xref: /linux/drivers/of/fdt.c (revision 1f2367a39f17bd553a75e179a747f9b257bc9478)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions for working with the Flattened Device Tree data format
4  *
5  * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
6  * benh@kernel.crashing.org
7  */
8 
9 #define pr_fmt(fmt)	"OF: fdt: " fmt
10 
11 #include <linux/crc32.h>
12 #include <linux/kernel.h>
13 #include <linux/initrd.h>
14 #include <linux/memblock.h>
15 #include <linux/mutex.h>
16 #include <linux/of.h>
17 #include <linux/of_fdt.h>
18 #include <linux/of_reserved_mem.h>
19 #include <linux/sizes.h>
20 #include <linux/string.h>
21 #include <linux/errno.h>
22 #include <linux/slab.h>
23 #include <linux/libfdt.h>
24 #include <linux/debugfs.h>
25 #include <linux/serial_core.h>
26 #include <linux/sysfs.h>
27 
28 #include <asm/setup.h>  /* for COMMAND_LINE_SIZE */
29 #include <asm/page.h>
30 
31 #include "of_private.h"
32 
33 /*
34  * of_fdt_limit_memory - limit the number of regions in the /memory node
35  * @limit: maximum entries
36  *
37  * Adjust the flattened device tree to have at most 'limit' number of
38  * memory entries in the /memory node. This function may be called
39  * any time after initial_boot_param is set.
40  */
41 void of_fdt_limit_memory(int limit)
42 {
43 	int memory;
44 	int len;
45 	const void *val;
46 	int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
47 	int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
48 	const __be32 *addr_prop;
49 	const __be32 *size_prop;
50 	int root_offset;
51 	int cell_size;
52 
53 	root_offset = fdt_path_offset(initial_boot_params, "/");
54 	if (root_offset < 0)
55 		return;
56 
57 	addr_prop = fdt_getprop(initial_boot_params, root_offset,
58 				"#address-cells", NULL);
59 	if (addr_prop)
60 		nr_address_cells = fdt32_to_cpu(*addr_prop);
61 
62 	size_prop = fdt_getprop(initial_boot_params, root_offset,
63 				"#size-cells", NULL);
64 	if (size_prop)
65 		nr_size_cells = fdt32_to_cpu(*size_prop);
66 
67 	cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells);
68 
69 	memory = fdt_path_offset(initial_boot_params, "/memory");
70 	if (memory > 0) {
71 		val = fdt_getprop(initial_boot_params, memory, "reg", &len);
72 		if (len > limit*cell_size) {
73 			len = limit*cell_size;
74 			pr_debug("Limiting number of entries to %d\n", limit);
75 			fdt_setprop(initial_boot_params, memory, "reg", val,
76 					len);
77 		}
78 	}
79 }
80 
81 /**
82  * of_fdt_is_compatible - Return true if given node from the given blob has
83  * compat in its compatible list
84  * @blob: A device tree blob
85  * @node: node to test
86  * @compat: compatible string to compare with compatible list.
87  *
88  * On match, returns a non-zero value with smaller values returned for more
89  * specific compatible values.
90  */
91 static int of_fdt_is_compatible(const void *blob,
92 		      unsigned long node, const char *compat)
93 {
94 	const char *cp;
95 	int cplen;
96 	unsigned long l, score = 0;
97 
98 	cp = fdt_getprop(blob, node, "compatible", &cplen);
99 	if (cp == NULL)
100 		return 0;
101 	while (cplen > 0) {
102 		score++;
103 		if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
104 			return score;
105 		l = strlen(cp) + 1;
106 		cp += l;
107 		cplen -= l;
108 	}
109 
110 	return 0;
111 }
112 
113 /**
114  * of_fdt_is_big_endian - Return true if given node needs BE MMIO accesses
115  * @blob: A device tree blob
116  * @node: node to test
117  *
118  * Returns true if the node has a "big-endian" property, or if the kernel
119  * was compiled for BE *and* the node has a "native-endian" property.
120  * Returns false otherwise.
121  */
122 bool of_fdt_is_big_endian(const void *blob, unsigned long node)
123 {
124 	if (fdt_getprop(blob, node, "big-endian", NULL))
125 		return true;
126 	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
127 	    fdt_getprop(blob, node, "native-endian", NULL))
128 		return true;
129 	return false;
130 }
131 
132 static bool of_fdt_device_is_available(const void *blob, unsigned long node)
133 {
134 	const char *status = fdt_getprop(blob, node, "status", NULL);
135 
136 	if (!status)
137 		return true;
138 
139 	if (!strcmp(status, "ok") || !strcmp(status, "okay"))
140 		return true;
141 
142 	return false;
143 }
144 
145 /**
146  * of_fdt_match - Return true if node matches a list of compatible values
147  */
148 int of_fdt_match(const void *blob, unsigned long node,
149                  const char *const *compat)
150 {
151 	unsigned int tmp, score = 0;
152 
153 	if (!compat)
154 		return 0;
155 
156 	while (*compat) {
157 		tmp = of_fdt_is_compatible(blob, node, *compat);
158 		if (tmp && (score == 0 || (tmp < score)))
159 			score = tmp;
160 		compat++;
161 	}
162 
163 	return score;
164 }
165 
166 static void *unflatten_dt_alloc(void **mem, unsigned long size,
167 				       unsigned long align)
168 {
169 	void *res;
170 
171 	*mem = PTR_ALIGN(*mem, align);
172 	res = *mem;
173 	*mem += size;
174 
175 	return res;
176 }
177 
178 static void populate_properties(const void *blob,
179 				int offset,
180 				void **mem,
181 				struct device_node *np,
182 				const char *nodename,
183 				bool dryrun)
184 {
185 	struct property *pp, **pprev = NULL;
186 	int cur;
187 	bool has_name = false;
188 
189 	pprev = &np->properties;
190 	for (cur = fdt_first_property_offset(blob, offset);
191 	     cur >= 0;
192 	     cur = fdt_next_property_offset(blob, cur)) {
193 		const __be32 *val;
194 		const char *pname;
195 		u32 sz;
196 
197 		val = fdt_getprop_by_offset(blob, cur, &pname, &sz);
198 		if (!val) {
199 			pr_warn("Cannot locate property at 0x%x\n", cur);
200 			continue;
201 		}
202 
203 		if (!pname) {
204 			pr_warn("Cannot find property name at 0x%x\n", cur);
205 			continue;
206 		}
207 
208 		if (!strcmp(pname, "name"))
209 			has_name = true;
210 
211 		pp = unflatten_dt_alloc(mem, sizeof(struct property),
212 					__alignof__(struct property));
213 		if (dryrun)
214 			continue;
215 
216 		/* We accept flattened tree phandles either in
217 		 * ePAPR-style "phandle" properties, or the
218 		 * legacy "linux,phandle" properties.  If both
219 		 * appear and have different values, things
220 		 * will get weird. Don't do that.
221 		 */
222 		if (!strcmp(pname, "phandle") ||
223 		    !strcmp(pname, "linux,phandle")) {
224 			if (!np->phandle)
225 				np->phandle = be32_to_cpup(val);
226 		}
227 
228 		/* And we process the "ibm,phandle" property
229 		 * used in pSeries dynamic device tree
230 		 * stuff
231 		 */
232 		if (!strcmp(pname, "ibm,phandle"))
233 			np->phandle = be32_to_cpup(val);
234 
235 		pp->name   = (char *)pname;
236 		pp->length = sz;
237 		pp->value  = (__be32 *)val;
238 		*pprev     = pp;
239 		pprev      = &pp->next;
240 	}
241 
242 	/* With version 0x10 we may not have the name property,
243 	 * recreate it here from the unit name if absent
244 	 */
245 	if (!has_name) {
246 		const char *p = nodename, *ps = p, *pa = NULL;
247 		int len;
248 
249 		while (*p) {
250 			if ((*p) == '@')
251 				pa = p;
252 			else if ((*p) == '/')
253 				ps = p + 1;
254 			p++;
255 		}
256 
257 		if (pa < ps)
258 			pa = p;
259 		len = (pa - ps) + 1;
260 		pp = unflatten_dt_alloc(mem, sizeof(struct property) + len,
261 					__alignof__(struct property));
262 		if (!dryrun) {
263 			pp->name   = "name";
264 			pp->length = len;
265 			pp->value  = pp + 1;
266 			*pprev     = pp;
267 			pprev      = &pp->next;
268 			memcpy(pp->value, ps, len - 1);
269 			((char *)pp->value)[len - 1] = 0;
270 			pr_debug("fixed up name for %s -> %s\n",
271 				 nodename, (char *)pp->value);
272 		}
273 	}
274 
275 	if (!dryrun)
276 		*pprev = NULL;
277 }
278 
279 static bool populate_node(const void *blob,
280 			  int offset,
281 			  void **mem,
282 			  struct device_node *dad,
283 			  struct device_node **pnp,
284 			  bool dryrun)
285 {
286 	struct device_node *np;
287 	const char *pathp;
288 	unsigned int l, allocl;
289 
290 	pathp = fdt_get_name(blob, offset, &l);
291 	if (!pathp) {
292 		*pnp = NULL;
293 		return false;
294 	}
295 
296 	allocl = ++l;
297 
298 	np = unflatten_dt_alloc(mem, sizeof(struct device_node) + allocl,
299 				__alignof__(struct device_node));
300 	if (!dryrun) {
301 		char *fn;
302 		of_node_init(np);
303 		np->full_name = fn = ((char *)np) + sizeof(*np);
304 
305 		memcpy(fn, pathp, l);
306 
307 		if (dad != NULL) {
308 			np->parent = dad;
309 			np->sibling = dad->child;
310 			dad->child = np;
311 		}
312 	}
313 
314 	populate_properties(blob, offset, mem, np, pathp, dryrun);
315 	if (!dryrun) {
316 		np->name = of_get_property(np, "name", NULL);
317 		if (!np->name)
318 			np->name = "<NULL>";
319 	}
320 
321 	*pnp = np;
322 	return true;
323 }
324 
325 static void reverse_nodes(struct device_node *parent)
326 {
327 	struct device_node *child, *next;
328 
329 	/* In-depth first */
330 	child = parent->child;
331 	while (child) {
332 		reverse_nodes(child);
333 
334 		child = child->sibling;
335 	}
336 
337 	/* Reverse the nodes in the child list */
338 	child = parent->child;
339 	parent->child = NULL;
340 	while (child) {
341 		next = child->sibling;
342 
343 		child->sibling = parent->child;
344 		parent->child = child;
345 		child = next;
346 	}
347 }
348 
349 /**
350  * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree
351  * @blob: The parent device tree blob
352  * @mem: Memory chunk to use for allocating device nodes and properties
353  * @dad: Parent struct device_node
354  * @nodepp: The device_node tree created by the call
355  *
356  * It returns the size of unflattened device tree or error code
357  */
358 static int unflatten_dt_nodes(const void *blob,
359 			      void *mem,
360 			      struct device_node *dad,
361 			      struct device_node **nodepp)
362 {
363 	struct device_node *root;
364 	int offset = 0, depth = 0, initial_depth = 0;
365 #define FDT_MAX_DEPTH	64
366 	struct device_node *nps[FDT_MAX_DEPTH];
367 	void *base = mem;
368 	bool dryrun = !base;
369 
370 	if (nodepp)
371 		*nodepp = NULL;
372 
373 	/*
374 	 * We're unflattening device sub-tree if @dad is valid. There are
375 	 * possibly multiple nodes in the first level of depth. We need
376 	 * set @depth to 1 to make fdt_next_node() happy as it bails
377 	 * immediately when negative @depth is found. Otherwise, the device
378 	 * nodes except the first one won't be unflattened successfully.
379 	 */
380 	if (dad)
381 		depth = initial_depth = 1;
382 
383 	root = dad;
384 	nps[depth] = dad;
385 
386 	for (offset = 0;
387 	     offset >= 0 && depth >= initial_depth;
388 	     offset = fdt_next_node(blob, offset, &depth)) {
389 		if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH))
390 			continue;
391 
392 		if (!IS_ENABLED(CONFIG_OF_KOBJ) &&
393 		    !of_fdt_device_is_available(blob, offset))
394 			continue;
395 
396 		if (!populate_node(blob, offset, &mem, nps[depth],
397 				   &nps[depth+1], dryrun))
398 			return mem - base;
399 
400 		if (!dryrun && nodepp && !*nodepp)
401 			*nodepp = nps[depth+1];
402 		if (!dryrun && !root)
403 			root = nps[depth+1];
404 	}
405 
406 	if (offset < 0 && offset != -FDT_ERR_NOTFOUND) {
407 		pr_err("Error %d processing FDT\n", offset);
408 		return -EINVAL;
409 	}
410 
411 	/*
412 	 * Reverse the child list. Some drivers assumes node order matches .dts
413 	 * node order
414 	 */
415 	if (!dryrun)
416 		reverse_nodes(root);
417 
418 	return mem - base;
419 }
420 
421 /**
422  * __unflatten_device_tree - create tree of device_nodes from flat blob
423  *
424  * unflattens a device-tree, creating the
425  * tree of struct device_node. It also fills the "name" and "type"
426  * pointers of the nodes so the normal device-tree walking functions
427  * can be used.
428  * @blob: The blob to expand
429  * @dad: Parent device node
430  * @mynodes: The device_node tree created by the call
431  * @dt_alloc: An allocator that provides a virtual address to memory
432  * for the resulting tree
433  * @detached: if true set OF_DETACHED on @mynodes
434  *
435  * Returns NULL on failure or the memory chunk containing the unflattened
436  * device tree on success.
437  */
438 void *__unflatten_device_tree(const void *blob,
439 			      struct device_node *dad,
440 			      struct device_node **mynodes,
441 			      void *(*dt_alloc)(u64 size, u64 align),
442 			      bool detached)
443 {
444 	int size;
445 	void *mem;
446 
447 	pr_debug(" -> unflatten_device_tree()\n");
448 
449 	if (!blob) {
450 		pr_debug("No device tree pointer\n");
451 		return NULL;
452 	}
453 
454 	pr_debug("Unflattening device tree:\n");
455 	pr_debug("magic: %08x\n", fdt_magic(blob));
456 	pr_debug("size: %08x\n", fdt_totalsize(blob));
457 	pr_debug("version: %08x\n", fdt_version(blob));
458 
459 	if (fdt_check_header(blob)) {
460 		pr_err("Invalid device tree blob header\n");
461 		return NULL;
462 	}
463 
464 	/* First pass, scan for size */
465 	size = unflatten_dt_nodes(blob, NULL, dad, NULL);
466 	if (size < 0)
467 		return NULL;
468 
469 	size = ALIGN(size, 4);
470 	pr_debug("  size is %d, allocating...\n", size);
471 
472 	/* Allocate memory for the expanded device tree */
473 	mem = dt_alloc(size + 4, __alignof__(struct device_node));
474 	if (!mem)
475 		return NULL;
476 
477 	memset(mem, 0, size);
478 
479 	*(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
480 
481 	pr_debug("  unflattening %p...\n", mem);
482 
483 	/* Second pass, do actual unflattening */
484 	unflatten_dt_nodes(blob, mem, dad, mynodes);
485 	if (be32_to_cpup(mem + size) != 0xdeadbeef)
486 		pr_warning("End of tree marker overwritten: %08x\n",
487 			   be32_to_cpup(mem + size));
488 
489 	if (detached && mynodes) {
490 		of_node_set_flag(*mynodes, OF_DETACHED);
491 		pr_debug("unflattened tree is detached\n");
492 	}
493 
494 	pr_debug(" <- unflatten_device_tree()\n");
495 	return mem;
496 }
497 
498 static void *kernel_tree_alloc(u64 size, u64 align)
499 {
500 	return kzalloc(size, GFP_KERNEL);
501 }
502 
503 static DEFINE_MUTEX(of_fdt_unflatten_mutex);
504 
505 /**
506  * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
507  * @blob: Flat device tree blob
508  * @dad: Parent device node
509  * @mynodes: The device tree created by the call
510  *
511  * unflattens the device-tree passed by the firmware, creating the
512  * tree of struct device_node. It also fills the "name" and "type"
513  * pointers of the nodes so the normal device-tree walking functions
514  * can be used.
515  *
516  * Returns NULL on failure or the memory chunk containing the unflattened
517  * device tree on success.
518  */
519 void *of_fdt_unflatten_tree(const unsigned long *blob,
520 			    struct device_node *dad,
521 			    struct device_node **mynodes)
522 {
523 	void *mem;
524 
525 	mutex_lock(&of_fdt_unflatten_mutex);
526 	mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc,
527 				      true);
528 	mutex_unlock(&of_fdt_unflatten_mutex);
529 
530 	return mem;
531 }
532 EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
533 
534 /* Everything below here references initial_boot_params directly. */
535 int __initdata dt_root_addr_cells;
536 int __initdata dt_root_size_cells;
537 
538 void *initial_boot_params;
539 
540 #ifdef CONFIG_OF_EARLY_FLATTREE
541 
542 static u32 of_fdt_crc32;
543 
544 /**
545  * res_mem_reserve_reg() - reserve all memory described in 'reg' property
546  */
547 static int __init __reserved_mem_reserve_reg(unsigned long node,
548 					     const char *uname)
549 {
550 	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
551 	phys_addr_t base, size;
552 	int len;
553 	const __be32 *prop;
554 	int nomap, first = 1;
555 
556 	prop = of_get_flat_dt_prop(node, "reg", &len);
557 	if (!prop)
558 		return -ENOENT;
559 
560 	if (len && len % t_len != 0) {
561 		pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
562 		       uname);
563 		return -EINVAL;
564 	}
565 
566 	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
567 
568 	while (len >= t_len) {
569 		base = dt_mem_next_cell(dt_root_addr_cells, &prop);
570 		size = dt_mem_next_cell(dt_root_size_cells, &prop);
571 
572 		if (size &&
573 		    early_init_dt_reserve_memory_arch(base, size, nomap) == 0)
574 			pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %ld MiB\n",
575 				uname, &base, (unsigned long)size / SZ_1M);
576 		else
577 			pr_info("Reserved memory: failed to reserve memory for node '%s': base %pa, size %ld MiB\n",
578 				uname, &base, (unsigned long)size / SZ_1M);
579 
580 		len -= t_len;
581 		if (first) {
582 			fdt_reserved_mem_save_node(node, uname, base, size);
583 			first = 0;
584 		}
585 	}
586 	return 0;
587 }
588 
589 /**
590  * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
591  * in /reserved-memory matches the values supported by the current implementation,
592  * also check if ranges property has been provided
593  */
594 static int __init __reserved_mem_check_root(unsigned long node)
595 {
596 	const __be32 *prop;
597 
598 	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
599 	if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
600 		return -EINVAL;
601 
602 	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
603 	if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
604 		return -EINVAL;
605 
606 	prop = of_get_flat_dt_prop(node, "ranges", NULL);
607 	if (!prop)
608 		return -EINVAL;
609 	return 0;
610 }
611 
612 /**
613  * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
614  */
615 static int __init __fdt_scan_reserved_mem(unsigned long node, const char *uname,
616 					  int depth, void *data)
617 {
618 	static int found;
619 	int err;
620 
621 	if (!found && depth == 1 && strcmp(uname, "reserved-memory") == 0) {
622 		if (__reserved_mem_check_root(node) != 0) {
623 			pr_err("Reserved memory: unsupported node format, ignoring\n");
624 			/* break scan */
625 			return 1;
626 		}
627 		found = 1;
628 		/* scan next node */
629 		return 0;
630 	} else if (!found) {
631 		/* scan next node */
632 		return 0;
633 	} else if (found && depth < 2) {
634 		/* scanning of /reserved-memory has been finished */
635 		return 1;
636 	}
637 
638 	if (!of_fdt_device_is_available(initial_boot_params, node))
639 		return 0;
640 
641 	err = __reserved_mem_reserve_reg(node, uname);
642 	if (err == -ENOENT && of_get_flat_dt_prop(node, "size", NULL))
643 		fdt_reserved_mem_save_node(node, uname, 0, 0);
644 
645 	/* scan next node */
646 	return 0;
647 }
648 
649 /**
650  * early_init_fdt_scan_reserved_mem() - create reserved memory regions
651  *
652  * This function grabs memory from early allocator for device exclusive use
653  * defined in device tree structures. It should be called by arch specific code
654  * once the early allocator (i.e. memblock) has been fully activated.
655  */
656 void __init early_init_fdt_scan_reserved_mem(void)
657 {
658 	int n;
659 	u64 base, size;
660 
661 	if (!initial_boot_params)
662 		return;
663 
664 	/* Process header /memreserve/ fields */
665 	for (n = 0; ; n++) {
666 		fdt_get_mem_rsv(initial_boot_params, n, &base, &size);
667 		if (!size)
668 			break;
669 		early_init_dt_reserve_memory_arch(base, size, 0);
670 	}
671 
672 	of_scan_flat_dt(__fdt_scan_reserved_mem, NULL);
673 	fdt_init_reserved_mem();
674 }
675 
676 /**
677  * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob
678  */
679 void __init early_init_fdt_reserve_self(void)
680 {
681 	if (!initial_boot_params)
682 		return;
683 
684 	/* Reserve the dtb region */
685 	early_init_dt_reserve_memory_arch(__pa(initial_boot_params),
686 					  fdt_totalsize(initial_boot_params),
687 					  0);
688 }
689 
690 /**
691  * of_scan_flat_dt - scan flattened tree blob and call callback on each.
692  * @it: callback function
693  * @data: context data pointer
694  *
695  * This function is used to scan the flattened device-tree, it is
696  * used to extract the memory information at boot before we can
697  * unflatten the tree
698  */
699 int __init of_scan_flat_dt(int (*it)(unsigned long node,
700 				     const char *uname, int depth,
701 				     void *data),
702 			   void *data)
703 {
704 	const void *blob = initial_boot_params;
705 	const char *pathp;
706 	int offset, rc = 0, depth = -1;
707 
708 	if (!blob)
709 		return 0;
710 
711 	for (offset = fdt_next_node(blob, -1, &depth);
712 	     offset >= 0 && depth >= 0 && !rc;
713 	     offset = fdt_next_node(blob, offset, &depth)) {
714 
715 		pathp = fdt_get_name(blob, offset, NULL);
716 		if (*pathp == '/')
717 			pathp = kbasename(pathp);
718 		rc = it(offset, pathp, depth, data);
719 	}
720 	return rc;
721 }
722 
723 /**
724  * of_scan_flat_dt_subnodes - scan sub-nodes of a node call callback on each.
725  * @it: callback function
726  * @data: context data pointer
727  *
728  * This function is used to scan sub-nodes of a node.
729  */
730 int __init of_scan_flat_dt_subnodes(unsigned long parent,
731 				    int (*it)(unsigned long node,
732 					      const char *uname,
733 					      void *data),
734 				    void *data)
735 {
736 	const void *blob = initial_boot_params;
737 	int node;
738 
739 	fdt_for_each_subnode(node, blob, parent) {
740 		const char *pathp;
741 		int rc;
742 
743 		pathp = fdt_get_name(blob, node, NULL);
744 		if (*pathp == '/')
745 			pathp = kbasename(pathp);
746 		rc = it(node, pathp, data);
747 		if (rc)
748 			return rc;
749 	}
750 	return 0;
751 }
752 
753 /**
754  * of_get_flat_dt_subnode_by_name - get the subnode by given name
755  *
756  * @node: the parent node
757  * @uname: the name of subnode
758  * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none
759  */
760 
761 int of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname)
762 {
763 	return fdt_subnode_offset(initial_boot_params, node, uname);
764 }
765 
766 /**
767  * of_get_flat_dt_root - find the root node in the flat blob
768  */
769 unsigned long __init of_get_flat_dt_root(void)
770 {
771 	return 0;
772 }
773 
774 /**
775  * of_get_flat_dt_size - Return the total size of the FDT
776  */
777 int __init of_get_flat_dt_size(void)
778 {
779 	return fdt_totalsize(initial_boot_params);
780 }
781 
782 /**
783  * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
784  *
785  * This function can be used within scan_flattened_dt callback to get
786  * access to properties
787  */
788 const void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
789 				       int *size)
790 {
791 	return fdt_getprop(initial_boot_params, node, name, size);
792 }
793 
794 /**
795  * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
796  * @node: node to test
797  * @compat: compatible string to compare with compatible list.
798  */
799 int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
800 {
801 	return of_fdt_is_compatible(initial_boot_params, node, compat);
802 }
803 
804 /**
805  * of_flat_dt_match - Return true if node matches a list of compatible values
806  */
807 int __init of_flat_dt_match(unsigned long node, const char *const *compat)
808 {
809 	return of_fdt_match(initial_boot_params, node, compat);
810 }
811 
812 /**
813  * of_get_flat_dt_prop - Given a node in the flat blob, return the phandle
814  */
815 uint32_t __init of_get_flat_dt_phandle(unsigned long node)
816 {
817 	return fdt_get_phandle(initial_boot_params, node);
818 }
819 
820 struct fdt_scan_status {
821 	const char *name;
822 	int namelen;
823 	int depth;
824 	int found;
825 	int (*iterator)(unsigned long node, const char *uname, int depth, void *data);
826 	void *data;
827 };
828 
829 const char * __init of_flat_dt_get_machine_name(void)
830 {
831 	const char *name;
832 	unsigned long dt_root = of_get_flat_dt_root();
833 
834 	name = of_get_flat_dt_prop(dt_root, "model", NULL);
835 	if (!name)
836 		name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
837 	return name;
838 }
839 
840 /**
841  * of_flat_dt_match_machine - Iterate match tables to find matching machine.
842  *
843  * @default_match: A machine specific ptr to return in case of no match.
844  * @get_next_compat: callback function to return next compatible match table.
845  *
846  * Iterate through machine match tables to find the best match for the machine
847  * compatible string in the FDT.
848  */
849 const void * __init of_flat_dt_match_machine(const void *default_match,
850 		const void * (*get_next_compat)(const char * const**))
851 {
852 	const void *data = NULL;
853 	const void *best_data = default_match;
854 	const char *const *compat;
855 	unsigned long dt_root;
856 	unsigned int best_score = ~1, score = 0;
857 
858 	dt_root = of_get_flat_dt_root();
859 	while ((data = get_next_compat(&compat))) {
860 		score = of_flat_dt_match(dt_root, compat);
861 		if (score > 0 && score < best_score) {
862 			best_data = data;
863 			best_score = score;
864 		}
865 	}
866 	if (!best_data) {
867 		const char *prop;
868 		int size;
869 
870 		pr_err("\n unrecognized device tree list:\n[ ");
871 
872 		prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
873 		if (prop) {
874 			while (size > 0) {
875 				printk("'%s' ", prop);
876 				size -= strlen(prop) + 1;
877 				prop += strlen(prop) + 1;
878 			}
879 		}
880 		printk("]\n\n");
881 		return NULL;
882 	}
883 
884 	pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
885 
886 	return best_data;
887 }
888 
889 #ifdef CONFIG_BLK_DEV_INITRD
890 static void __early_init_dt_declare_initrd(unsigned long start,
891 					   unsigned long end)
892 {
893 	/* ARM64 would cause a BUG to occur here when CONFIG_DEBUG_VM is
894 	 * enabled since __va() is called too early. ARM64 does make use
895 	 * of phys_initrd_start/phys_initrd_size so we can skip this
896 	 * conversion.
897 	 */
898 	if (!IS_ENABLED(CONFIG_ARM64)) {
899 		initrd_start = (unsigned long)__va(start);
900 		initrd_end = (unsigned long)__va(end);
901 		initrd_below_start_ok = 1;
902 	}
903 }
904 
905 /**
906  * early_init_dt_check_for_initrd - Decode initrd location from flat tree
907  * @node: reference to node containing initrd location ('chosen')
908  */
909 static void __init early_init_dt_check_for_initrd(unsigned long node)
910 {
911 	u64 start, end;
912 	int len;
913 	const __be32 *prop;
914 
915 	pr_debug("Looking for initrd properties... ");
916 
917 	prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
918 	if (!prop)
919 		return;
920 	start = of_read_number(prop, len/4);
921 
922 	prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
923 	if (!prop)
924 		return;
925 	end = of_read_number(prop, len/4);
926 
927 	__early_init_dt_declare_initrd(start, end);
928 	phys_initrd_start = start;
929 	phys_initrd_size = end - start;
930 
931 	pr_debug("initrd_start=0x%llx  initrd_end=0x%llx\n",
932 		 (unsigned long long)start, (unsigned long long)end);
933 }
934 #else
935 static inline void early_init_dt_check_for_initrd(unsigned long node)
936 {
937 }
938 #endif /* CONFIG_BLK_DEV_INITRD */
939 
940 #ifdef CONFIG_SERIAL_EARLYCON
941 
942 int __init early_init_dt_scan_chosen_stdout(void)
943 {
944 	int offset;
945 	const char *p, *q, *options = NULL;
946 	int l;
947 	const struct earlycon_id **p_match;
948 	const void *fdt = initial_boot_params;
949 
950 	offset = fdt_path_offset(fdt, "/chosen");
951 	if (offset < 0)
952 		offset = fdt_path_offset(fdt, "/chosen@0");
953 	if (offset < 0)
954 		return -ENOENT;
955 
956 	p = fdt_getprop(fdt, offset, "stdout-path", &l);
957 	if (!p)
958 		p = fdt_getprop(fdt, offset, "linux,stdout-path", &l);
959 	if (!p || !l)
960 		return -ENOENT;
961 
962 	q = strchrnul(p, ':');
963 	if (*q != '\0')
964 		options = q + 1;
965 	l = q - p;
966 
967 	/* Get the node specified by stdout-path */
968 	offset = fdt_path_offset_namelen(fdt, p, l);
969 	if (offset < 0) {
970 		pr_warn("earlycon: stdout-path %.*s not found\n", l, p);
971 		return 0;
972 	}
973 
974 	for (p_match = __earlycon_table; p_match < __earlycon_table_end;
975 	     p_match++) {
976 		const struct earlycon_id *match = *p_match;
977 
978 		if (!match->compatible[0])
979 			continue;
980 
981 		if (fdt_node_check_compatible(fdt, offset, match->compatible))
982 			continue;
983 
984 		of_setup_earlycon(match, offset, options);
985 		return 0;
986 	}
987 	return -ENODEV;
988 }
989 #endif
990 
991 /**
992  * early_init_dt_scan_root - fetch the top level address and size cells
993  */
994 int __init early_init_dt_scan_root(unsigned long node, const char *uname,
995 				   int depth, void *data)
996 {
997 	const __be32 *prop;
998 
999 	if (depth != 0)
1000 		return 0;
1001 
1002 	dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
1003 	dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
1004 
1005 	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
1006 	if (prop)
1007 		dt_root_size_cells = be32_to_cpup(prop);
1008 	pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
1009 
1010 	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
1011 	if (prop)
1012 		dt_root_addr_cells = be32_to_cpup(prop);
1013 	pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1014 
1015 	/* break now */
1016 	return 1;
1017 }
1018 
1019 u64 __init dt_mem_next_cell(int s, const __be32 **cellp)
1020 {
1021 	const __be32 *p = *cellp;
1022 
1023 	*cellp = p + s;
1024 	return of_read_number(p, s);
1025 }
1026 
1027 /**
1028  * early_init_dt_scan_memory - Look for and parse memory nodes
1029  */
1030 int __init early_init_dt_scan_memory(unsigned long node, const char *uname,
1031 				     int depth, void *data)
1032 {
1033 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1034 	const __be32 *reg, *endp;
1035 	int l;
1036 	bool hotpluggable;
1037 
1038 	/* We are scanning "memory" nodes only */
1039 	if (type == NULL || strcmp(type, "memory") != 0)
1040 		return 0;
1041 
1042 	reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1043 	if (reg == NULL)
1044 		reg = of_get_flat_dt_prop(node, "reg", &l);
1045 	if (reg == NULL)
1046 		return 0;
1047 
1048 	endp = reg + (l / sizeof(__be32));
1049 	hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL);
1050 
1051 	pr_debug("memory scan node %s, reg size %d,\n", uname, l);
1052 
1053 	while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1054 		u64 base, size;
1055 
1056 		base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1057 		size = dt_mem_next_cell(dt_root_size_cells, &reg);
1058 
1059 		if (size == 0)
1060 			continue;
1061 		pr_debug(" - %llx ,  %llx\n", (unsigned long long)base,
1062 		    (unsigned long long)size);
1063 
1064 		early_init_dt_add_memory_arch(base, size);
1065 
1066 		if (!hotpluggable)
1067 			continue;
1068 
1069 		if (early_init_dt_mark_hotplug_memory_arch(base, size))
1070 			pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n",
1071 				base, base + size);
1072 	}
1073 
1074 	return 0;
1075 }
1076 
1077 int __init early_init_dt_scan_chosen(unsigned long node, const char *uname,
1078 				     int depth, void *data)
1079 {
1080 	int l;
1081 	const char *p;
1082 
1083 	pr_debug("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1084 
1085 	if (depth != 1 || !data ||
1086 	    (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
1087 		return 0;
1088 
1089 	early_init_dt_check_for_initrd(node);
1090 
1091 	/* Retrieve command line */
1092 	p = of_get_flat_dt_prop(node, "bootargs", &l);
1093 	if (p != NULL && l > 0)
1094 		strlcpy(data, p, min((int)l, COMMAND_LINE_SIZE));
1095 
1096 	/*
1097 	 * CONFIG_CMDLINE is meant to be a default in case nothing else
1098 	 * managed to set the command line, unless CONFIG_CMDLINE_FORCE
1099 	 * is set in which case we override whatever was found earlier.
1100 	 */
1101 #ifdef CONFIG_CMDLINE
1102 #if defined(CONFIG_CMDLINE_EXTEND)
1103 	strlcat(data, " ", COMMAND_LINE_SIZE);
1104 	strlcat(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1105 #elif defined(CONFIG_CMDLINE_FORCE)
1106 	strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1107 #else
1108 	/* No arguments from boot loader, use kernel's  cmdl*/
1109 	if (!((char *)data)[0])
1110 		strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1111 #endif
1112 #endif /* CONFIG_CMDLINE */
1113 
1114 	pr_debug("Command line is: %s\n", (char*)data);
1115 
1116 	/* break now */
1117 	return 1;
1118 }
1119 
1120 #ifndef MIN_MEMBLOCK_ADDR
1121 #define MIN_MEMBLOCK_ADDR	__pa(PAGE_OFFSET)
1122 #endif
1123 #ifndef MAX_MEMBLOCK_ADDR
1124 #define MAX_MEMBLOCK_ADDR	((phys_addr_t)~0)
1125 #endif
1126 
1127 void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1128 {
1129 	const u64 phys_offset = MIN_MEMBLOCK_ADDR;
1130 
1131 	if (size < PAGE_SIZE - (base & ~PAGE_MASK)) {
1132 		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1133 			base, base + size);
1134 		return;
1135 	}
1136 
1137 	if (!PAGE_ALIGNED(base)) {
1138 		size -= PAGE_SIZE - (base & ~PAGE_MASK);
1139 		base = PAGE_ALIGN(base);
1140 	}
1141 	size &= PAGE_MASK;
1142 
1143 	if (base > MAX_MEMBLOCK_ADDR) {
1144 		pr_warning("Ignoring memory block 0x%llx - 0x%llx\n",
1145 				base, base + size);
1146 		return;
1147 	}
1148 
1149 	if (base + size - 1 > MAX_MEMBLOCK_ADDR) {
1150 		pr_warning("Ignoring memory range 0x%llx - 0x%llx\n",
1151 				((u64)MAX_MEMBLOCK_ADDR) + 1, base + size);
1152 		size = MAX_MEMBLOCK_ADDR - base + 1;
1153 	}
1154 
1155 	if (base + size < phys_offset) {
1156 		pr_warning("Ignoring memory block 0x%llx - 0x%llx\n",
1157 			   base, base + size);
1158 		return;
1159 	}
1160 	if (base < phys_offset) {
1161 		pr_warning("Ignoring memory range 0x%llx - 0x%llx\n",
1162 			   base, phys_offset);
1163 		size -= phys_offset - base;
1164 		base = phys_offset;
1165 	}
1166 	memblock_add(base, size);
1167 }
1168 
1169 int __init __weak early_init_dt_mark_hotplug_memory_arch(u64 base, u64 size)
1170 {
1171 	return memblock_mark_hotplug(base, size);
1172 }
1173 
1174 int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base,
1175 					phys_addr_t size, bool nomap)
1176 {
1177 	if (nomap)
1178 		return memblock_remove(base, size);
1179 	return memblock_reserve(base, size);
1180 }
1181 
1182 static void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align)
1183 {
1184 	void *ptr = memblock_alloc(size, align);
1185 
1186 	if (!ptr)
1187 		panic("%s: Failed to allocate %llu bytes align=0x%llx\n",
1188 		      __func__, size, align);
1189 
1190 	return ptr;
1191 }
1192 
1193 bool __init early_init_dt_verify(void *params)
1194 {
1195 	if (!params)
1196 		return false;
1197 
1198 	/* check device tree validity */
1199 	if (fdt_check_header(params))
1200 		return false;
1201 
1202 	/* Setup flat device-tree pointer */
1203 	initial_boot_params = params;
1204 	of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1205 				fdt_totalsize(initial_boot_params));
1206 	return true;
1207 }
1208 
1209 
1210 void __init early_init_dt_scan_nodes(void)
1211 {
1212 	int rc = 0;
1213 
1214 	/* Retrieve various information from the /chosen node */
1215 	rc = of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line);
1216 	if (!rc)
1217 		pr_warn("No chosen node found, continuing without\n");
1218 
1219 	/* Initialize {size,address}-cells info */
1220 	of_scan_flat_dt(early_init_dt_scan_root, NULL);
1221 
1222 	/* Setup memory, calling early_init_dt_add_memory_arch */
1223 	of_scan_flat_dt(early_init_dt_scan_memory, NULL);
1224 }
1225 
1226 bool __init early_init_dt_scan(void *params)
1227 {
1228 	bool status;
1229 
1230 	status = early_init_dt_verify(params);
1231 	if (!status)
1232 		return false;
1233 
1234 	early_init_dt_scan_nodes();
1235 	return true;
1236 }
1237 
1238 /**
1239  * unflatten_device_tree - create tree of device_nodes from flat blob
1240  *
1241  * unflattens the device-tree passed by the firmware, creating the
1242  * tree of struct device_node. It also fills the "name" and "type"
1243  * pointers of the nodes so the normal device-tree walking functions
1244  * can be used.
1245  */
1246 void __init unflatten_device_tree(void)
1247 {
1248 	__unflatten_device_tree(initial_boot_params, NULL, &of_root,
1249 				early_init_dt_alloc_memory_arch, false);
1250 
1251 	/* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
1252 	of_alias_scan(early_init_dt_alloc_memory_arch);
1253 
1254 	unittest_unflatten_overlay_base();
1255 }
1256 
1257 /**
1258  * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
1259  *
1260  * Copies and unflattens the device-tree passed by the firmware, creating the
1261  * tree of struct device_node. It also fills the "name" and "type"
1262  * pointers of the nodes so the normal device-tree walking functions
1263  * can be used. This should only be used when the FDT memory has not been
1264  * reserved such is the case when the FDT is built-in to the kernel init
1265  * section. If the FDT memory is reserved already then unflatten_device_tree
1266  * should be used instead.
1267  */
1268 void __init unflatten_and_copy_device_tree(void)
1269 {
1270 	int size;
1271 	void *dt;
1272 
1273 	if (!initial_boot_params) {
1274 		pr_warn("No valid device tree found, continuing without\n");
1275 		return;
1276 	}
1277 
1278 	size = fdt_totalsize(initial_boot_params);
1279 	dt = early_init_dt_alloc_memory_arch(size,
1280 					     roundup_pow_of_two(FDT_V17_SIZE));
1281 
1282 	if (dt) {
1283 		memcpy(dt, initial_boot_params, size);
1284 		initial_boot_params = dt;
1285 	}
1286 	unflatten_device_tree();
1287 }
1288 
1289 #ifdef CONFIG_SYSFS
1290 static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj,
1291 			       struct bin_attribute *bin_attr,
1292 			       char *buf, loff_t off, size_t count)
1293 {
1294 	memcpy(buf, initial_boot_params + off, count);
1295 	return count;
1296 }
1297 
1298 static int __init of_fdt_raw_init(void)
1299 {
1300 	static struct bin_attribute of_fdt_raw_attr =
1301 		__BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0);
1302 
1303 	if (!initial_boot_params)
1304 		return 0;
1305 
1306 	if (of_fdt_crc32 != crc32_be(~0, initial_boot_params,
1307 				     fdt_totalsize(initial_boot_params))) {
1308 		pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n");
1309 		return 0;
1310 	}
1311 	of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params);
1312 	return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr);
1313 }
1314 late_initcall(of_fdt_raw_init);
1315 #endif
1316 
1317 #endif /* CONFIG_OF_EARLY_FLATTREE */
1318