fdt_getprop(initial_boot_params, root_offset,
60 				"#address-cells", NULL);
61 	if (addr_prop)
62 		nr_address_cells = fdt32_to_cpu(*addr_prop);
63 
64 	size_prop = fdt_getprop(initial_boot_params, root_offset,
65 				"#size-cells", NULL);
66 	if (size_prop)
67 		nr_size_cells = fdt32_to_cpu(*size_prop);
68 
69 	cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells);
70 
71 	memory = fdt_path_offset(initial_boot_params, "/memory");
72 	if (memory > 0) {
73 		val = fdt_getprop(initial_boot_params, memory, "reg", &len);
74 		if (len > limit*cell_size) {
75 			len = limit*cell_size;
76 			pr_debug("Limiting number of entries to %d\n", limit);
77 			fdt_setprop(initial_boot_params, memory, "reg", val,
78 					len);
79 		}
80 	}
81 }
82 
83 static bool of_fdt_device_is_available(const void *blob, unsigned long node)
84 {
85 	const char *status = fdt_getprop(blob, node, "status", NULL);
86 
87 	if (!status)
88 		return true;
89 
90 	if (!strcmp(status, "ok") || !strcmp(status, "okay"))
91 		return true;
92 
93 	return false;
94 }
95 
96 static void *unflatten_dt_alloc(void **mem, unsigned long size,
97 				       unsigned long align)
98 {
99 	void *res;
100 
101 	*mem = PTR_ALIGN(*mem, align);
102 	res = *mem;
103 	*mem += size;
104 
105 	return res;
106 }
107 
108 static void populate_properties(const void *blob,
109 				int offset,
110 				void **mem,
111 				struct device_node *np,
112 				const char *nodename,
113 				bool dryrun)
114 {
115 	struct property *pp, **pprev = NULL;
116 	int cur;
117 	bool has_name = false;
118 
119 	pprev = &np->properties;
120 	for (cur = fdt_first_property_offset(blob, offset);
121 	     cur >= 0;
122 	     cur = fdt_next_property_offset(blob, cur)) {
123 		const __be32 *val;
124 		const char *pname;
125 		u32 sz;
126 
127 		val = fdt_getprop_by_offset(blob, cur, &pname, &sz);
128 		if (!val) {
129 			pr_warn("Cannot locate property at 0x%x\n", cur);
130 			continue;
131 		}
132 
133 		if (!pname) {
134 			pr_warn("Cannot find property name at 0x%x\n", cur);
135 			continue;
136 		}
137 
138 		if (!strcmp(pname, "name"))
139 			has_name = true;
140 
141 		pp = unflatten_dt_alloc(mem, sizeof(struct property),
142 					__alignof__(struct property));
143 		if (dryrun)
144 			continue;
145 
146 		/* We accept flattened tree phandles either in
147 		 * ePAPR-style "phandle" properties, or the
148 		 * legacy "linux,phandle" properties.  If both
149 		 * appear and have different values, things
150 		 * will get weird. Don't do that.
151 		 */
152 		if (!strcmp(pname, "phandle") ||
153 		    !strcmp(pname, "linux,phandle")) {
154 			if (!np->phandle)
155 				np->phandle = be32_to_cpup(val);
156 		}
157 
158 		/* And we process the "ibm,phandle" property
159 		 * used in pSeries dynamic device tree
160 		 * stuff
161 		 */
162 		if (!strcmp(pname, "ibm,phandle"))
163 			np->phandle = be32_to_cpup(val);
164 
165 		pp->name   = (char *)pname;
166 		pp->length = sz;
167 		pp->value  = (__be32 *)val;
168 		*pprev     = pp;
169 		pprev      = &pp->next;
170 	}
171 
172 	/* With version 0x10 we may not have the name property,
173 	 * recreate it here from the unit name if absent
174 	 */
175 	if (!has_name) {
176 		const char *p = nodename, *ps = p, *pa = NULL;
177 		int len;
178 
179 		while (*p) {
180 			if ((*p) == '@')
181 				pa = p;
182 			else if ((*p) == '/')
183 				ps = p + 1;
184 			p++;
185 		}
186 
187 		if (pa < ps)
188 			pa = p;
189 		len = (pa - ps) + 1;
190 		pp = unflatten_dt_alloc(mem, sizeof(struct property) + len,
191 					__alignof__(struct property));
192 		if (!dryrun) {
193 			pp->name   = "name";
194 			pp->length = len;
195 			pp->value  = pp + 1;
196 			*pprev     = pp;
197 			memcpy(pp->value, ps, len - 1);
198 			((char *)pp->value)[len - 1] = 0;
199 			pr_debug("fixed up name for %s -> %s\n",
200 				 nodename, (char *)pp->value);
201 		}
202 	}
203 }
204 
205 static int populate_node(const void *blob,
206 			  int offset,
207 			  void **mem,
208 			  struct device_node *dad,
209 			  struct device_node **pnp,
210 			  bool dryrun)
211 {
212 	struct device_node *np;
213 	const char *pathp;
214 	int len;
215 
216 	pathp = fdt_get_name(blob, offset, &len);
217 	if (!pathp) {
218 		*pnp = NULL;
219 		return len;
220 	}
221 
222 	len++;
223 
224 	np = unflatten_dt_alloc(mem, sizeof(struct device_node) + len,
225 				__alignof__(struct device_node));
226 	if (!dryrun) {
227 		char *fn;
228 		of_node_init(np);
229 		np->full_name = fn = ((char *)np) + sizeof(*np);
230 
231 		memcpy(fn, pathp, len);
232 
233 		if (dad != NULL) {
234 			np->parent = dad;
235 			np->sibling = dad->child;
236 			dad->child = np;
237 		}
238 	}
239 
240 	populate_properties(blob, offset, mem, np, pathp, dryrun);
241 	if (!dryrun) {
242 		np->name = of_get_property(np, "name", NULL);
243 		if (!np->name)
244 			np->name = "<NULL>";
245 	}
246 
247 	*pnp = np;
248 	return true;
249 }
250 
251 static void reverse_nodes(struct device_node *parent)
252 {
253 	struct device_node *child, *next;
254 
255 	/* In-depth first */
256 	child = parent->child;
257 	while (child) {
258 		reverse_nodes(child);
259 
260 		child = child->sibling;
261 	}
262 
263 	/* Reverse the nodes in the child list */
264 	child = parent->child;
265 	parent->child = NULL;
266 	while (child) {
267 		next = child->sibling;
268 
269 		child->sibling = parent->child;
270 		parent->child = child;
271 		child = next;
272 	}
273 }
274 
275 /**
276  * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree
277  * @blob: The parent device tree blob
278  * @mem: Memory chunk to use for allocating device nodes and properties
279  * @dad: Parent struct device_node
280  * @nodepp: The device_node tree created by the call
281  *
282  * Return: The size of unflattened device tree or error code
283  */
284 static int unflatten_dt_nodes(const void *blob,
285 			      void *mem,
286 			      struct device_node *dad,
287 			      struct device_node **nodepp)
288 {
289 	struct device_node *root;
290 	int offset = 0, depth = 0, initial_depth = 0;
291 #define FDT_MAX_DEPTH	64
292 	struct device_node *nps[FDT_MAX_DEPTH];
293 	void *base = mem;
294 	bool dryrun = !base;
295 	int ret;
296 
297 	if (nodepp)
298 		*nodepp = NULL;
299 
300 	/*
301 	 * We're unflattening device sub-tree if @dad is valid. There are
302 	 * possibly multiple nodes in the first level of depth. We need
303 	 * set @depth to 1 to make fdt_next_node() happy as it bails
304 	 * immediately when negative @depth is found. Otherwise, the device
305 	 * nodes except the first one won't be unflattened successfully.
306 	 */
307 	if (dad)
308 		depth = initial_depth = 1;
309 
310 	root = dad;
311 	nps[depth] = dad;
312 
313 	for (offset = 0;
314 	     offset >= 0 && depth >= initial_depth;
315 	     offset = fdt_next_node(blob, offset, &depth)) {
316 		if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH))
317 			continue;
318 
319 		if (!IS_ENABLED(CONFIG_OF_KOBJ) &&
320 		    !of_fdt_device_is_available(blob, offset))
321 			continue;
322 
323 		ret = populate_node(blob, offset, &mem, nps[depth],
324 				   &nps[depth+1], dryrun);
325 		if (ret < 0)
326 			return ret;
327 
328 		if (!dryrun && nodepp && !*nodepp)
329 			*nodepp = nps[depth+1];
330 		if (!dryrun && !root)
331 			root = nps[depth+1];
332 	}
333 
334 	if (offset < 0 && offset != -FDT_ERR_NOTFOUND) {
335 		pr_err("Error %d processing FDT\n", offset);
336 		return -EINVAL;
337 	}
338 
339 	/*
340 	 * Reverse the child list. Some drivers assumes node order matches .dts
341 	 * node order
342 	 */
343 	if (!dryrun)
344 		reverse_nodes(root);
345 
346 	return mem - base;
347 }
348 
349 /**
350  * __unflatten_device_tree - create tree of device_nodes from flat blob
351  * @blob: The blob to expand
352  * @dad: Parent device node
353  * @mynodes: The device_node tree created by the call
354  * @dt_alloc: An allocator that provides a virtual address to memory
355  * for the resulting tree
356  * @detached: if true set OF_DETACHED on @mynodes
357  *
358  * unflattens a device-tree, creating the tree of struct device_node. It also
359  * fills the "name" and "type" pointers of the nodes so the normal device-tree
360  * walking functions can be used.
361  *
362  * Return: NULL on failure or the memory chunk containing the unflattened
363  * device tree on success.
364  */
365 void *__unflatten_device_tree(const void *blob,
366 			      struct device_node *dad,
367 			      struct device_node **mynodes,
368 			      void *(*dt_alloc)(u64 size, u64 align),
369 			      bool detached)
370 {
371 	int size;
372 	void *mem;
373 	int ret;
374 
375 	if (mynodes)
376 		*mynodes = NULL;
377 
378 	pr_debug(" -> unflatten_device_tree()\n");
379 
380 	if (!blob) {
381 		pr_debug("No device tree pointer\n");
382 		return NULL;
383 	}
384 
385 	pr_debug("Unflattening device tree:\n");
386 	pr_debug("magic: %08x\n", fdt_magic(blob));
387 	pr_debug("size: %08x\n", fdt_totalsize(blob));
388 	pr_debug("version: %08x\n", fdt_version(blob));
389 
390 	if (fdt_check_header(blob)) {
391 		pr_err("Invalid device tree blob header\n");
392 		return NULL;
393 	}
394 
395 	/* First pass, scan for size */
396 	size = unflatten_dt_nodes(blob, NULL, dad, NULL);
397 	if (size <= 0)
398 		return NULL;
399 
400 	size = ALIGN(size, 4);
401 	pr_debug("  size is %d, allocating...\n", size);
402 
403 	/* Allocate memory for the expanded device tree */
404 	mem = dt_alloc(size + 4, __alignof__(struct device_node));
405 	if (!mem)
406 		return NULL;
407 
408 	memset(mem, 0, size);
409 
410 	*(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
411 
412 	pr_debug("  unflattening %p...\n", mem);
413 
414 	/* Second pass, do actual unflattening */
415 	ret = unflatten_dt_nodes(blob, mem, dad, mynodes);
416 
417 	if (be32_to_cpup(mem + size) != 0xdeadbeef)
418 		pr_warn("End of tree marker overwritten: %08x\n",
419 			be32_to_cpup(mem + size));
420 
421 	if (ret <= 0)
422 		return NULL;
423 
424 	if (detached && mynodes && *mynodes) {
425 		of_node_set_flag(*mynodes, OF_DETACHED);
426 		pr_debug("unflattened tree is detached\n");
427 	}
428 
429 	pr_debug(" <- unflatten_device_tree()\n");
430 	return mem;
431 }
432 
433 static void *kernel_tree_alloc(u64 size, u64 align)
434 {
435 	return kzalloc(size, GFP_KERNEL);
436 }
437 
438 static DEFINE_MUTEX(of_fdt_unflatten_mutex);
439 
440 /**
441  * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
442  * @blob: Flat device tree blob
443  * @dad: Parent device node
444  * @mynodes: The device tree created by the call
445  *
446  * unflattens the device-tree passed by the firmware, creating the
447  * tree of struct device_node. It also fills the "name" and "type"
448  * pointers of the nodes so the normal device-tree walking functions
449  * can be used.
450  *
451  * Return: NULL on failure or the memory chunk containing the unflattened
452  * device tree on success.
453  */
454 void *of_fdt_unflatten_tree(const unsigned long *blob,
455 			    struct device_node *dad,
456 			    struct device_node **mynodes)
457 {
458 	void *mem;
459 
460 	mutex_lock(&of_fdt_unflatten_mutex);
461 	mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc,
462 				      true);
463 	mutex_unlock(&of_fdt_unflatten_mutex);
464 
465 	return mem;
466 }
467 EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
468 
469 /* Everything below here references initial_boot_params directly. */
470 int __initdata dt_root_addr_cells;
471 int __initdata dt_root_size_cells;
472 
473 void *initial_boot_params __ro_after_init;
474 
475 #ifdef CONFIG_OF_EARLY_FLATTREE
476 
477 static u32 of_fdt_crc32;
478 
479 static int __init early_init_dt_reserve_memory_arch(phys_addr_t base,
480 					phys_addr_t size, bool nomap)
481 {
482 	if (nomap) {
483 		/*
484 		 * If the memory is already reserved (by another region), we
485 		 * should not allow it to be marked nomap.
486 		 */
487 		if (memblock_is_region_reserved(base, size))
488 			return -EBUSY;
489 
490 		return memblock_mark_nomap(base, size);
491 	}
492 	return memblock_reserve(base, size);
493 }
494 
495 /*
496  * __reserved_mem_reserve_reg() - reserve all memory described in 'reg' property
497  */
498 static int __init __reserved_mem_reserve_reg(unsigned long node,
499 					     const char *uname)
500 {
501 	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
502 	phys_addr_t base, size;
503 	int len;
504 	const __be32 *prop;
505 	int first = 1;
506 	bool nomap;
507 
508 	prop = of_get_flat_dt_prop(node, "reg", &len);
509 	if (!prop)
510 		return -ENOENT;
511 
512 	if (len && len % t_len != 0) {
513 		pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
514 		       uname);
515 		return -EINVAL;
516 	}
517 
518 	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
519 
520 	while (len >= t_len) {
521 		base = dt_mem_next_cell(dt_root_addr_cells, &prop);
522 		size = dt_mem_next_cell(dt_root_size_cells, &prop);
523 
524 		if (size &&
525 		    early_init_dt_reserve_memory_arch(base, size, nomap) == 0)
526 			pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %lu MiB\n",
527 				uname, &base, (unsigned long)(size / SZ_1M));
528 		else
529 			pr_info("Reserved memory: failed to reserve memory for node '%s': base %pa, size %lu MiB\n",
530 				uname, &base, (unsigned long)(size / SZ_1M));
531 
532 		len -= t_len;
533 		if (first) {
534 			fdt_reserved_mem_save_node(node, uname, base, size);
535 			first = 0;
536 		}
537 	}
538 	return 0;
539 }
540 
541 /*
542  * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
543  * in /reserved-memory matches the values supported by the current implementation,
544  * also check if ranges property has been provided
545  */
546 static int __init __reserved_mem_check_root(unsigned long node)
547 {
548 	const __be32 *prop;
549 
550 	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
551 	if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
552 		return -EINVAL;
553 
554 	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
555 	if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
556 		return -EINVAL;
557 
558 	prop = of_get_flat_dt_prop(node, "ranges", NULL);
559 	if (!prop)
560 		return -EINVAL;
561 	return 0;
562 }
563 
564 /*
565  * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
566  */
567 static int __init fdt_scan_reserved_mem(void)
568 {
569 	int node, child;
570 	const void *fdt = initial_boot_params;
571 
572 	node = fdt_path_offset(fdt, "/reserved-memory");
573 	if (node < 0)
574 		return -ENODEV;
575 
576 	if (__reserved_mem_check_root(node) != 0) {
577 		pr_err("Reserved memory: unsupported node format, ignoring\n");
578 		return -EINVAL;
579 	}
580 
581 	fdt_for_each_subnode(child, fdt, node) {
582 		const char *uname;
583 		int err;
584 
585 		if (!of_fdt_device_is_available(fdt, child))
586 			continue;
587 
588 		uname = fdt_get_name(fdt, child, NULL);
589 
590 		err = __reserved_mem_reserve_reg(child, uname);
591 		if (err == -ENOENT && of_get_flat_dt_prop(child, "size", NULL))
592 			fdt_reserved_mem_save_node(child, uname, 0, 0);
593 	}
594 	return 0;
595 }
596 
597 /*
598  * fdt_reserve_elfcorehdr() - reserves memory for elf core header
599  *
600  * This function reserves the memory occupied by an elf core header
601  * described in the device tree. This region contains all the
602  * information about primary kernel's core image and is used by a dump
603  * capture kernel to access the system memory on primary kernel.
604  */
605 static void __init fdt_reserve_elfcorehdr(void)
606 {
607 	if (!IS_ENABLED(CONFIG_CRASH_DUMP) || !elfcorehdr_size)
608 		return;
609 
610 	if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
611 		pr_warn("elfcorehdr is overlapped\n");
612 		return;
613 	}
614 
615 	memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
616 
617 	pr_info("Reserving %llu KiB of memory at 0x%llx for elfcorehdr\n",
618 		elfcorehdr_size >> 10, elfcorehdr_addr);
619 }
620 
621 /**
622  * early_init_fdt_scan_reserved_mem() - create reserved memory regions
623  *
624  * This function grabs memory from early allocator for device exclusive use
625  * defined in device tree structures. It should be called by arch specific code
626  * once the early allocator (i.e. memblock) has been fully activated.
627  */
628 void __init early_init_fdt_scan_reserved_mem(void)
629 {
630 	int n;
631 	u64 base, size;
632 
633 	if (!initial_boot_params)
634 		return;
635 
636 	/* Process header /memreserve/ fields */
637 	for (n = 0; ; n++) {
638 		fdt_get_mem_rsv(initial_boot_params, n, &base, &size);
639 		if (!size)
640 			break;
641 		early_init_dt_reserve_memory_arch(base, size, false);
642 	}
643 
644 	fdt_scan_reserved_mem();
645 	fdt_init_reserved_mem();
646 	fdt_reserve_elfcorehdr();
647 }
648 
649 /**
650  * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob
651  */
652 void __init early_init_fdt_reserve_self(void)
653 {
654 	if (!initial_boot_params)
655 		return;
656 
657 	/* Reserve the dtb region */
658 	early_init_dt_reserve_memory_arch(__pa(initial_boot_params),
659 					  fdt_totalsize(initial_boot_params),
660 					  false);
661 }
662 
663 /**
664  * of_scan_flat_dt - scan flattened tree blob and call callback on each.
665  * @it: callback function
666  * @data: context data pointer
667  *
668  * This function is used to scan the flattened device-tree, it is
669  * used to extract the memory information at boot before we can
670  * unflatten the tree
671  */
672 int __init of_scan_flat_dt(int (*it)(unsigned long node,
673 				     const char *uname, int depth,
674 				     void *data),
675 			   void *data)
676 {
677 	const void *blob = initial_boot_params;
678 	const char *pathp;
679 	int offset, rc = 0, depth = -1;
680 
681 	if (!blob)
682 		return 0;
683 
684 	for (offset = fdt_next_node(blob, -1, &depth);
685 	     offset >= 0 && depth >= 0 && !rc;
686 	     offset = fdt_next_node(blob, offset, &depth)) {
687 
688 		pathp = fdt_get_name(blob, offset, NULL);
689 		rc = it(offset, pathp, depth, data);
690 	}
691 	return rc;
692 }
693 
694 /**
695  * of_scan_flat_dt_subnodes - scan sub-nodes of a node call callback on each.
696  * @parent: parent node
697  * @it: callback function
698  * @data: context data pointer
699  *
700  * This function is used to scan sub-nodes of a node.
701  */
702 int __init of_scan_flat_dt_subnodes(unsigned long parent,
703 				    int (*it)(unsigned long node,
704 					      const char *uname,
705 					      void *data),
706 				    void *data)
707 {
708 	const void *blob = initial_boot_params;
709 	int node;
710 
711 	fdt_for_each_subnode(node, blob, parent) {
712 		const char *pathp;
713 		int rc;
714 
715 		pathp = fdt_get_name(blob, node, NULL);
716 		rc = it(node, pathp, data);
717 		if (rc)
718 			return rc;
719 	}
720 	return 0;
721 }
722 
723 /**
724  * of_get_flat_dt_subnode_by_name - get the subnode by given name
725  *
726  * @node: the parent node
727  * @uname: the name of subnode
728  * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none
729  */
730 
731 int __init of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname)
732 {
733 	return fdt_subnode_offset(initial_boot_params, node, uname);
734 }
735 
736 /*
737  * of_get_flat_dt_root - find the root node in the flat blob
738  */
739 unsigned long __init of_get_flat_dt_root(void)
740 {
741 	return 0;
742 }
743 
744 /*
745  * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
746  *
747  * This function can be used within scan_flattened_dt callback to get
748  * access to properties
749  */
750 const void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
751 				       int *size)
752 {
753 	return fdt_getprop(initial_boot_params, node, name, size);
754 }
755 
756 /**
757  * of_fdt_is_compatible - Return true if given node from the given blob has
758  * compat in its compatible list
759  * @blob: A device tree blob
760  * @node: node to test
761  * @compat: compatible string to compare with compatible list.
762  *
763  * Return: a non-zero value on match with smaller values returned for more
764  * specific compatible values.
765  */
766 static int of_fdt_is_compatible(const void *blob,
767 		      unsigned long node, const char *compat)
768 {
769 	const char *cp;
770 	int cplen;
771 	unsigned long l, score = 0;
772 
773 	cp = fdt_getprop(blob, node, "compatible", &cplen);
774 	if (cp == NULL)
775 		return 0;
776 	while (cplen > 0) {
777 		score++;
778 		if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
779 			return score;
780 		l = strlen(cp) + 1;
781 		cp += l;
782 		cplen -= l;
783 	}
784 
785 	return 0;
786 }
787 
788 /**
789  * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
790  * @node: node to test
791  * @compat: compatible string to compare with compatible list.
792  */
793 int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
794 {
795 	return of_fdt_is_compatible(initial_boot_params, node, compat);
796 }
797 
798 /*
799  * of_flat_dt_match - Return true if node matches a list of compatible values
800  */
801 static int __init of_flat_dt_match(unsigned long node, const char *const *compat)
802 {
803 	unsigned int tmp, score = 0;
804 
805 	if (!compat)
806 		return 0;
807 
808 	while (*compat) {
809 		tmp = of_fdt_is_compatible(initial_boot_params, node, *compat);
810 		if (tmp && (score == 0 || (tmp < score)))
811 			score = tmp;
812 		compat++;
813 	}
814 
815 	return score;
816 }
817 
818 /*
819  * of_get_flat_dt_phandle - Given a node in the flat blob, return the phandle
820  */
821 uint32_t __init of_get_flat_dt_phandle(unsigned long node)
822 {
823 	return fdt_get_phandle(initial_boot_params, node);
824 }
825 
826 struct fdt_scan_status {
827 	const char *name;
828 	int namelen;
829 	int depth;
830 	int found;
831 	int (*iterator)(unsigned long node, const char *uname, int depth, void *data);
832 	void *data;
833 };
834 
835 const char * __init of_flat_dt_get_machine_name(void)
836 {
837 	const char *name;
838 	unsigned long dt_root = of_get_flat_dt_root();
839 
840 	name = of_get_flat_dt_prop(dt_root, "model", NULL);
841 	if (!name)
842 		name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
843 	return name;
844 }
845 
846 /**
847  * of_flat_dt_match_machine - Iterate match tables to find matching machine.
848  *
849  * @default_match: A machine specific ptr to return in case of no match.
850  * @get_next_compat: callback function to return next compatible match table.
851  *
852  * Iterate through machine match tables to find the best match for the machine
853  * compatible string in the FDT.
854  */
855 const void * __init of_flat_dt_match_machine(const void *default_match,
856 		const void * (*get_next_compat)(const char * const**))
857 {
858 	const void *data = NULL;
859 	const void *best_data = default_match;
860 	const char *const *compat;
861 	unsigned long dt_root;
862 	unsigned int best_score = ~1, score = 0;
863 
864 	dt_root = of_get_flat_dt_root();
865 	while ((data = get_next_compat(&compat))) {
866 		score = of_flat_dt_match(dt_root, compat);
867 		if (score > 0 && score < best_score) {
868 			best_data = data;
869 			best_score = score;
870 		}
871 	}
872 	if (!best_data) {
873 		const char *prop;
874 		int size;
875 
876 		pr_err("\n unrecognized device tree list:\n[ ");
877 
878 		prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
879 		if (prop) {
880 			while (size > 0) {
881 				printk("'%s' ", prop);
882 				size -= strlen(prop) + 1;
883 				prop += strlen(prop) + 1;
884 			}
885 		}
886 		printk("]\n\n");
887 		return NULL;
888 	}
889 
890 	pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
891 
892 	return best_data;
893 }
894 
895 static void __early_init_dt_declare_initrd(unsigned long start,
896 					   unsigned long end)
897 {
898 	/* ARM64 would cause a BUG to occur here when CONFIG_DEBUG_VM is
899 	 * enabled since __va() is called too early. ARM64 does make use
900 	 * of phys_initrd_start/phys_initrd_size so we can skip this
901 	 * conversion.
902 	 */
903 	if (!IS_ENABLED(CONFIG_ARM64)) {
904 		initrd_start = (unsigned long)__va(start);
905 		initrd_end = (unsigned long)__va(end);
906 		initrd_below_start_ok = 1;
907 	}
908 }
909 
910 /**
911  * early_init_dt_check_for_initrd - Decode initrd location from flat tree
912  * @node: reference to node containing initrd location ('chosen')
913  */
914 static void __init early_init_dt_check_for_initrd(unsigned long node)
915 {
916 	u64 start, end;
917 	int len;
918 	const __be32 *prop;
919 
920 	if (!IS_ENABLED(CONFIG_BLK_DEV_INITRD))
921 		return;
922 
923 	pr_debug("Looking for initrd properties... ");
924 
925 	prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
926 	if (!prop)
927 		return;
928 	start = of_read_number(prop, len/4);
929 
930 	prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
931 	if (!prop)
932 		return;
933 	end = of_read_number(prop, len/4);
934 
935 	__early_init_dt_declare_initrd(start, end);
936 	phys_initrd_start = start;
937 	phys_initrd_size = end - start;
938 
939 	pr_debug("initrd_start=0x%llx  initrd_end=0x%llx\n", start, end);
940 }
941 
942 /**
943  * early_init_dt_check_for_elfcorehdr - Decode elfcorehdr location from flat
944  * tree
945  * @node: reference to node containing elfcorehdr location ('chosen')
946  */
947 static void __init early_init_dt_check_for_elfcorehdr(unsigned long node)
948 {
949 	const __be32 *prop;
950 	int len;
951 
952 	if (!IS_ENABLED(CONFIG_CRASH_DUMP))
953 		return;
954 
955 	pr_debug("Looking for elfcorehdr property... ");
956 
957 	prop = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
958 	if (!prop || (len < (dt_root_addr_cells + dt_root_size_cells)))
959 		return;
960 
961 	elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &prop);
962 	elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &prop);
963 
964 	pr_debug("elfcorehdr_start=0x%llx elfcorehdr_size=0x%llx\n",
965 		 elfcorehdr_addr, elfcorehdr_size);
966 }
967 
968 static phys_addr_t cap_mem_addr;
969 static phys_addr_t cap_mem_size;
970 
971 /**
972  * early_init_dt_check_for_usable_mem_range - Decode usable memory range
973  * location from flat tree
974  * @node: reference to node containing usable memory range location ('chosen')
975  */
976 static void __init early_init_dt_check_for_usable_mem_range(unsigned long node)
977 {
978 	const __be32 *prop;
979 	int len;
980 
981 	pr_debug("Looking for usable-memory-range property... ");
982 
983 	prop = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
984 	if (!prop || (len < (dt_root_addr_cells + dt_root_size_cells)))
985 		return;
986 
987 	cap_mem_addr = dt_mem_next_cell(dt_root_addr_cells, &prop);
988 	cap_mem_size = dt_mem_next_cell(dt_root_size_cells, &prop);
989 
990 	pr_debug("cap_mem_start=%pa cap_mem_size=%pa\n", &cap_mem_addr,
991 		 &cap_mem_size);
992 }
993 
994 #ifdef CONFIG_SERIAL_EARLYCON
995 
996 int __init early_init_dt_scan_chosen_stdout(void)
997 {
998 	int offset;
999 	const char *p, *q, *options = NULL;
1000 	int l;
1001 	const struct earlycon_id *match;
1002 	const void *fdt = initial_boot_params;
1003 
1004 	offset = fdt_path_offset(fdt, "/chosen");
1005 	if (offset < 0)
1006 		offset = fdt_path_offset(fdt, "/chosen@0");
1007 	if (offset < 0)
1008 		return -ENOENT;
1009 
1010 	p = fdt_getprop(fdt, offset, "stdout-path", &l);
1011 	if (!p)
1012 		p = fdt_getprop(fdt, offset, "linux,stdout-path", &l);
1013 	if (!p || !l)
1014 		return -ENOENT;
1015 
1016 	q = strchrnul(p, ':');
1017 	if (*q != '\0')
1018 		options = q + 1;
1019 	l = q - p;
1020 
1021 	/* Get the node specified by stdout-path */
1022 	offset = fdt_path_offset_namelen(fdt, p, l);
1023 	if (offset < 0) {
1024 		pr_warn("earlycon: stdout-path %.*s not found\n", l, p);
1025 		return 0;
1026 	}
1027 
1028 	for (match = __earlycon_table; match < __earlycon_table_end; match++) {
1029 		if (!match->compatible[0])
1030 			continue;
1031 
1032 		if (fdt_node_check_compatible(fdt, offset, match->compatible))
1033 			continue;
1034 
1035 		if (of_setup_earlycon(match, offset, options) == 0)
1036 			return 0;
1037 	}
1038 	return -ENODEV;
1039 }
1040 #endif
1041 
1042 /*
1043  * early_init_dt_scan_root - fetch the top level address and size cells
1044  */
1045 int __init early_init_dt_scan_root(unsigned long node, const char *uname,
1046 				   int depth, void *data)
1047 {
1048 	const __be32 *prop;
1049 
1050 	if (depth != 0)
1051 		return 0;
1052 
1053 	dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
1054 	dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
1055 
1056 	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
1057 	if (prop)
1058 		dt_root_size_cells = be32_to_cpup(prop);
1059 	pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
1060 
1061 	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
1062 	if (prop)
1063 		dt_root_addr_cells = be32_to_cpup(prop);
1064 	pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1065 
1066 	/* break now */
1067 	return 1;
1068 }
1069 
1070 u64 __init dt_mem_next_cell(int s, const __be32 **cellp)
1071 {
1072 	const __be32 *p = *cellp;
1073 
1074 	*cellp = p + s;
1075 	return of_read_number(p, s);
1076 }
1077 
1078 /*
1079  * early_init_dt_scan_memory - Look for and parse memory nodes
1080  */
1081 int __init early_init_dt_scan_memory(unsigned long node, const char *uname,
1082 				     int depth, void *data)
1083 {
1084 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1085 	const __be32 *reg, *endp;
1086 	int l;
1087 	bool hotpluggable;
1088 
1089 	/* We are scanning "memory" nodes only */
1090 	if (type == NULL || strcmp(type, "memory") != 0)
1091 		return 0;
1092 
1093 	reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1094 	if (reg == NULL)
1095 		reg = of_get_flat_dt_prop(node, "reg", &l);
1096 	if (reg == NULL)
1097 		return 0;
1098 
1099 	endp = reg + (l / sizeof(__be32));
1100 	hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL);
1101 
1102 	pr_debug("memory scan node %s, reg size %d,\n", uname, l);
1103 
1104 	while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1105 		u64 base, size;
1106 
1107 		base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1108 		size = dt_mem_next_cell(dt_root_size_cells, &reg);
1109 
1110 		if (size == 0)
1111 			continue;
1112 		pr_debug(" - %llx, %llx\n", base, size);
1113 
1114 		early_init_dt_add_memory_arch(base, size);
1115 
1116 		if (!hotpluggable)
1117 			continue;
1118 
1119 		if (memblock_mark_hotplug(base, size))
1120 			pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n",
1121 				base, base + size);
1122 	}
1123 
1124 	return 0;
1125 }
1126 
1127 int __init early_init_dt_scan_chosen(unsigned long node, const char *uname,
1128 				     int depth, void *data)
1129 {
1130 	int l;
1131 	const char *p;
1132 	const void *rng_seed;
1133 
1134 	pr_debug("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1135 
1136 	if (depth != 1 || !data ||
1137 	    (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
1138 		return 0;
1139 
1140 	early_init_dt_check_for_initrd(node);
1141 	early_init_dt_check_for_elfcorehdr(node);
1142 	early_init_dt_check_for_usable_mem_range(node);
1143 
1144 	/* Retrieve command line */
1145 	p = of_get_flat_dt_prop(node, "bootargs", &l);
1146 	if (p != NULL && l > 0)
1147 		strlcpy(data, p, min(l, COMMAND_LINE_SIZE));
1148 
1149 	/*
1150 	 * CONFIG_CMDLINE is meant to be a default in case nothing else
1151 	 * managed to set the command line, unless CONFIG_CMDLINE_FORCE
1152 	 * is set in which case we override whatever was found earlier.
1153 	 */
1154 #ifdef CONFIG_CMDLINE
1155 #if defined(CONFIG_CMDLINE_EXTEND)
1156 	strlcat(data, " ", COMMAND_LINE_SIZE);
1157 	strlcat(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1158 #elif defined(CONFIG_CMDLINE_FORCE)
1159 	strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1160 #else
1161 	/* No arguments from boot loader, use kernel's  cmdl*/
1162 	if (!((char *)data)[0])
1163 		strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1164 #endif
1165 #endif /* CONFIG_CMDLINE */
1166 
1167 	pr_debug("Command line is: %s\n", (char *)data);
1168 
1169 	rng_seed = of_get_flat_dt_prop(node, "rng-seed", &l);
1170 	if (rng_seed && l > 0) {
1171 		add_bootloader_randomness(rng_seed, l);
1172 
1173 		/* try to clear seed so it won't be found. */
1174 		fdt_nop_property(initial_boot_params, node, "rng-seed");
1175 
1176 		/* update CRC check value */
1177 		of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1178 				fdt_totalsize(initial_boot_params));
1179 	}
1180 
1181 	/* break now */
1182 	return 1;
1183 }
1184 
1185 #ifndef MIN_MEMBLOCK_ADDR
1186 #define MIN_MEMBLOCK_ADDR	__pa(PAGE_OFFSET)
1187 #endif
1188 #ifndef MAX_MEMBLOCK_ADDR
1189 #define MAX_MEMBLOCK_ADDR	((phys_addr_t)~0)
1190 #endif
1191 
1192 void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1193 {
1194 	const u64 phys_offset = MIN_MEMBLOCK_ADDR;
1195 
1196 	if (size < PAGE_SIZE - (base & ~PAGE_MASK)) {
1197 		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1198 			base, base + size);
1199 		return;
1200 	}
1201 
1202 	if (!PAGE_ALIGNED(base)) {
1203 		size -= PAGE_SIZE - (base & ~PAGE_MASK);
1204 		base = PAGE_ALIGN(base);
1205 	}
1206 	size &= PAGE_MASK;
1207 
1208 	if (base > MAX_MEMBLOCK_ADDR) {
1209 		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1210 			base, base + size);
1211 		return;
1212 	}
1213 
1214 	if (base + size - 1 > MAX_MEMBLOCK_ADDR) {
1215 		pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1216 			((u64)MAX_MEMBLOCK_ADDR) + 1, base + size);
1217 		size = MAX_MEMBLOCK_ADDR - base + 1;
1218 	}
1219 
1220 	if (base + size < phys_offset) {
1221 		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1222 			base, base + size);
1223 		return;
1224 	}
1225 	if (base < phys_offset) {
1226 		pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1227 			base, phys_offset);
1228 		size -= phys_offset - base;
1229 		base = phys_offset;
1230 	}
1231 	memblock_add(base, size);
1232 }
1233 
1234 static void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align)
1235 {
1236 	void *ptr = memblock_alloc(size, align);
1237 
1238 	if (!ptr)
1239 		panic("%s: Failed to allocate %llu bytes align=0x%llx\n",
1240 		      __func__, size, align);
1241 
1242 	return ptr;
1243 }
1244 
1245 bool __init early_init_dt_verify(void *params)
1246 {
1247 	if (!params)
1248 		return false;
1249 
1250 	/* check device tree validity */
1251 	if (fdt_check_header(params))
1252 		return false;
1253 
1254 	/* Setup flat device-tree pointer */
1255 	initial_boot_params = params;
1256 	of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1257 				fdt_totalsize(initial_boot_params));
1258 	return true;
1259 }
1260 
1261 
1262 void __init early_init_dt_scan_nodes(void)
1263 {
1264 	int rc = 0;
1265 
1266 	/* Initialize {size,address}-cells info */
1267 	of_scan_flat_dt(early_init_dt_scan_root, NULL);
1268 
1269 	/* Retrieve various information from the /chosen node */
1270 	rc = of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line);
1271 	if (!rc)
1272 		pr_warn("No chosen node found, continuing without\n");
1273 
1274 	/* Setup memory, calling early_init_dt_add_memory_arch */
1275 	of_scan_flat_dt(early_init_dt_scan_memory, NULL);
1276 
1277 	/* Handle linux,usable-memory-range property */
1278 	memblock_cap_memory_range(cap_mem_addr, cap_mem_size);
1279 }
1280 
1281 bool __init early_init_dt_scan(void *params)
1282 {
1283 	bool status;
1284 
1285 	status = early_init_dt_verify(params);
1286 	if (!status)
1287 		return false;
1288 
1289 	early_init_dt_scan_nodes();
1290 	return true;
1291 }
1292 
1293 /**
1294  * unflatten_device_tree - create tree of device_nodes from flat blob
1295  *
1296  * unflattens the device-tree passed by the firmware, creating the
1297  * tree of struct device_node. It also fills the "name" and "type"
1298  * pointers of the nodes so the normal device-tree walking functions
1299  * can be used.
1300  */
1301 void __init unflatten_device_tree(void)
1302 {
1303 	__unflatten_device_tree(initial_boot_params, NULL, &of_root,
1304 				early_init_dt_alloc_memory_arch, false);
1305 
1306 	/* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
1307 	of_alias_scan(early_init_dt_alloc_memory_arch);
1308 
1309 	unittest_unflatten_overlay_base();
1310 }
1311 
1312 /**
1313  * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
1314  *
1315  * Copies and unflattens the device-tree passed by the firmware, creating the
1316  * tree of struct device_node. It also fills the "name" and "type"
1317  * pointers of the nodes so the normal device-tree walking functions
1318  * can be used. This should only be used when the FDT memory has not been
1319  * reserved such is the case when the FDT is built-in to the kernel init
1320  * section. If the FDT memory is reserved already then unflatten_device_tree
1321  * should be used instead.
1322  */
1323 void __init unflatten_and_copy_device_tree(void)
1324 {
1325 	int size;
1326 	void *dt;
1327 
1328 	if (!initial_boot_params) {
1329 		pr_warn("No valid device tree found, continuing without\n");
1330 		return;
1331 	}
1332 
1333 	size = fdt_totalsize(initial_boot_params);
1334 	dt = early_init_dt_alloc_memory_arch(size,
1335 					     roundup_pow_of_two(FDT_V17_SIZE));
1336 
1337 	if (dt) {
1338 		memcpy(dt, initial_boot_params, size);
1339 		initial_boot_params = dt;
1340 	}
1341 	unflatten_device_tree();
1342 }
1343 
1344 #ifdef CONFIG_SYSFS
1345 static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj,
1346 			       struct bin_attribute *bin_attr,
1347 			       char *buf, loff_t off, size_t count)
1348 {
1349 	memcpy(buf, initial_boot_params + off, count);
1350 	return count;
1351 }
1352 
1353 static int __init of_fdt_raw_init(void)
1354 {
1355 	static struct bin_attribute of_fdt_raw_attr =
1356 		__BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0);
1357 
1358 	if (!initial_boot_params)
1359 		return 0;
1360 
1361 	if (of_fdt_crc32 != crc32_be(~0, initial_boot_params,
1362 				     fdt_totalsize(initial_boot_params))) {
1363 		pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n");
1364 		return 0;
1365 	}
1366 	of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params);
1367 	return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr);
1368 }
1369 late_initcall(of_fdt_raw_init);
1370 #endif
1371 
1372 #endif /* CONFIG_OF_EARLY_FLATTREE */
1373