1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Procedures for creating, accessing and interpreting the device tree. 4 * 5 * Paul Mackerras August 1996. 6 * Copyright (C) 1996-2005 Paul Mackerras. 7 * 8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 9 * {engebret|bergner}@us.ibm.com 10 * 11 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 12 * 13 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 14 * Grant Likely. 15 */ 16 17 #define pr_fmt(fmt) "OF: " fmt 18 19 #include <linux/bitmap.h> 20 #include <linux/console.h> 21 #include <linux/ctype.h> 22 #include <linux/cpu.h> 23 #include <linux/module.h> 24 #include <linux/of.h> 25 #include <linux/of_device.h> 26 #include <linux/of_graph.h> 27 #include <linux/spinlock.h> 28 #include <linux/slab.h> 29 #include <linux/string.h> 30 #include <linux/proc_fs.h> 31 32 #include "of_private.h" 33 34 LIST_HEAD(aliases_lookup); 35 36 struct device_node *of_root; 37 EXPORT_SYMBOL(of_root); 38 struct device_node *of_chosen; 39 struct device_node *of_aliases; 40 struct device_node *of_stdout; 41 static const char *of_stdout_options; 42 43 struct kset *of_kset; 44 45 /* 46 * Used to protect the of_aliases, to hold off addition of nodes to sysfs. 47 * This mutex must be held whenever modifications are being made to the 48 * device tree. The of_{attach,detach}_node() and 49 * of_{add,remove,update}_property() helpers make sure this happens. 50 */ 51 DEFINE_MUTEX(of_mutex); 52 53 /* use when traversing tree through the child, sibling, 54 * or parent members of struct device_node. 55 */ 56 DEFINE_RAW_SPINLOCK(devtree_lock); 57 58 bool of_node_name_eq(const struct device_node *np, const char *name) 59 { 60 const char *node_name; 61 size_t len; 62 63 if (!np) 64 return false; 65 66 node_name = kbasename(np->full_name); 67 len = strchrnul(node_name, '@') - node_name; 68 69 return (strlen(name) == len) && (strncmp(node_name, name, len) == 0); 70 } 71 EXPORT_SYMBOL(of_node_name_eq); 72 73 bool of_node_name_prefix(const struct device_node *np, const char *prefix) 74 { 75 if (!np) 76 return false; 77 78 return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0; 79 } 80 EXPORT_SYMBOL(of_node_name_prefix); 81 82 static bool __of_node_is_type(const struct device_node *np, const char *type) 83 { 84 const char *match = __of_get_property(np, "device_type", NULL); 85 86 return np && match && type && !strcmp(match, type); 87 } 88 89 int of_bus_n_addr_cells(struct device_node *np) 90 { 91 u32 cells; 92 93 for (; np; np = np->parent) 94 if (!of_property_read_u32(np, "#address-cells", &cells)) 95 return cells; 96 97 /* No #address-cells property for the root node */ 98 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 99 } 100 101 int of_n_addr_cells(struct device_node *np) 102 { 103 if (np->parent) 104 np = np->parent; 105 106 return of_bus_n_addr_cells(np); 107 } 108 EXPORT_SYMBOL(of_n_addr_cells); 109 110 int of_bus_n_size_cells(struct device_node *np) 111 { 112 u32 cells; 113 114 for (; np; np = np->parent) 115 if (!of_property_read_u32(np, "#size-cells", &cells)) 116 return cells; 117 118 /* No #size-cells property for the root node */ 119 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 120 } 121 122 int of_n_size_cells(struct device_node *np) 123 { 124 if (np->parent) 125 np = np->parent; 126 127 return of_bus_n_size_cells(np); 128 } 129 EXPORT_SYMBOL(of_n_size_cells); 130 131 #ifdef CONFIG_NUMA 132 int __weak of_node_to_nid(struct device_node *np) 133 { 134 return NUMA_NO_NODE; 135 } 136 #endif 137 138 #define OF_PHANDLE_CACHE_BITS 7 139 #define OF_PHANDLE_CACHE_SZ BIT(OF_PHANDLE_CACHE_BITS) 140 141 static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ]; 142 143 static u32 of_phandle_cache_hash(phandle handle) 144 { 145 return hash_32(handle, OF_PHANDLE_CACHE_BITS); 146 } 147 148 /* 149 * Caller must hold devtree_lock. 150 */ 151 void __of_phandle_cache_inv_entry(phandle handle) 152 { 153 u32 handle_hash; 154 struct device_node *np; 155 156 if (!handle) 157 return; 158 159 handle_hash = of_phandle_cache_hash(handle); 160 161 np = phandle_cache[handle_hash]; 162 if (np && handle == np->phandle) 163 phandle_cache[handle_hash] = NULL; 164 } 165 166 void __init of_core_init(void) 167 { 168 struct device_node *np; 169 170 171 /* Create the kset, and register existing nodes */ 172 mutex_lock(&of_mutex); 173 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj); 174 if (!of_kset) { 175 mutex_unlock(&of_mutex); 176 pr_err("failed to register existing nodes\n"); 177 return; 178 } 179 for_each_of_allnodes(np) { 180 __of_attach_node_sysfs(np); 181 if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)]) 182 phandle_cache[of_phandle_cache_hash(np->phandle)] = np; 183 } 184 mutex_unlock(&of_mutex); 185 186 /* Symlink in /proc as required by userspace ABI */ 187 if (of_root) 188 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base"); 189 } 190 191 static struct property *__of_find_property(const struct device_node *np, 192 const char *name, int *lenp) 193 { 194 struct property *pp; 195 196 if (!np) 197 return NULL; 198 199 for (pp = np->properties; pp; pp = pp->next) { 200 if (of_prop_cmp(pp->name, name) == 0) { 201 if (lenp) 202 *lenp = pp->length; 203 break; 204 } 205 } 206 207 return pp; 208 } 209 210 struct property *of_find_property(const struct device_node *np, 211 const char *name, 212 int *lenp) 213 { 214 struct property *pp; 215 unsigned long flags; 216 217 raw_spin_lock_irqsave(&devtree_lock, flags); 218 pp = __of_find_property(np, name, lenp); 219 raw_spin_unlock_irqrestore(&devtree_lock, flags); 220 221 return pp; 222 } 223 EXPORT_SYMBOL(of_find_property); 224 225 struct device_node *__of_find_all_nodes(struct device_node *prev) 226 { 227 struct device_node *np; 228 if (!prev) { 229 np = of_root; 230 } else if (prev->child) { 231 np = prev->child; 232 } else { 233 /* Walk back up looking for a sibling, or the end of the structure */ 234 np = prev; 235 while (np->parent && !np->sibling) 236 np = np->parent; 237 np = np->sibling; /* Might be null at the end of the tree */ 238 } 239 return np; 240 } 241 242 /** 243 * of_find_all_nodes - Get next node in global list 244 * @prev: Previous node or NULL to start iteration 245 * of_node_put() will be called on it 246 * 247 * Return: A node pointer with refcount incremented, use 248 * of_node_put() on it when done. 249 */ 250 struct device_node *of_find_all_nodes(struct device_node *prev) 251 { 252 struct device_node *np; 253 unsigned long flags; 254 255 raw_spin_lock_irqsave(&devtree_lock, flags); 256 np = __of_find_all_nodes(prev); 257 of_node_get(np); 258 of_node_put(prev); 259 raw_spin_unlock_irqrestore(&devtree_lock, flags); 260 return np; 261 } 262 EXPORT_SYMBOL(of_find_all_nodes); 263 264 /* 265 * Find a property with a given name for a given node 266 * and return the value. 267 */ 268 const void *__of_get_property(const struct device_node *np, 269 const char *name, int *lenp) 270 { 271 struct property *pp = __of_find_property(np, name, lenp); 272 273 return pp ? pp->value : NULL; 274 } 275 276 /* 277 * Find a property with a given name for a given node 278 * and return the value. 279 */ 280 const void *of_get_property(const struct device_node *np, const char *name, 281 int *lenp) 282 { 283 struct property *pp = of_find_property(np, name, lenp); 284 285 return pp ? pp->value : NULL; 286 } 287 EXPORT_SYMBOL(of_get_property); 288 289 /* 290 * arch_match_cpu_phys_id - Match the given logical CPU and physical id 291 * 292 * @cpu: logical cpu index of a core/thread 293 * @phys_id: physical identifier of a core/thread 294 * 295 * CPU logical to physical index mapping is architecture specific. 296 * However this __weak function provides a default match of physical 297 * id to logical cpu index. phys_id provided here is usually values read 298 * from the device tree which must match the hardware internal registers. 299 * 300 * Returns true if the physical identifier and the logical cpu index 301 * correspond to the same core/thread, false otherwise. 302 */ 303 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id) 304 { 305 return (u32)phys_id == cpu; 306 } 307 308 /* 309 * Checks if the given "prop_name" property holds the physical id of the 310 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not 311 * NULL, local thread number within the core is returned in it. 312 */ 313 static bool __of_find_n_match_cpu_property(struct device_node *cpun, 314 const char *prop_name, int cpu, unsigned int *thread) 315 { 316 const __be32 *cell; 317 int ac, prop_len, tid; 318 u64 hwid; 319 320 ac = of_n_addr_cells(cpun); 321 cell = of_get_property(cpun, prop_name, &prop_len); 322 if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0)) 323 return true; 324 if (!cell || !ac) 325 return false; 326 prop_len /= sizeof(*cell) * ac; 327 for (tid = 0; tid < prop_len; tid++) { 328 hwid = of_read_number(cell, ac); 329 if (arch_match_cpu_phys_id(cpu, hwid)) { 330 if (thread) 331 *thread = tid; 332 return true; 333 } 334 cell += ac; 335 } 336 return false; 337 } 338 339 /* 340 * arch_find_n_match_cpu_physical_id - See if the given device node is 341 * for the cpu corresponding to logical cpu 'cpu'. Return true if so, 342 * else false. If 'thread' is non-NULL, the local thread number within the 343 * core is returned in it. 344 */ 345 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun, 346 int cpu, unsigned int *thread) 347 { 348 /* Check for non-standard "ibm,ppc-interrupt-server#s" property 349 * for thread ids on PowerPC. If it doesn't exist fallback to 350 * standard "reg" property. 351 */ 352 if (IS_ENABLED(CONFIG_PPC) && 353 __of_find_n_match_cpu_property(cpun, 354 "ibm,ppc-interrupt-server#s", 355 cpu, thread)) 356 return true; 357 358 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread); 359 } 360 361 /** 362 * of_get_cpu_node - Get device node associated with the given logical CPU 363 * 364 * @cpu: CPU number(logical index) for which device node is required 365 * @thread: if not NULL, local thread number within the physical core is 366 * returned 367 * 368 * The main purpose of this function is to retrieve the device node for the 369 * given logical CPU index. It should be used to initialize the of_node in 370 * cpu device. Once of_node in cpu device is populated, all the further 371 * references can use that instead. 372 * 373 * CPU logical to physical index mapping is architecture specific and is built 374 * before booting secondary cores. This function uses arch_match_cpu_phys_id 375 * which can be overridden by architecture specific implementation. 376 * 377 * Return: A node pointer for the logical cpu with refcount incremented, use 378 * of_node_put() on it when done. Returns NULL if not found. 379 */ 380 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread) 381 { 382 struct device_node *cpun; 383 384 for_each_of_cpu_node(cpun) { 385 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread)) 386 return cpun; 387 } 388 return NULL; 389 } 390 EXPORT_SYMBOL(of_get_cpu_node); 391 392 /** 393 * of_cpu_node_to_id: Get the logical CPU number for a given device_node 394 * 395 * @cpu_node: Pointer to the device_node for CPU. 396 * 397 * Return: The logical CPU number of the given CPU device_node or -ENODEV if the 398 * CPU is not found. 399 */ 400 int of_cpu_node_to_id(struct device_node *cpu_node) 401 { 402 int cpu; 403 bool found = false; 404 struct device_node *np; 405 406 for_each_possible_cpu(cpu) { 407 np = of_cpu_device_node_get(cpu); 408 found = (cpu_node == np); 409 of_node_put(np); 410 if (found) 411 return cpu; 412 } 413 414 return -ENODEV; 415 } 416 EXPORT_SYMBOL(of_cpu_node_to_id); 417 418 /** 419 * of_get_cpu_state_node - Get CPU's idle state node at the given index 420 * 421 * @cpu_node: The device node for the CPU 422 * @index: The index in the list of the idle states 423 * 424 * Two generic methods can be used to describe a CPU's idle states, either via 425 * a flattened description through the "cpu-idle-states" binding or via the 426 * hierarchical layout, using the "power-domains" and the "domain-idle-states" 427 * bindings. This function check for both and returns the idle state node for 428 * the requested index. 429 * 430 * Return: An idle state node if found at @index. The refcount is incremented 431 * for it, so call of_node_put() on it when done. Returns NULL if not found. 432 */ 433 struct device_node *of_get_cpu_state_node(struct device_node *cpu_node, 434 int index) 435 { 436 struct of_phandle_args args; 437 int err; 438 439 err = of_parse_phandle_with_args(cpu_node, "power-domains", 440 "#power-domain-cells", 0, &args); 441 if (!err) { 442 struct device_node *state_node = 443 of_parse_phandle(args.np, "domain-idle-states", index); 444 445 of_node_put(args.np); 446 if (state_node) 447 return state_node; 448 } 449 450 return of_parse_phandle(cpu_node, "cpu-idle-states", index); 451 } 452 EXPORT_SYMBOL(of_get_cpu_state_node); 453 454 /** 455 * __of_device_is_compatible() - Check if the node matches given constraints 456 * @device: pointer to node 457 * @compat: required compatible string, NULL or "" for any match 458 * @type: required device_type value, NULL or "" for any match 459 * @name: required node name, NULL or "" for any match 460 * 461 * Checks if the given @compat, @type and @name strings match the 462 * properties of the given @device. A constraints can be skipped by 463 * passing NULL or an empty string as the constraint. 464 * 465 * Returns 0 for no match, and a positive integer on match. The return 466 * value is a relative score with larger values indicating better 467 * matches. The score is weighted for the most specific compatible value 468 * to get the highest score. Matching type is next, followed by matching 469 * name. Practically speaking, this results in the following priority 470 * order for matches: 471 * 472 * 1. specific compatible && type && name 473 * 2. specific compatible && type 474 * 3. specific compatible && name 475 * 4. specific compatible 476 * 5. general compatible && type && name 477 * 6. general compatible && type 478 * 7. general compatible && name 479 * 8. general compatible 480 * 9. type && name 481 * 10. type 482 * 11. name 483 */ 484 static int __of_device_is_compatible(const struct device_node *device, 485 const char *compat, const char *type, const char *name) 486 { 487 struct property *prop; 488 const char *cp; 489 int index = 0, score = 0; 490 491 /* Compatible match has highest priority */ 492 if (compat && compat[0]) { 493 prop = __of_find_property(device, "compatible", NULL); 494 for (cp = of_prop_next_string(prop, NULL); cp; 495 cp = of_prop_next_string(prop, cp), index++) { 496 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) { 497 score = INT_MAX/2 - (index << 2); 498 break; 499 } 500 } 501 if (!score) 502 return 0; 503 } 504 505 /* Matching type is better than matching name */ 506 if (type && type[0]) { 507 if (!__of_node_is_type(device, type)) 508 return 0; 509 score += 2; 510 } 511 512 /* Matching name is a bit better than not */ 513 if (name && name[0]) { 514 if (!of_node_name_eq(device, name)) 515 return 0; 516 score++; 517 } 518 519 return score; 520 } 521 522 /** Checks if the given "compat" string matches one of the strings in 523 * the device's "compatible" property 524 */ 525 int of_device_is_compatible(const struct device_node *device, 526 const char *compat) 527 { 528 unsigned long flags; 529 int res; 530 531 raw_spin_lock_irqsave(&devtree_lock, flags); 532 res = __of_device_is_compatible(device, compat, NULL, NULL); 533 raw_spin_unlock_irqrestore(&devtree_lock, flags); 534 return res; 535 } 536 EXPORT_SYMBOL(of_device_is_compatible); 537 538 /** Checks if the device is compatible with any of the entries in 539 * a NULL terminated array of strings. Returns the best match 540 * score or 0. 541 */ 542 int of_device_compatible_match(struct device_node *device, 543 const char *const *compat) 544 { 545 unsigned int tmp, score = 0; 546 547 if (!compat) 548 return 0; 549 550 while (*compat) { 551 tmp = of_device_is_compatible(device, *compat); 552 if (tmp > score) 553 score = tmp; 554 compat++; 555 } 556 557 return score; 558 } 559 560 /** 561 * of_machine_is_compatible - Test root of device tree for a given compatible value 562 * @compat: compatible string to look for in root node's compatible property. 563 * 564 * Return: A positive integer if the root node has the given value in its 565 * compatible property. 566 */ 567 int of_machine_is_compatible(const char *compat) 568 { 569 struct device_node *root; 570 int rc = 0; 571 572 root = of_find_node_by_path("/"); 573 if (root) { 574 rc = of_device_is_compatible(root, compat); 575 of_node_put(root); 576 } 577 return rc; 578 } 579 EXPORT_SYMBOL(of_machine_is_compatible); 580 581 /** 582 * __of_device_is_available - check if a device is available for use 583 * 584 * @device: Node to check for availability, with locks already held 585 * 586 * Return: True if the status property is absent or set to "okay" or "ok", 587 * false otherwise 588 */ 589 static bool __of_device_is_available(const struct device_node *device) 590 { 591 const char *status; 592 int statlen; 593 594 if (!device) 595 return false; 596 597 status = __of_get_property(device, "status", &statlen); 598 if (status == NULL) 599 return true; 600 601 if (statlen > 0) { 602 if (!strcmp(status, "okay") || !strcmp(status, "ok")) 603 return true; 604 } 605 606 return false; 607 } 608 609 /** 610 * of_device_is_available - check if a device is available for use 611 * 612 * @device: Node to check for availability 613 * 614 * Return: True if the status property is absent or set to "okay" or "ok", 615 * false otherwise 616 */ 617 bool of_device_is_available(const struct device_node *device) 618 { 619 unsigned long flags; 620 bool res; 621 622 raw_spin_lock_irqsave(&devtree_lock, flags); 623 res = __of_device_is_available(device); 624 raw_spin_unlock_irqrestore(&devtree_lock, flags); 625 return res; 626 627 } 628 EXPORT_SYMBOL(of_device_is_available); 629 630 /** 631 * of_device_is_big_endian - check if a device has BE registers 632 * 633 * @device: Node to check for endianness 634 * 635 * Return: True if the device has a "big-endian" property, or if the kernel 636 * was compiled for BE *and* the device has a "native-endian" property. 637 * Returns false otherwise. 638 * 639 * Callers would nominally use ioread32be/iowrite32be if 640 * of_device_is_big_endian() == true, or readl/writel otherwise. 641 */ 642 bool of_device_is_big_endian(const struct device_node *device) 643 { 644 if (of_property_read_bool(device, "big-endian")) 645 return true; 646 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) && 647 of_property_read_bool(device, "native-endian")) 648 return true; 649 return false; 650 } 651 EXPORT_SYMBOL(of_device_is_big_endian); 652 653 /** 654 * of_get_parent - Get a node's parent if any 655 * @node: Node to get parent 656 * 657 * Return: A node pointer with refcount incremented, use 658 * of_node_put() on it when done. 659 */ 660 struct device_node *of_get_parent(const struct device_node *node) 661 { 662 struct device_node *np; 663 unsigned long flags; 664 665 if (!node) 666 return NULL; 667 668 raw_spin_lock_irqsave(&devtree_lock, flags); 669 np = of_node_get(node->parent); 670 raw_spin_unlock_irqrestore(&devtree_lock, flags); 671 return np; 672 } 673 EXPORT_SYMBOL(of_get_parent); 674 675 /** 676 * of_get_next_parent - Iterate to a node's parent 677 * @node: Node to get parent of 678 * 679 * This is like of_get_parent() except that it drops the 680 * refcount on the passed node, making it suitable for iterating 681 * through a node's parents. 682 * 683 * Return: A node pointer with refcount incremented, use 684 * of_node_put() on it when done. 685 */ 686 struct device_node *of_get_next_parent(struct device_node *node) 687 { 688 struct device_node *parent; 689 unsigned long flags; 690 691 if (!node) 692 return NULL; 693 694 raw_spin_lock_irqsave(&devtree_lock, flags); 695 parent = of_node_get(node->parent); 696 of_node_put(node); 697 raw_spin_unlock_irqrestore(&devtree_lock, flags); 698 return parent; 699 } 700 EXPORT_SYMBOL(of_get_next_parent); 701 702 static struct device_node *__of_get_next_child(const struct device_node *node, 703 struct device_node *prev) 704 { 705 struct device_node *next; 706 707 if (!node) 708 return NULL; 709 710 next = prev ? prev->sibling : node->child; 711 for (; next; next = next->sibling) 712 if (of_node_get(next)) 713 break; 714 of_node_put(prev); 715 return next; 716 } 717 #define __for_each_child_of_node(parent, child) \ 718 for (child = __of_get_next_child(parent, NULL); child != NULL; \ 719 child = __of_get_next_child(parent, child)) 720 721 /** 722 * of_get_next_child - Iterate a node childs 723 * @node: parent node 724 * @prev: previous child of the parent node, or NULL to get first 725 * 726 * Return: A node pointer with refcount incremented, use of_node_put() on 727 * it when done. Returns NULL when prev is the last child. Decrements the 728 * refcount of prev. 729 */ 730 struct device_node *of_get_next_child(const struct device_node *node, 731 struct device_node *prev) 732 { 733 struct device_node *next; 734 unsigned long flags; 735 736 raw_spin_lock_irqsave(&devtree_lock, flags); 737 next = __of_get_next_child(node, prev); 738 raw_spin_unlock_irqrestore(&devtree_lock, flags); 739 return next; 740 } 741 EXPORT_SYMBOL(of_get_next_child); 742 743 /** 744 * of_get_next_available_child - Find the next available child node 745 * @node: parent node 746 * @prev: previous child of the parent node, or NULL to get first 747 * 748 * This function is like of_get_next_child(), except that it 749 * automatically skips any disabled nodes (i.e. status = "disabled"). 750 */ 751 struct device_node *of_get_next_available_child(const struct device_node *node, 752 struct device_node *prev) 753 { 754 struct device_node *next; 755 unsigned long flags; 756 757 if (!node) 758 return NULL; 759 760 raw_spin_lock_irqsave(&devtree_lock, flags); 761 next = prev ? prev->sibling : node->child; 762 for (; next; next = next->sibling) { 763 if (!__of_device_is_available(next)) 764 continue; 765 if (of_node_get(next)) 766 break; 767 } 768 of_node_put(prev); 769 raw_spin_unlock_irqrestore(&devtree_lock, flags); 770 return next; 771 } 772 EXPORT_SYMBOL(of_get_next_available_child); 773 774 /** 775 * of_get_next_cpu_node - Iterate on cpu nodes 776 * @prev: previous child of the /cpus node, or NULL to get first 777 * 778 * Return: A cpu node pointer with refcount incremented, use of_node_put() 779 * on it when done. Returns NULL when prev is the last child. Decrements 780 * the refcount of prev. 781 */ 782 struct device_node *of_get_next_cpu_node(struct device_node *prev) 783 { 784 struct device_node *next = NULL; 785 unsigned long flags; 786 struct device_node *node; 787 788 if (!prev) 789 node = of_find_node_by_path("/cpus"); 790 791 raw_spin_lock_irqsave(&devtree_lock, flags); 792 if (prev) 793 next = prev->sibling; 794 else if (node) { 795 next = node->child; 796 of_node_put(node); 797 } 798 for (; next; next = next->sibling) { 799 if (!(of_node_name_eq(next, "cpu") || 800 __of_node_is_type(next, "cpu"))) 801 continue; 802 if (of_node_get(next)) 803 break; 804 } 805 of_node_put(prev); 806 raw_spin_unlock_irqrestore(&devtree_lock, flags); 807 return next; 808 } 809 EXPORT_SYMBOL(of_get_next_cpu_node); 810 811 /** 812 * of_get_compatible_child - Find compatible child node 813 * @parent: parent node 814 * @compatible: compatible string 815 * 816 * Lookup child node whose compatible property contains the given compatible 817 * string. 818 * 819 * Return: a node pointer with refcount incremented, use of_node_put() on it 820 * when done; or NULL if not found. 821 */ 822 struct device_node *of_get_compatible_child(const struct device_node *parent, 823 const char *compatible) 824 { 825 struct device_node *child; 826 827 for_each_child_of_node(parent, child) { 828 if (of_device_is_compatible(child, compatible)) 829 break; 830 } 831 832 return child; 833 } 834 EXPORT_SYMBOL(of_get_compatible_child); 835 836 /** 837 * of_get_child_by_name - Find the child node by name for a given parent 838 * @node: parent node 839 * @name: child name to look for. 840 * 841 * This function looks for child node for given matching name 842 * 843 * Return: A node pointer if found, with refcount incremented, use 844 * of_node_put() on it when done. 845 * Returns NULL if node is not found. 846 */ 847 struct device_node *of_get_child_by_name(const struct device_node *node, 848 const char *name) 849 { 850 struct device_node *child; 851 852 for_each_child_of_node(node, child) 853 if (of_node_name_eq(child, name)) 854 break; 855 return child; 856 } 857 EXPORT_SYMBOL(of_get_child_by_name); 858 859 struct device_node *__of_find_node_by_path(struct device_node *parent, 860 const char *path) 861 { 862 struct device_node *child; 863 int len; 864 865 len = strcspn(path, "/:"); 866 if (!len) 867 return NULL; 868 869 __for_each_child_of_node(parent, child) { 870 const char *name = kbasename(child->full_name); 871 if (strncmp(path, name, len) == 0 && (strlen(name) == len)) 872 return child; 873 } 874 return NULL; 875 } 876 877 struct device_node *__of_find_node_by_full_path(struct device_node *node, 878 const char *path) 879 { 880 const char *separator = strchr(path, ':'); 881 882 while (node && *path == '/') { 883 struct device_node *tmp = node; 884 885 path++; /* Increment past '/' delimiter */ 886 node = __of_find_node_by_path(node, path); 887 of_node_put(tmp); 888 path = strchrnul(path, '/'); 889 if (separator && separator < path) 890 break; 891 } 892 return node; 893 } 894 895 /** 896 * of_find_node_opts_by_path - Find a node matching a full OF path 897 * @path: Either the full path to match, or if the path does not 898 * start with '/', the name of a property of the /aliases 899 * node (an alias). In the case of an alias, the node 900 * matching the alias' value will be returned. 901 * @opts: Address of a pointer into which to store the start of 902 * an options string appended to the end of the path with 903 * a ':' separator. 904 * 905 * Valid paths: 906 * * /foo/bar Full path 907 * * foo Valid alias 908 * * foo/bar Valid alias + relative path 909 * 910 * Return: A node pointer with refcount incremented, use 911 * of_node_put() on it when done. 912 */ 913 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts) 914 { 915 struct device_node *np = NULL; 916 struct property *pp; 917 unsigned long flags; 918 const char *separator = strchr(path, ':'); 919 920 if (opts) 921 *opts = separator ? separator + 1 : NULL; 922 923 if (strcmp(path, "/") == 0) 924 return of_node_get(of_root); 925 926 /* The path could begin with an alias */ 927 if (*path != '/') { 928 int len; 929 const char *p = separator; 930 931 if (!p) 932 p = strchrnul(path, '/'); 933 len = p - path; 934 935 /* of_aliases must not be NULL */ 936 if (!of_aliases) 937 return NULL; 938 939 for_each_property_of_node(of_aliases, pp) { 940 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) { 941 np = of_find_node_by_path(pp->value); 942 break; 943 } 944 } 945 if (!np) 946 return NULL; 947 path = p; 948 } 949 950 /* Step down the tree matching path components */ 951 raw_spin_lock_irqsave(&devtree_lock, flags); 952 if (!np) 953 np = of_node_get(of_root); 954 np = __of_find_node_by_full_path(np, path); 955 raw_spin_unlock_irqrestore(&devtree_lock, flags); 956 return np; 957 } 958 EXPORT_SYMBOL(of_find_node_opts_by_path); 959 960 /** 961 * of_find_node_by_name - Find a node by its "name" property 962 * @from: The node to start searching from or NULL; the node 963 * you pass will not be searched, only the next one 964 * will. Typically, you pass what the previous call 965 * returned. of_node_put() will be called on @from. 966 * @name: The name string to match against 967 * 968 * Return: A node pointer with refcount incremented, use 969 * of_node_put() on it when done. 970 */ 971 struct device_node *of_find_node_by_name(struct device_node *from, 972 const char *name) 973 { 974 struct device_node *np; 975 unsigned long flags; 976 977 raw_spin_lock_irqsave(&devtree_lock, flags); 978 for_each_of_allnodes_from(from, np) 979 if (of_node_name_eq(np, name) && of_node_get(np)) 980 break; 981 of_node_put(from); 982 raw_spin_unlock_irqrestore(&devtree_lock, flags); 983 return np; 984 } 985 EXPORT_SYMBOL(of_find_node_by_name); 986 987 /** 988 * of_find_node_by_type - Find a node by its "device_type" property 989 * @from: The node to start searching from, or NULL to start searching 990 * the entire device tree. The node you pass will not be 991 * searched, only the next one will; typically, you pass 992 * what the previous call returned. of_node_put() will be 993 * called on from for you. 994 * @type: The type string to match against 995 * 996 * Return: A node pointer with refcount incremented, use 997 * of_node_put() on it when done. 998 */ 999 struct device_node *of_find_node_by_type(struct device_node *from, 1000 const char *type) 1001 { 1002 struct device_node *np; 1003 unsigned long flags; 1004 1005 raw_spin_lock_irqsave(&devtree_lock, flags); 1006 for_each_of_allnodes_from(from, np) 1007 if (__of_node_is_type(np, type) && of_node_get(np)) 1008 break; 1009 of_node_put(from); 1010 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1011 return np; 1012 } 1013 EXPORT_SYMBOL(of_find_node_by_type); 1014 1015 /** 1016 * of_find_compatible_node - Find a node based on type and one of the 1017 * tokens in its "compatible" property 1018 * @from: The node to start searching from or NULL, the node 1019 * you pass will not be searched, only the next one 1020 * will; typically, you pass what the previous call 1021 * returned. of_node_put() will be called on it 1022 * @type: The type string to match "device_type" or NULL to ignore 1023 * @compatible: The string to match to one of the tokens in the device 1024 * "compatible" list. 1025 * 1026 * Return: A node pointer with refcount incremented, use 1027 * of_node_put() on it when done. 1028 */ 1029 struct device_node *of_find_compatible_node(struct device_node *from, 1030 const char *type, const char *compatible) 1031 { 1032 struct device_node *np; 1033 unsigned long flags; 1034 1035 raw_spin_lock_irqsave(&devtree_lock, flags); 1036 for_each_of_allnodes_from(from, np) 1037 if (__of_device_is_compatible(np, compatible, type, NULL) && 1038 of_node_get(np)) 1039 break; 1040 of_node_put(from); 1041 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1042 return np; 1043 } 1044 EXPORT_SYMBOL(of_find_compatible_node); 1045 1046 /** 1047 * of_find_node_with_property - Find a node which has a property with 1048 * the given name. 1049 * @from: The node to start searching from or NULL, the node 1050 * you pass will not be searched, only the next one 1051 * will; typically, you pass what the previous call 1052 * returned. of_node_put() will be called on it 1053 * @prop_name: The name of the property to look for. 1054 * 1055 * Return: A node pointer with refcount incremented, use 1056 * of_node_put() on it when done. 1057 */ 1058 struct device_node *of_find_node_with_property(struct device_node *from, 1059 const char *prop_name) 1060 { 1061 struct device_node *np; 1062 struct property *pp; 1063 unsigned long flags; 1064 1065 raw_spin_lock_irqsave(&devtree_lock, flags); 1066 for_each_of_allnodes_from(from, np) { 1067 for (pp = np->properties; pp; pp = pp->next) { 1068 if (of_prop_cmp(pp->name, prop_name) == 0) { 1069 of_node_get(np); 1070 goto out; 1071 } 1072 } 1073 } 1074 out: 1075 of_node_put(from); 1076 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1077 return np; 1078 } 1079 EXPORT_SYMBOL(of_find_node_with_property); 1080 1081 static 1082 const struct of_device_id *__of_match_node(const struct of_device_id *matches, 1083 const struct device_node *node) 1084 { 1085 const struct of_device_id *best_match = NULL; 1086 int score, best_score = 0; 1087 1088 if (!matches) 1089 return NULL; 1090 1091 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) { 1092 score = __of_device_is_compatible(node, matches->compatible, 1093 matches->type, matches->name); 1094 if (score > best_score) { 1095 best_match = matches; 1096 best_score = score; 1097 } 1098 } 1099 1100 return best_match; 1101 } 1102 1103 /** 1104 * of_match_node - Tell if a device_node has a matching of_match structure 1105 * @matches: array of of device match structures to search in 1106 * @node: the of device structure to match against 1107 * 1108 * Low level utility function used by device matching. 1109 */ 1110 const struct of_device_id *of_match_node(const struct of_device_id *matches, 1111 const struct device_node *node) 1112 { 1113 const struct of_device_id *match; 1114 unsigned long flags; 1115 1116 raw_spin_lock_irqsave(&devtree_lock, flags); 1117 match = __of_match_node(matches, node); 1118 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1119 return match; 1120 } 1121 EXPORT_SYMBOL(of_match_node); 1122 1123 /** 1124 * of_find_matching_node_and_match - Find a node based on an of_device_id 1125 * match table. 1126 * @from: The node to start searching from or NULL, the node 1127 * you pass will not be searched, only the next one 1128 * will; typically, you pass what the previous call 1129 * returned. of_node_put() will be called on it 1130 * @matches: array of of device match structures to search in 1131 * @match: Updated to point at the matches entry which matched 1132 * 1133 * Return: A node pointer with refcount incremented, use 1134 * of_node_put() on it when done. 1135 */ 1136 struct device_node *of_find_matching_node_and_match(struct device_node *from, 1137 const struct of_device_id *matches, 1138 const struct of_device_id **match) 1139 { 1140 struct device_node *np; 1141 const struct of_device_id *m; 1142 unsigned long flags; 1143 1144 if (match) 1145 *match = NULL; 1146 1147 raw_spin_lock_irqsave(&devtree_lock, flags); 1148 for_each_of_allnodes_from(from, np) { 1149 m = __of_match_node(matches, np); 1150 if (m && of_node_get(np)) { 1151 if (match) 1152 *match = m; 1153 break; 1154 } 1155 } 1156 of_node_put(from); 1157 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1158 return np; 1159 } 1160 EXPORT_SYMBOL(of_find_matching_node_and_match); 1161 1162 /** 1163 * of_modalias_node - Lookup appropriate modalias for a device node 1164 * @node: pointer to a device tree node 1165 * @modalias: Pointer to buffer that modalias value will be copied into 1166 * @len: Length of modalias value 1167 * 1168 * Based on the value of the compatible property, this routine will attempt 1169 * to choose an appropriate modalias value for a particular device tree node. 1170 * It does this by stripping the manufacturer prefix (as delimited by a ',') 1171 * from the first entry in the compatible list property. 1172 * 1173 * Return: This routine returns 0 on success, <0 on failure. 1174 */ 1175 int of_modalias_node(struct device_node *node, char *modalias, int len) 1176 { 1177 const char *compatible, *p; 1178 int cplen; 1179 1180 compatible = of_get_property(node, "compatible", &cplen); 1181 if (!compatible || strlen(compatible) > cplen) 1182 return -ENODEV; 1183 p = strchr(compatible, ','); 1184 strlcpy(modalias, p ? p + 1 : compatible, len); 1185 return 0; 1186 } 1187 EXPORT_SYMBOL_GPL(of_modalias_node); 1188 1189 /** 1190 * of_find_node_by_phandle - Find a node given a phandle 1191 * @handle: phandle of the node to find 1192 * 1193 * Return: A node pointer with refcount incremented, use 1194 * of_node_put() on it when done. 1195 */ 1196 struct device_node *of_find_node_by_phandle(phandle handle) 1197 { 1198 struct device_node *np = NULL; 1199 unsigned long flags; 1200 u32 handle_hash; 1201 1202 if (!handle) 1203 return NULL; 1204 1205 handle_hash = of_phandle_cache_hash(handle); 1206 1207 raw_spin_lock_irqsave(&devtree_lock, flags); 1208 1209 if (phandle_cache[handle_hash] && 1210 handle == phandle_cache[handle_hash]->phandle) 1211 np = phandle_cache[handle_hash]; 1212 1213 if (!np) { 1214 for_each_of_allnodes(np) 1215 if (np->phandle == handle && 1216 !of_node_check_flag(np, OF_DETACHED)) { 1217 phandle_cache[handle_hash] = np; 1218 break; 1219 } 1220 } 1221 1222 of_node_get(np); 1223 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1224 return np; 1225 } 1226 EXPORT_SYMBOL(of_find_node_by_phandle); 1227 1228 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args) 1229 { 1230 int i; 1231 printk("%s %pOF", msg, args->np); 1232 for (i = 0; i < args->args_count; i++) { 1233 const char delim = i ? ',' : ':'; 1234 1235 pr_cont("%c%08x", delim, args->args[i]); 1236 } 1237 pr_cont("\n"); 1238 } 1239 1240 int of_phandle_iterator_init(struct of_phandle_iterator *it, 1241 const struct device_node *np, 1242 const char *list_name, 1243 const char *cells_name, 1244 int cell_count) 1245 { 1246 const __be32 *list; 1247 int size; 1248 1249 memset(it, 0, sizeof(*it)); 1250 1251 /* 1252 * one of cell_count or cells_name must be provided to determine the 1253 * argument length. 1254 */ 1255 if (cell_count < 0 && !cells_name) 1256 return -EINVAL; 1257 1258 list = of_get_property(np, list_name, &size); 1259 if (!list) 1260 return -ENOENT; 1261 1262 it->cells_name = cells_name; 1263 it->cell_count = cell_count; 1264 it->parent = np; 1265 it->list_end = list + size / sizeof(*list); 1266 it->phandle_end = list; 1267 it->cur = list; 1268 1269 return 0; 1270 } 1271 EXPORT_SYMBOL_GPL(of_phandle_iterator_init); 1272 1273 int of_phandle_iterator_next(struct of_phandle_iterator *it) 1274 { 1275 uint32_t count = 0; 1276 1277 if (it->node) { 1278 of_node_put(it->node); 1279 it->node = NULL; 1280 } 1281 1282 if (!it->cur || it->phandle_end >= it->list_end) 1283 return -ENOENT; 1284 1285 it->cur = it->phandle_end; 1286 1287 /* If phandle is 0, then it is an empty entry with no arguments. */ 1288 it->phandle = be32_to_cpup(it->cur++); 1289 1290 if (it->phandle) { 1291 1292 /* 1293 * Find the provider node and parse the #*-cells property to 1294 * determine the argument length. 1295 */ 1296 it->node = of_find_node_by_phandle(it->phandle); 1297 1298 if (it->cells_name) { 1299 if (!it->node) { 1300 pr_err("%pOF: could not find phandle %d\n", 1301 it->parent, it->phandle); 1302 goto err; 1303 } 1304 1305 if (of_property_read_u32(it->node, it->cells_name, 1306 &count)) { 1307 /* 1308 * If both cell_count and cells_name is given, 1309 * fall back to cell_count in absence 1310 * of the cells_name property 1311 */ 1312 if (it->cell_count >= 0) { 1313 count = it->cell_count; 1314 } else { 1315 pr_err("%pOF: could not get %s for %pOF\n", 1316 it->parent, 1317 it->cells_name, 1318 it->node); 1319 goto err; 1320 } 1321 } 1322 } else { 1323 count = it->cell_count; 1324 } 1325 1326 /* 1327 * Make sure that the arguments actually fit in the remaining 1328 * property data length 1329 */ 1330 if (it->cur + count > it->list_end) { 1331 pr_err("%pOF: %s = %d found %d\n", 1332 it->parent, it->cells_name, 1333 count, it->cell_count); 1334 goto err; 1335 } 1336 } 1337 1338 it->phandle_end = it->cur + count; 1339 it->cur_count = count; 1340 1341 return 0; 1342 1343 err: 1344 if (it->node) { 1345 of_node_put(it->node); 1346 it->node = NULL; 1347 } 1348 1349 return -EINVAL; 1350 } 1351 EXPORT_SYMBOL_GPL(of_phandle_iterator_next); 1352 1353 int of_phandle_iterator_args(struct of_phandle_iterator *it, 1354 uint32_t *args, 1355 int size) 1356 { 1357 int i, count; 1358 1359 count = it->cur_count; 1360 1361 if (WARN_ON(size < count)) 1362 count = size; 1363 1364 for (i = 0; i < count; i++) 1365 args[i] = be32_to_cpup(it->cur++); 1366 1367 return count; 1368 } 1369 1370 static int __of_parse_phandle_with_args(const struct device_node *np, 1371 const char *list_name, 1372 const char *cells_name, 1373 int cell_count, int index, 1374 struct of_phandle_args *out_args) 1375 { 1376 struct of_phandle_iterator it; 1377 int rc, cur_index = 0; 1378 1379 /* Loop over the phandles until all the requested entry is found */ 1380 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) { 1381 /* 1382 * All of the error cases bail out of the loop, so at 1383 * this point, the parsing is successful. If the requested 1384 * index matches, then fill the out_args structure and return, 1385 * or return -ENOENT for an empty entry. 1386 */ 1387 rc = -ENOENT; 1388 if (cur_index == index) { 1389 if (!it.phandle) 1390 goto err; 1391 1392 if (out_args) { 1393 int c; 1394 1395 c = of_phandle_iterator_args(&it, 1396 out_args->args, 1397 MAX_PHANDLE_ARGS); 1398 out_args->np = it.node; 1399 out_args->args_count = c; 1400 } else { 1401 of_node_put(it.node); 1402 } 1403 1404 /* Found it! return success */ 1405 return 0; 1406 } 1407 1408 cur_index++; 1409 } 1410 1411 /* 1412 * Unlock node before returning result; will be one of: 1413 * -ENOENT : index is for empty phandle 1414 * -EINVAL : parsing error on data 1415 */ 1416 1417 err: 1418 of_node_put(it.node); 1419 return rc; 1420 } 1421 1422 /** 1423 * of_parse_phandle - Resolve a phandle property to a device_node pointer 1424 * @np: Pointer to device node holding phandle property 1425 * @phandle_name: Name of property holding a phandle value 1426 * @index: For properties holding a table of phandles, this is the index into 1427 * the table 1428 * 1429 * Return: The device_node pointer with refcount incremented. Use 1430 * of_node_put() on it when done. 1431 */ 1432 struct device_node *of_parse_phandle(const struct device_node *np, 1433 const char *phandle_name, int index) 1434 { 1435 struct of_phandle_args args; 1436 1437 if (index < 0) 1438 return NULL; 1439 1440 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0, 1441 index, &args)) 1442 return NULL; 1443 1444 return args.np; 1445 } 1446 EXPORT_SYMBOL(of_parse_phandle); 1447 1448 /** 1449 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list 1450 * @np: pointer to a device tree node containing a list 1451 * @list_name: property name that contains a list 1452 * @cells_name: property name that specifies phandles' arguments count 1453 * @index: index of a phandle to parse out 1454 * @out_args: optional pointer to output arguments structure (will be filled) 1455 * 1456 * This function is useful to parse lists of phandles and their arguments. 1457 * Returns 0 on success and fills out_args, on error returns appropriate 1458 * errno value. 1459 * 1460 * Caller is responsible to call of_node_put() on the returned out_args->np 1461 * pointer. 1462 * 1463 * Example:: 1464 * 1465 * phandle1: node1 { 1466 * #list-cells = <2>; 1467 * }; 1468 * 1469 * phandle2: node2 { 1470 * #list-cells = <1>; 1471 * }; 1472 * 1473 * node3 { 1474 * list = <&phandle1 1 2 &phandle2 3>; 1475 * }; 1476 * 1477 * To get a device_node of the ``node2`` node you may call this: 1478 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args); 1479 */ 1480 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name, 1481 const char *cells_name, int index, 1482 struct of_phandle_args *out_args) 1483 { 1484 int cell_count = -1; 1485 1486 if (index < 0) 1487 return -EINVAL; 1488 1489 /* If cells_name is NULL we assume a cell count of 0 */ 1490 if (!cells_name) 1491 cell_count = 0; 1492 1493 return __of_parse_phandle_with_args(np, list_name, cells_name, 1494 cell_count, index, out_args); 1495 } 1496 EXPORT_SYMBOL(of_parse_phandle_with_args); 1497 1498 /** 1499 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it 1500 * @np: pointer to a device tree node containing a list 1501 * @list_name: property name that contains a list 1502 * @stem_name: stem of property names that specify phandles' arguments count 1503 * @index: index of a phandle to parse out 1504 * @out_args: optional pointer to output arguments structure (will be filled) 1505 * 1506 * This function is useful to parse lists of phandles and their arguments. 1507 * Returns 0 on success and fills out_args, on error returns appropriate errno 1508 * value. The difference between this function and of_parse_phandle_with_args() 1509 * is that this API remaps a phandle if the node the phandle points to has 1510 * a <@stem_name>-map property. 1511 * 1512 * Caller is responsible to call of_node_put() on the returned out_args->np 1513 * pointer. 1514 * 1515 * Example:: 1516 * 1517 * phandle1: node1 { 1518 * #list-cells = <2>; 1519 * }; 1520 * 1521 * phandle2: node2 { 1522 * #list-cells = <1>; 1523 * }; 1524 * 1525 * phandle3: node3 { 1526 * #list-cells = <1>; 1527 * list-map = <0 &phandle2 3>, 1528 * <1 &phandle2 2>, 1529 * <2 &phandle1 5 1>; 1530 * list-map-mask = <0x3>; 1531 * }; 1532 * 1533 * node4 { 1534 * list = <&phandle1 1 2 &phandle3 0>; 1535 * }; 1536 * 1537 * To get a device_node of the ``node2`` node you may call this: 1538 * of_parse_phandle_with_args(node4, "list", "list", 1, &args); 1539 */ 1540 int of_parse_phandle_with_args_map(const struct device_node *np, 1541 const char *list_name, 1542 const char *stem_name, 1543 int index, struct of_phandle_args *out_args) 1544 { 1545 char *cells_name, *map_name = NULL, *mask_name = NULL; 1546 char *pass_name = NULL; 1547 struct device_node *cur, *new = NULL; 1548 const __be32 *map, *mask, *pass; 1549 static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 }; 1550 static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 }; 1551 __be32 initial_match_array[MAX_PHANDLE_ARGS]; 1552 const __be32 *match_array = initial_match_array; 1553 int i, ret, map_len, match; 1554 u32 list_size, new_size; 1555 1556 if (index < 0) 1557 return -EINVAL; 1558 1559 cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name); 1560 if (!cells_name) 1561 return -ENOMEM; 1562 1563 ret = -ENOMEM; 1564 map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name); 1565 if (!map_name) 1566 goto free; 1567 1568 mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name); 1569 if (!mask_name) 1570 goto free; 1571 1572 pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name); 1573 if (!pass_name) 1574 goto free; 1575 1576 ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index, 1577 out_args); 1578 if (ret) 1579 goto free; 1580 1581 /* Get the #<list>-cells property */ 1582 cur = out_args->np; 1583 ret = of_property_read_u32(cur, cells_name, &list_size); 1584 if (ret < 0) 1585 goto put; 1586 1587 /* Precalculate the match array - this simplifies match loop */ 1588 for (i = 0; i < list_size; i++) 1589 initial_match_array[i] = cpu_to_be32(out_args->args[i]); 1590 1591 ret = -EINVAL; 1592 while (cur) { 1593 /* Get the <list>-map property */ 1594 map = of_get_property(cur, map_name, &map_len); 1595 if (!map) { 1596 ret = 0; 1597 goto free; 1598 } 1599 map_len /= sizeof(u32); 1600 1601 /* Get the <list>-map-mask property (optional) */ 1602 mask = of_get_property(cur, mask_name, NULL); 1603 if (!mask) 1604 mask = dummy_mask; 1605 /* Iterate through <list>-map property */ 1606 match = 0; 1607 while (map_len > (list_size + 1) && !match) { 1608 /* Compare specifiers */ 1609 match = 1; 1610 for (i = 0; i < list_size; i++, map_len--) 1611 match &= !((match_array[i] ^ *map++) & mask[i]); 1612 1613 of_node_put(new); 1614 new = of_find_node_by_phandle(be32_to_cpup(map)); 1615 map++; 1616 map_len--; 1617 1618 /* Check if not found */ 1619 if (!new) 1620 goto put; 1621 1622 if (!of_device_is_available(new)) 1623 match = 0; 1624 1625 ret = of_property_read_u32(new, cells_name, &new_size); 1626 if (ret) 1627 goto put; 1628 1629 /* Check for malformed properties */ 1630 if (WARN_ON(new_size > MAX_PHANDLE_ARGS)) 1631 goto put; 1632 if (map_len < new_size) 1633 goto put; 1634 1635 /* Move forward by new node's #<list>-cells amount */ 1636 map += new_size; 1637 map_len -= new_size; 1638 } 1639 if (!match) 1640 goto put; 1641 1642 /* Get the <list>-map-pass-thru property (optional) */ 1643 pass = of_get_property(cur, pass_name, NULL); 1644 if (!pass) 1645 pass = dummy_pass; 1646 1647 /* 1648 * Successfully parsed a <list>-map translation; copy new 1649 * specifier into the out_args structure, keeping the 1650 * bits specified in <list>-map-pass-thru. 1651 */ 1652 match_array = map - new_size; 1653 for (i = 0; i < new_size; i++) { 1654 __be32 val = *(map - new_size + i); 1655 1656 if (i < list_size) { 1657 val &= ~pass[i]; 1658 val |= cpu_to_be32(out_args->args[i]) & pass[i]; 1659 } 1660 1661 out_args->args[i] = be32_to_cpu(val); 1662 } 1663 out_args->args_count = list_size = new_size; 1664 /* Iterate again with new provider */ 1665 out_args->np = new; 1666 of_node_put(cur); 1667 cur = new; 1668 } 1669 put: 1670 of_node_put(cur); 1671 of_node_put(new); 1672 free: 1673 kfree(mask_name); 1674 kfree(map_name); 1675 kfree(cells_name); 1676 kfree(pass_name); 1677 1678 return ret; 1679 } 1680 EXPORT_SYMBOL(of_parse_phandle_with_args_map); 1681 1682 /** 1683 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list 1684 * @np: pointer to a device tree node containing a list 1685 * @list_name: property name that contains a list 1686 * @cell_count: number of argument cells following the phandle 1687 * @index: index of a phandle to parse out 1688 * @out_args: optional pointer to output arguments structure (will be filled) 1689 * 1690 * This function is useful to parse lists of phandles and their arguments. 1691 * Returns 0 on success and fills out_args, on error returns appropriate 1692 * errno value. 1693 * 1694 * Caller is responsible to call of_node_put() on the returned out_args->np 1695 * pointer. 1696 * 1697 * Example:: 1698 * 1699 * phandle1: node1 { 1700 * }; 1701 * 1702 * phandle2: node2 { 1703 * }; 1704 * 1705 * node3 { 1706 * list = <&phandle1 0 2 &phandle2 2 3>; 1707 * }; 1708 * 1709 * To get a device_node of the ``node2`` node you may call this: 1710 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args); 1711 */ 1712 int of_parse_phandle_with_fixed_args(const struct device_node *np, 1713 const char *list_name, int cell_count, 1714 int index, struct of_phandle_args *out_args) 1715 { 1716 if (index < 0) 1717 return -EINVAL; 1718 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count, 1719 index, out_args); 1720 } 1721 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args); 1722 1723 /** 1724 * of_count_phandle_with_args() - Find the number of phandles references in a property 1725 * @np: pointer to a device tree node containing a list 1726 * @list_name: property name that contains a list 1727 * @cells_name: property name that specifies phandles' arguments count 1728 * 1729 * Return: The number of phandle + argument tuples within a property. It 1730 * is a typical pattern to encode a list of phandle and variable 1731 * arguments into a single property. The number of arguments is encoded 1732 * by a property in the phandle-target node. For example, a gpios 1733 * property would contain a list of GPIO specifies consisting of a 1734 * phandle and 1 or more arguments. The number of arguments are 1735 * determined by the #gpio-cells property in the node pointed to by the 1736 * phandle. 1737 */ 1738 int of_count_phandle_with_args(const struct device_node *np, const char *list_name, 1739 const char *cells_name) 1740 { 1741 struct of_phandle_iterator it; 1742 int rc, cur_index = 0; 1743 1744 /* 1745 * If cells_name is NULL we assume a cell count of 0. This makes 1746 * counting the phandles trivial as each 32bit word in the list is a 1747 * phandle and no arguments are to consider. So we don't iterate through 1748 * the list but just use the length to determine the phandle count. 1749 */ 1750 if (!cells_name) { 1751 const __be32 *list; 1752 int size; 1753 1754 list = of_get_property(np, list_name, &size); 1755 if (!list) 1756 return -ENOENT; 1757 1758 return size / sizeof(*list); 1759 } 1760 1761 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1); 1762 if (rc) 1763 return rc; 1764 1765 while ((rc = of_phandle_iterator_next(&it)) == 0) 1766 cur_index += 1; 1767 1768 if (rc != -ENOENT) 1769 return rc; 1770 1771 return cur_index; 1772 } 1773 EXPORT_SYMBOL(of_count_phandle_with_args); 1774 1775 /** 1776 * __of_add_property - Add a property to a node without lock operations 1777 * @np: Caller's Device Node 1778 * @prop: Property to add 1779 */ 1780 int __of_add_property(struct device_node *np, struct property *prop) 1781 { 1782 struct property **next; 1783 1784 prop->next = NULL; 1785 next = &np->properties; 1786 while (*next) { 1787 if (strcmp(prop->name, (*next)->name) == 0) 1788 /* duplicate ! don't insert it */ 1789 return -EEXIST; 1790 1791 next = &(*next)->next; 1792 } 1793 *next = prop; 1794 1795 return 0; 1796 } 1797 1798 /** 1799 * of_add_property - Add a property to a node 1800 * @np: Caller's Device Node 1801 * @prop: Property to add 1802 */ 1803 int of_add_property(struct device_node *np, struct property *prop) 1804 { 1805 unsigned long flags; 1806 int rc; 1807 1808 mutex_lock(&of_mutex); 1809 1810 raw_spin_lock_irqsave(&devtree_lock, flags); 1811 rc = __of_add_property(np, prop); 1812 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1813 1814 if (!rc) 1815 __of_add_property_sysfs(np, prop); 1816 1817 mutex_unlock(&of_mutex); 1818 1819 if (!rc) 1820 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL); 1821 1822 return rc; 1823 } 1824 1825 int __of_remove_property(struct device_node *np, struct property *prop) 1826 { 1827 struct property **next; 1828 1829 for (next = &np->properties; *next; next = &(*next)->next) { 1830 if (*next == prop) 1831 break; 1832 } 1833 if (*next == NULL) 1834 return -ENODEV; 1835 1836 /* found the node */ 1837 *next = prop->next; 1838 prop->next = np->deadprops; 1839 np->deadprops = prop; 1840 1841 return 0; 1842 } 1843 1844 /** 1845 * of_remove_property - Remove a property from a node. 1846 * @np: Caller's Device Node 1847 * @prop: Property to remove 1848 * 1849 * Note that we don't actually remove it, since we have given out 1850 * who-knows-how-many pointers to the data using get-property. 1851 * Instead we just move the property to the "dead properties" 1852 * list, so it won't be found any more. 1853 */ 1854 int of_remove_property(struct device_node *np, struct property *prop) 1855 { 1856 unsigned long flags; 1857 int rc; 1858 1859 if (!prop) 1860 return -ENODEV; 1861 1862 mutex_lock(&of_mutex); 1863 1864 raw_spin_lock_irqsave(&devtree_lock, flags); 1865 rc = __of_remove_property(np, prop); 1866 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1867 1868 if (!rc) 1869 __of_remove_property_sysfs(np, prop); 1870 1871 mutex_unlock(&of_mutex); 1872 1873 if (!rc) 1874 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL); 1875 1876 return rc; 1877 } 1878 EXPORT_SYMBOL_GPL(of_remove_property); 1879 1880 int __of_update_property(struct device_node *np, struct property *newprop, 1881 struct property **oldpropp) 1882 { 1883 struct property **next, *oldprop; 1884 1885 for (next = &np->properties; *next; next = &(*next)->next) { 1886 if (of_prop_cmp((*next)->name, newprop->name) == 0) 1887 break; 1888 } 1889 *oldpropp = oldprop = *next; 1890 1891 if (oldprop) { 1892 /* replace the node */ 1893 newprop->next = oldprop->next; 1894 *next = newprop; 1895 oldprop->next = np->deadprops; 1896 np->deadprops = oldprop; 1897 } else { 1898 /* new node */ 1899 newprop->next = NULL; 1900 *next = newprop; 1901 } 1902 1903 return 0; 1904 } 1905 1906 /* 1907 * of_update_property - Update a property in a node, if the property does 1908 * not exist, add it. 1909 * 1910 * Note that we don't actually remove it, since we have given out 1911 * who-knows-how-many pointers to the data using get-property. 1912 * Instead we just move the property to the "dead properties" list, 1913 * and add the new property to the property list 1914 */ 1915 int of_update_property(struct device_node *np, struct property *newprop) 1916 { 1917 struct property *oldprop; 1918 unsigned long flags; 1919 int rc; 1920 1921 if (!newprop->name) 1922 return -EINVAL; 1923 1924 mutex_lock(&of_mutex); 1925 1926 raw_spin_lock_irqsave(&devtree_lock, flags); 1927 rc = __of_update_property(np, newprop, &oldprop); 1928 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1929 1930 if (!rc) 1931 __of_update_property_sysfs(np, newprop, oldprop); 1932 1933 mutex_unlock(&of_mutex); 1934 1935 if (!rc) 1936 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop); 1937 1938 return rc; 1939 } 1940 1941 static void of_alias_add(struct alias_prop *ap, struct device_node *np, 1942 int id, const char *stem, int stem_len) 1943 { 1944 ap->np = np; 1945 ap->id = id; 1946 strncpy(ap->stem, stem, stem_len); 1947 ap->stem[stem_len] = 0; 1948 list_add_tail(&ap->link, &aliases_lookup); 1949 pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n", 1950 ap->alias, ap->stem, ap->id, np); 1951 } 1952 1953 /** 1954 * of_alias_scan - Scan all properties of the 'aliases' node 1955 * @dt_alloc: An allocator that provides a virtual address to memory 1956 * for storing the resulting tree 1957 * 1958 * The function scans all the properties of the 'aliases' node and populates 1959 * the global lookup table with the properties. It returns the 1960 * number of alias properties found, or an error code in case of failure. 1961 */ 1962 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align)) 1963 { 1964 struct property *pp; 1965 1966 of_aliases = of_find_node_by_path("/aliases"); 1967 of_chosen = of_find_node_by_path("/chosen"); 1968 if (of_chosen == NULL) 1969 of_chosen = of_find_node_by_path("/chosen@0"); 1970 1971 if (of_chosen) { 1972 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */ 1973 const char *name = NULL; 1974 1975 if (of_property_read_string(of_chosen, "stdout-path", &name)) 1976 of_property_read_string(of_chosen, "linux,stdout-path", 1977 &name); 1978 if (IS_ENABLED(CONFIG_PPC) && !name) 1979 of_property_read_string(of_aliases, "stdout", &name); 1980 if (name) 1981 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options); 1982 } 1983 1984 if (!of_aliases) 1985 return; 1986 1987 for_each_property_of_node(of_aliases, pp) { 1988 const char *start = pp->name; 1989 const char *end = start + strlen(start); 1990 struct device_node *np; 1991 struct alias_prop *ap; 1992 int id, len; 1993 1994 /* Skip those we do not want to proceed */ 1995 if (!strcmp(pp->name, "name") || 1996 !strcmp(pp->name, "phandle") || 1997 !strcmp(pp->name, "linux,phandle")) 1998 continue; 1999 2000 np = of_find_node_by_path(pp->value); 2001 if (!np) 2002 continue; 2003 2004 /* walk the alias backwards to extract the id and work out 2005 * the 'stem' string */ 2006 while (isdigit(*(end-1)) && end > start) 2007 end--; 2008 len = end - start; 2009 2010 if (kstrtoint(end, 10, &id) < 0) 2011 continue; 2012 2013 /* Allocate an alias_prop with enough space for the stem */ 2014 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap)); 2015 if (!ap) 2016 continue; 2017 memset(ap, 0, sizeof(*ap) + len + 1); 2018 ap->alias = start; 2019 of_alias_add(ap, np, id, start, len); 2020 } 2021 } 2022 2023 /** 2024 * of_alias_get_id - Get alias id for the given device_node 2025 * @np: Pointer to the given device_node 2026 * @stem: Alias stem of the given device_node 2027 * 2028 * The function travels the lookup table to get the alias id for the given 2029 * device_node and alias stem. 2030 * 2031 * Return: The alias id if found. 2032 */ 2033 int of_alias_get_id(struct device_node *np, const char *stem) 2034 { 2035 struct alias_prop *app; 2036 int id = -ENODEV; 2037 2038 mutex_lock(&of_mutex); 2039 list_for_each_entry(app, &aliases_lookup, link) { 2040 if (strcmp(app->stem, stem) != 0) 2041 continue; 2042 2043 if (np == app->np) { 2044 id = app->id; 2045 break; 2046 } 2047 } 2048 mutex_unlock(&of_mutex); 2049 2050 return id; 2051 } 2052 EXPORT_SYMBOL_GPL(of_alias_get_id); 2053 2054 /** 2055 * of_alias_get_alias_list - Get alias list for the given device driver 2056 * @matches: Array of OF device match structures to search in 2057 * @stem: Alias stem of the given device_node 2058 * @bitmap: Bitmap field pointer 2059 * @nbits: Maximum number of alias IDs which can be recorded in bitmap 2060 * 2061 * The function travels the lookup table to record alias ids for the given 2062 * device match structures and alias stem. 2063 * 2064 * Return: 0 or -ENOSYS when !CONFIG_OF or 2065 * -EOVERFLOW if alias ID is greater then allocated nbits 2066 */ 2067 int of_alias_get_alias_list(const struct of_device_id *matches, 2068 const char *stem, unsigned long *bitmap, 2069 unsigned int nbits) 2070 { 2071 struct alias_prop *app; 2072 int ret = 0; 2073 2074 /* Zero bitmap field to make sure that all the time it is clean */ 2075 bitmap_zero(bitmap, nbits); 2076 2077 mutex_lock(&of_mutex); 2078 pr_debug("%s: Looking for stem: %s\n", __func__, stem); 2079 list_for_each_entry(app, &aliases_lookup, link) { 2080 pr_debug("%s: stem: %s, id: %d\n", 2081 __func__, app->stem, app->id); 2082 2083 if (strcmp(app->stem, stem) != 0) { 2084 pr_debug("%s: stem comparison didn't pass %s\n", 2085 __func__, app->stem); 2086 continue; 2087 } 2088 2089 if (of_match_node(matches, app->np)) { 2090 pr_debug("%s: Allocated ID %d\n", __func__, app->id); 2091 2092 if (app->id >= nbits) { 2093 pr_warn("%s: ID %d >= than bitmap field %d\n", 2094 __func__, app->id, nbits); 2095 ret = -EOVERFLOW; 2096 } else { 2097 set_bit(app->id, bitmap); 2098 } 2099 } 2100 } 2101 mutex_unlock(&of_mutex); 2102 2103 return ret; 2104 } 2105 EXPORT_SYMBOL_GPL(of_alias_get_alias_list); 2106 2107 /** 2108 * of_alias_get_highest_id - Get highest alias id for the given stem 2109 * @stem: Alias stem to be examined 2110 * 2111 * The function travels the lookup table to get the highest alias id for the 2112 * given alias stem. It returns the alias id if found. 2113 */ 2114 int of_alias_get_highest_id(const char *stem) 2115 { 2116 struct alias_prop *app; 2117 int id = -ENODEV; 2118 2119 mutex_lock(&of_mutex); 2120 list_for_each_entry(app, &aliases_lookup, link) { 2121 if (strcmp(app->stem, stem) != 0) 2122 continue; 2123 2124 if (app->id > id) 2125 id = app->id; 2126 } 2127 mutex_unlock(&of_mutex); 2128 2129 return id; 2130 } 2131 EXPORT_SYMBOL_GPL(of_alias_get_highest_id); 2132 2133 /** 2134 * of_console_check() - Test and setup console for DT setup 2135 * @dn: Pointer to device node 2136 * @name: Name to use for preferred console without index. ex. "ttyS" 2137 * @index: Index to use for preferred console. 2138 * 2139 * Check if the given device node matches the stdout-path property in the 2140 * /chosen node. If it does then register it as the preferred console. 2141 * 2142 * Return: TRUE if console successfully setup. Otherwise return FALSE. 2143 */ 2144 bool of_console_check(struct device_node *dn, char *name, int index) 2145 { 2146 if (!dn || dn != of_stdout || console_set_on_cmdline) 2147 return false; 2148 2149 /* 2150 * XXX: cast `options' to char pointer to suppress complication 2151 * warnings: printk, UART and console drivers expect char pointer. 2152 */ 2153 return !add_preferred_console(name, index, (char *)of_stdout_options); 2154 } 2155 EXPORT_SYMBOL_GPL(of_console_check); 2156 2157 /** 2158 * of_find_next_cache_node - Find a node's subsidiary cache 2159 * @np: node of type "cpu" or "cache" 2160 * 2161 * Return: A node pointer with refcount incremented, use 2162 * of_node_put() on it when done. Caller should hold a reference 2163 * to np. 2164 */ 2165 struct device_node *of_find_next_cache_node(const struct device_node *np) 2166 { 2167 struct device_node *child, *cache_node; 2168 2169 cache_node = of_parse_phandle(np, "l2-cache", 0); 2170 if (!cache_node) 2171 cache_node = of_parse_phandle(np, "next-level-cache", 0); 2172 2173 if (cache_node) 2174 return cache_node; 2175 2176 /* OF on pmac has nodes instead of properties named "l2-cache" 2177 * beneath CPU nodes. 2178 */ 2179 if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu")) 2180 for_each_child_of_node(np, child) 2181 if (of_node_is_type(child, "cache")) 2182 return child; 2183 2184 return NULL; 2185 } 2186 2187 /** 2188 * of_find_last_cache_level - Find the level at which the last cache is 2189 * present for the given logical cpu 2190 * 2191 * @cpu: cpu number(logical index) for which the last cache level is needed 2192 * 2193 * Return: The the level at which the last cache is present. It is exactly 2194 * same as the total number of cache levels for the given logical cpu. 2195 */ 2196 int of_find_last_cache_level(unsigned int cpu) 2197 { 2198 u32 cache_level = 0; 2199 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu); 2200 2201 while (np) { 2202 prev = np; 2203 of_node_put(np); 2204 np = of_find_next_cache_node(np); 2205 } 2206 2207 of_property_read_u32(prev, "cache-level", &cache_level); 2208 2209 return cache_level; 2210 } 2211 2212 /** 2213 * of_map_id - Translate an ID through a downstream mapping. 2214 * @np: root complex device node. 2215 * @id: device ID to map. 2216 * @map_name: property name of the map to use. 2217 * @map_mask_name: optional property name of the mask to use. 2218 * @target: optional pointer to a target device node. 2219 * @id_out: optional pointer to receive the translated ID. 2220 * 2221 * Given a device ID, look up the appropriate implementation-defined 2222 * platform ID and/or the target device which receives transactions on that 2223 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or 2224 * @id_out may be NULL if only the other is required. If @target points to 2225 * a non-NULL device node pointer, only entries targeting that node will be 2226 * matched; if it points to a NULL value, it will receive the device node of 2227 * the first matching target phandle, with a reference held. 2228 * 2229 * Return: 0 on success or a standard error code on failure. 2230 */ 2231 int of_map_id(struct device_node *np, u32 id, 2232 const char *map_name, const char *map_mask_name, 2233 struct device_node **target, u32 *id_out) 2234 { 2235 u32 map_mask, masked_id; 2236 int map_len; 2237 const __be32 *map = NULL; 2238 2239 if (!np || !map_name || (!target && !id_out)) 2240 return -EINVAL; 2241 2242 map = of_get_property(np, map_name, &map_len); 2243 if (!map) { 2244 if (target) 2245 return -ENODEV; 2246 /* Otherwise, no map implies no translation */ 2247 *id_out = id; 2248 return 0; 2249 } 2250 2251 if (!map_len || map_len % (4 * sizeof(*map))) { 2252 pr_err("%pOF: Error: Bad %s length: %d\n", np, 2253 map_name, map_len); 2254 return -EINVAL; 2255 } 2256 2257 /* The default is to select all bits. */ 2258 map_mask = 0xffffffff; 2259 2260 /* 2261 * Can be overridden by "{iommu,msi}-map-mask" property. 2262 * If of_property_read_u32() fails, the default is used. 2263 */ 2264 if (map_mask_name) 2265 of_property_read_u32(np, map_mask_name, &map_mask); 2266 2267 masked_id = map_mask & id; 2268 for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) { 2269 struct device_node *phandle_node; 2270 u32 id_base = be32_to_cpup(map + 0); 2271 u32 phandle = be32_to_cpup(map + 1); 2272 u32 out_base = be32_to_cpup(map + 2); 2273 u32 id_len = be32_to_cpup(map + 3); 2274 2275 if (id_base & ~map_mask) { 2276 pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n", 2277 np, map_name, map_name, 2278 map_mask, id_base); 2279 return -EFAULT; 2280 } 2281 2282 if (masked_id < id_base || masked_id >= id_base + id_len) 2283 continue; 2284 2285 phandle_node = of_find_node_by_phandle(phandle); 2286 if (!phandle_node) 2287 return -ENODEV; 2288 2289 if (target) { 2290 if (*target) 2291 of_node_put(phandle_node); 2292 else 2293 *target = phandle_node; 2294 2295 if (*target != phandle_node) 2296 continue; 2297 } 2298 2299 if (id_out) 2300 *id_out = masked_id - id_base + out_base; 2301 2302 pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n", 2303 np, map_name, map_mask, id_base, out_base, 2304 id_len, id, masked_id - id_base + out_base); 2305 return 0; 2306 } 2307 2308 pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name, 2309 id, target && *target ? *target : NULL); 2310 2311 /* Bypasses translation */ 2312 if (id_out) 2313 *id_out = id; 2314 return 0; 2315 } 2316 EXPORT_SYMBOL_GPL(of_map_id); 2317