xref: /linux/drivers/of/base.c (revision fcc79e1714e8c2b8e216dc3149812edd37884eef)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Procedures for creating, accessing and interpreting the device tree.
4  *
5  * Paul Mackerras	August 1996.
6  * Copyright (C) 1996-2005 Paul Mackerras.
7  *
8  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9  *    {engebret|bergner}@us.ibm.com
10  *
11  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12  *
13  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
14  *  Grant Likely.
15  */
16 
17 #define pr_fmt(fmt)	"OF: " fmt
18 
19 #include <linux/cleanup.h>
20 #include <linux/console.h>
21 #include <linux/ctype.h>
22 #include <linux/cpu.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/of_graph.h>
27 #include <linux/spinlock.h>
28 #include <linux/slab.h>
29 #include <linux/string.h>
30 #include <linux/proc_fs.h>
31 
32 #include "of_private.h"
33 
34 LIST_HEAD(aliases_lookup);
35 
36 struct device_node *of_root;
37 EXPORT_SYMBOL(of_root);
38 struct device_node *of_chosen;
39 EXPORT_SYMBOL(of_chosen);
40 struct device_node *of_aliases;
41 struct device_node *of_stdout;
42 static const char *of_stdout_options;
43 
44 struct kset *of_kset;
45 
46 /*
47  * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
48  * This mutex must be held whenever modifications are being made to the
49  * device tree. The of_{attach,detach}_node() and
50  * of_{add,remove,update}_property() helpers make sure this happens.
51  */
52 DEFINE_MUTEX(of_mutex);
53 
54 /* use when traversing tree through the child, sibling,
55  * or parent members of struct device_node.
56  */
57 DEFINE_RAW_SPINLOCK(devtree_lock);
58 
59 bool of_node_name_eq(const struct device_node *np, const char *name)
60 {
61 	const char *node_name;
62 	size_t len;
63 
64 	if (!np)
65 		return false;
66 
67 	node_name = kbasename(np->full_name);
68 	len = strchrnul(node_name, '@') - node_name;
69 
70 	return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
71 }
72 EXPORT_SYMBOL(of_node_name_eq);
73 
74 bool of_node_name_prefix(const struct device_node *np, const char *prefix)
75 {
76 	if (!np)
77 		return false;
78 
79 	return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
80 }
81 EXPORT_SYMBOL(of_node_name_prefix);
82 
83 static bool __of_node_is_type(const struct device_node *np, const char *type)
84 {
85 	const char *match = __of_get_property(np, "device_type", NULL);
86 
87 	return np && match && type && !strcmp(match, type);
88 }
89 
90 #define EXCLUDED_DEFAULT_CELLS_PLATFORMS ( \
91 	IS_ENABLED(CONFIG_SPARC) \
92 )
93 
94 int of_bus_n_addr_cells(struct device_node *np)
95 {
96 	u32 cells;
97 
98 	for (; np; np = np->parent) {
99 		if (!of_property_read_u32(np, "#address-cells", &cells))
100 			return cells;
101 		/*
102 		 * Default root value and walking parent nodes for "#address-cells"
103 		 * is deprecated. Any platforms which hit this warning should
104 		 * be added to the excluded list.
105 		 */
106 		WARN_ONCE(!EXCLUDED_DEFAULT_CELLS_PLATFORMS,
107 			  "Missing '#address-cells' in %pOF\n", np);
108 	}
109 	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
110 }
111 
112 int of_n_addr_cells(struct device_node *np)
113 {
114 	if (np->parent)
115 		np = np->parent;
116 
117 	return of_bus_n_addr_cells(np);
118 }
119 EXPORT_SYMBOL(of_n_addr_cells);
120 
121 int of_bus_n_size_cells(struct device_node *np)
122 {
123 	u32 cells;
124 
125 	for (; np; np = np->parent) {
126 		if (!of_property_read_u32(np, "#size-cells", &cells))
127 			return cells;
128 		/*
129 		 * Default root value and walking parent nodes for "#size-cells"
130 		 * is deprecated. Any platforms which hit this warning should
131 		 * be added to the excluded list.
132 		 */
133 		WARN_ONCE(!EXCLUDED_DEFAULT_CELLS_PLATFORMS,
134 			  "Missing '#size-cells' in %pOF\n", np);
135 	}
136 	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
137 }
138 
139 int of_n_size_cells(struct device_node *np)
140 {
141 	if (np->parent)
142 		np = np->parent;
143 
144 	return of_bus_n_size_cells(np);
145 }
146 EXPORT_SYMBOL(of_n_size_cells);
147 
148 #ifdef CONFIG_NUMA
149 int __weak of_node_to_nid(struct device_node *np)
150 {
151 	return NUMA_NO_NODE;
152 }
153 #endif
154 
155 #define OF_PHANDLE_CACHE_BITS	7
156 #define OF_PHANDLE_CACHE_SZ	BIT(OF_PHANDLE_CACHE_BITS)
157 
158 static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ];
159 
160 static u32 of_phandle_cache_hash(phandle handle)
161 {
162 	return hash_32(handle, OF_PHANDLE_CACHE_BITS);
163 }
164 
165 /*
166  * Caller must hold devtree_lock.
167  */
168 void __of_phandle_cache_inv_entry(phandle handle)
169 {
170 	u32 handle_hash;
171 	struct device_node *np;
172 
173 	if (!handle)
174 		return;
175 
176 	handle_hash = of_phandle_cache_hash(handle);
177 
178 	np = phandle_cache[handle_hash];
179 	if (np && handle == np->phandle)
180 		phandle_cache[handle_hash] = NULL;
181 }
182 
183 void __init of_core_init(void)
184 {
185 	struct device_node *np;
186 
187 	of_platform_register_reconfig_notifier();
188 
189 	/* Create the kset, and register existing nodes */
190 	mutex_lock(&of_mutex);
191 	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
192 	if (!of_kset) {
193 		mutex_unlock(&of_mutex);
194 		pr_err("failed to register existing nodes\n");
195 		return;
196 	}
197 	for_each_of_allnodes(np) {
198 		__of_attach_node_sysfs(np);
199 		if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)])
200 			phandle_cache[of_phandle_cache_hash(np->phandle)] = np;
201 	}
202 	mutex_unlock(&of_mutex);
203 
204 	/* Symlink in /proc as required by userspace ABI */
205 	if (of_root)
206 		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
207 }
208 
209 static struct property *__of_find_property(const struct device_node *np,
210 					   const char *name, int *lenp)
211 {
212 	struct property *pp;
213 
214 	if (!np)
215 		return NULL;
216 
217 	for (pp = np->properties; pp; pp = pp->next) {
218 		if (of_prop_cmp(pp->name, name) == 0) {
219 			if (lenp)
220 				*lenp = pp->length;
221 			break;
222 		}
223 	}
224 
225 	return pp;
226 }
227 
228 struct property *of_find_property(const struct device_node *np,
229 				  const char *name,
230 				  int *lenp)
231 {
232 	struct property *pp;
233 	unsigned long flags;
234 
235 	raw_spin_lock_irqsave(&devtree_lock, flags);
236 	pp = __of_find_property(np, name, lenp);
237 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
238 
239 	return pp;
240 }
241 EXPORT_SYMBOL(of_find_property);
242 
243 struct device_node *__of_find_all_nodes(struct device_node *prev)
244 {
245 	struct device_node *np;
246 	if (!prev) {
247 		np = of_root;
248 	} else if (prev->child) {
249 		np = prev->child;
250 	} else {
251 		/* Walk back up looking for a sibling, or the end of the structure */
252 		np = prev;
253 		while (np->parent && !np->sibling)
254 			np = np->parent;
255 		np = np->sibling; /* Might be null at the end of the tree */
256 	}
257 	return np;
258 }
259 
260 /**
261  * of_find_all_nodes - Get next node in global list
262  * @prev:	Previous node or NULL to start iteration
263  *		of_node_put() will be called on it
264  *
265  * Return: A node pointer with refcount incremented, use
266  * of_node_put() on it when done.
267  */
268 struct device_node *of_find_all_nodes(struct device_node *prev)
269 {
270 	struct device_node *np;
271 	unsigned long flags;
272 
273 	raw_spin_lock_irqsave(&devtree_lock, flags);
274 	np = __of_find_all_nodes(prev);
275 	of_node_get(np);
276 	of_node_put(prev);
277 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
278 	return np;
279 }
280 EXPORT_SYMBOL(of_find_all_nodes);
281 
282 /*
283  * Find a property with a given name for a given node
284  * and return the value.
285  */
286 const void *__of_get_property(const struct device_node *np,
287 			      const char *name, int *lenp)
288 {
289 	const struct property *pp = __of_find_property(np, name, lenp);
290 
291 	return pp ? pp->value : NULL;
292 }
293 
294 /*
295  * Find a property with a given name for a given node
296  * and return the value.
297  */
298 const void *of_get_property(const struct device_node *np, const char *name,
299 			    int *lenp)
300 {
301 	const struct property *pp = of_find_property(np, name, lenp);
302 
303 	return pp ? pp->value : NULL;
304 }
305 EXPORT_SYMBOL(of_get_property);
306 
307 /**
308  * __of_device_is_compatible() - Check if the node matches given constraints
309  * @device: pointer to node
310  * @compat: required compatible string, NULL or "" for any match
311  * @type: required device_type value, NULL or "" for any match
312  * @name: required node name, NULL or "" for any match
313  *
314  * Checks if the given @compat, @type and @name strings match the
315  * properties of the given @device. A constraints can be skipped by
316  * passing NULL or an empty string as the constraint.
317  *
318  * Returns 0 for no match, and a positive integer on match. The return
319  * value is a relative score with larger values indicating better
320  * matches. The score is weighted for the most specific compatible value
321  * to get the highest score. Matching type is next, followed by matching
322  * name. Practically speaking, this results in the following priority
323  * order for matches:
324  *
325  * 1. specific compatible && type && name
326  * 2. specific compatible && type
327  * 3. specific compatible && name
328  * 4. specific compatible
329  * 5. general compatible && type && name
330  * 6. general compatible && type
331  * 7. general compatible && name
332  * 8. general compatible
333  * 9. type && name
334  * 10. type
335  * 11. name
336  */
337 static int __of_device_is_compatible(const struct device_node *device,
338 				     const char *compat, const char *type, const char *name)
339 {
340 	const struct property *prop;
341 	const char *cp;
342 	int index = 0, score = 0;
343 
344 	/* Compatible match has highest priority */
345 	if (compat && compat[0]) {
346 		prop = __of_find_property(device, "compatible", NULL);
347 		for (cp = of_prop_next_string(prop, NULL); cp;
348 		     cp = of_prop_next_string(prop, cp), index++) {
349 			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
350 				score = INT_MAX/2 - (index << 2);
351 				break;
352 			}
353 		}
354 		if (!score)
355 			return 0;
356 	}
357 
358 	/* Matching type is better than matching name */
359 	if (type && type[0]) {
360 		if (!__of_node_is_type(device, type))
361 			return 0;
362 		score += 2;
363 	}
364 
365 	/* Matching name is a bit better than not */
366 	if (name && name[0]) {
367 		if (!of_node_name_eq(device, name))
368 			return 0;
369 		score++;
370 	}
371 
372 	return score;
373 }
374 
375 /** Checks if the given "compat" string matches one of the strings in
376  * the device's "compatible" property
377  */
378 int of_device_is_compatible(const struct device_node *device,
379 		const char *compat)
380 {
381 	unsigned long flags;
382 	int res;
383 
384 	raw_spin_lock_irqsave(&devtree_lock, flags);
385 	res = __of_device_is_compatible(device, compat, NULL, NULL);
386 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
387 	return res;
388 }
389 EXPORT_SYMBOL(of_device_is_compatible);
390 
391 /** Checks if the device is compatible with any of the entries in
392  *  a NULL terminated array of strings. Returns the best match
393  *  score or 0.
394  */
395 int of_device_compatible_match(const struct device_node *device,
396 			       const char *const *compat)
397 {
398 	unsigned int tmp, score = 0;
399 
400 	if (!compat)
401 		return 0;
402 
403 	while (*compat) {
404 		tmp = of_device_is_compatible(device, *compat);
405 		if (tmp > score)
406 			score = tmp;
407 		compat++;
408 	}
409 
410 	return score;
411 }
412 EXPORT_SYMBOL_GPL(of_device_compatible_match);
413 
414 /**
415  * of_machine_compatible_match - Test root of device tree against a compatible array
416  * @compats: NULL terminated array of compatible strings to look for in root node's compatible property.
417  *
418  * Returns true if the root node has any of the given compatible values in its
419  * compatible property.
420  */
421 bool of_machine_compatible_match(const char *const *compats)
422 {
423 	struct device_node *root;
424 	int rc = 0;
425 
426 	root = of_find_node_by_path("/");
427 	if (root) {
428 		rc = of_device_compatible_match(root, compats);
429 		of_node_put(root);
430 	}
431 
432 	return rc != 0;
433 }
434 EXPORT_SYMBOL(of_machine_compatible_match);
435 
436 static bool __of_device_is_status(const struct device_node *device,
437 				  const char * const*strings)
438 {
439 	const char *status;
440 	int statlen;
441 
442 	if (!device)
443 		return false;
444 
445 	status = __of_get_property(device, "status", &statlen);
446 	if (status == NULL)
447 		return false;
448 
449 	if (statlen > 0) {
450 		while (*strings) {
451 			unsigned int len = strlen(*strings);
452 
453 			if ((*strings)[len - 1] == '-') {
454 				if (!strncmp(status, *strings, len))
455 					return true;
456 			} else {
457 				if (!strcmp(status, *strings))
458 					return true;
459 			}
460 			strings++;
461 		}
462 	}
463 
464 	return false;
465 }
466 
467 /**
468  *  __of_device_is_available - check if a device is available for use
469  *
470  *  @device: Node to check for availability, with locks already held
471  *
472  *  Return: True if the status property is absent or set to "okay" or "ok",
473  *  false otherwise
474  */
475 static bool __of_device_is_available(const struct device_node *device)
476 {
477 	static const char * const ok[] = {"okay", "ok", NULL};
478 
479 	if (!device)
480 		return false;
481 
482 	return !__of_get_property(device, "status", NULL) ||
483 		__of_device_is_status(device, ok);
484 }
485 
486 /**
487  *  __of_device_is_reserved - check if a device is reserved
488  *
489  *  @device: Node to check for availability, with locks already held
490  *
491  *  Return: True if the status property is set to "reserved", false otherwise
492  */
493 static bool __of_device_is_reserved(const struct device_node *device)
494 {
495 	static const char * const reserved[] = {"reserved", NULL};
496 
497 	return __of_device_is_status(device, reserved);
498 }
499 
500 /**
501  *  of_device_is_available - check if a device is available for use
502  *
503  *  @device: Node to check for availability
504  *
505  *  Return: True if the status property is absent or set to "okay" or "ok",
506  *  false otherwise
507  */
508 bool of_device_is_available(const struct device_node *device)
509 {
510 	unsigned long flags;
511 	bool res;
512 
513 	raw_spin_lock_irqsave(&devtree_lock, flags);
514 	res = __of_device_is_available(device);
515 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
516 	return res;
517 
518 }
519 EXPORT_SYMBOL(of_device_is_available);
520 
521 /**
522  *  __of_device_is_fail - check if a device has status "fail" or "fail-..."
523  *
524  *  @device: Node to check status for, with locks already held
525  *
526  *  Return: True if the status property is set to "fail" or "fail-..." (for any
527  *  error code suffix), false otherwise
528  */
529 static bool __of_device_is_fail(const struct device_node *device)
530 {
531 	static const char * const fail[] = {"fail", "fail-", NULL};
532 
533 	return __of_device_is_status(device, fail);
534 }
535 
536 /**
537  *  of_device_is_big_endian - check if a device has BE registers
538  *
539  *  @device: Node to check for endianness
540  *
541  *  Return: True if the device has a "big-endian" property, or if the kernel
542  *  was compiled for BE *and* the device has a "native-endian" property.
543  *  Returns false otherwise.
544  *
545  *  Callers would nominally use ioread32be/iowrite32be if
546  *  of_device_is_big_endian() == true, or readl/writel otherwise.
547  */
548 bool of_device_is_big_endian(const struct device_node *device)
549 {
550 	if (of_property_read_bool(device, "big-endian"))
551 		return true;
552 	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
553 	    of_property_read_bool(device, "native-endian"))
554 		return true;
555 	return false;
556 }
557 EXPORT_SYMBOL(of_device_is_big_endian);
558 
559 /**
560  * of_get_parent - Get a node's parent if any
561  * @node:	Node to get parent
562  *
563  * Return: A node pointer with refcount incremented, use
564  * of_node_put() on it when done.
565  */
566 struct device_node *of_get_parent(const struct device_node *node)
567 {
568 	struct device_node *np;
569 	unsigned long flags;
570 
571 	if (!node)
572 		return NULL;
573 
574 	raw_spin_lock_irqsave(&devtree_lock, flags);
575 	np = of_node_get(node->parent);
576 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
577 	return np;
578 }
579 EXPORT_SYMBOL(of_get_parent);
580 
581 /**
582  * of_get_next_parent - Iterate to a node's parent
583  * @node:	Node to get parent of
584  *
585  * This is like of_get_parent() except that it drops the
586  * refcount on the passed node, making it suitable for iterating
587  * through a node's parents.
588  *
589  * Return: A node pointer with refcount incremented, use
590  * of_node_put() on it when done.
591  */
592 struct device_node *of_get_next_parent(struct device_node *node)
593 {
594 	struct device_node *parent;
595 	unsigned long flags;
596 
597 	if (!node)
598 		return NULL;
599 
600 	raw_spin_lock_irqsave(&devtree_lock, flags);
601 	parent = of_node_get(node->parent);
602 	of_node_put(node);
603 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
604 	return parent;
605 }
606 EXPORT_SYMBOL(of_get_next_parent);
607 
608 static struct device_node *__of_get_next_child(const struct device_node *node,
609 						struct device_node *prev)
610 {
611 	struct device_node *next;
612 
613 	if (!node)
614 		return NULL;
615 
616 	next = prev ? prev->sibling : node->child;
617 	of_node_get(next);
618 	of_node_put(prev);
619 	return next;
620 }
621 #define __for_each_child_of_node(parent, child) \
622 	for (child = __of_get_next_child(parent, NULL); child != NULL; \
623 	     child = __of_get_next_child(parent, child))
624 
625 /**
626  * of_get_next_child - Iterate a node childs
627  * @node:	parent node
628  * @prev:	previous child of the parent node, or NULL to get first
629  *
630  * Return: A node pointer with refcount incremented, use of_node_put() on
631  * it when done. Returns NULL when prev is the last child. Decrements the
632  * refcount of prev.
633  */
634 struct device_node *of_get_next_child(const struct device_node *node,
635 	struct device_node *prev)
636 {
637 	struct device_node *next;
638 	unsigned long flags;
639 
640 	raw_spin_lock_irqsave(&devtree_lock, flags);
641 	next = __of_get_next_child(node, prev);
642 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
643 	return next;
644 }
645 EXPORT_SYMBOL(of_get_next_child);
646 
647 static struct device_node *of_get_next_status_child(const struct device_node *node,
648 						    struct device_node *prev,
649 						    bool (*checker)(const struct device_node *))
650 {
651 	struct device_node *next;
652 	unsigned long flags;
653 
654 	if (!node)
655 		return NULL;
656 
657 	raw_spin_lock_irqsave(&devtree_lock, flags);
658 	next = prev ? prev->sibling : node->child;
659 	for (; next; next = next->sibling) {
660 		if (!checker(next))
661 			continue;
662 		if (of_node_get(next))
663 			break;
664 	}
665 	of_node_put(prev);
666 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
667 	return next;
668 }
669 
670 /**
671  * of_get_next_available_child - Find the next available child node
672  * @node:	parent node
673  * @prev:	previous child of the parent node, or NULL to get first
674  *
675  * This function is like of_get_next_child(), except that it
676  * automatically skips any disabled nodes (i.e. status = "disabled").
677  */
678 struct device_node *of_get_next_available_child(const struct device_node *node,
679 	struct device_node *prev)
680 {
681 	return of_get_next_status_child(node, prev, __of_device_is_available);
682 }
683 EXPORT_SYMBOL(of_get_next_available_child);
684 
685 /**
686  * of_get_next_reserved_child - Find the next reserved child node
687  * @node:	parent node
688  * @prev:	previous child of the parent node, or NULL to get first
689  *
690  * This function is like of_get_next_child(), except that it
691  * automatically skips any disabled nodes (i.e. status = "disabled").
692  */
693 struct device_node *of_get_next_reserved_child(const struct device_node *node,
694 						struct device_node *prev)
695 {
696 	return of_get_next_status_child(node, prev, __of_device_is_reserved);
697 }
698 EXPORT_SYMBOL(of_get_next_reserved_child);
699 
700 /**
701  * of_get_next_cpu_node - Iterate on cpu nodes
702  * @prev:	previous child of the /cpus node, or NULL to get first
703  *
704  * Unusable CPUs (those with the status property set to "fail" or "fail-...")
705  * will be skipped.
706  *
707  * Return: A cpu node pointer with refcount incremented, use of_node_put()
708  * on it when done. Returns NULL when prev is the last child. Decrements
709  * the refcount of prev.
710  */
711 struct device_node *of_get_next_cpu_node(struct device_node *prev)
712 {
713 	struct device_node *next = NULL;
714 	unsigned long flags;
715 	struct device_node *node;
716 
717 	if (!prev)
718 		node = of_find_node_by_path("/cpus");
719 
720 	raw_spin_lock_irqsave(&devtree_lock, flags);
721 	if (prev)
722 		next = prev->sibling;
723 	else if (node) {
724 		next = node->child;
725 		of_node_put(node);
726 	}
727 	for (; next; next = next->sibling) {
728 		if (__of_device_is_fail(next))
729 			continue;
730 		if (!(of_node_name_eq(next, "cpu") ||
731 		      __of_node_is_type(next, "cpu")))
732 			continue;
733 		if (of_node_get(next))
734 			break;
735 	}
736 	of_node_put(prev);
737 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
738 	return next;
739 }
740 EXPORT_SYMBOL(of_get_next_cpu_node);
741 
742 /**
743  * of_get_compatible_child - Find compatible child node
744  * @parent:	parent node
745  * @compatible:	compatible string
746  *
747  * Lookup child node whose compatible property contains the given compatible
748  * string.
749  *
750  * Return: a node pointer with refcount incremented, use of_node_put() on it
751  * when done; or NULL if not found.
752  */
753 struct device_node *of_get_compatible_child(const struct device_node *parent,
754 				const char *compatible)
755 {
756 	struct device_node *child;
757 
758 	for_each_child_of_node(parent, child) {
759 		if (of_device_is_compatible(child, compatible))
760 			break;
761 	}
762 
763 	return child;
764 }
765 EXPORT_SYMBOL(of_get_compatible_child);
766 
767 /**
768  * of_get_child_by_name - Find the child node by name for a given parent
769  * @node:	parent node
770  * @name:	child name to look for.
771  *
772  * This function looks for child node for given matching name
773  *
774  * Return: A node pointer if found, with refcount incremented, use
775  * of_node_put() on it when done.
776  * Returns NULL if node is not found.
777  */
778 struct device_node *of_get_child_by_name(const struct device_node *node,
779 				const char *name)
780 {
781 	struct device_node *child;
782 
783 	for_each_child_of_node(node, child)
784 		if (of_node_name_eq(child, name))
785 			break;
786 	return child;
787 }
788 EXPORT_SYMBOL(of_get_child_by_name);
789 
790 struct device_node *__of_find_node_by_path(const struct device_node *parent,
791 						const char *path)
792 {
793 	struct device_node *child;
794 	int len;
795 
796 	len = strcspn(path, "/:");
797 	if (!len)
798 		return NULL;
799 
800 	__for_each_child_of_node(parent, child) {
801 		const char *name = kbasename(child->full_name);
802 		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
803 			return child;
804 	}
805 	return NULL;
806 }
807 
808 struct device_node *__of_find_node_by_full_path(struct device_node *node,
809 						const char *path)
810 {
811 	const char *separator = strchr(path, ':');
812 
813 	while (node && *path == '/') {
814 		struct device_node *tmp = node;
815 
816 		path++; /* Increment past '/' delimiter */
817 		node = __of_find_node_by_path(node, path);
818 		of_node_put(tmp);
819 		path = strchrnul(path, '/');
820 		if (separator && separator < path)
821 			break;
822 	}
823 	return node;
824 }
825 
826 /**
827  * of_find_node_opts_by_path - Find a node matching a full OF path
828  * @path: Either the full path to match, or if the path does not
829  *       start with '/', the name of a property of the /aliases
830  *       node (an alias).  In the case of an alias, the node
831  *       matching the alias' value will be returned.
832  * @opts: Address of a pointer into which to store the start of
833  *       an options string appended to the end of the path with
834  *       a ':' separator.
835  *
836  * Valid paths:
837  *  * /foo/bar	Full path
838  *  * foo	Valid alias
839  *  * foo/bar	Valid alias + relative path
840  *
841  * Return: A node pointer with refcount incremented, use
842  * of_node_put() on it when done.
843  */
844 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
845 {
846 	struct device_node *np = NULL;
847 	const struct property *pp;
848 	unsigned long flags;
849 	const char *separator = strchr(path, ':');
850 
851 	if (opts)
852 		*opts = separator ? separator + 1 : NULL;
853 
854 	if (strcmp(path, "/") == 0)
855 		return of_node_get(of_root);
856 
857 	/* The path could begin with an alias */
858 	if (*path != '/') {
859 		int len;
860 		const char *p = separator;
861 
862 		if (!p)
863 			p = strchrnul(path, '/');
864 		len = p - path;
865 
866 		/* of_aliases must not be NULL */
867 		if (!of_aliases)
868 			return NULL;
869 
870 		for_each_property_of_node(of_aliases, pp) {
871 			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
872 				np = of_find_node_by_path(pp->value);
873 				break;
874 			}
875 		}
876 		if (!np)
877 			return NULL;
878 		path = p;
879 	}
880 
881 	/* Step down the tree matching path components */
882 	raw_spin_lock_irqsave(&devtree_lock, flags);
883 	if (!np)
884 		np = of_node_get(of_root);
885 	np = __of_find_node_by_full_path(np, path);
886 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
887 	return np;
888 }
889 EXPORT_SYMBOL(of_find_node_opts_by_path);
890 
891 /**
892  * of_find_node_by_name - Find a node by its "name" property
893  * @from:	The node to start searching from or NULL; the node
894  *		you pass will not be searched, only the next one
895  *		will. Typically, you pass what the previous call
896  *		returned. of_node_put() will be called on @from.
897  * @name:	The name string to match against
898  *
899  * Return: A node pointer with refcount incremented, use
900  * of_node_put() on it when done.
901  */
902 struct device_node *of_find_node_by_name(struct device_node *from,
903 	const char *name)
904 {
905 	struct device_node *np;
906 	unsigned long flags;
907 
908 	raw_spin_lock_irqsave(&devtree_lock, flags);
909 	for_each_of_allnodes_from(from, np)
910 		if (of_node_name_eq(np, name) && of_node_get(np))
911 			break;
912 	of_node_put(from);
913 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
914 	return np;
915 }
916 EXPORT_SYMBOL(of_find_node_by_name);
917 
918 /**
919  * of_find_node_by_type - Find a node by its "device_type" property
920  * @from:	The node to start searching from, or NULL to start searching
921  *		the entire device tree. The node you pass will not be
922  *		searched, only the next one will; typically, you pass
923  *		what the previous call returned. of_node_put() will be
924  *		called on from for you.
925  * @type:	The type string to match against
926  *
927  * Return: A node pointer with refcount incremented, use
928  * of_node_put() on it when done.
929  */
930 struct device_node *of_find_node_by_type(struct device_node *from,
931 	const char *type)
932 {
933 	struct device_node *np;
934 	unsigned long flags;
935 
936 	raw_spin_lock_irqsave(&devtree_lock, flags);
937 	for_each_of_allnodes_from(from, np)
938 		if (__of_node_is_type(np, type) && of_node_get(np))
939 			break;
940 	of_node_put(from);
941 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
942 	return np;
943 }
944 EXPORT_SYMBOL(of_find_node_by_type);
945 
946 /**
947  * of_find_compatible_node - Find a node based on type and one of the
948  *                                tokens in its "compatible" property
949  * @from:	The node to start searching from or NULL, the node
950  *		you pass will not be searched, only the next one
951  *		will; typically, you pass what the previous call
952  *		returned. of_node_put() will be called on it
953  * @type:	The type string to match "device_type" or NULL to ignore
954  * @compatible:	The string to match to one of the tokens in the device
955  *		"compatible" list.
956  *
957  * Return: A node pointer with refcount incremented, use
958  * of_node_put() on it when done.
959  */
960 struct device_node *of_find_compatible_node(struct device_node *from,
961 	const char *type, const char *compatible)
962 {
963 	struct device_node *np;
964 	unsigned long flags;
965 
966 	raw_spin_lock_irqsave(&devtree_lock, flags);
967 	for_each_of_allnodes_from(from, np)
968 		if (__of_device_is_compatible(np, compatible, type, NULL) &&
969 		    of_node_get(np))
970 			break;
971 	of_node_put(from);
972 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
973 	return np;
974 }
975 EXPORT_SYMBOL(of_find_compatible_node);
976 
977 /**
978  * of_find_node_with_property - Find a node which has a property with
979  *                              the given name.
980  * @from:	The node to start searching from or NULL, the node
981  *		you pass will not be searched, only the next one
982  *		will; typically, you pass what the previous call
983  *		returned. of_node_put() will be called on it
984  * @prop_name:	The name of the property to look for.
985  *
986  * Return: A node pointer with refcount incremented, use
987  * of_node_put() on it when done.
988  */
989 struct device_node *of_find_node_with_property(struct device_node *from,
990 	const char *prop_name)
991 {
992 	struct device_node *np;
993 	const struct property *pp;
994 	unsigned long flags;
995 
996 	raw_spin_lock_irqsave(&devtree_lock, flags);
997 	for_each_of_allnodes_from(from, np) {
998 		for (pp = np->properties; pp; pp = pp->next) {
999 			if (of_prop_cmp(pp->name, prop_name) == 0) {
1000 				of_node_get(np);
1001 				goto out;
1002 			}
1003 		}
1004 	}
1005 out:
1006 	of_node_put(from);
1007 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1008 	return np;
1009 }
1010 EXPORT_SYMBOL(of_find_node_with_property);
1011 
1012 static
1013 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
1014 					   const struct device_node *node)
1015 {
1016 	const struct of_device_id *best_match = NULL;
1017 	int score, best_score = 0;
1018 
1019 	if (!matches)
1020 		return NULL;
1021 
1022 	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1023 		score = __of_device_is_compatible(node, matches->compatible,
1024 						  matches->type, matches->name);
1025 		if (score > best_score) {
1026 			best_match = matches;
1027 			best_score = score;
1028 		}
1029 	}
1030 
1031 	return best_match;
1032 }
1033 
1034 /**
1035  * of_match_node - Tell if a device_node has a matching of_match structure
1036  * @matches:	array of of device match structures to search in
1037  * @node:	the of device structure to match against
1038  *
1039  * Low level utility function used by device matching.
1040  */
1041 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1042 					 const struct device_node *node)
1043 {
1044 	const struct of_device_id *match;
1045 	unsigned long flags;
1046 
1047 	raw_spin_lock_irqsave(&devtree_lock, flags);
1048 	match = __of_match_node(matches, node);
1049 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1050 	return match;
1051 }
1052 EXPORT_SYMBOL(of_match_node);
1053 
1054 /**
1055  * of_find_matching_node_and_match - Find a node based on an of_device_id
1056  *				     match table.
1057  * @from:	The node to start searching from or NULL, the node
1058  *		you pass will not be searched, only the next one
1059  *		will; typically, you pass what the previous call
1060  *		returned. of_node_put() will be called on it
1061  * @matches:	array of of device match structures to search in
1062  * @match:	Updated to point at the matches entry which matched
1063  *
1064  * Return: A node pointer with refcount incremented, use
1065  * of_node_put() on it when done.
1066  */
1067 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1068 					const struct of_device_id *matches,
1069 					const struct of_device_id **match)
1070 {
1071 	struct device_node *np;
1072 	const struct of_device_id *m;
1073 	unsigned long flags;
1074 
1075 	if (match)
1076 		*match = NULL;
1077 
1078 	raw_spin_lock_irqsave(&devtree_lock, flags);
1079 	for_each_of_allnodes_from(from, np) {
1080 		m = __of_match_node(matches, np);
1081 		if (m && of_node_get(np)) {
1082 			if (match)
1083 				*match = m;
1084 			break;
1085 		}
1086 	}
1087 	of_node_put(from);
1088 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1089 	return np;
1090 }
1091 EXPORT_SYMBOL(of_find_matching_node_and_match);
1092 
1093 /**
1094  * of_alias_from_compatible - Lookup appropriate alias for a device node
1095  *			      depending on compatible
1096  * @node:	pointer to a device tree node
1097  * @alias:	Pointer to buffer that alias value will be copied into
1098  * @len:	Length of alias value
1099  *
1100  * Based on the value of the compatible property, this routine will attempt
1101  * to choose an appropriate alias value for a particular device tree node.
1102  * It does this by stripping the manufacturer prefix (as delimited by a ',')
1103  * from the first entry in the compatible list property.
1104  *
1105  * Note: The matching on just the "product" side of the compatible is a relic
1106  * from I2C and SPI. Please do not add any new user.
1107  *
1108  * Return: This routine returns 0 on success, <0 on failure.
1109  */
1110 int of_alias_from_compatible(const struct device_node *node, char *alias, int len)
1111 {
1112 	const char *compatible, *p;
1113 	int cplen;
1114 
1115 	compatible = of_get_property(node, "compatible", &cplen);
1116 	if (!compatible || strlen(compatible) > cplen)
1117 		return -ENODEV;
1118 	p = strchr(compatible, ',');
1119 	strscpy(alias, p ? p + 1 : compatible, len);
1120 	return 0;
1121 }
1122 EXPORT_SYMBOL_GPL(of_alias_from_compatible);
1123 
1124 /**
1125  * of_find_node_by_phandle - Find a node given a phandle
1126  * @handle:	phandle of the node to find
1127  *
1128  * Return: A node pointer with refcount incremented, use
1129  * of_node_put() on it when done.
1130  */
1131 struct device_node *of_find_node_by_phandle(phandle handle)
1132 {
1133 	struct device_node *np = NULL;
1134 	unsigned long flags;
1135 	u32 handle_hash;
1136 
1137 	if (!handle)
1138 		return NULL;
1139 
1140 	handle_hash = of_phandle_cache_hash(handle);
1141 
1142 	raw_spin_lock_irqsave(&devtree_lock, flags);
1143 
1144 	if (phandle_cache[handle_hash] &&
1145 	    handle == phandle_cache[handle_hash]->phandle)
1146 		np = phandle_cache[handle_hash];
1147 
1148 	if (!np) {
1149 		for_each_of_allnodes(np)
1150 			if (np->phandle == handle &&
1151 			    !of_node_check_flag(np, OF_DETACHED)) {
1152 				phandle_cache[handle_hash] = np;
1153 				break;
1154 			}
1155 	}
1156 
1157 	of_node_get(np);
1158 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1159 	return np;
1160 }
1161 EXPORT_SYMBOL(of_find_node_by_phandle);
1162 
1163 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1164 {
1165 	int i;
1166 	printk("%s %pOF", msg, args->np);
1167 	for (i = 0; i < args->args_count; i++) {
1168 		const char delim = i ? ',' : ':';
1169 
1170 		pr_cont("%c%08x", delim, args->args[i]);
1171 	}
1172 	pr_cont("\n");
1173 }
1174 
1175 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1176 		const struct device_node *np,
1177 		const char *list_name,
1178 		const char *cells_name,
1179 		int cell_count)
1180 {
1181 	const __be32 *list;
1182 	int size;
1183 
1184 	memset(it, 0, sizeof(*it));
1185 
1186 	/*
1187 	 * one of cell_count or cells_name must be provided to determine the
1188 	 * argument length.
1189 	 */
1190 	if (cell_count < 0 && !cells_name)
1191 		return -EINVAL;
1192 
1193 	list = of_get_property(np, list_name, &size);
1194 	if (!list)
1195 		return -ENOENT;
1196 
1197 	it->cells_name = cells_name;
1198 	it->cell_count = cell_count;
1199 	it->parent = np;
1200 	it->list_end = list + size / sizeof(*list);
1201 	it->phandle_end = list;
1202 	it->cur = list;
1203 
1204 	return 0;
1205 }
1206 EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1207 
1208 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1209 {
1210 	uint32_t count = 0;
1211 
1212 	if (it->node) {
1213 		of_node_put(it->node);
1214 		it->node = NULL;
1215 	}
1216 
1217 	if (!it->cur || it->phandle_end >= it->list_end)
1218 		return -ENOENT;
1219 
1220 	it->cur = it->phandle_end;
1221 
1222 	/* If phandle is 0, then it is an empty entry with no arguments. */
1223 	it->phandle = be32_to_cpup(it->cur++);
1224 
1225 	if (it->phandle) {
1226 
1227 		/*
1228 		 * Find the provider node and parse the #*-cells property to
1229 		 * determine the argument length.
1230 		 */
1231 		it->node = of_find_node_by_phandle(it->phandle);
1232 
1233 		if (it->cells_name) {
1234 			if (!it->node) {
1235 				pr_err("%pOF: could not find phandle %d\n",
1236 				       it->parent, it->phandle);
1237 				goto err;
1238 			}
1239 
1240 			if (of_property_read_u32(it->node, it->cells_name,
1241 						 &count)) {
1242 				/*
1243 				 * If both cell_count and cells_name is given,
1244 				 * fall back to cell_count in absence
1245 				 * of the cells_name property
1246 				 */
1247 				if (it->cell_count >= 0) {
1248 					count = it->cell_count;
1249 				} else {
1250 					pr_err("%pOF: could not get %s for %pOF\n",
1251 					       it->parent,
1252 					       it->cells_name,
1253 					       it->node);
1254 					goto err;
1255 				}
1256 			}
1257 		} else {
1258 			count = it->cell_count;
1259 		}
1260 
1261 		/*
1262 		 * Make sure that the arguments actually fit in the remaining
1263 		 * property data length
1264 		 */
1265 		if (it->cur + count > it->list_end) {
1266 			if (it->cells_name)
1267 				pr_err("%pOF: %s = %d found %td\n",
1268 					it->parent, it->cells_name,
1269 					count, it->list_end - it->cur);
1270 			else
1271 				pr_err("%pOF: phandle %s needs %d, found %td\n",
1272 					it->parent, of_node_full_name(it->node),
1273 					count, it->list_end - it->cur);
1274 			goto err;
1275 		}
1276 	}
1277 
1278 	it->phandle_end = it->cur + count;
1279 	it->cur_count = count;
1280 
1281 	return 0;
1282 
1283 err:
1284 	if (it->node) {
1285 		of_node_put(it->node);
1286 		it->node = NULL;
1287 	}
1288 
1289 	return -EINVAL;
1290 }
1291 EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1292 
1293 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1294 			     uint32_t *args,
1295 			     int size)
1296 {
1297 	int i, count;
1298 
1299 	count = it->cur_count;
1300 
1301 	if (WARN_ON(size < count))
1302 		count = size;
1303 
1304 	for (i = 0; i < count; i++)
1305 		args[i] = be32_to_cpup(it->cur++);
1306 
1307 	return count;
1308 }
1309 
1310 int __of_parse_phandle_with_args(const struct device_node *np,
1311 				 const char *list_name,
1312 				 const char *cells_name,
1313 				 int cell_count, int index,
1314 				 struct of_phandle_args *out_args)
1315 {
1316 	struct of_phandle_iterator it;
1317 	int rc, cur_index = 0;
1318 
1319 	if (index < 0)
1320 		return -EINVAL;
1321 
1322 	/* Loop over the phandles until all the requested entry is found */
1323 	of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1324 		/*
1325 		 * All of the error cases bail out of the loop, so at
1326 		 * this point, the parsing is successful. If the requested
1327 		 * index matches, then fill the out_args structure and return,
1328 		 * or return -ENOENT for an empty entry.
1329 		 */
1330 		rc = -ENOENT;
1331 		if (cur_index == index) {
1332 			if (!it.phandle)
1333 				goto err;
1334 
1335 			if (out_args) {
1336 				int c;
1337 
1338 				c = of_phandle_iterator_args(&it,
1339 							     out_args->args,
1340 							     MAX_PHANDLE_ARGS);
1341 				out_args->np = it.node;
1342 				out_args->args_count = c;
1343 			} else {
1344 				of_node_put(it.node);
1345 			}
1346 
1347 			/* Found it! return success */
1348 			return 0;
1349 		}
1350 
1351 		cur_index++;
1352 	}
1353 
1354 	/*
1355 	 * Unlock node before returning result; will be one of:
1356 	 * -ENOENT : index is for empty phandle
1357 	 * -EINVAL : parsing error on data
1358 	 */
1359 
1360  err:
1361 	of_node_put(it.node);
1362 	return rc;
1363 }
1364 EXPORT_SYMBOL(__of_parse_phandle_with_args);
1365 
1366 /**
1367  * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1368  * @np:		pointer to a device tree node containing a list
1369  * @list_name:	property name that contains a list
1370  * @stem_name:	stem of property names that specify phandles' arguments count
1371  * @index:	index of a phandle to parse out
1372  * @out_args:	optional pointer to output arguments structure (will be filled)
1373  *
1374  * This function is useful to parse lists of phandles and their arguments.
1375  * Returns 0 on success and fills out_args, on error returns appropriate errno
1376  * value. The difference between this function and of_parse_phandle_with_args()
1377  * is that this API remaps a phandle if the node the phandle points to has
1378  * a <@stem_name>-map property.
1379  *
1380  * Caller is responsible to call of_node_put() on the returned out_args->np
1381  * pointer.
1382  *
1383  * Example::
1384  *
1385  *  phandle1: node1 {
1386  *  	#list-cells = <2>;
1387  *  };
1388  *
1389  *  phandle2: node2 {
1390  *  	#list-cells = <1>;
1391  *  };
1392  *
1393  *  phandle3: node3 {
1394  *  	#list-cells = <1>;
1395  *  	list-map = <0 &phandle2 3>,
1396  *  		   <1 &phandle2 2>,
1397  *  		   <2 &phandle1 5 1>;
1398  *  	list-map-mask = <0x3>;
1399  *  };
1400  *
1401  *  node4 {
1402  *  	list = <&phandle1 1 2 &phandle3 0>;
1403  *  };
1404  *
1405  * To get a device_node of the ``node2`` node you may call this:
1406  * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1407  */
1408 int of_parse_phandle_with_args_map(const struct device_node *np,
1409 				   const char *list_name,
1410 				   const char *stem_name,
1411 				   int index, struct of_phandle_args *out_args)
1412 {
1413 	char *cells_name __free(kfree) = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1414 	char *map_name __free(kfree) = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1415 	char *mask_name __free(kfree) = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1416 	char *pass_name __free(kfree) = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1417 	struct device_node *cur, *new = NULL;
1418 	const __be32 *map, *mask, *pass;
1419 	static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = cpu_to_be32(~0) };
1420 	static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = cpu_to_be32(0) };
1421 	__be32 initial_match_array[MAX_PHANDLE_ARGS];
1422 	const __be32 *match_array = initial_match_array;
1423 	int i, ret, map_len, match;
1424 	u32 list_size, new_size;
1425 
1426 	if (index < 0)
1427 		return -EINVAL;
1428 
1429 	if (!cells_name || !map_name || !mask_name || !pass_name)
1430 		return -ENOMEM;
1431 
1432 	ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index,
1433 					   out_args);
1434 	if (ret)
1435 		return ret;
1436 
1437 	/* Get the #<list>-cells property */
1438 	cur = out_args->np;
1439 	ret = of_property_read_u32(cur, cells_name, &list_size);
1440 	if (ret < 0)
1441 		goto put;
1442 
1443 	/* Precalculate the match array - this simplifies match loop */
1444 	for (i = 0; i < list_size; i++)
1445 		initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1446 
1447 	ret = -EINVAL;
1448 	while (cur) {
1449 		/* Get the <list>-map property */
1450 		map = of_get_property(cur, map_name, &map_len);
1451 		if (!map) {
1452 			return 0;
1453 		}
1454 		map_len /= sizeof(u32);
1455 
1456 		/* Get the <list>-map-mask property (optional) */
1457 		mask = of_get_property(cur, mask_name, NULL);
1458 		if (!mask)
1459 			mask = dummy_mask;
1460 		/* Iterate through <list>-map property */
1461 		match = 0;
1462 		while (map_len > (list_size + 1) && !match) {
1463 			/* Compare specifiers */
1464 			match = 1;
1465 			for (i = 0; i < list_size; i++, map_len--)
1466 				match &= !((match_array[i] ^ *map++) & mask[i]);
1467 
1468 			of_node_put(new);
1469 			new = of_find_node_by_phandle(be32_to_cpup(map));
1470 			map++;
1471 			map_len--;
1472 
1473 			/* Check if not found */
1474 			if (!new)
1475 				goto put;
1476 
1477 			if (!of_device_is_available(new))
1478 				match = 0;
1479 
1480 			ret = of_property_read_u32(new, cells_name, &new_size);
1481 			if (ret)
1482 				goto put;
1483 
1484 			/* Check for malformed properties */
1485 			if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1486 				goto put;
1487 			if (map_len < new_size)
1488 				goto put;
1489 
1490 			/* Move forward by new node's #<list>-cells amount */
1491 			map += new_size;
1492 			map_len -= new_size;
1493 		}
1494 		if (!match)
1495 			goto put;
1496 
1497 		/* Get the <list>-map-pass-thru property (optional) */
1498 		pass = of_get_property(cur, pass_name, NULL);
1499 		if (!pass)
1500 			pass = dummy_pass;
1501 
1502 		/*
1503 		 * Successfully parsed a <list>-map translation; copy new
1504 		 * specifier into the out_args structure, keeping the
1505 		 * bits specified in <list>-map-pass-thru.
1506 		 */
1507 		match_array = map - new_size;
1508 		for (i = 0; i < new_size; i++) {
1509 			__be32 val = *(map - new_size + i);
1510 
1511 			if (i < list_size) {
1512 				val &= ~pass[i];
1513 				val |= cpu_to_be32(out_args->args[i]) & pass[i];
1514 			}
1515 
1516 			out_args->args[i] = be32_to_cpu(val);
1517 		}
1518 		out_args->args_count = list_size = new_size;
1519 		/* Iterate again with new provider */
1520 		out_args->np = new;
1521 		of_node_put(cur);
1522 		cur = new;
1523 		new = NULL;
1524 	}
1525 put:
1526 	of_node_put(cur);
1527 	of_node_put(new);
1528 	return ret;
1529 }
1530 EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1531 
1532 /**
1533  * of_count_phandle_with_args() - Find the number of phandles references in a property
1534  * @np:		pointer to a device tree node containing a list
1535  * @list_name:	property name that contains a list
1536  * @cells_name:	property name that specifies phandles' arguments count
1537  *
1538  * Return: The number of phandle + argument tuples within a property. It
1539  * is a typical pattern to encode a list of phandle and variable
1540  * arguments into a single property. The number of arguments is encoded
1541  * by a property in the phandle-target node. For example, a gpios
1542  * property would contain a list of GPIO specifies consisting of a
1543  * phandle and 1 or more arguments. The number of arguments are
1544  * determined by the #gpio-cells property in the node pointed to by the
1545  * phandle.
1546  */
1547 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1548 				const char *cells_name)
1549 {
1550 	struct of_phandle_iterator it;
1551 	int rc, cur_index = 0;
1552 
1553 	/*
1554 	 * If cells_name is NULL we assume a cell count of 0. This makes
1555 	 * counting the phandles trivial as each 32bit word in the list is a
1556 	 * phandle and no arguments are to consider. So we don't iterate through
1557 	 * the list but just use the length to determine the phandle count.
1558 	 */
1559 	if (!cells_name) {
1560 		const __be32 *list;
1561 		int size;
1562 
1563 		list = of_get_property(np, list_name, &size);
1564 		if (!list)
1565 			return -ENOENT;
1566 
1567 		return size / sizeof(*list);
1568 	}
1569 
1570 	rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1);
1571 	if (rc)
1572 		return rc;
1573 
1574 	while ((rc = of_phandle_iterator_next(&it)) == 0)
1575 		cur_index += 1;
1576 
1577 	if (rc != -ENOENT)
1578 		return rc;
1579 
1580 	return cur_index;
1581 }
1582 EXPORT_SYMBOL(of_count_phandle_with_args);
1583 
1584 static struct property *__of_remove_property_from_list(struct property **list, struct property *prop)
1585 {
1586 	struct property **next;
1587 
1588 	for (next = list; *next; next = &(*next)->next) {
1589 		if (*next == prop) {
1590 			*next = prop->next;
1591 			prop->next = NULL;
1592 			return prop;
1593 		}
1594 	}
1595 	return NULL;
1596 }
1597 
1598 /**
1599  * __of_add_property - Add a property to a node without lock operations
1600  * @np:		Caller's Device Node
1601  * @prop:	Property to add
1602  */
1603 int __of_add_property(struct device_node *np, struct property *prop)
1604 {
1605 	int rc = 0;
1606 	unsigned long flags;
1607 	struct property **next;
1608 
1609 	raw_spin_lock_irqsave(&devtree_lock, flags);
1610 
1611 	__of_remove_property_from_list(&np->deadprops, prop);
1612 
1613 	prop->next = NULL;
1614 	next = &np->properties;
1615 	while (*next) {
1616 		if (strcmp(prop->name, (*next)->name) == 0) {
1617 			/* duplicate ! don't insert it */
1618 			rc = -EEXIST;
1619 			goto out_unlock;
1620 		}
1621 		next = &(*next)->next;
1622 	}
1623 	*next = prop;
1624 
1625 out_unlock:
1626 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1627 	if (rc)
1628 		return rc;
1629 
1630 	__of_add_property_sysfs(np, prop);
1631 	return 0;
1632 }
1633 
1634 /**
1635  * of_add_property - Add a property to a node
1636  * @np:		Caller's Device Node
1637  * @prop:	Property to add
1638  */
1639 int of_add_property(struct device_node *np, struct property *prop)
1640 {
1641 	int rc;
1642 
1643 	mutex_lock(&of_mutex);
1644 	rc = __of_add_property(np, prop);
1645 	mutex_unlock(&of_mutex);
1646 
1647 	if (!rc)
1648 		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1649 
1650 	return rc;
1651 }
1652 EXPORT_SYMBOL_GPL(of_add_property);
1653 
1654 int __of_remove_property(struct device_node *np, struct property *prop)
1655 {
1656 	unsigned long flags;
1657 	int rc = -ENODEV;
1658 
1659 	raw_spin_lock_irqsave(&devtree_lock, flags);
1660 
1661 	if (__of_remove_property_from_list(&np->properties, prop)) {
1662 		/* Found the property, add it to deadprops list */
1663 		prop->next = np->deadprops;
1664 		np->deadprops = prop;
1665 		rc = 0;
1666 	}
1667 
1668 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1669 	if (rc)
1670 		return rc;
1671 
1672 	__of_remove_property_sysfs(np, prop);
1673 	return 0;
1674 }
1675 
1676 /**
1677  * of_remove_property - Remove a property from a node.
1678  * @np:		Caller's Device Node
1679  * @prop:	Property to remove
1680  *
1681  * Note that we don't actually remove it, since we have given out
1682  * who-knows-how-many pointers to the data using get-property.
1683  * Instead we just move the property to the "dead properties"
1684  * list, so it won't be found any more.
1685  */
1686 int of_remove_property(struct device_node *np, struct property *prop)
1687 {
1688 	int rc;
1689 
1690 	if (!prop)
1691 		return -ENODEV;
1692 
1693 	mutex_lock(&of_mutex);
1694 	rc = __of_remove_property(np, prop);
1695 	mutex_unlock(&of_mutex);
1696 
1697 	if (!rc)
1698 		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1699 
1700 	return rc;
1701 }
1702 EXPORT_SYMBOL_GPL(of_remove_property);
1703 
1704 int __of_update_property(struct device_node *np, struct property *newprop,
1705 		struct property **oldpropp)
1706 {
1707 	struct property **next, *oldprop;
1708 	unsigned long flags;
1709 
1710 	raw_spin_lock_irqsave(&devtree_lock, flags);
1711 
1712 	__of_remove_property_from_list(&np->deadprops, newprop);
1713 
1714 	for (next = &np->properties; *next; next = &(*next)->next) {
1715 		if (of_prop_cmp((*next)->name, newprop->name) == 0)
1716 			break;
1717 	}
1718 	*oldpropp = oldprop = *next;
1719 
1720 	if (oldprop) {
1721 		/* replace the node */
1722 		newprop->next = oldprop->next;
1723 		*next = newprop;
1724 		oldprop->next = np->deadprops;
1725 		np->deadprops = oldprop;
1726 	} else {
1727 		/* new node */
1728 		newprop->next = NULL;
1729 		*next = newprop;
1730 	}
1731 
1732 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1733 
1734 	__of_update_property_sysfs(np, newprop, oldprop);
1735 
1736 	return 0;
1737 }
1738 
1739 /*
1740  * of_update_property - Update a property in a node, if the property does
1741  * not exist, add it.
1742  *
1743  * Note that we don't actually remove it, since we have given out
1744  * who-knows-how-many pointers to the data using get-property.
1745  * Instead we just move the property to the "dead properties" list,
1746  * and add the new property to the property list
1747  */
1748 int of_update_property(struct device_node *np, struct property *newprop)
1749 {
1750 	struct property *oldprop;
1751 	int rc;
1752 
1753 	if (!newprop->name)
1754 		return -EINVAL;
1755 
1756 	mutex_lock(&of_mutex);
1757 	rc = __of_update_property(np, newprop, &oldprop);
1758 	mutex_unlock(&of_mutex);
1759 
1760 	if (!rc)
1761 		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1762 
1763 	return rc;
1764 }
1765 
1766 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1767 			 int id, const char *stem, int stem_len)
1768 {
1769 	ap->np = np;
1770 	ap->id = id;
1771 	strscpy(ap->stem, stem, stem_len + 1);
1772 	list_add_tail(&ap->link, &aliases_lookup);
1773 	pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1774 		 ap->alias, ap->stem, ap->id, np);
1775 }
1776 
1777 /**
1778  * of_alias_scan - Scan all properties of the 'aliases' node
1779  * @dt_alloc:	An allocator that provides a virtual address to memory
1780  *		for storing the resulting tree
1781  *
1782  * The function scans all the properties of the 'aliases' node and populates
1783  * the global lookup table with the properties.  It returns the
1784  * number of alias properties found, or an error code in case of failure.
1785  */
1786 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1787 {
1788 	const struct property *pp;
1789 
1790 	of_aliases = of_find_node_by_path("/aliases");
1791 	of_chosen = of_find_node_by_path("/chosen");
1792 	if (of_chosen == NULL)
1793 		of_chosen = of_find_node_by_path("/chosen@0");
1794 
1795 	if (of_chosen) {
1796 		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1797 		const char *name = NULL;
1798 
1799 		if (of_property_read_string(of_chosen, "stdout-path", &name))
1800 			of_property_read_string(of_chosen, "linux,stdout-path",
1801 						&name);
1802 		if (IS_ENABLED(CONFIG_PPC) && !name)
1803 			of_property_read_string(of_aliases, "stdout", &name);
1804 		if (name)
1805 			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1806 		if (of_stdout)
1807 			of_stdout->fwnode.flags |= FWNODE_FLAG_BEST_EFFORT;
1808 	}
1809 
1810 	if (!of_aliases)
1811 		return;
1812 
1813 	for_each_property_of_node(of_aliases, pp) {
1814 		const char *start = pp->name;
1815 		const char *end = start + strlen(start);
1816 		struct device_node *np;
1817 		struct alias_prop *ap;
1818 		int id, len;
1819 
1820 		/* Skip those we do not want to proceed */
1821 		if (!strcmp(pp->name, "name") ||
1822 		    !strcmp(pp->name, "phandle") ||
1823 		    !strcmp(pp->name, "linux,phandle"))
1824 			continue;
1825 
1826 		np = of_find_node_by_path(pp->value);
1827 		if (!np)
1828 			continue;
1829 
1830 		/* walk the alias backwards to extract the id and work out
1831 		 * the 'stem' string */
1832 		while (isdigit(*(end-1)) && end > start)
1833 			end--;
1834 		len = end - start;
1835 
1836 		if (kstrtoint(end, 10, &id) < 0)
1837 			continue;
1838 
1839 		/* Allocate an alias_prop with enough space for the stem */
1840 		ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
1841 		if (!ap)
1842 			continue;
1843 		memset(ap, 0, sizeof(*ap) + len + 1);
1844 		ap->alias = start;
1845 		of_alias_add(ap, np, id, start, len);
1846 	}
1847 }
1848 
1849 /**
1850  * of_alias_get_id - Get alias id for the given device_node
1851  * @np:		Pointer to the given device_node
1852  * @stem:	Alias stem of the given device_node
1853  *
1854  * The function travels the lookup table to get the alias id for the given
1855  * device_node and alias stem.
1856  *
1857  * Return: The alias id if found.
1858  */
1859 int of_alias_get_id(const struct device_node *np, const char *stem)
1860 {
1861 	struct alias_prop *app;
1862 	int id = -ENODEV;
1863 
1864 	mutex_lock(&of_mutex);
1865 	list_for_each_entry(app, &aliases_lookup, link) {
1866 		if (strcmp(app->stem, stem) != 0)
1867 			continue;
1868 
1869 		if (np == app->np) {
1870 			id = app->id;
1871 			break;
1872 		}
1873 	}
1874 	mutex_unlock(&of_mutex);
1875 
1876 	return id;
1877 }
1878 EXPORT_SYMBOL_GPL(of_alias_get_id);
1879 
1880 /**
1881  * of_alias_get_highest_id - Get highest alias id for the given stem
1882  * @stem:	Alias stem to be examined
1883  *
1884  * The function travels the lookup table to get the highest alias id for the
1885  * given alias stem.  It returns the alias id if found.
1886  */
1887 int of_alias_get_highest_id(const char *stem)
1888 {
1889 	struct alias_prop *app;
1890 	int id = -ENODEV;
1891 
1892 	mutex_lock(&of_mutex);
1893 	list_for_each_entry(app, &aliases_lookup, link) {
1894 		if (strcmp(app->stem, stem) != 0)
1895 			continue;
1896 
1897 		if (app->id > id)
1898 			id = app->id;
1899 	}
1900 	mutex_unlock(&of_mutex);
1901 
1902 	return id;
1903 }
1904 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
1905 
1906 /**
1907  * of_console_check() - Test and setup console for DT setup
1908  * @dn: Pointer to device node
1909  * @name: Name to use for preferred console without index. ex. "ttyS"
1910  * @index: Index to use for preferred console.
1911  *
1912  * Check if the given device node matches the stdout-path property in the
1913  * /chosen node. If it does then register it as the preferred console.
1914  *
1915  * Return: TRUE if console successfully setup. Otherwise return FALSE.
1916  */
1917 bool of_console_check(const struct device_node *dn, char *name, int index)
1918 {
1919 	if (!dn || dn != of_stdout || console_set_on_cmdline)
1920 		return false;
1921 
1922 	/*
1923 	 * XXX: cast `options' to char pointer to suppress complication
1924 	 * warnings: printk, UART and console drivers expect char pointer.
1925 	 */
1926 	return !add_preferred_console(name, index, (char *)of_stdout_options);
1927 }
1928 EXPORT_SYMBOL_GPL(of_console_check);
1929 
1930 /**
1931  * of_find_next_cache_node - Find a node's subsidiary cache
1932  * @np:	node of type "cpu" or "cache"
1933  *
1934  * Return: A node pointer with refcount incremented, use
1935  * of_node_put() on it when done.  Caller should hold a reference
1936  * to np.
1937  */
1938 struct device_node *of_find_next_cache_node(const struct device_node *np)
1939 {
1940 	struct device_node *child, *cache_node;
1941 
1942 	cache_node = of_parse_phandle(np, "l2-cache", 0);
1943 	if (!cache_node)
1944 		cache_node = of_parse_phandle(np, "next-level-cache", 0);
1945 
1946 	if (cache_node)
1947 		return cache_node;
1948 
1949 	/* OF on pmac has nodes instead of properties named "l2-cache"
1950 	 * beneath CPU nodes.
1951 	 */
1952 	if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
1953 		for_each_child_of_node(np, child)
1954 			if (of_node_is_type(child, "cache"))
1955 				return child;
1956 
1957 	return NULL;
1958 }
1959 
1960 /**
1961  * of_find_last_cache_level - Find the level at which the last cache is
1962  * 		present for the given logical cpu
1963  *
1964  * @cpu: cpu number(logical index) for which the last cache level is needed
1965  *
1966  * Return: The level at which the last cache is present. It is exactly
1967  * same as  the total number of cache levels for the given logical cpu.
1968  */
1969 int of_find_last_cache_level(unsigned int cpu)
1970 {
1971 	u32 cache_level = 0;
1972 	struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
1973 
1974 	while (np) {
1975 		of_node_put(prev);
1976 		prev = np;
1977 		np = of_find_next_cache_node(np);
1978 	}
1979 
1980 	of_property_read_u32(prev, "cache-level", &cache_level);
1981 	of_node_put(prev);
1982 
1983 	return cache_level;
1984 }
1985 
1986 /**
1987  * of_map_id - Translate an ID through a downstream mapping.
1988  * @np: root complex device node.
1989  * @id: device ID to map.
1990  * @map_name: property name of the map to use.
1991  * @map_mask_name: optional property name of the mask to use.
1992  * @target: optional pointer to a target device node.
1993  * @id_out: optional pointer to receive the translated ID.
1994  *
1995  * Given a device ID, look up the appropriate implementation-defined
1996  * platform ID and/or the target device which receives transactions on that
1997  * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
1998  * @id_out may be NULL if only the other is required. If @target points to
1999  * a non-NULL device node pointer, only entries targeting that node will be
2000  * matched; if it points to a NULL value, it will receive the device node of
2001  * the first matching target phandle, with a reference held.
2002  *
2003  * Return: 0 on success or a standard error code on failure.
2004  */
2005 int of_map_id(const struct device_node *np, u32 id,
2006 	       const char *map_name, const char *map_mask_name,
2007 	       struct device_node **target, u32 *id_out)
2008 {
2009 	u32 map_mask, masked_id;
2010 	int map_len;
2011 	const __be32 *map = NULL;
2012 
2013 	if (!np || !map_name || (!target && !id_out))
2014 		return -EINVAL;
2015 
2016 	map = of_get_property(np, map_name, &map_len);
2017 	if (!map) {
2018 		if (target)
2019 			return -ENODEV;
2020 		/* Otherwise, no map implies no translation */
2021 		*id_out = id;
2022 		return 0;
2023 	}
2024 
2025 	if (!map_len || map_len % (4 * sizeof(*map))) {
2026 		pr_err("%pOF: Error: Bad %s length: %d\n", np,
2027 			map_name, map_len);
2028 		return -EINVAL;
2029 	}
2030 
2031 	/* The default is to select all bits. */
2032 	map_mask = 0xffffffff;
2033 
2034 	/*
2035 	 * Can be overridden by "{iommu,msi}-map-mask" property.
2036 	 * If of_property_read_u32() fails, the default is used.
2037 	 */
2038 	if (map_mask_name)
2039 		of_property_read_u32(np, map_mask_name, &map_mask);
2040 
2041 	masked_id = map_mask & id;
2042 	for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
2043 		struct device_node *phandle_node;
2044 		u32 id_base = be32_to_cpup(map + 0);
2045 		u32 phandle = be32_to_cpup(map + 1);
2046 		u32 out_base = be32_to_cpup(map + 2);
2047 		u32 id_len = be32_to_cpup(map + 3);
2048 
2049 		if (id_base & ~map_mask) {
2050 			pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n",
2051 				np, map_name, map_name,
2052 				map_mask, id_base);
2053 			return -EFAULT;
2054 		}
2055 
2056 		if (masked_id < id_base || masked_id >= id_base + id_len)
2057 			continue;
2058 
2059 		phandle_node = of_find_node_by_phandle(phandle);
2060 		if (!phandle_node)
2061 			return -ENODEV;
2062 
2063 		if (target) {
2064 			if (*target)
2065 				of_node_put(phandle_node);
2066 			else
2067 				*target = phandle_node;
2068 
2069 			if (*target != phandle_node)
2070 				continue;
2071 		}
2072 
2073 		if (id_out)
2074 			*id_out = masked_id - id_base + out_base;
2075 
2076 		pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n",
2077 			np, map_name, map_mask, id_base, out_base,
2078 			id_len, id, masked_id - id_base + out_base);
2079 		return 0;
2080 	}
2081 
2082 	pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name,
2083 		id, target && *target ? *target : NULL);
2084 
2085 	/* Bypasses translation */
2086 	if (id_out)
2087 		*id_out = id;
2088 	return 0;
2089 }
2090 EXPORT_SYMBOL_GPL(of_map_id);
2091