1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Procedures for creating, accessing and interpreting the device tree. 4 * 5 * Paul Mackerras August 1996. 6 * Copyright (C) 1996-2005 Paul Mackerras. 7 * 8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 9 * {engebret|bergner}@us.ibm.com 10 * 11 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 12 * 13 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 14 * Grant Likely. 15 */ 16 17 #define pr_fmt(fmt) "OF: " fmt 18 19 #include <linux/cleanup.h> 20 #include <linux/console.h> 21 #include <linux/ctype.h> 22 #include <linux/cpu.h> 23 #include <linux/module.h> 24 #include <linux/of.h> 25 #include <linux/of_device.h> 26 #include <linux/of_graph.h> 27 #include <linux/spinlock.h> 28 #include <linux/slab.h> 29 #include <linux/string.h> 30 #include <linux/proc_fs.h> 31 32 #include "of_private.h" 33 34 LIST_HEAD(aliases_lookup); 35 36 struct device_node *of_root; 37 EXPORT_SYMBOL(of_root); 38 struct device_node *of_chosen; 39 EXPORT_SYMBOL(of_chosen); 40 struct device_node *of_aliases; 41 struct device_node *of_stdout; 42 static const char *of_stdout_options; 43 44 struct kset *of_kset; 45 46 /* 47 * Used to protect the of_aliases, to hold off addition of nodes to sysfs. 48 * This mutex must be held whenever modifications are being made to the 49 * device tree. The of_{attach,detach}_node() and 50 * of_{add,remove,update}_property() helpers make sure this happens. 51 */ 52 DEFINE_MUTEX(of_mutex); 53 54 /* use when traversing tree through the child, sibling, 55 * or parent members of struct device_node. 56 */ 57 DEFINE_RAW_SPINLOCK(devtree_lock); 58 59 bool of_node_name_eq(const struct device_node *np, const char *name) 60 { 61 const char *node_name; 62 size_t len; 63 64 if (!np) 65 return false; 66 67 node_name = kbasename(np->full_name); 68 len = strchrnul(node_name, '@') - node_name; 69 70 return (strlen(name) == len) && (strncmp(node_name, name, len) == 0); 71 } 72 EXPORT_SYMBOL(of_node_name_eq); 73 74 bool of_node_name_prefix(const struct device_node *np, const char *prefix) 75 { 76 if (!np) 77 return false; 78 79 return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0; 80 } 81 EXPORT_SYMBOL(of_node_name_prefix); 82 83 static bool __of_node_is_type(const struct device_node *np, const char *type) 84 { 85 const char *match = __of_get_property(np, "device_type", NULL); 86 87 return np && match && type && !strcmp(match, type); 88 } 89 90 #define EXCLUDED_DEFAULT_CELLS_PLATFORMS ( \ 91 IS_ENABLED(CONFIG_SPARC) || \ 92 of_find_compatible_node(NULL, NULL, "coreboot") \ 93 ) 94 95 int of_bus_n_addr_cells(struct device_node *np) 96 { 97 u32 cells; 98 99 for (; np; np = np->parent) { 100 if (!of_property_read_u32(np, "#address-cells", &cells)) 101 return cells; 102 /* 103 * Default root value and walking parent nodes for "#address-cells" 104 * is deprecated. Any platforms which hit this warning should 105 * be added to the excluded list. 106 */ 107 WARN_ONCE(!EXCLUDED_DEFAULT_CELLS_PLATFORMS, 108 "Missing '#address-cells' in %pOF\n", np); 109 } 110 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 111 } 112 113 int of_n_addr_cells(struct device_node *np) 114 { 115 if (np->parent) 116 np = np->parent; 117 118 return of_bus_n_addr_cells(np); 119 } 120 EXPORT_SYMBOL(of_n_addr_cells); 121 122 int of_bus_n_size_cells(struct device_node *np) 123 { 124 u32 cells; 125 126 for (; np; np = np->parent) { 127 if (!of_property_read_u32(np, "#size-cells", &cells)) 128 return cells; 129 /* 130 * Default root value and walking parent nodes for "#size-cells" 131 * is deprecated. Any platforms which hit this warning should 132 * be added to the excluded list. 133 */ 134 WARN_ONCE(!EXCLUDED_DEFAULT_CELLS_PLATFORMS, 135 "Missing '#size-cells' in %pOF\n", np); 136 } 137 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 138 } 139 140 int of_n_size_cells(struct device_node *np) 141 { 142 if (np->parent) 143 np = np->parent; 144 145 return of_bus_n_size_cells(np); 146 } 147 EXPORT_SYMBOL(of_n_size_cells); 148 149 #ifdef CONFIG_NUMA 150 int __weak of_node_to_nid(struct device_node *np) 151 { 152 return NUMA_NO_NODE; 153 } 154 #endif 155 156 #define OF_PHANDLE_CACHE_BITS 7 157 #define OF_PHANDLE_CACHE_SZ BIT(OF_PHANDLE_CACHE_BITS) 158 159 static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ]; 160 161 static u32 of_phandle_cache_hash(phandle handle) 162 { 163 return hash_32(handle, OF_PHANDLE_CACHE_BITS); 164 } 165 166 /* 167 * Caller must hold devtree_lock. 168 */ 169 void __of_phandle_cache_inv_entry(phandle handle) 170 { 171 u32 handle_hash; 172 struct device_node *np; 173 174 if (!handle) 175 return; 176 177 handle_hash = of_phandle_cache_hash(handle); 178 179 np = phandle_cache[handle_hash]; 180 if (np && handle == np->phandle) 181 phandle_cache[handle_hash] = NULL; 182 } 183 184 void __init of_core_init(void) 185 { 186 struct device_node *np; 187 188 of_platform_register_reconfig_notifier(); 189 190 /* Create the kset, and register existing nodes */ 191 mutex_lock(&of_mutex); 192 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj); 193 if (!of_kset) { 194 mutex_unlock(&of_mutex); 195 pr_err("failed to register existing nodes\n"); 196 return; 197 } 198 for_each_of_allnodes(np) { 199 __of_attach_node_sysfs(np); 200 if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)]) 201 phandle_cache[of_phandle_cache_hash(np->phandle)] = np; 202 } 203 mutex_unlock(&of_mutex); 204 205 /* Symlink in /proc as required by userspace ABI */ 206 if (of_root) 207 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base"); 208 } 209 210 static struct property *__of_find_property(const struct device_node *np, 211 const char *name, int *lenp) 212 { 213 struct property *pp; 214 215 if (!np) 216 return NULL; 217 218 for (pp = np->properties; pp; pp = pp->next) { 219 if (of_prop_cmp(pp->name, name) == 0) { 220 if (lenp) 221 *lenp = pp->length; 222 break; 223 } 224 } 225 226 return pp; 227 } 228 229 struct property *of_find_property(const struct device_node *np, 230 const char *name, 231 int *lenp) 232 { 233 struct property *pp; 234 unsigned long flags; 235 236 raw_spin_lock_irqsave(&devtree_lock, flags); 237 pp = __of_find_property(np, name, lenp); 238 raw_spin_unlock_irqrestore(&devtree_lock, flags); 239 240 return pp; 241 } 242 EXPORT_SYMBOL(of_find_property); 243 244 struct device_node *__of_find_all_nodes(struct device_node *prev) 245 { 246 struct device_node *np; 247 if (!prev) { 248 np = of_root; 249 } else if (prev->child) { 250 np = prev->child; 251 } else { 252 /* Walk back up looking for a sibling, or the end of the structure */ 253 np = prev; 254 while (np->parent && !np->sibling) 255 np = np->parent; 256 np = np->sibling; /* Might be null at the end of the tree */ 257 } 258 return np; 259 } 260 261 /** 262 * of_find_all_nodes - Get next node in global list 263 * @prev: Previous node or NULL to start iteration 264 * of_node_put() will be called on it 265 * 266 * Return: A node pointer with refcount incremented, use 267 * of_node_put() on it when done. 268 */ 269 struct device_node *of_find_all_nodes(struct device_node *prev) 270 { 271 struct device_node *np; 272 unsigned long flags; 273 274 raw_spin_lock_irqsave(&devtree_lock, flags); 275 np = __of_find_all_nodes(prev); 276 of_node_get(np); 277 of_node_put(prev); 278 raw_spin_unlock_irqrestore(&devtree_lock, flags); 279 return np; 280 } 281 EXPORT_SYMBOL(of_find_all_nodes); 282 283 /* 284 * Find a property with a given name for a given node 285 * and return the value. 286 */ 287 const void *__of_get_property(const struct device_node *np, 288 const char *name, int *lenp) 289 { 290 const struct property *pp = __of_find_property(np, name, lenp); 291 292 return pp ? pp->value : NULL; 293 } 294 295 /* 296 * Find a property with a given name for a given node 297 * and return the value. 298 */ 299 const void *of_get_property(const struct device_node *np, const char *name, 300 int *lenp) 301 { 302 const struct property *pp = of_find_property(np, name, lenp); 303 304 return pp ? pp->value : NULL; 305 } 306 EXPORT_SYMBOL(of_get_property); 307 308 /** 309 * __of_device_is_compatible() - Check if the node matches given constraints 310 * @device: pointer to node 311 * @compat: required compatible string, NULL or "" for any match 312 * @type: required device_type value, NULL or "" for any match 313 * @name: required node name, NULL or "" for any match 314 * 315 * Checks if the given @compat, @type and @name strings match the 316 * properties of the given @device. A constraints can be skipped by 317 * passing NULL or an empty string as the constraint. 318 * 319 * Returns 0 for no match, and a positive integer on match. The return 320 * value is a relative score with larger values indicating better 321 * matches. The score is weighted for the most specific compatible value 322 * to get the highest score. Matching type is next, followed by matching 323 * name. Practically speaking, this results in the following priority 324 * order for matches: 325 * 326 * 1. specific compatible && type && name 327 * 2. specific compatible && type 328 * 3. specific compatible && name 329 * 4. specific compatible 330 * 5. general compatible && type && name 331 * 6. general compatible && type 332 * 7. general compatible && name 333 * 8. general compatible 334 * 9. type && name 335 * 10. type 336 * 11. name 337 */ 338 static int __of_device_is_compatible(const struct device_node *device, 339 const char *compat, const char *type, const char *name) 340 { 341 const struct property *prop; 342 const char *cp; 343 int index = 0, score = 0; 344 345 /* Compatible match has highest priority */ 346 if (compat && compat[0]) { 347 prop = __of_find_property(device, "compatible", NULL); 348 for (cp = of_prop_next_string(prop, NULL); cp; 349 cp = of_prop_next_string(prop, cp), index++) { 350 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) { 351 score = INT_MAX/2 - (index << 2); 352 break; 353 } 354 } 355 if (!score) 356 return 0; 357 } 358 359 /* Matching type is better than matching name */ 360 if (type && type[0]) { 361 if (!__of_node_is_type(device, type)) 362 return 0; 363 score += 2; 364 } 365 366 /* Matching name is a bit better than not */ 367 if (name && name[0]) { 368 if (!of_node_name_eq(device, name)) 369 return 0; 370 score++; 371 } 372 373 return score; 374 } 375 376 /** Checks if the given "compat" string matches one of the strings in 377 * the device's "compatible" property 378 */ 379 int of_device_is_compatible(const struct device_node *device, 380 const char *compat) 381 { 382 unsigned long flags; 383 int res; 384 385 raw_spin_lock_irqsave(&devtree_lock, flags); 386 res = __of_device_is_compatible(device, compat, NULL, NULL); 387 raw_spin_unlock_irqrestore(&devtree_lock, flags); 388 return res; 389 } 390 EXPORT_SYMBOL(of_device_is_compatible); 391 392 /** Checks if the device is compatible with any of the entries in 393 * a NULL terminated array of strings. Returns the best match 394 * score or 0. 395 */ 396 int of_device_compatible_match(const struct device_node *device, 397 const char *const *compat) 398 { 399 unsigned int tmp, score = 0; 400 401 if (!compat) 402 return 0; 403 404 while (*compat) { 405 tmp = of_device_is_compatible(device, *compat); 406 if (tmp > score) 407 score = tmp; 408 compat++; 409 } 410 411 return score; 412 } 413 EXPORT_SYMBOL_GPL(of_device_compatible_match); 414 415 /** 416 * of_machine_compatible_match - Test root of device tree against a compatible array 417 * @compats: NULL terminated array of compatible strings to look for in root node's compatible property. 418 * 419 * Returns true if the root node has any of the given compatible values in its 420 * compatible property. 421 */ 422 bool of_machine_compatible_match(const char *const *compats) 423 { 424 struct device_node *root; 425 int rc = 0; 426 427 root = of_find_node_by_path("/"); 428 if (root) { 429 rc = of_device_compatible_match(root, compats); 430 of_node_put(root); 431 } 432 433 return rc != 0; 434 } 435 EXPORT_SYMBOL(of_machine_compatible_match); 436 437 static bool __of_device_is_status(const struct device_node *device, 438 const char * const*strings) 439 { 440 const char *status; 441 int statlen; 442 443 if (!device) 444 return false; 445 446 status = __of_get_property(device, "status", &statlen); 447 if (status == NULL) 448 return false; 449 450 if (statlen > 0) { 451 while (*strings) { 452 unsigned int len = strlen(*strings); 453 454 if ((*strings)[len - 1] == '-') { 455 if (!strncmp(status, *strings, len)) 456 return true; 457 } else { 458 if (!strcmp(status, *strings)) 459 return true; 460 } 461 strings++; 462 } 463 } 464 465 return false; 466 } 467 468 /** 469 * __of_device_is_available - check if a device is available for use 470 * 471 * @device: Node to check for availability, with locks already held 472 * 473 * Return: True if the status property is absent or set to "okay" or "ok", 474 * false otherwise 475 */ 476 static bool __of_device_is_available(const struct device_node *device) 477 { 478 static const char * const ok[] = {"okay", "ok", NULL}; 479 480 if (!device) 481 return false; 482 483 return !__of_get_property(device, "status", NULL) || 484 __of_device_is_status(device, ok); 485 } 486 487 /** 488 * __of_device_is_reserved - check if a device is reserved 489 * 490 * @device: Node to check for availability, with locks already held 491 * 492 * Return: True if the status property is set to "reserved", false otherwise 493 */ 494 static bool __of_device_is_reserved(const struct device_node *device) 495 { 496 static const char * const reserved[] = {"reserved", NULL}; 497 498 return __of_device_is_status(device, reserved); 499 } 500 501 /** 502 * of_device_is_available - check if a device is available for use 503 * 504 * @device: Node to check for availability 505 * 506 * Return: True if the status property is absent or set to "okay" or "ok", 507 * false otherwise 508 */ 509 bool of_device_is_available(const struct device_node *device) 510 { 511 unsigned long flags; 512 bool res; 513 514 raw_spin_lock_irqsave(&devtree_lock, flags); 515 res = __of_device_is_available(device); 516 raw_spin_unlock_irqrestore(&devtree_lock, flags); 517 return res; 518 519 } 520 EXPORT_SYMBOL(of_device_is_available); 521 522 /** 523 * __of_device_is_fail - check if a device has status "fail" or "fail-..." 524 * 525 * @device: Node to check status for, with locks already held 526 * 527 * Return: True if the status property is set to "fail" or "fail-..." (for any 528 * error code suffix), false otherwise 529 */ 530 static bool __of_device_is_fail(const struct device_node *device) 531 { 532 static const char * const fail[] = {"fail", "fail-", NULL}; 533 534 return __of_device_is_status(device, fail); 535 } 536 537 /** 538 * of_device_is_big_endian - check if a device has BE registers 539 * 540 * @device: Node to check for endianness 541 * 542 * Return: True if the device has a "big-endian" property, or if the kernel 543 * was compiled for BE *and* the device has a "native-endian" property. 544 * Returns false otherwise. 545 * 546 * Callers would nominally use ioread32be/iowrite32be if 547 * of_device_is_big_endian() == true, or readl/writel otherwise. 548 */ 549 bool of_device_is_big_endian(const struct device_node *device) 550 { 551 if (of_property_read_bool(device, "big-endian")) 552 return true; 553 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) && 554 of_property_read_bool(device, "native-endian")) 555 return true; 556 return false; 557 } 558 EXPORT_SYMBOL(of_device_is_big_endian); 559 560 /** 561 * of_get_parent - Get a node's parent if any 562 * @node: Node to get parent 563 * 564 * Return: A node pointer with refcount incremented, use 565 * of_node_put() on it when done. 566 */ 567 struct device_node *of_get_parent(const struct device_node *node) 568 { 569 struct device_node *np; 570 unsigned long flags; 571 572 if (!node) 573 return NULL; 574 575 raw_spin_lock_irqsave(&devtree_lock, flags); 576 np = of_node_get(node->parent); 577 raw_spin_unlock_irqrestore(&devtree_lock, flags); 578 return np; 579 } 580 EXPORT_SYMBOL(of_get_parent); 581 582 /** 583 * of_get_next_parent - Iterate to a node's parent 584 * @node: Node to get parent of 585 * 586 * This is like of_get_parent() except that it drops the 587 * refcount on the passed node, making it suitable for iterating 588 * through a node's parents. 589 * 590 * Return: A node pointer with refcount incremented, use 591 * of_node_put() on it when done. 592 */ 593 struct device_node *of_get_next_parent(struct device_node *node) 594 { 595 struct device_node *parent; 596 unsigned long flags; 597 598 if (!node) 599 return NULL; 600 601 raw_spin_lock_irqsave(&devtree_lock, flags); 602 parent = of_node_get(node->parent); 603 of_node_put(node); 604 raw_spin_unlock_irqrestore(&devtree_lock, flags); 605 return parent; 606 } 607 EXPORT_SYMBOL(of_get_next_parent); 608 609 static struct device_node *__of_get_next_child(const struct device_node *node, 610 struct device_node *prev) 611 { 612 struct device_node *next; 613 614 if (!node) 615 return NULL; 616 617 next = prev ? prev->sibling : node->child; 618 of_node_get(next); 619 of_node_put(prev); 620 return next; 621 } 622 #define __for_each_child_of_node(parent, child) \ 623 for (child = __of_get_next_child(parent, NULL); child != NULL; \ 624 child = __of_get_next_child(parent, child)) 625 626 /** 627 * of_get_next_child - Iterate a node childs 628 * @node: parent node 629 * @prev: previous child of the parent node, or NULL to get first 630 * 631 * Return: A node pointer with refcount incremented, use of_node_put() on 632 * it when done. Returns NULL when prev is the last child. Decrements the 633 * refcount of prev. 634 */ 635 struct device_node *of_get_next_child(const struct device_node *node, 636 struct device_node *prev) 637 { 638 struct device_node *next; 639 unsigned long flags; 640 641 raw_spin_lock_irqsave(&devtree_lock, flags); 642 next = __of_get_next_child(node, prev); 643 raw_spin_unlock_irqrestore(&devtree_lock, flags); 644 return next; 645 } 646 EXPORT_SYMBOL(of_get_next_child); 647 648 /** 649 * of_get_next_child_with_prefix - Find the next child node with prefix 650 * @node: parent node 651 * @prev: previous child of the parent node, or NULL to get first 652 * @prefix: prefix that the node name should have 653 * 654 * This function is like of_get_next_child(), except that it automatically 655 * skips any nodes whose name doesn't have the given prefix. 656 * 657 * Return: A node pointer with refcount incremented, use 658 * of_node_put() on it when done. 659 */ 660 struct device_node *of_get_next_child_with_prefix(const struct device_node *node, 661 struct device_node *prev, 662 const char *prefix) 663 { 664 struct device_node *next; 665 unsigned long flags; 666 667 if (!node) 668 return NULL; 669 670 raw_spin_lock_irqsave(&devtree_lock, flags); 671 next = prev ? prev->sibling : node->child; 672 for (; next; next = next->sibling) { 673 if (!of_node_name_prefix(next, prefix)) 674 continue; 675 if (of_node_get(next)) 676 break; 677 } 678 of_node_put(prev); 679 raw_spin_unlock_irqrestore(&devtree_lock, flags); 680 return next; 681 } 682 EXPORT_SYMBOL(of_get_next_child_with_prefix); 683 684 static struct device_node *of_get_next_status_child(const struct device_node *node, 685 struct device_node *prev, 686 bool (*checker)(const struct device_node *)) 687 { 688 struct device_node *next; 689 unsigned long flags; 690 691 if (!node) 692 return NULL; 693 694 raw_spin_lock_irqsave(&devtree_lock, flags); 695 next = prev ? prev->sibling : node->child; 696 for (; next; next = next->sibling) { 697 if (!checker(next)) 698 continue; 699 if (of_node_get(next)) 700 break; 701 } 702 of_node_put(prev); 703 raw_spin_unlock_irqrestore(&devtree_lock, flags); 704 return next; 705 } 706 707 /** 708 * of_get_next_available_child - Find the next available child node 709 * @node: parent node 710 * @prev: previous child of the parent node, or NULL to get first 711 * 712 * This function is like of_get_next_child(), except that it 713 * automatically skips any disabled nodes (i.e. status = "disabled"). 714 */ 715 struct device_node *of_get_next_available_child(const struct device_node *node, 716 struct device_node *prev) 717 { 718 return of_get_next_status_child(node, prev, __of_device_is_available); 719 } 720 EXPORT_SYMBOL(of_get_next_available_child); 721 722 /** 723 * of_get_next_reserved_child - Find the next reserved child node 724 * @node: parent node 725 * @prev: previous child of the parent node, or NULL to get first 726 * 727 * This function is like of_get_next_child(), except that it 728 * automatically skips any disabled nodes (i.e. status = "disabled"). 729 */ 730 struct device_node *of_get_next_reserved_child(const struct device_node *node, 731 struct device_node *prev) 732 { 733 return of_get_next_status_child(node, prev, __of_device_is_reserved); 734 } 735 EXPORT_SYMBOL(of_get_next_reserved_child); 736 737 /** 738 * of_get_next_cpu_node - Iterate on cpu nodes 739 * @prev: previous child of the /cpus node, or NULL to get first 740 * 741 * Unusable CPUs (those with the status property set to "fail" or "fail-...") 742 * will be skipped. 743 * 744 * Return: A cpu node pointer with refcount incremented, use of_node_put() 745 * on it when done. Returns NULL when prev is the last child. Decrements 746 * the refcount of prev. 747 */ 748 struct device_node *of_get_next_cpu_node(struct device_node *prev) 749 { 750 struct device_node *next = NULL; 751 unsigned long flags; 752 struct device_node *node; 753 754 if (!prev) 755 node = of_find_node_by_path("/cpus"); 756 757 raw_spin_lock_irqsave(&devtree_lock, flags); 758 if (prev) 759 next = prev->sibling; 760 else if (node) { 761 next = node->child; 762 of_node_put(node); 763 } 764 for (; next; next = next->sibling) { 765 if (__of_device_is_fail(next)) 766 continue; 767 if (!(of_node_name_eq(next, "cpu") || 768 __of_node_is_type(next, "cpu"))) 769 continue; 770 if (of_node_get(next)) 771 break; 772 } 773 of_node_put(prev); 774 raw_spin_unlock_irqrestore(&devtree_lock, flags); 775 return next; 776 } 777 EXPORT_SYMBOL(of_get_next_cpu_node); 778 779 /** 780 * of_get_compatible_child - Find compatible child node 781 * @parent: parent node 782 * @compatible: compatible string 783 * 784 * Lookup child node whose compatible property contains the given compatible 785 * string. 786 * 787 * Return: a node pointer with refcount incremented, use of_node_put() on it 788 * when done; or NULL if not found. 789 */ 790 struct device_node *of_get_compatible_child(const struct device_node *parent, 791 const char *compatible) 792 { 793 struct device_node *child; 794 795 for_each_child_of_node(parent, child) { 796 if (of_device_is_compatible(child, compatible)) 797 break; 798 } 799 800 return child; 801 } 802 EXPORT_SYMBOL(of_get_compatible_child); 803 804 /** 805 * of_get_child_by_name - Find the child node by name for a given parent 806 * @node: parent node 807 * @name: child name to look for. 808 * 809 * This function looks for child node for given matching name 810 * 811 * Return: A node pointer if found, with refcount incremented, use 812 * of_node_put() on it when done. 813 * Returns NULL if node is not found. 814 */ 815 struct device_node *of_get_child_by_name(const struct device_node *node, 816 const char *name) 817 { 818 struct device_node *child; 819 820 for_each_child_of_node(node, child) 821 if (of_node_name_eq(child, name)) 822 break; 823 return child; 824 } 825 EXPORT_SYMBOL(of_get_child_by_name); 826 827 struct device_node *__of_find_node_by_path(const struct device_node *parent, 828 const char *path) 829 { 830 struct device_node *child; 831 int len; 832 833 len = strcspn(path, "/:"); 834 if (!len) 835 return NULL; 836 837 __for_each_child_of_node(parent, child) { 838 const char *name = kbasename(child->full_name); 839 if (strncmp(path, name, len) == 0 && (strlen(name) == len)) 840 return child; 841 } 842 return NULL; 843 } 844 845 struct device_node *__of_find_node_by_full_path(struct device_node *node, 846 const char *path) 847 { 848 const char *separator = strchr(path, ':'); 849 850 while (node && *path == '/') { 851 struct device_node *tmp = node; 852 853 path++; /* Increment past '/' delimiter */ 854 node = __of_find_node_by_path(node, path); 855 of_node_put(tmp); 856 path = strchrnul(path, '/'); 857 if (separator && separator < path) 858 break; 859 } 860 return node; 861 } 862 863 /** 864 * of_find_node_opts_by_path - Find a node matching a full OF path 865 * @path: Either the full path to match, or if the path does not 866 * start with '/', the name of a property of the /aliases 867 * node (an alias). In the case of an alias, the node 868 * matching the alias' value will be returned. 869 * @opts: Address of a pointer into which to store the start of 870 * an options string appended to the end of the path with 871 * a ':' separator. 872 * 873 * Valid paths: 874 * * /foo/bar Full path 875 * * foo Valid alias 876 * * foo/bar Valid alias + relative path 877 * 878 * Return: A node pointer with refcount incremented, use 879 * of_node_put() on it when done. 880 */ 881 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts) 882 { 883 struct device_node *np = NULL; 884 const struct property *pp; 885 unsigned long flags; 886 const char *separator = strchr(path, ':'); 887 888 if (opts) 889 *opts = separator ? separator + 1 : NULL; 890 891 if (strcmp(path, "/") == 0) 892 return of_node_get(of_root); 893 894 /* The path could begin with an alias */ 895 if (*path != '/') { 896 int len; 897 const char *p = strchrnul(path, '/'); 898 899 if (separator && separator < p) 900 p = separator; 901 len = p - path; 902 903 /* of_aliases must not be NULL */ 904 if (!of_aliases) 905 return NULL; 906 907 for_each_property_of_node(of_aliases, pp) { 908 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) { 909 np = of_find_node_by_path(pp->value); 910 break; 911 } 912 } 913 if (!np) 914 return NULL; 915 path = p; 916 } 917 918 /* Step down the tree matching path components */ 919 raw_spin_lock_irqsave(&devtree_lock, flags); 920 if (!np) 921 np = of_node_get(of_root); 922 np = __of_find_node_by_full_path(np, path); 923 raw_spin_unlock_irqrestore(&devtree_lock, flags); 924 return np; 925 } 926 EXPORT_SYMBOL(of_find_node_opts_by_path); 927 928 /** 929 * of_find_node_by_name - Find a node by its "name" property 930 * @from: The node to start searching from or NULL; the node 931 * you pass will not be searched, only the next one 932 * will. Typically, you pass what the previous call 933 * returned. of_node_put() will be called on @from. 934 * @name: The name string to match against 935 * 936 * Return: A node pointer with refcount incremented, use 937 * of_node_put() on it when done. 938 */ 939 struct device_node *of_find_node_by_name(struct device_node *from, 940 const char *name) 941 { 942 struct device_node *np; 943 unsigned long flags; 944 945 raw_spin_lock_irqsave(&devtree_lock, flags); 946 for_each_of_allnodes_from(from, np) 947 if (of_node_name_eq(np, name) && of_node_get(np)) 948 break; 949 of_node_put(from); 950 raw_spin_unlock_irqrestore(&devtree_lock, flags); 951 return np; 952 } 953 EXPORT_SYMBOL(of_find_node_by_name); 954 955 /** 956 * of_find_node_by_type - Find a node by its "device_type" property 957 * @from: The node to start searching from, or NULL to start searching 958 * the entire device tree. The node you pass will not be 959 * searched, only the next one will; typically, you pass 960 * what the previous call returned. of_node_put() will be 961 * called on from for you. 962 * @type: The type string to match against 963 * 964 * Return: A node pointer with refcount incremented, use 965 * of_node_put() on it when done. 966 */ 967 struct device_node *of_find_node_by_type(struct device_node *from, 968 const char *type) 969 { 970 struct device_node *np; 971 unsigned long flags; 972 973 raw_spin_lock_irqsave(&devtree_lock, flags); 974 for_each_of_allnodes_from(from, np) 975 if (__of_node_is_type(np, type) && of_node_get(np)) 976 break; 977 of_node_put(from); 978 raw_spin_unlock_irqrestore(&devtree_lock, flags); 979 return np; 980 } 981 EXPORT_SYMBOL(of_find_node_by_type); 982 983 /** 984 * of_find_compatible_node - Find a node based on type and one of the 985 * tokens in its "compatible" property 986 * @from: The node to start searching from or NULL, the node 987 * you pass will not be searched, only the next one 988 * will; typically, you pass what the previous call 989 * returned. of_node_put() will be called on it 990 * @type: The type string to match "device_type" or NULL to ignore 991 * @compatible: The string to match to one of the tokens in the device 992 * "compatible" list. 993 * 994 * Return: A node pointer with refcount incremented, use 995 * of_node_put() on it when done. 996 */ 997 struct device_node *of_find_compatible_node(struct device_node *from, 998 const char *type, const char *compatible) 999 { 1000 struct device_node *np; 1001 unsigned long flags; 1002 1003 raw_spin_lock_irqsave(&devtree_lock, flags); 1004 for_each_of_allnodes_from(from, np) 1005 if (__of_device_is_compatible(np, compatible, type, NULL) && 1006 of_node_get(np)) 1007 break; 1008 of_node_put(from); 1009 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1010 return np; 1011 } 1012 EXPORT_SYMBOL(of_find_compatible_node); 1013 1014 /** 1015 * of_find_node_with_property - Find a node which has a property with 1016 * the given name. 1017 * @from: The node to start searching from or NULL, the node 1018 * you pass will not be searched, only the next one 1019 * will; typically, you pass what the previous call 1020 * returned. of_node_put() will be called on it 1021 * @prop_name: The name of the property to look for. 1022 * 1023 * Return: A node pointer with refcount incremented, use 1024 * of_node_put() on it when done. 1025 */ 1026 struct device_node *of_find_node_with_property(struct device_node *from, 1027 const char *prop_name) 1028 { 1029 struct device_node *np; 1030 unsigned long flags; 1031 1032 raw_spin_lock_irqsave(&devtree_lock, flags); 1033 for_each_of_allnodes_from(from, np) { 1034 if (__of_find_property(np, prop_name, NULL)) { 1035 of_node_get(np); 1036 break; 1037 } 1038 } 1039 of_node_put(from); 1040 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1041 return np; 1042 } 1043 EXPORT_SYMBOL(of_find_node_with_property); 1044 1045 static 1046 const struct of_device_id *__of_match_node(const struct of_device_id *matches, 1047 const struct device_node *node) 1048 { 1049 const struct of_device_id *best_match = NULL; 1050 int score, best_score = 0; 1051 1052 if (!matches) 1053 return NULL; 1054 1055 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) { 1056 score = __of_device_is_compatible(node, matches->compatible, 1057 matches->type, matches->name); 1058 if (score > best_score) { 1059 best_match = matches; 1060 best_score = score; 1061 } 1062 } 1063 1064 return best_match; 1065 } 1066 1067 /** 1068 * of_match_node - Tell if a device_node has a matching of_match structure 1069 * @matches: array of of device match structures to search in 1070 * @node: the of device structure to match against 1071 * 1072 * Low level utility function used by device matching. 1073 */ 1074 const struct of_device_id *of_match_node(const struct of_device_id *matches, 1075 const struct device_node *node) 1076 { 1077 const struct of_device_id *match; 1078 unsigned long flags; 1079 1080 raw_spin_lock_irqsave(&devtree_lock, flags); 1081 match = __of_match_node(matches, node); 1082 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1083 return match; 1084 } 1085 EXPORT_SYMBOL(of_match_node); 1086 1087 /** 1088 * of_find_matching_node_and_match - Find a node based on an of_device_id 1089 * match table. 1090 * @from: The node to start searching from or NULL, the node 1091 * you pass will not be searched, only the next one 1092 * will; typically, you pass what the previous call 1093 * returned. of_node_put() will be called on it 1094 * @matches: array of of device match structures to search in 1095 * @match: Updated to point at the matches entry which matched 1096 * 1097 * Return: A node pointer with refcount incremented, use 1098 * of_node_put() on it when done. 1099 */ 1100 struct device_node *of_find_matching_node_and_match(struct device_node *from, 1101 const struct of_device_id *matches, 1102 const struct of_device_id **match) 1103 { 1104 struct device_node *np; 1105 const struct of_device_id *m; 1106 unsigned long flags; 1107 1108 if (match) 1109 *match = NULL; 1110 1111 raw_spin_lock_irqsave(&devtree_lock, flags); 1112 for_each_of_allnodes_from(from, np) { 1113 m = __of_match_node(matches, np); 1114 if (m && of_node_get(np)) { 1115 if (match) 1116 *match = m; 1117 break; 1118 } 1119 } 1120 of_node_put(from); 1121 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1122 return np; 1123 } 1124 EXPORT_SYMBOL(of_find_matching_node_and_match); 1125 1126 /** 1127 * of_alias_from_compatible - Lookup appropriate alias for a device node 1128 * depending on compatible 1129 * @node: pointer to a device tree node 1130 * @alias: Pointer to buffer that alias value will be copied into 1131 * @len: Length of alias value 1132 * 1133 * Based on the value of the compatible property, this routine will attempt 1134 * to choose an appropriate alias value for a particular device tree node. 1135 * It does this by stripping the manufacturer prefix (as delimited by a ',') 1136 * from the first entry in the compatible list property. 1137 * 1138 * Note: The matching on just the "product" side of the compatible is a relic 1139 * from I2C and SPI. Please do not add any new user. 1140 * 1141 * Return: This routine returns 0 on success, <0 on failure. 1142 */ 1143 int of_alias_from_compatible(const struct device_node *node, char *alias, int len) 1144 { 1145 const char *compatible, *p; 1146 int cplen; 1147 1148 compatible = of_get_property(node, "compatible", &cplen); 1149 if (!compatible || strlen(compatible) > cplen) 1150 return -ENODEV; 1151 p = strchr(compatible, ','); 1152 strscpy(alias, p ? p + 1 : compatible, len); 1153 return 0; 1154 } 1155 EXPORT_SYMBOL_GPL(of_alias_from_compatible); 1156 1157 /** 1158 * of_find_node_by_phandle - Find a node given a phandle 1159 * @handle: phandle of the node to find 1160 * 1161 * Return: A node pointer with refcount incremented, use 1162 * of_node_put() on it when done. 1163 */ 1164 struct device_node *of_find_node_by_phandle(phandle handle) 1165 { 1166 struct device_node *np = NULL; 1167 unsigned long flags; 1168 u32 handle_hash; 1169 1170 if (!handle) 1171 return NULL; 1172 1173 handle_hash = of_phandle_cache_hash(handle); 1174 1175 raw_spin_lock_irqsave(&devtree_lock, flags); 1176 1177 if (phandle_cache[handle_hash] && 1178 handle == phandle_cache[handle_hash]->phandle) 1179 np = phandle_cache[handle_hash]; 1180 1181 if (!np) { 1182 for_each_of_allnodes(np) 1183 if (np->phandle == handle && 1184 !of_node_check_flag(np, OF_DETACHED)) { 1185 phandle_cache[handle_hash] = np; 1186 break; 1187 } 1188 } 1189 1190 of_node_get(np); 1191 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1192 return np; 1193 } 1194 EXPORT_SYMBOL(of_find_node_by_phandle); 1195 1196 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args) 1197 { 1198 int i; 1199 printk("%s %pOF", msg, args->np); 1200 for (i = 0; i < args->args_count; i++) { 1201 const char delim = i ? ',' : ':'; 1202 1203 pr_cont("%c%08x", delim, args->args[i]); 1204 } 1205 pr_cont("\n"); 1206 } 1207 1208 int of_phandle_iterator_init(struct of_phandle_iterator *it, 1209 const struct device_node *np, 1210 const char *list_name, 1211 const char *cells_name, 1212 int cell_count) 1213 { 1214 const __be32 *list; 1215 int size; 1216 1217 memset(it, 0, sizeof(*it)); 1218 1219 /* 1220 * one of cell_count or cells_name must be provided to determine the 1221 * argument length. 1222 */ 1223 if (cell_count < 0 && !cells_name) 1224 return -EINVAL; 1225 1226 list = of_get_property(np, list_name, &size); 1227 if (!list) 1228 return -ENOENT; 1229 1230 it->cells_name = cells_name; 1231 it->cell_count = cell_count; 1232 it->parent = np; 1233 it->list_end = list + size / sizeof(*list); 1234 it->phandle_end = list; 1235 it->cur = list; 1236 1237 return 0; 1238 } 1239 EXPORT_SYMBOL_GPL(of_phandle_iterator_init); 1240 1241 int of_phandle_iterator_next(struct of_phandle_iterator *it) 1242 { 1243 uint32_t count = 0; 1244 1245 if (it->node) { 1246 of_node_put(it->node); 1247 it->node = NULL; 1248 } 1249 1250 if (!it->cur || it->phandle_end >= it->list_end) 1251 return -ENOENT; 1252 1253 it->cur = it->phandle_end; 1254 1255 /* If phandle is 0, then it is an empty entry with no arguments. */ 1256 it->phandle = be32_to_cpup(it->cur++); 1257 1258 if (it->phandle) { 1259 1260 /* 1261 * Find the provider node and parse the #*-cells property to 1262 * determine the argument length. 1263 */ 1264 it->node = of_find_node_by_phandle(it->phandle); 1265 1266 if (it->cells_name) { 1267 if (!it->node) { 1268 pr_err("%pOF: could not find phandle %d\n", 1269 it->parent, it->phandle); 1270 goto err; 1271 } 1272 1273 if (of_property_read_u32(it->node, it->cells_name, 1274 &count)) { 1275 /* 1276 * If both cell_count and cells_name is given, 1277 * fall back to cell_count in absence 1278 * of the cells_name property 1279 */ 1280 if (it->cell_count >= 0) { 1281 count = it->cell_count; 1282 } else { 1283 pr_err("%pOF: could not get %s for %pOF\n", 1284 it->parent, 1285 it->cells_name, 1286 it->node); 1287 goto err; 1288 } 1289 } 1290 } else { 1291 count = it->cell_count; 1292 } 1293 1294 /* 1295 * Make sure that the arguments actually fit in the remaining 1296 * property data length 1297 */ 1298 if (it->cur + count > it->list_end) { 1299 if (it->cells_name) 1300 pr_err("%pOF: %s = %d found %td\n", 1301 it->parent, it->cells_name, 1302 count, it->list_end - it->cur); 1303 else 1304 pr_err("%pOF: phandle %s needs %d, found %td\n", 1305 it->parent, of_node_full_name(it->node), 1306 count, it->list_end - it->cur); 1307 goto err; 1308 } 1309 } 1310 1311 it->phandle_end = it->cur + count; 1312 it->cur_count = count; 1313 1314 return 0; 1315 1316 err: 1317 if (it->node) { 1318 of_node_put(it->node); 1319 it->node = NULL; 1320 } 1321 1322 return -EINVAL; 1323 } 1324 EXPORT_SYMBOL_GPL(of_phandle_iterator_next); 1325 1326 int of_phandle_iterator_args(struct of_phandle_iterator *it, 1327 uint32_t *args, 1328 int size) 1329 { 1330 int i, count; 1331 1332 count = it->cur_count; 1333 1334 if (WARN_ON(size < count)) 1335 count = size; 1336 1337 for (i = 0; i < count; i++) 1338 args[i] = be32_to_cpup(it->cur++); 1339 1340 return count; 1341 } 1342 1343 int __of_parse_phandle_with_args(const struct device_node *np, 1344 const char *list_name, 1345 const char *cells_name, 1346 int cell_count, int index, 1347 struct of_phandle_args *out_args) 1348 { 1349 struct of_phandle_iterator it; 1350 int rc, cur_index = 0; 1351 1352 if (index < 0) 1353 return -EINVAL; 1354 1355 /* Loop over the phandles until all the requested entry is found */ 1356 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) { 1357 /* 1358 * All of the error cases bail out of the loop, so at 1359 * this point, the parsing is successful. If the requested 1360 * index matches, then fill the out_args structure and return, 1361 * or return -ENOENT for an empty entry. 1362 */ 1363 rc = -ENOENT; 1364 if (cur_index == index) { 1365 if (!it.phandle) 1366 goto err; 1367 1368 if (out_args) { 1369 int c; 1370 1371 c = of_phandle_iterator_args(&it, 1372 out_args->args, 1373 MAX_PHANDLE_ARGS); 1374 out_args->np = it.node; 1375 out_args->args_count = c; 1376 } else { 1377 of_node_put(it.node); 1378 } 1379 1380 /* Found it! return success */ 1381 return 0; 1382 } 1383 1384 cur_index++; 1385 } 1386 1387 /* 1388 * Unlock node before returning result; will be one of: 1389 * -ENOENT : index is for empty phandle 1390 * -EINVAL : parsing error on data 1391 */ 1392 1393 err: 1394 of_node_put(it.node); 1395 return rc; 1396 } 1397 EXPORT_SYMBOL(__of_parse_phandle_with_args); 1398 1399 /** 1400 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it 1401 * @np: pointer to a device tree node containing a list 1402 * @list_name: property name that contains a list 1403 * @stem_name: stem of property names that specify phandles' arguments count 1404 * @index: index of a phandle to parse out 1405 * @out_args: optional pointer to output arguments structure (will be filled) 1406 * 1407 * This function is useful to parse lists of phandles and their arguments. 1408 * Returns 0 on success and fills out_args, on error returns appropriate errno 1409 * value. The difference between this function and of_parse_phandle_with_args() 1410 * is that this API remaps a phandle if the node the phandle points to has 1411 * a <@stem_name>-map property. 1412 * 1413 * Caller is responsible to call of_node_put() on the returned out_args->np 1414 * pointer. 1415 * 1416 * Example:: 1417 * 1418 * phandle1: node1 { 1419 * #list-cells = <2>; 1420 * }; 1421 * 1422 * phandle2: node2 { 1423 * #list-cells = <1>; 1424 * }; 1425 * 1426 * phandle3: node3 { 1427 * #list-cells = <1>; 1428 * list-map = <0 &phandle2 3>, 1429 * <1 &phandle2 2>, 1430 * <2 &phandle1 5 1>; 1431 * list-map-mask = <0x3>; 1432 * }; 1433 * 1434 * node4 { 1435 * list = <&phandle1 1 2 &phandle3 0>; 1436 * }; 1437 * 1438 * To get a device_node of the ``node2`` node you may call this: 1439 * of_parse_phandle_with_args(node4, "list", "list", 1, &args); 1440 */ 1441 int of_parse_phandle_with_args_map(const struct device_node *np, 1442 const char *list_name, 1443 const char *stem_name, 1444 int index, struct of_phandle_args *out_args) 1445 { 1446 char *cells_name __free(kfree) = kasprintf(GFP_KERNEL, "#%s-cells", stem_name); 1447 char *map_name __free(kfree) = kasprintf(GFP_KERNEL, "%s-map", stem_name); 1448 char *mask_name __free(kfree) = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name); 1449 char *pass_name __free(kfree) = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name); 1450 struct device_node *cur, *new = NULL; 1451 const __be32 *map, *mask, *pass; 1452 static const __be32 dummy_mask[] = { [0 ... (MAX_PHANDLE_ARGS - 1)] = cpu_to_be32(~0) }; 1453 static const __be32 dummy_pass[] = { [0 ... (MAX_PHANDLE_ARGS - 1)] = cpu_to_be32(0) }; 1454 __be32 initial_match_array[MAX_PHANDLE_ARGS]; 1455 const __be32 *match_array = initial_match_array; 1456 int i, ret, map_len, match; 1457 u32 list_size, new_size; 1458 1459 if (index < 0) 1460 return -EINVAL; 1461 1462 if (!cells_name || !map_name || !mask_name || !pass_name) 1463 return -ENOMEM; 1464 1465 ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index, 1466 out_args); 1467 if (ret) 1468 return ret; 1469 1470 /* Get the #<list>-cells property */ 1471 cur = out_args->np; 1472 ret = of_property_read_u32(cur, cells_name, &list_size); 1473 if (ret < 0) 1474 goto put; 1475 1476 /* Precalculate the match array - this simplifies match loop */ 1477 for (i = 0; i < list_size; i++) 1478 initial_match_array[i] = cpu_to_be32(out_args->args[i]); 1479 1480 ret = -EINVAL; 1481 while (cur) { 1482 /* Get the <list>-map property */ 1483 map = of_get_property(cur, map_name, &map_len); 1484 if (!map) { 1485 return 0; 1486 } 1487 map_len /= sizeof(u32); 1488 1489 /* Get the <list>-map-mask property (optional) */ 1490 mask = of_get_property(cur, mask_name, NULL); 1491 if (!mask) 1492 mask = dummy_mask; 1493 /* Iterate through <list>-map property */ 1494 match = 0; 1495 while (map_len > (list_size + 1) && !match) { 1496 /* Compare specifiers */ 1497 match = 1; 1498 for (i = 0; i < list_size; i++, map_len--) 1499 match &= !((match_array[i] ^ *map++) & mask[i]); 1500 1501 of_node_put(new); 1502 new = of_find_node_by_phandle(be32_to_cpup(map)); 1503 map++; 1504 map_len--; 1505 1506 /* Check if not found */ 1507 if (!new) { 1508 ret = -EINVAL; 1509 goto put; 1510 } 1511 1512 if (!of_device_is_available(new)) 1513 match = 0; 1514 1515 ret = of_property_read_u32(new, cells_name, &new_size); 1516 if (ret) 1517 goto put; 1518 1519 /* Check for malformed properties */ 1520 if (WARN_ON(new_size > MAX_PHANDLE_ARGS) || 1521 map_len < new_size) { 1522 ret = -EINVAL; 1523 goto put; 1524 } 1525 1526 /* Move forward by new node's #<list>-cells amount */ 1527 map += new_size; 1528 map_len -= new_size; 1529 } 1530 if (!match) { 1531 ret = -ENOENT; 1532 goto put; 1533 } 1534 1535 /* Get the <list>-map-pass-thru property (optional) */ 1536 pass = of_get_property(cur, pass_name, NULL); 1537 if (!pass) 1538 pass = dummy_pass; 1539 1540 /* 1541 * Successfully parsed a <list>-map translation; copy new 1542 * specifier into the out_args structure, keeping the 1543 * bits specified in <list>-map-pass-thru. 1544 */ 1545 for (i = 0; i < new_size; i++) { 1546 __be32 val = *(map - new_size + i); 1547 1548 if (i < list_size) { 1549 val &= ~pass[i]; 1550 val |= cpu_to_be32(out_args->args[i]) & pass[i]; 1551 } 1552 1553 initial_match_array[i] = val; 1554 out_args->args[i] = be32_to_cpu(val); 1555 } 1556 out_args->args_count = list_size = new_size; 1557 /* Iterate again with new provider */ 1558 out_args->np = new; 1559 of_node_put(cur); 1560 cur = new; 1561 new = NULL; 1562 } 1563 put: 1564 of_node_put(cur); 1565 of_node_put(new); 1566 return ret; 1567 } 1568 EXPORT_SYMBOL(of_parse_phandle_with_args_map); 1569 1570 /** 1571 * of_count_phandle_with_args() - Find the number of phandles references in a property 1572 * @np: pointer to a device tree node containing a list 1573 * @list_name: property name that contains a list 1574 * @cells_name: property name that specifies phandles' arguments count 1575 * 1576 * Return: The number of phandle + argument tuples within a property. It 1577 * is a typical pattern to encode a list of phandle and variable 1578 * arguments into a single property. The number of arguments is encoded 1579 * by a property in the phandle-target node. For example, a gpios 1580 * property would contain a list of GPIO specifies consisting of a 1581 * phandle and 1 or more arguments. The number of arguments are 1582 * determined by the #gpio-cells property in the node pointed to by the 1583 * phandle. 1584 */ 1585 int of_count_phandle_with_args(const struct device_node *np, const char *list_name, 1586 const char *cells_name) 1587 { 1588 struct of_phandle_iterator it; 1589 int rc, cur_index = 0; 1590 1591 /* 1592 * If cells_name is NULL we assume a cell count of 0. This makes 1593 * counting the phandles trivial as each 32bit word in the list is a 1594 * phandle and no arguments are to consider. So we don't iterate through 1595 * the list but just use the length to determine the phandle count. 1596 */ 1597 if (!cells_name) { 1598 const __be32 *list; 1599 int size; 1600 1601 list = of_get_property(np, list_name, &size); 1602 if (!list) 1603 return -ENOENT; 1604 1605 return size / sizeof(*list); 1606 } 1607 1608 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1); 1609 if (rc) 1610 return rc; 1611 1612 while ((rc = of_phandle_iterator_next(&it)) == 0) 1613 cur_index += 1; 1614 1615 if (rc != -ENOENT) 1616 return rc; 1617 1618 return cur_index; 1619 } 1620 EXPORT_SYMBOL(of_count_phandle_with_args); 1621 1622 static struct property *__of_remove_property_from_list(struct property **list, struct property *prop) 1623 { 1624 struct property **next; 1625 1626 for (next = list; *next; next = &(*next)->next) { 1627 if (*next == prop) { 1628 *next = prop->next; 1629 prop->next = NULL; 1630 return prop; 1631 } 1632 } 1633 return NULL; 1634 } 1635 1636 /** 1637 * __of_add_property - Add a property to a node without lock operations 1638 * @np: Caller's Device Node 1639 * @prop: Property to add 1640 */ 1641 int __of_add_property(struct device_node *np, struct property *prop) 1642 { 1643 int rc = 0; 1644 unsigned long flags; 1645 struct property **next; 1646 1647 raw_spin_lock_irqsave(&devtree_lock, flags); 1648 1649 __of_remove_property_from_list(&np->deadprops, prop); 1650 1651 prop->next = NULL; 1652 next = &np->properties; 1653 while (*next) { 1654 if (strcmp(prop->name, (*next)->name) == 0) { 1655 /* duplicate ! don't insert it */ 1656 rc = -EEXIST; 1657 goto out_unlock; 1658 } 1659 next = &(*next)->next; 1660 } 1661 *next = prop; 1662 1663 out_unlock: 1664 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1665 if (rc) 1666 return rc; 1667 1668 __of_add_property_sysfs(np, prop); 1669 return 0; 1670 } 1671 1672 /** 1673 * of_add_property - Add a property to a node 1674 * @np: Caller's Device Node 1675 * @prop: Property to add 1676 */ 1677 int of_add_property(struct device_node *np, struct property *prop) 1678 { 1679 int rc; 1680 1681 mutex_lock(&of_mutex); 1682 rc = __of_add_property(np, prop); 1683 mutex_unlock(&of_mutex); 1684 1685 if (!rc) 1686 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL); 1687 1688 return rc; 1689 } 1690 EXPORT_SYMBOL_GPL(of_add_property); 1691 1692 int __of_remove_property(struct device_node *np, struct property *prop) 1693 { 1694 unsigned long flags; 1695 int rc = -ENODEV; 1696 1697 raw_spin_lock_irqsave(&devtree_lock, flags); 1698 1699 if (__of_remove_property_from_list(&np->properties, prop)) { 1700 /* Found the property, add it to deadprops list */ 1701 prop->next = np->deadprops; 1702 np->deadprops = prop; 1703 rc = 0; 1704 } 1705 1706 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1707 if (rc) 1708 return rc; 1709 1710 __of_remove_property_sysfs(np, prop); 1711 return 0; 1712 } 1713 1714 /** 1715 * of_remove_property - Remove a property from a node. 1716 * @np: Caller's Device Node 1717 * @prop: Property to remove 1718 * 1719 * Note that we don't actually remove it, since we have given out 1720 * who-knows-how-many pointers to the data using get-property. 1721 * Instead we just move the property to the "dead properties" 1722 * list, so it won't be found any more. 1723 */ 1724 int of_remove_property(struct device_node *np, struct property *prop) 1725 { 1726 int rc; 1727 1728 if (!prop) 1729 return -ENODEV; 1730 1731 mutex_lock(&of_mutex); 1732 rc = __of_remove_property(np, prop); 1733 mutex_unlock(&of_mutex); 1734 1735 if (!rc) 1736 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL); 1737 1738 return rc; 1739 } 1740 EXPORT_SYMBOL_GPL(of_remove_property); 1741 1742 int __of_update_property(struct device_node *np, struct property *newprop, 1743 struct property **oldpropp) 1744 { 1745 struct property **next, *oldprop; 1746 unsigned long flags; 1747 1748 raw_spin_lock_irqsave(&devtree_lock, flags); 1749 1750 __of_remove_property_from_list(&np->deadprops, newprop); 1751 1752 for (next = &np->properties; *next; next = &(*next)->next) { 1753 if (of_prop_cmp((*next)->name, newprop->name) == 0) 1754 break; 1755 } 1756 *oldpropp = oldprop = *next; 1757 1758 if (oldprop) { 1759 /* replace the node */ 1760 newprop->next = oldprop->next; 1761 *next = newprop; 1762 oldprop->next = np->deadprops; 1763 np->deadprops = oldprop; 1764 } else { 1765 /* new node */ 1766 newprop->next = NULL; 1767 *next = newprop; 1768 } 1769 1770 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1771 1772 __of_update_property_sysfs(np, newprop, oldprop); 1773 1774 return 0; 1775 } 1776 1777 /* 1778 * of_update_property - Update a property in a node, if the property does 1779 * not exist, add it. 1780 * 1781 * Note that we don't actually remove it, since we have given out 1782 * who-knows-how-many pointers to the data using get-property. 1783 * Instead we just move the property to the "dead properties" list, 1784 * and add the new property to the property list 1785 */ 1786 int of_update_property(struct device_node *np, struct property *newprop) 1787 { 1788 struct property *oldprop; 1789 int rc; 1790 1791 if (!newprop->name) 1792 return -EINVAL; 1793 1794 mutex_lock(&of_mutex); 1795 rc = __of_update_property(np, newprop, &oldprop); 1796 mutex_unlock(&of_mutex); 1797 1798 if (!rc) 1799 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop); 1800 1801 return rc; 1802 } 1803 1804 static void of_alias_add(struct alias_prop *ap, struct device_node *np, 1805 int id, const char *stem, int stem_len) 1806 { 1807 ap->np = np; 1808 ap->id = id; 1809 strscpy(ap->stem, stem, stem_len + 1); 1810 list_add_tail(&ap->link, &aliases_lookup); 1811 pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n", 1812 ap->alias, ap->stem, ap->id, np); 1813 } 1814 1815 /** 1816 * of_alias_scan - Scan all properties of the 'aliases' node 1817 * @dt_alloc: An allocator that provides a virtual address to memory 1818 * for storing the resulting tree 1819 * 1820 * The function scans all the properties of the 'aliases' node and populates 1821 * the global lookup table with the properties. 1822 */ 1823 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align)) 1824 { 1825 const struct property *pp; 1826 1827 of_aliases = of_find_node_by_path("/aliases"); 1828 of_chosen = of_find_node_by_path("/chosen"); 1829 if (of_chosen == NULL) 1830 of_chosen = of_find_node_by_path("/chosen@0"); 1831 1832 if (of_chosen) { 1833 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */ 1834 const char *name = NULL; 1835 1836 if (of_property_read_string(of_chosen, "stdout-path", &name)) 1837 of_property_read_string(of_chosen, "linux,stdout-path", 1838 &name); 1839 if (IS_ENABLED(CONFIG_PPC) && !name) 1840 of_property_read_string(of_aliases, "stdout", &name); 1841 if (name) 1842 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options); 1843 if (of_stdout) 1844 of_stdout->fwnode.flags |= FWNODE_FLAG_BEST_EFFORT; 1845 } 1846 1847 if (!of_aliases) 1848 return; 1849 1850 for_each_property_of_node(of_aliases, pp) { 1851 const char *start = pp->name; 1852 const char *end = start + strlen(start); 1853 struct device_node *np; 1854 struct alias_prop *ap; 1855 int id, len; 1856 1857 /* Skip those we do not want to proceed */ 1858 if (!strcmp(pp->name, "name") || 1859 !strcmp(pp->name, "phandle") || 1860 !strcmp(pp->name, "linux,phandle")) 1861 continue; 1862 1863 np = of_find_node_by_path(pp->value); 1864 if (!np) 1865 continue; 1866 1867 /* walk the alias backwards to extract the id and work out 1868 * the 'stem' string */ 1869 while (isdigit(*(end-1)) && end > start) 1870 end--; 1871 len = end - start; 1872 1873 if (kstrtoint(end, 10, &id) < 0) 1874 continue; 1875 1876 /* Allocate an alias_prop with enough space for the stem */ 1877 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap)); 1878 if (!ap) 1879 continue; 1880 memset(ap, 0, sizeof(*ap) + len + 1); 1881 ap->alias = start; 1882 of_alias_add(ap, np, id, start, len); 1883 } 1884 } 1885 1886 /** 1887 * of_alias_get_id - Get alias id for the given device_node 1888 * @np: Pointer to the given device_node 1889 * @stem: Alias stem of the given device_node 1890 * 1891 * The function travels the lookup table to get the alias id for the given 1892 * device_node and alias stem. 1893 * 1894 * Return: The alias id if found. 1895 */ 1896 int of_alias_get_id(const struct device_node *np, const char *stem) 1897 { 1898 struct alias_prop *app; 1899 int id = -ENODEV; 1900 1901 mutex_lock(&of_mutex); 1902 list_for_each_entry(app, &aliases_lookup, link) { 1903 if (strcmp(app->stem, stem) != 0) 1904 continue; 1905 1906 if (np == app->np) { 1907 id = app->id; 1908 break; 1909 } 1910 } 1911 mutex_unlock(&of_mutex); 1912 1913 return id; 1914 } 1915 EXPORT_SYMBOL_GPL(of_alias_get_id); 1916 1917 /** 1918 * of_alias_get_highest_id - Get highest alias id for the given stem 1919 * @stem: Alias stem to be examined 1920 * 1921 * The function travels the lookup table to get the highest alias id for the 1922 * given alias stem. It returns the alias id if found. 1923 */ 1924 int of_alias_get_highest_id(const char *stem) 1925 { 1926 struct alias_prop *app; 1927 int id = -ENODEV; 1928 1929 mutex_lock(&of_mutex); 1930 list_for_each_entry(app, &aliases_lookup, link) { 1931 if (strcmp(app->stem, stem) != 0) 1932 continue; 1933 1934 if (app->id > id) 1935 id = app->id; 1936 } 1937 mutex_unlock(&of_mutex); 1938 1939 return id; 1940 } 1941 EXPORT_SYMBOL_GPL(of_alias_get_highest_id); 1942 1943 /** 1944 * of_console_check() - Test and setup console for DT setup 1945 * @dn: Pointer to device node 1946 * @name: Name to use for preferred console without index. ex. "ttyS" 1947 * @index: Index to use for preferred console. 1948 * 1949 * Check if the given device node matches the stdout-path property in the 1950 * /chosen node. If it does then register it as the preferred console. 1951 * 1952 * Return: TRUE if console successfully setup. Otherwise return FALSE. 1953 */ 1954 bool of_console_check(const struct device_node *dn, char *name, int index) 1955 { 1956 if (!dn || dn != of_stdout || console_set_on_cmdline) 1957 return false; 1958 1959 /* 1960 * XXX: cast `options' to char pointer to suppress complication 1961 * warnings: printk, UART and console drivers expect char pointer. 1962 */ 1963 return !add_preferred_console(name, index, (char *)of_stdout_options); 1964 } 1965 EXPORT_SYMBOL_GPL(of_console_check); 1966 1967 /** 1968 * of_find_next_cache_node - Find a node's subsidiary cache 1969 * @np: node of type "cpu" or "cache" 1970 * 1971 * Return: A node pointer with refcount incremented, use 1972 * of_node_put() on it when done. Caller should hold a reference 1973 * to np. 1974 */ 1975 struct device_node *of_find_next_cache_node(const struct device_node *np) 1976 { 1977 struct device_node *child, *cache_node; 1978 1979 cache_node = of_parse_phandle(np, "l2-cache", 0); 1980 if (!cache_node) 1981 cache_node = of_parse_phandle(np, "next-level-cache", 0); 1982 1983 if (cache_node) 1984 return cache_node; 1985 1986 /* OF on pmac has nodes instead of properties named "l2-cache" 1987 * beneath CPU nodes. 1988 */ 1989 if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu")) 1990 for_each_child_of_node(np, child) 1991 if (of_node_is_type(child, "cache")) 1992 return child; 1993 1994 return NULL; 1995 } 1996 1997 /** 1998 * of_find_last_cache_level - Find the level at which the last cache is 1999 * present for the given logical cpu 2000 * 2001 * @cpu: cpu number(logical index) for which the last cache level is needed 2002 * 2003 * Return: The level at which the last cache is present. It is exactly 2004 * same as the total number of cache levels for the given logical cpu. 2005 */ 2006 int of_find_last_cache_level(unsigned int cpu) 2007 { 2008 u32 cache_level = 0; 2009 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu); 2010 2011 while (np) { 2012 of_node_put(prev); 2013 prev = np; 2014 np = of_find_next_cache_node(np); 2015 } 2016 2017 of_property_read_u32(prev, "cache-level", &cache_level); 2018 of_node_put(prev); 2019 2020 return cache_level; 2021 } 2022 2023 /** 2024 * of_map_id - Translate an ID through a downstream mapping. 2025 * @np: root complex device node. 2026 * @id: device ID to map. 2027 * @map_name: property name of the map to use. 2028 * @map_mask_name: optional property name of the mask to use. 2029 * @target: optional pointer to a target device node. 2030 * @id_out: optional pointer to receive the translated ID. 2031 * 2032 * Given a device ID, look up the appropriate implementation-defined 2033 * platform ID and/or the target device which receives transactions on that 2034 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or 2035 * @id_out may be NULL if only the other is required. If @target points to 2036 * a non-NULL device node pointer, only entries targeting that node will be 2037 * matched; if it points to a NULL value, it will receive the device node of 2038 * the first matching target phandle, with a reference held. 2039 * 2040 * Return: 0 on success or a standard error code on failure. 2041 */ 2042 int of_map_id(const struct device_node *np, u32 id, 2043 const char *map_name, const char *map_mask_name, 2044 struct device_node **target, u32 *id_out) 2045 { 2046 u32 map_mask, masked_id; 2047 int map_len; 2048 const __be32 *map = NULL; 2049 2050 if (!np || !map_name || (!target && !id_out)) 2051 return -EINVAL; 2052 2053 map = of_get_property(np, map_name, &map_len); 2054 if (!map) { 2055 if (target) 2056 return -ENODEV; 2057 /* Otherwise, no map implies no translation */ 2058 *id_out = id; 2059 return 0; 2060 } 2061 2062 if (!map_len || map_len % (4 * sizeof(*map))) { 2063 pr_err("%pOF: Error: Bad %s length: %d\n", np, 2064 map_name, map_len); 2065 return -EINVAL; 2066 } 2067 2068 /* The default is to select all bits. */ 2069 map_mask = 0xffffffff; 2070 2071 /* 2072 * Can be overridden by "{iommu,msi}-map-mask" property. 2073 * If of_property_read_u32() fails, the default is used. 2074 */ 2075 if (map_mask_name) 2076 of_property_read_u32(np, map_mask_name, &map_mask); 2077 2078 masked_id = map_mask & id; 2079 for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) { 2080 struct device_node *phandle_node; 2081 u32 id_base = be32_to_cpup(map + 0); 2082 u32 phandle = be32_to_cpup(map + 1); 2083 u32 out_base = be32_to_cpup(map + 2); 2084 u32 id_len = be32_to_cpup(map + 3); 2085 2086 if (id_base & ~map_mask) { 2087 pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n", 2088 np, map_name, map_name, 2089 map_mask, id_base); 2090 return -EFAULT; 2091 } 2092 2093 if (masked_id < id_base || masked_id >= id_base + id_len) 2094 continue; 2095 2096 phandle_node = of_find_node_by_phandle(phandle); 2097 if (!phandle_node) 2098 return -ENODEV; 2099 2100 if (target) { 2101 if (*target) 2102 of_node_put(phandle_node); 2103 else 2104 *target = phandle_node; 2105 2106 if (*target != phandle_node) 2107 continue; 2108 } 2109 2110 if (id_out) 2111 *id_out = masked_id - id_base + out_base; 2112 2113 pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n", 2114 np, map_name, map_mask, id_base, out_base, 2115 id_len, id, masked_id - id_base + out_base); 2116 return 0; 2117 } 2118 2119 pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name, 2120 id, target && *target ? *target : NULL); 2121 2122 /* Bypasses translation */ 2123 if (id_out) 2124 *id_out = id; 2125 return 0; 2126 } 2127 EXPORT_SYMBOL_GPL(of_map_id); 2128