1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Procedures for creating, accessing and interpreting the device tree. 4 * 5 * Paul Mackerras August 1996. 6 * Copyright (C) 1996-2005 Paul Mackerras. 7 * 8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 9 * {engebret|bergner}@us.ibm.com 10 * 11 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 12 * 13 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 14 * Grant Likely. 15 */ 16 17 #define pr_fmt(fmt) "OF: " fmt 18 19 #include <linux/cleanup.h> 20 #include <linux/console.h> 21 #include <linux/ctype.h> 22 #include <linux/cpu.h> 23 #include <linux/module.h> 24 #include <linux/of.h> 25 #include <linux/of_device.h> 26 #include <linux/of_graph.h> 27 #include <linux/spinlock.h> 28 #include <linux/slab.h> 29 #include <linux/string.h> 30 #include <linux/proc_fs.h> 31 32 #include "of_private.h" 33 34 LIST_HEAD(aliases_lookup); 35 36 struct device_node *of_root; 37 EXPORT_SYMBOL(of_root); 38 struct device_node *of_chosen; 39 EXPORT_SYMBOL(of_chosen); 40 struct device_node *of_aliases; 41 struct device_node *of_stdout; 42 static const char *of_stdout_options; 43 44 struct kset *of_kset; 45 46 /* 47 * Used to protect the of_aliases, to hold off addition of nodes to sysfs. 48 * This mutex must be held whenever modifications are being made to the 49 * device tree. The of_{attach,detach}_node() and 50 * of_{add,remove,update}_property() helpers make sure this happens. 51 */ 52 DEFINE_MUTEX(of_mutex); 53 54 /* use when traversing tree through the child, sibling, 55 * or parent members of struct device_node. 56 */ 57 DEFINE_RAW_SPINLOCK(devtree_lock); 58 59 bool of_node_name_eq(const struct device_node *np, const char *name) 60 { 61 const char *node_name; 62 size_t len; 63 64 if (!np) 65 return false; 66 67 node_name = kbasename(np->full_name); 68 len = strchrnul(node_name, '@') - node_name; 69 70 return (strlen(name) == len) && (strncmp(node_name, name, len) == 0); 71 } 72 EXPORT_SYMBOL(of_node_name_eq); 73 74 bool of_node_name_prefix(const struct device_node *np, const char *prefix) 75 { 76 if (!np) 77 return false; 78 79 return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0; 80 } 81 EXPORT_SYMBOL(of_node_name_prefix); 82 83 static bool __of_node_is_type(const struct device_node *np, const char *type) 84 { 85 const char *match = __of_get_property(np, "device_type", NULL); 86 87 return np && match && type && !strcmp(match, type); 88 } 89 90 #define EXCLUDED_DEFAULT_CELLS_PLATFORMS ( \ 91 IS_ENABLED(CONFIG_SPARC) || \ 92 of_find_compatible_node(NULL, NULL, "coreboot") \ 93 ) 94 95 int of_bus_n_addr_cells(struct device_node *np) 96 { 97 u32 cells; 98 99 for (; np; np = np->parent) { 100 if (!of_property_read_u32(np, "#address-cells", &cells)) 101 return cells; 102 /* 103 * Default root value and walking parent nodes for "#address-cells" 104 * is deprecated. Any platforms which hit this warning should 105 * be added to the excluded list. 106 */ 107 WARN_ONCE(!EXCLUDED_DEFAULT_CELLS_PLATFORMS, 108 "Missing '#address-cells' in %pOF\n", np); 109 } 110 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 111 } 112 113 int of_n_addr_cells(struct device_node *np) 114 { 115 if (np->parent) 116 np = np->parent; 117 118 return of_bus_n_addr_cells(np); 119 } 120 EXPORT_SYMBOL(of_n_addr_cells); 121 122 int of_bus_n_size_cells(struct device_node *np) 123 { 124 u32 cells; 125 126 for (; np; np = np->parent) { 127 if (!of_property_read_u32(np, "#size-cells", &cells)) 128 return cells; 129 /* 130 * Default root value and walking parent nodes for "#size-cells" 131 * is deprecated. Any platforms which hit this warning should 132 * be added to the excluded list. 133 */ 134 WARN_ONCE(!EXCLUDED_DEFAULT_CELLS_PLATFORMS, 135 "Missing '#size-cells' in %pOF\n", np); 136 } 137 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 138 } 139 140 int of_n_size_cells(struct device_node *np) 141 { 142 if (np->parent) 143 np = np->parent; 144 145 return of_bus_n_size_cells(np); 146 } 147 EXPORT_SYMBOL(of_n_size_cells); 148 149 #ifdef CONFIG_NUMA 150 int __weak of_node_to_nid(struct device_node *np) 151 { 152 return NUMA_NO_NODE; 153 } 154 #endif 155 156 #define OF_PHANDLE_CACHE_BITS 7 157 #define OF_PHANDLE_CACHE_SZ BIT(OF_PHANDLE_CACHE_BITS) 158 159 static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ]; 160 161 static u32 of_phandle_cache_hash(phandle handle) 162 { 163 return hash_32(handle, OF_PHANDLE_CACHE_BITS); 164 } 165 166 /* 167 * Caller must hold devtree_lock. 168 */ 169 void __of_phandle_cache_inv_entry(phandle handle) 170 { 171 u32 handle_hash; 172 struct device_node *np; 173 174 if (!handle) 175 return; 176 177 handle_hash = of_phandle_cache_hash(handle); 178 179 np = phandle_cache[handle_hash]; 180 if (np && handle == np->phandle) 181 phandle_cache[handle_hash] = NULL; 182 } 183 184 void __init of_core_init(void) 185 { 186 struct device_node *np; 187 188 of_platform_register_reconfig_notifier(); 189 190 /* Create the kset, and register existing nodes */ 191 mutex_lock(&of_mutex); 192 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj); 193 if (!of_kset) { 194 mutex_unlock(&of_mutex); 195 pr_err("failed to register existing nodes\n"); 196 return; 197 } 198 for_each_of_allnodes(np) { 199 __of_attach_node_sysfs(np); 200 if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)]) 201 phandle_cache[of_phandle_cache_hash(np->phandle)] = np; 202 } 203 mutex_unlock(&of_mutex); 204 205 /* Symlink in /proc as required by userspace ABI */ 206 if (of_root) 207 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base"); 208 } 209 210 static struct property *__of_find_property(const struct device_node *np, 211 const char *name, int *lenp) 212 { 213 struct property *pp; 214 215 if (!np) 216 return NULL; 217 218 for (pp = np->properties; pp; pp = pp->next) { 219 if (of_prop_cmp(pp->name, name) == 0) { 220 if (lenp) 221 *lenp = pp->length; 222 break; 223 } 224 } 225 226 return pp; 227 } 228 229 struct property *of_find_property(const struct device_node *np, 230 const char *name, 231 int *lenp) 232 { 233 struct property *pp; 234 unsigned long flags; 235 236 raw_spin_lock_irqsave(&devtree_lock, flags); 237 pp = __of_find_property(np, name, lenp); 238 raw_spin_unlock_irqrestore(&devtree_lock, flags); 239 240 return pp; 241 } 242 EXPORT_SYMBOL(of_find_property); 243 244 struct device_node *__of_find_all_nodes(struct device_node *prev) 245 { 246 struct device_node *np; 247 if (!prev) { 248 np = of_root; 249 } else if (prev->child) { 250 np = prev->child; 251 } else { 252 /* Walk back up looking for a sibling, or the end of the structure */ 253 np = prev; 254 while (np->parent && !np->sibling) 255 np = np->parent; 256 np = np->sibling; /* Might be null at the end of the tree */ 257 } 258 return np; 259 } 260 261 /** 262 * of_find_all_nodes - Get next node in global list 263 * @prev: Previous node or NULL to start iteration 264 * of_node_put() will be called on it 265 * 266 * Return: A node pointer with refcount incremented, use 267 * of_node_put() on it when done. 268 */ 269 struct device_node *of_find_all_nodes(struct device_node *prev) 270 { 271 struct device_node *np; 272 unsigned long flags; 273 274 raw_spin_lock_irqsave(&devtree_lock, flags); 275 np = __of_find_all_nodes(prev); 276 of_node_get(np); 277 of_node_put(prev); 278 raw_spin_unlock_irqrestore(&devtree_lock, flags); 279 return np; 280 } 281 EXPORT_SYMBOL(of_find_all_nodes); 282 283 /* 284 * Find a property with a given name for a given node 285 * and return the value. 286 */ 287 const void *__of_get_property(const struct device_node *np, 288 const char *name, int *lenp) 289 { 290 const struct property *pp = __of_find_property(np, name, lenp); 291 292 return pp ? pp->value : NULL; 293 } 294 295 /* 296 * Find a property with a given name for a given node 297 * and return the value. 298 */ 299 const void *of_get_property(const struct device_node *np, const char *name, 300 int *lenp) 301 { 302 const struct property *pp = of_find_property(np, name, lenp); 303 304 return pp ? pp->value : NULL; 305 } 306 EXPORT_SYMBOL(of_get_property); 307 308 /** 309 * __of_device_is_compatible() - Check if the node matches given constraints 310 * @device: pointer to node 311 * @compat: required compatible string, NULL or "" for any match 312 * @type: required device_type value, NULL or "" for any match 313 * @name: required node name, NULL or "" for any match 314 * 315 * Checks if the given @compat, @type and @name strings match the 316 * properties of the given @device. A constraints can be skipped by 317 * passing NULL or an empty string as the constraint. 318 * 319 * Returns 0 for no match, and a positive integer on match. The return 320 * value is a relative score with larger values indicating better 321 * matches. The score is weighted for the most specific compatible value 322 * to get the highest score. Matching type is next, followed by matching 323 * name. Practically speaking, this results in the following priority 324 * order for matches: 325 * 326 * 1. specific compatible && type && name 327 * 2. specific compatible && type 328 * 3. specific compatible && name 329 * 4. specific compatible 330 * 5. general compatible && type && name 331 * 6. general compatible && type 332 * 7. general compatible && name 333 * 8. general compatible 334 * 9. type && name 335 * 10. type 336 * 11. name 337 */ 338 static int __of_device_is_compatible(const struct device_node *device, 339 const char *compat, const char *type, const char *name) 340 { 341 const struct property *prop; 342 const char *cp; 343 int index = 0, score = 0; 344 345 /* Compatible match has highest priority */ 346 if (compat && compat[0]) { 347 prop = __of_find_property(device, "compatible", NULL); 348 for (cp = of_prop_next_string(prop, NULL); cp; 349 cp = of_prop_next_string(prop, cp), index++) { 350 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) { 351 score = INT_MAX/2 - (index << 2); 352 break; 353 } 354 } 355 if (!score) 356 return 0; 357 } 358 359 /* Matching type is better than matching name */ 360 if (type && type[0]) { 361 if (!__of_node_is_type(device, type)) 362 return 0; 363 score += 2; 364 } 365 366 /* Matching name is a bit better than not */ 367 if (name && name[0]) { 368 if (!of_node_name_eq(device, name)) 369 return 0; 370 score++; 371 } 372 373 return score; 374 } 375 376 /** Checks if the given "compat" string matches one of the strings in 377 * the device's "compatible" property 378 */ 379 int of_device_is_compatible(const struct device_node *device, 380 const char *compat) 381 { 382 unsigned long flags; 383 int res; 384 385 raw_spin_lock_irqsave(&devtree_lock, flags); 386 res = __of_device_is_compatible(device, compat, NULL, NULL); 387 raw_spin_unlock_irqrestore(&devtree_lock, flags); 388 return res; 389 } 390 EXPORT_SYMBOL(of_device_is_compatible); 391 392 /** Checks if the device is compatible with any of the entries in 393 * a NULL terminated array of strings. Returns the best match 394 * score or 0. 395 */ 396 int of_device_compatible_match(const struct device_node *device, 397 const char *const *compat) 398 { 399 unsigned int tmp, score = 0; 400 401 if (!compat) 402 return 0; 403 404 while (*compat) { 405 tmp = of_device_is_compatible(device, *compat); 406 if (tmp > score) 407 score = tmp; 408 compat++; 409 } 410 411 return score; 412 } 413 EXPORT_SYMBOL_GPL(of_device_compatible_match); 414 415 /** 416 * of_machine_compatible_match - Test root of device tree against a compatible array 417 * @compats: NULL terminated array of compatible strings to look for in root node's compatible property. 418 * 419 * Returns true if the root node has any of the given compatible values in its 420 * compatible property. 421 */ 422 bool of_machine_compatible_match(const char *const *compats) 423 { 424 struct device_node *root; 425 int rc = 0; 426 427 root = of_find_node_by_path("/"); 428 if (root) { 429 rc = of_device_compatible_match(root, compats); 430 of_node_put(root); 431 } 432 433 return rc != 0; 434 } 435 EXPORT_SYMBOL(of_machine_compatible_match); 436 437 static bool __of_device_is_status(const struct device_node *device, 438 const char * const*strings) 439 { 440 const char *status; 441 int statlen; 442 443 if (!device) 444 return false; 445 446 status = __of_get_property(device, "status", &statlen); 447 if (status == NULL) 448 return false; 449 450 if (statlen > 0) { 451 while (*strings) { 452 unsigned int len = strlen(*strings); 453 454 if ((*strings)[len - 1] == '-') { 455 if (!strncmp(status, *strings, len)) 456 return true; 457 } else { 458 if (!strcmp(status, *strings)) 459 return true; 460 } 461 strings++; 462 } 463 } 464 465 return false; 466 } 467 468 /** 469 * __of_device_is_available - check if a device is available for use 470 * 471 * @device: Node to check for availability, with locks already held 472 * 473 * Return: True if the status property is absent or set to "okay" or "ok", 474 * false otherwise 475 */ 476 static bool __of_device_is_available(const struct device_node *device) 477 { 478 static const char * const ok[] = {"okay", "ok", NULL}; 479 480 if (!device) 481 return false; 482 483 return !__of_get_property(device, "status", NULL) || 484 __of_device_is_status(device, ok); 485 } 486 487 /** 488 * __of_device_is_reserved - check if a device is reserved 489 * 490 * @device: Node to check for availability, with locks already held 491 * 492 * Return: True if the status property is set to "reserved", false otherwise 493 */ 494 static bool __of_device_is_reserved(const struct device_node *device) 495 { 496 static const char * const reserved[] = {"reserved", NULL}; 497 498 return __of_device_is_status(device, reserved); 499 } 500 501 /** 502 * of_device_is_available - check if a device is available for use 503 * 504 * @device: Node to check for availability 505 * 506 * Return: True if the status property is absent or set to "okay" or "ok", 507 * false otherwise 508 */ 509 bool of_device_is_available(const struct device_node *device) 510 { 511 unsigned long flags; 512 bool res; 513 514 raw_spin_lock_irqsave(&devtree_lock, flags); 515 res = __of_device_is_available(device); 516 raw_spin_unlock_irqrestore(&devtree_lock, flags); 517 return res; 518 519 } 520 EXPORT_SYMBOL(of_device_is_available); 521 522 /** 523 * __of_device_is_fail - check if a device has status "fail" or "fail-..." 524 * 525 * @device: Node to check status for, with locks already held 526 * 527 * Return: True if the status property is set to "fail" or "fail-..." (for any 528 * error code suffix), false otherwise 529 */ 530 static bool __of_device_is_fail(const struct device_node *device) 531 { 532 static const char * const fail[] = {"fail", "fail-", NULL}; 533 534 return __of_device_is_status(device, fail); 535 } 536 537 /** 538 * of_device_is_big_endian - check if a device has BE registers 539 * 540 * @device: Node to check for endianness 541 * 542 * Return: True if the device has a "big-endian" property, or if the kernel 543 * was compiled for BE *and* the device has a "native-endian" property. 544 * Returns false otherwise. 545 * 546 * Callers would nominally use ioread32be/iowrite32be if 547 * of_device_is_big_endian() == true, or readl/writel otherwise. 548 */ 549 bool of_device_is_big_endian(const struct device_node *device) 550 { 551 if (of_property_read_bool(device, "big-endian")) 552 return true; 553 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) && 554 of_property_read_bool(device, "native-endian")) 555 return true; 556 return false; 557 } 558 EXPORT_SYMBOL(of_device_is_big_endian); 559 560 /** 561 * of_get_parent - Get a node's parent if any 562 * @node: Node to get parent 563 * 564 * Return: A node pointer with refcount incremented, use 565 * of_node_put() on it when done. 566 */ 567 struct device_node *of_get_parent(const struct device_node *node) 568 { 569 struct device_node *np; 570 unsigned long flags; 571 572 if (!node) 573 return NULL; 574 575 raw_spin_lock_irqsave(&devtree_lock, flags); 576 np = of_node_get(node->parent); 577 raw_spin_unlock_irqrestore(&devtree_lock, flags); 578 return np; 579 } 580 EXPORT_SYMBOL(of_get_parent); 581 582 /** 583 * of_get_next_parent - Iterate to a node's parent 584 * @node: Node to get parent of 585 * 586 * This is like of_get_parent() except that it drops the 587 * refcount on the passed node, making it suitable for iterating 588 * through a node's parents. 589 * 590 * Return: A node pointer with refcount incremented, use 591 * of_node_put() on it when done. 592 */ 593 struct device_node *of_get_next_parent(struct device_node *node) 594 { 595 struct device_node *parent; 596 unsigned long flags; 597 598 if (!node) 599 return NULL; 600 601 raw_spin_lock_irqsave(&devtree_lock, flags); 602 parent = of_node_get(node->parent); 603 of_node_put(node); 604 raw_spin_unlock_irqrestore(&devtree_lock, flags); 605 return parent; 606 } 607 EXPORT_SYMBOL(of_get_next_parent); 608 609 static struct device_node *__of_get_next_child(const struct device_node *node, 610 struct device_node *prev) 611 { 612 struct device_node *next; 613 614 if (!node) 615 return NULL; 616 617 next = prev ? prev->sibling : node->child; 618 of_node_get(next); 619 of_node_put(prev); 620 return next; 621 } 622 #define __for_each_child_of_node(parent, child) \ 623 for (child = __of_get_next_child(parent, NULL); child != NULL; \ 624 child = __of_get_next_child(parent, child)) 625 626 /** 627 * of_get_next_child - Iterate a node childs 628 * @node: parent node 629 * @prev: previous child of the parent node, or NULL to get first 630 * 631 * Return: A node pointer with refcount incremented, use of_node_put() on 632 * it when done. Returns NULL when prev is the last child. Decrements the 633 * refcount of prev. 634 */ 635 struct device_node *of_get_next_child(const struct device_node *node, 636 struct device_node *prev) 637 { 638 struct device_node *next; 639 unsigned long flags; 640 641 raw_spin_lock_irqsave(&devtree_lock, flags); 642 next = __of_get_next_child(node, prev); 643 raw_spin_unlock_irqrestore(&devtree_lock, flags); 644 return next; 645 } 646 EXPORT_SYMBOL(of_get_next_child); 647 648 /** 649 * of_get_next_child_with_prefix - Find the next child node with prefix 650 * @node: parent node 651 * @prev: previous child of the parent node, or NULL to get first 652 * @prefix: prefix that the node name should have 653 * 654 * This function is like of_get_next_child(), except that it automatically 655 * skips any nodes whose name doesn't have the given prefix. 656 * 657 * Return: A node pointer with refcount incremented, use 658 * of_node_put() on it when done. 659 */ 660 struct device_node *of_get_next_child_with_prefix(const struct device_node *node, 661 struct device_node *prev, 662 const char *prefix) 663 { 664 struct device_node *next; 665 unsigned long flags; 666 667 if (!node) 668 return NULL; 669 670 raw_spin_lock_irqsave(&devtree_lock, flags); 671 next = prev ? prev->sibling : node->child; 672 for (; next; next = next->sibling) { 673 if (!of_node_name_prefix(next, prefix)) 674 continue; 675 if (of_node_get(next)) 676 break; 677 } 678 of_node_put(prev); 679 raw_spin_unlock_irqrestore(&devtree_lock, flags); 680 return next; 681 } 682 EXPORT_SYMBOL(of_get_next_child_with_prefix); 683 684 static struct device_node *of_get_next_status_child(const struct device_node *node, 685 struct device_node *prev, 686 bool (*checker)(const struct device_node *)) 687 { 688 struct device_node *next; 689 unsigned long flags; 690 691 if (!node) 692 return NULL; 693 694 raw_spin_lock_irqsave(&devtree_lock, flags); 695 next = prev ? prev->sibling : node->child; 696 for (; next; next = next->sibling) { 697 if (!checker(next)) 698 continue; 699 if (of_node_get(next)) 700 break; 701 } 702 of_node_put(prev); 703 raw_spin_unlock_irqrestore(&devtree_lock, flags); 704 return next; 705 } 706 707 /** 708 * of_get_next_available_child - Find the next available child node 709 * @node: parent node 710 * @prev: previous child of the parent node, or NULL to get first 711 * 712 * This function is like of_get_next_child(), except that it 713 * automatically skips any disabled nodes (i.e. status = "disabled"). 714 */ 715 struct device_node *of_get_next_available_child(const struct device_node *node, 716 struct device_node *prev) 717 { 718 return of_get_next_status_child(node, prev, __of_device_is_available); 719 } 720 EXPORT_SYMBOL(of_get_next_available_child); 721 722 /** 723 * of_get_next_reserved_child - Find the next reserved child node 724 * @node: parent node 725 * @prev: previous child of the parent node, or NULL to get first 726 * 727 * This function is like of_get_next_child(), except that it 728 * automatically skips any disabled nodes (i.e. status = "disabled"). 729 */ 730 struct device_node *of_get_next_reserved_child(const struct device_node *node, 731 struct device_node *prev) 732 { 733 return of_get_next_status_child(node, prev, __of_device_is_reserved); 734 } 735 EXPORT_SYMBOL(of_get_next_reserved_child); 736 737 /** 738 * of_get_next_cpu_node - Iterate on cpu nodes 739 * @prev: previous child of the /cpus node, or NULL to get first 740 * 741 * Unusable CPUs (those with the status property set to "fail" or "fail-...") 742 * will be skipped. 743 * 744 * Return: A cpu node pointer with refcount incremented, use of_node_put() 745 * on it when done. Returns NULL when prev is the last child. Decrements 746 * the refcount of prev. 747 */ 748 struct device_node *of_get_next_cpu_node(struct device_node *prev) 749 { 750 struct device_node *next = NULL; 751 unsigned long flags; 752 struct device_node *node; 753 754 if (!prev) 755 node = of_find_node_by_path("/cpus"); 756 757 raw_spin_lock_irqsave(&devtree_lock, flags); 758 if (prev) 759 next = prev->sibling; 760 else if (node) { 761 next = node->child; 762 of_node_put(node); 763 } 764 for (; next; next = next->sibling) { 765 if (__of_device_is_fail(next)) 766 continue; 767 if (!(of_node_name_eq(next, "cpu") || 768 __of_node_is_type(next, "cpu"))) 769 continue; 770 if (of_node_get(next)) 771 break; 772 } 773 of_node_put(prev); 774 raw_spin_unlock_irqrestore(&devtree_lock, flags); 775 return next; 776 } 777 EXPORT_SYMBOL(of_get_next_cpu_node); 778 779 /** 780 * of_get_compatible_child - Find compatible child node 781 * @parent: parent node 782 * @compatible: compatible string 783 * 784 * Lookup child node whose compatible property contains the given compatible 785 * string. 786 * 787 * Return: a node pointer with refcount incremented, use of_node_put() on it 788 * when done; or NULL if not found. 789 */ 790 struct device_node *of_get_compatible_child(const struct device_node *parent, 791 const char *compatible) 792 { 793 struct device_node *child; 794 795 for_each_child_of_node(parent, child) { 796 if (of_device_is_compatible(child, compatible)) 797 break; 798 } 799 800 return child; 801 } 802 EXPORT_SYMBOL(of_get_compatible_child); 803 804 /** 805 * of_get_child_by_name - Find the child node by name for a given parent 806 * @node: parent node 807 * @name: child name to look for. 808 * 809 * This function looks for child node for given matching name 810 * 811 * Return: A node pointer if found, with refcount incremented, use 812 * of_node_put() on it when done. 813 * Returns NULL if node is not found. 814 */ 815 struct device_node *of_get_child_by_name(const struct device_node *node, 816 const char *name) 817 { 818 struct device_node *child; 819 820 for_each_child_of_node(node, child) 821 if (of_node_name_eq(child, name)) 822 break; 823 return child; 824 } 825 EXPORT_SYMBOL(of_get_child_by_name); 826 827 /** 828 * of_get_available_child_by_name - Find the available child node by name for a given parent 829 * @node: parent node 830 * @name: child name to look for. 831 * 832 * This function looks for child node for given matching name and checks the 833 * device's availability for use. 834 * 835 * Return: A node pointer if found, with refcount incremented, use 836 * of_node_put() on it when done. 837 * Returns NULL if node is not found. 838 */ 839 struct device_node *of_get_available_child_by_name(const struct device_node *node, 840 const char *name) 841 { 842 struct device_node *child; 843 844 child = of_get_child_by_name(node, name); 845 if (child && !of_device_is_available(child)) { 846 of_node_put(child); 847 return NULL; 848 } 849 850 return child; 851 } 852 EXPORT_SYMBOL(of_get_available_child_by_name); 853 854 struct device_node *__of_find_node_by_path(const struct device_node *parent, 855 const char *path) 856 { 857 struct device_node *child; 858 int len; 859 860 len = strcspn(path, "/:"); 861 if (!len) 862 return NULL; 863 864 __for_each_child_of_node(parent, child) { 865 const char *name = kbasename(child->full_name); 866 if (strncmp(path, name, len) == 0 && (strlen(name) == len)) 867 return child; 868 } 869 return NULL; 870 } 871 872 struct device_node *__of_find_node_by_full_path(struct device_node *node, 873 const char *path) 874 { 875 const char *separator = strchr(path, ':'); 876 877 while (node && *path == '/') { 878 struct device_node *tmp = node; 879 880 path++; /* Increment past '/' delimiter */ 881 node = __of_find_node_by_path(node, path); 882 of_node_put(tmp); 883 path = strchrnul(path, '/'); 884 if (separator && separator < path) 885 break; 886 } 887 return node; 888 } 889 890 /** 891 * of_find_node_opts_by_path - Find a node matching a full OF path 892 * @path: Either the full path to match, or if the path does not 893 * start with '/', the name of a property of the /aliases 894 * node (an alias). In the case of an alias, the node 895 * matching the alias' value will be returned. 896 * @opts: Address of a pointer into which to store the start of 897 * an options string appended to the end of the path with 898 * a ':' separator. 899 * 900 * Valid paths: 901 * * /foo/bar Full path 902 * * foo Valid alias 903 * * foo/bar Valid alias + relative path 904 * 905 * Return: A node pointer with refcount incremented, use 906 * of_node_put() on it when done. 907 */ 908 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts) 909 { 910 struct device_node *np = NULL; 911 const struct property *pp; 912 unsigned long flags; 913 const char *separator = strchr(path, ':'); 914 915 if (opts) 916 *opts = separator ? separator + 1 : NULL; 917 918 if (strcmp(path, "/") == 0) 919 return of_node_get(of_root); 920 921 /* The path could begin with an alias */ 922 if (*path != '/') { 923 int len; 924 const char *p = strchrnul(path, '/'); 925 926 if (separator && separator < p) 927 p = separator; 928 len = p - path; 929 930 /* of_aliases must not be NULL */ 931 if (!of_aliases) 932 return NULL; 933 934 for_each_property_of_node(of_aliases, pp) { 935 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) { 936 np = of_find_node_by_path(pp->value); 937 break; 938 } 939 } 940 if (!np) 941 return NULL; 942 path = p; 943 } 944 945 /* Step down the tree matching path components */ 946 raw_spin_lock_irqsave(&devtree_lock, flags); 947 if (!np) 948 np = of_node_get(of_root); 949 np = __of_find_node_by_full_path(np, path); 950 raw_spin_unlock_irqrestore(&devtree_lock, flags); 951 return np; 952 } 953 EXPORT_SYMBOL(of_find_node_opts_by_path); 954 955 /** 956 * of_find_node_by_name - Find a node by its "name" property 957 * @from: The node to start searching from or NULL; the node 958 * you pass will not be searched, only the next one 959 * will. Typically, you pass what the previous call 960 * returned. of_node_put() will be called on @from. 961 * @name: The name string to match against 962 * 963 * Return: A node pointer with refcount incremented, use 964 * of_node_put() on it when done. 965 */ 966 struct device_node *of_find_node_by_name(struct device_node *from, 967 const char *name) 968 { 969 struct device_node *np; 970 unsigned long flags; 971 972 raw_spin_lock_irqsave(&devtree_lock, flags); 973 for_each_of_allnodes_from(from, np) 974 if (of_node_name_eq(np, name) && of_node_get(np)) 975 break; 976 of_node_put(from); 977 raw_spin_unlock_irqrestore(&devtree_lock, flags); 978 return np; 979 } 980 EXPORT_SYMBOL(of_find_node_by_name); 981 982 /** 983 * of_find_node_by_type - Find a node by its "device_type" property 984 * @from: The node to start searching from, or NULL to start searching 985 * the entire device tree. The node you pass will not be 986 * searched, only the next one will; typically, you pass 987 * what the previous call returned. of_node_put() will be 988 * called on from for you. 989 * @type: The type string to match against 990 * 991 * Return: A node pointer with refcount incremented, use 992 * of_node_put() on it when done. 993 */ 994 struct device_node *of_find_node_by_type(struct device_node *from, 995 const char *type) 996 { 997 struct device_node *np; 998 unsigned long flags; 999 1000 raw_spin_lock_irqsave(&devtree_lock, flags); 1001 for_each_of_allnodes_from(from, np) 1002 if (__of_node_is_type(np, type) && of_node_get(np)) 1003 break; 1004 of_node_put(from); 1005 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1006 return np; 1007 } 1008 EXPORT_SYMBOL(of_find_node_by_type); 1009 1010 /** 1011 * of_find_compatible_node - Find a node based on type and one of the 1012 * tokens in its "compatible" property 1013 * @from: The node to start searching from or NULL, the node 1014 * you pass will not be searched, only the next one 1015 * will; typically, you pass what the previous call 1016 * returned. of_node_put() will be called on it 1017 * @type: The type string to match "device_type" or NULL to ignore 1018 * @compatible: The string to match to one of the tokens in the device 1019 * "compatible" list. 1020 * 1021 * Return: A node pointer with refcount incremented, use 1022 * of_node_put() on it when done. 1023 */ 1024 struct device_node *of_find_compatible_node(struct device_node *from, 1025 const char *type, const char *compatible) 1026 { 1027 struct device_node *np; 1028 unsigned long flags; 1029 1030 raw_spin_lock_irqsave(&devtree_lock, flags); 1031 for_each_of_allnodes_from(from, np) 1032 if (__of_device_is_compatible(np, compatible, type, NULL) && 1033 of_node_get(np)) 1034 break; 1035 of_node_put(from); 1036 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1037 return np; 1038 } 1039 EXPORT_SYMBOL(of_find_compatible_node); 1040 1041 /** 1042 * of_find_node_with_property - Find a node which has a property with 1043 * the given name. 1044 * @from: The node to start searching from or NULL, the node 1045 * you pass will not be searched, only the next one 1046 * will; typically, you pass what the previous call 1047 * returned. of_node_put() will be called on it 1048 * @prop_name: The name of the property to look for. 1049 * 1050 * Return: A node pointer with refcount incremented, use 1051 * of_node_put() on it when done. 1052 */ 1053 struct device_node *of_find_node_with_property(struct device_node *from, 1054 const char *prop_name) 1055 { 1056 struct device_node *np; 1057 unsigned long flags; 1058 1059 raw_spin_lock_irqsave(&devtree_lock, flags); 1060 for_each_of_allnodes_from(from, np) { 1061 if (__of_find_property(np, prop_name, NULL)) { 1062 of_node_get(np); 1063 break; 1064 } 1065 } 1066 of_node_put(from); 1067 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1068 return np; 1069 } 1070 EXPORT_SYMBOL(of_find_node_with_property); 1071 1072 static 1073 const struct of_device_id *__of_match_node(const struct of_device_id *matches, 1074 const struct device_node *node) 1075 { 1076 const struct of_device_id *best_match = NULL; 1077 int score, best_score = 0; 1078 1079 if (!matches) 1080 return NULL; 1081 1082 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) { 1083 score = __of_device_is_compatible(node, matches->compatible, 1084 matches->type, matches->name); 1085 if (score > best_score) { 1086 best_match = matches; 1087 best_score = score; 1088 } 1089 } 1090 1091 return best_match; 1092 } 1093 1094 /** 1095 * of_match_node - Tell if a device_node has a matching of_match structure 1096 * @matches: array of of device match structures to search in 1097 * @node: the of device structure to match against 1098 * 1099 * Low level utility function used by device matching. 1100 */ 1101 const struct of_device_id *of_match_node(const struct of_device_id *matches, 1102 const struct device_node *node) 1103 { 1104 const struct of_device_id *match; 1105 unsigned long flags; 1106 1107 raw_spin_lock_irqsave(&devtree_lock, flags); 1108 match = __of_match_node(matches, node); 1109 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1110 return match; 1111 } 1112 EXPORT_SYMBOL(of_match_node); 1113 1114 /** 1115 * of_find_matching_node_and_match - Find a node based on an of_device_id 1116 * match table. 1117 * @from: The node to start searching from or NULL, the node 1118 * you pass will not be searched, only the next one 1119 * will; typically, you pass what the previous call 1120 * returned. of_node_put() will be called on it 1121 * @matches: array of of device match structures to search in 1122 * @match: Updated to point at the matches entry which matched 1123 * 1124 * Return: A node pointer with refcount incremented, use 1125 * of_node_put() on it when done. 1126 */ 1127 struct device_node *of_find_matching_node_and_match(struct device_node *from, 1128 const struct of_device_id *matches, 1129 const struct of_device_id **match) 1130 { 1131 struct device_node *np; 1132 const struct of_device_id *m; 1133 unsigned long flags; 1134 1135 if (match) 1136 *match = NULL; 1137 1138 raw_spin_lock_irqsave(&devtree_lock, flags); 1139 for_each_of_allnodes_from(from, np) { 1140 m = __of_match_node(matches, np); 1141 if (m && of_node_get(np)) { 1142 if (match) 1143 *match = m; 1144 break; 1145 } 1146 } 1147 of_node_put(from); 1148 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1149 return np; 1150 } 1151 EXPORT_SYMBOL(of_find_matching_node_and_match); 1152 1153 /** 1154 * of_alias_from_compatible - Lookup appropriate alias for a device node 1155 * depending on compatible 1156 * @node: pointer to a device tree node 1157 * @alias: Pointer to buffer that alias value will be copied into 1158 * @len: Length of alias value 1159 * 1160 * Based on the value of the compatible property, this routine will attempt 1161 * to choose an appropriate alias value for a particular device tree node. 1162 * It does this by stripping the manufacturer prefix (as delimited by a ',') 1163 * from the first entry in the compatible list property. 1164 * 1165 * Note: The matching on just the "product" side of the compatible is a relic 1166 * from I2C and SPI. Please do not add any new user. 1167 * 1168 * Return: This routine returns 0 on success, <0 on failure. 1169 */ 1170 int of_alias_from_compatible(const struct device_node *node, char *alias, int len) 1171 { 1172 const char *compatible, *p; 1173 int cplen; 1174 1175 compatible = of_get_property(node, "compatible", &cplen); 1176 if (!compatible || strlen(compatible) > cplen) 1177 return -ENODEV; 1178 p = strchr(compatible, ','); 1179 strscpy(alias, p ? p + 1 : compatible, len); 1180 return 0; 1181 } 1182 EXPORT_SYMBOL_GPL(of_alias_from_compatible); 1183 1184 /** 1185 * of_find_node_by_phandle - Find a node given a phandle 1186 * @handle: phandle of the node to find 1187 * 1188 * Return: A node pointer with refcount incremented, use 1189 * of_node_put() on it when done. 1190 */ 1191 struct device_node *of_find_node_by_phandle(phandle handle) 1192 { 1193 struct device_node *np = NULL; 1194 unsigned long flags; 1195 u32 handle_hash; 1196 1197 if (!handle) 1198 return NULL; 1199 1200 handle_hash = of_phandle_cache_hash(handle); 1201 1202 raw_spin_lock_irqsave(&devtree_lock, flags); 1203 1204 if (phandle_cache[handle_hash] && 1205 handle == phandle_cache[handle_hash]->phandle) 1206 np = phandle_cache[handle_hash]; 1207 1208 if (!np) { 1209 for_each_of_allnodes(np) 1210 if (np->phandle == handle && 1211 !of_node_check_flag(np, OF_DETACHED)) { 1212 phandle_cache[handle_hash] = np; 1213 break; 1214 } 1215 } 1216 1217 of_node_get(np); 1218 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1219 return np; 1220 } 1221 EXPORT_SYMBOL(of_find_node_by_phandle); 1222 1223 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args) 1224 { 1225 int i; 1226 printk("%s %pOF", msg, args->np); 1227 for (i = 0; i < args->args_count; i++) { 1228 const char delim = i ? ',' : ':'; 1229 1230 pr_cont("%c%08x", delim, args->args[i]); 1231 } 1232 pr_cont("\n"); 1233 } 1234 1235 int of_phandle_iterator_init(struct of_phandle_iterator *it, 1236 const struct device_node *np, 1237 const char *list_name, 1238 const char *cells_name, 1239 int cell_count) 1240 { 1241 const __be32 *list; 1242 int size; 1243 1244 memset(it, 0, sizeof(*it)); 1245 1246 /* 1247 * one of cell_count or cells_name must be provided to determine the 1248 * argument length. 1249 */ 1250 if (cell_count < 0 && !cells_name) 1251 return -EINVAL; 1252 1253 list = of_get_property(np, list_name, &size); 1254 if (!list) 1255 return -ENOENT; 1256 1257 it->cells_name = cells_name; 1258 it->cell_count = cell_count; 1259 it->parent = np; 1260 it->list_end = list + size / sizeof(*list); 1261 it->phandle_end = list; 1262 it->cur = list; 1263 1264 return 0; 1265 } 1266 EXPORT_SYMBOL_GPL(of_phandle_iterator_init); 1267 1268 int of_phandle_iterator_next(struct of_phandle_iterator *it) 1269 { 1270 uint32_t count = 0; 1271 1272 if (it->node) { 1273 of_node_put(it->node); 1274 it->node = NULL; 1275 } 1276 1277 if (!it->cur || it->phandle_end >= it->list_end) 1278 return -ENOENT; 1279 1280 it->cur = it->phandle_end; 1281 1282 /* If phandle is 0, then it is an empty entry with no arguments. */ 1283 it->phandle = be32_to_cpup(it->cur++); 1284 1285 if (it->phandle) { 1286 1287 /* 1288 * Find the provider node and parse the #*-cells property to 1289 * determine the argument length. 1290 */ 1291 it->node = of_find_node_by_phandle(it->phandle); 1292 1293 if (it->cells_name) { 1294 if (!it->node) { 1295 pr_err("%pOF: could not find phandle %d\n", 1296 it->parent, it->phandle); 1297 goto err; 1298 } 1299 1300 if (of_property_read_u32(it->node, it->cells_name, 1301 &count)) { 1302 /* 1303 * If both cell_count and cells_name is given, 1304 * fall back to cell_count in absence 1305 * of the cells_name property 1306 */ 1307 if (it->cell_count >= 0) { 1308 count = it->cell_count; 1309 } else { 1310 pr_err("%pOF: could not get %s for %pOF\n", 1311 it->parent, 1312 it->cells_name, 1313 it->node); 1314 goto err; 1315 } 1316 } 1317 } else { 1318 count = it->cell_count; 1319 } 1320 1321 /* 1322 * Make sure that the arguments actually fit in the remaining 1323 * property data length 1324 */ 1325 if (it->cur + count > it->list_end) { 1326 if (it->cells_name) 1327 pr_err("%pOF: %s = %d found %td\n", 1328 it->parent, it->cells_name, 1329 count, it->list_end - it->cur); 1330 else 1331 pr_err("%pOF: phandle %s needs %d, found %td\n", 1332 it->parent, of_node_full_name(it->node), 1333 count, it->list_end - it->cur); 1334 goto err; 1335 } 1336 } 1337 1338 it->phandle_end = it->cur + count; 1339 it->cur_count = count; 1340 1341 return 0; 1342 1343 err: 1344 if (it->node) { 1345 of_node_put(it->node); 1346 it->node = NULL; 1347 } 1348 1349 return -EINVAL; 1350 } 1351 EXPORT_SYMBOL_GPL(of_phandle_iterator_next); 1352 1353 int of_phandle_iterator_args(struct of_phandle_iterator *it, 1354 uint32_t *args, 1355 int size) 1356 { 1357 int i, count; 1358 1359 count = it->cur_count; 1360 1361 if (WARN_ON(size < count)) 1362 count = size; 1363 1364 for (i = 0; i < count; i++) 1365 args[i] = be32_to_cpup(it->cur++); 1366 1367 return count; 1368 } 1369 1370 int __of_parse_phandle_with_args(const struct device_node *np, 1371 const char *list_name, 1372 const char *cells_name, 1373 int cell_count, int index, 1374 struct of_phandle_args *out_args) 1375 { 1376 struct of_phandle_iterator it; 1377 int rc, cur_index = 0; 1378 1379 if (index < 0) 1380 return -EINVAL; 1381 1382 /* Loop over the phandles until all the requested entry is found */ 1383 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) { 1384 /* 1385 * All of the error cases bail out of the loop, so at 1386 * this point, the parsing is successful. If the requested 1387 * index matches, then fill the out_args structure and return, 1388 * or return -ENOENT for an empty entry. 1389 */ 1390 rc = -ENOENT; 1391 if (cur_index == index) { 1392 if (!it.phandle) 1393 goto err; 1394 1395 if (out_args) { 1396 int c; 1397 1398 c = of_phandle_iterator_args(&it, 1399 out_args->args, 1400 MAX_PHANDLE_ARGS); 1401 out_args->np = it.node; 1402 out_args->args_count = c; 1403 } else { 1404 of_node_put(it.node); 1405 } 1406 1407 /* Found it! return success */ 1408 return 0; 1409 } 1410 1411 cur_index++; 1412 } 1413 1414 /* 1415 * Unlock node before returning result; will be one of: 1416 * -ENOENT : index is for empty phandle 1417 * -EINVAL : parsing error on data 1418 */ 1419 1420 err: 1421 of_node_put(it.node); 1422 return rc; 1423 } 1424 EXPORT_SYMBOL(__of_parse_phandle_with_args); 1425 1426 /** 1427 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it 1428 * @np: pointer to a device tree node containing a list 1429 * @list_name: property name that contains a list 1430 * @stem_name: stem of property names that specify phandles' arguments count 1431 * @index: index of a phandle to parse out 1432 * @out_args: optional pointer to output arguments structure (will be filled) 1433 * 1434 * This function is useful to parse lists of phandles and their arguments. 1435 * Returns 0 on success and fills out_args, on error returns appropriate errno 1436 * value. The difference between this function and of_parse_phandle_with_args() 1437 * is that this API remaps a phandle if the node the phandle points to has 1438 * a <@stem_name>-map property. 1439 * 1440 * Caller is responsible to call of_node_put() on the returned out_args->np 1441 * pointer. 1442 * 1443 * Example:: 1444 * 1445 * phandle1: node1 { 1446 * #list-cells = <2>; 1447 * }; 1448 * 1449 * phandle2: node2 { 1450 * #list-cells = <1>; 1451 * }; 1452 * 1453 * phandle3: node3 { 1454 * #list-cells = <1>; 1455 * list-map = <0 &phandle2 3>, 1456 * <1 &phandle2 2>, 1457 * <2 &phandle1 5 1>; 1458 * list-map-mask = <0x3>; 1459 * }; 1460 * 1461 * node4 { 1462 * list = <&phandle1 1 2 &phandle3 0>; 1463 * }; 1464 * 1465 * To get a device_node of the ``node2`` node you may call this: 1466 * of_parse_phandle_with_args(node4, "list", "list", 1, &args); 1467 */ 1468 int of_parse_phandle_with_args_map(const struct device_node *np, 1469 const char *list_name, 1470 const char *stem_name, 1471 int index, struct of_phandle_args *out_args) 1472 { 1473 char *cells_name __free(kfree) = kasprintf(GFP_KERNEL, "#%s-cells", stem_name); 1474 char *map_name __free(kfree) = kasprintf(GFP_KERNEL, "%s-map", stem_name); 1475 char *mask_name __free(kfree) = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name); 1476 char *pass_name __free(kfree) = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name); 1477 struct device_node *cur, *new = NULL; 1478 const __be32 *map, *mask, *pass; 1479 static const __be32 dummy_mask[] = { [0 ... (MAX_PHANDLE_ARGS - 1)] = cpu_to_be32(~0) }; 1480 static const __be32 dummy_pass[] = { [0 ... (MAX_PHANDLE_ARGS - 1)] = cpu_to_be32(0) }; 1481 __be32 initial_match_array[MAX_PHANDLE_ARGS]; 1482 const __be32 *match_array = initial_match_array; 1483 int i, ret, map_len, match; 1484 u32 list_size, new_size; 1485 1486 if (index < 0) 1487 return -EINVAL; 1488 1489 if (!cells_name || !map_name || !mask_name || !pass_name) 1490 return -ENOMEM; 1491 1492 ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index, 1493 out_args); 1494 if (ret) 1495 return ret; 1496 1497 /* Get the #<list>-cells property */ 1498 cur = out_args->np; 1499 ret = of_property_read_u32(cur, cells_name, &list_size); 1500 if (ret < 0) 1501 goto put; 1502 1503 /* Precalculate the match array - this simplifies match loop */ 1504 for (i = 0; i < list_size; i++) 1505 initial_match_array[i] = cpu_to_be32(out_args->args[i]); 1506 1507 ret = -EINVAL; 1508 while (cur) { 1509 /* Get the <list>-map property */ 1510 map = of_get_property(cur, map_name, &map_len); 1511 if (!map) { 1512 return 0; 1513 } 1514 map_len /= sizeof(u32); 1515 1516 /* Get the <list>-map-mask property (optional) */ 1517 mask = of_get_property(cur, mask_name, NULL); 1518 if (!mask) 1519 mask = dummy_mask; 1520 /* Iterate through <list>-map property */ 1521 match = 0; 1522 while (map_len > (list_size + 1) && !match) { 1523 /* Compare specifiers */ 1524 match = 1; 1525 for (i = 0; i < list_size; i++, map_len--) 1526 match &= !((match_array[i] ^ *map++) & mask[i]); 1527 1528 of_node_put(new); 1529 new = of_find_node_by_phandle(be32_to_cpup(map)); 1530 map++; 1531 map_len--; 1532 1533 /* Check if not found */ 1534 if (!new) { 1535 ret = -EINVAL; 1536 goto put; 1537 } 1538 1539 if (!of_device_is_available(new)) 1540 match = 0; 1541 1542 ret = of_property_read_u32(new, cells_name, &new_size); 1543 if (ret) 1544 goto put; 1545 1546 /* Check for malformed properties */ 1547 if (WARN_ON(new_size > MAX_PHANDLE_ARGS) || 1548 map_len < new_size) { 1549 ret = -EINVAL; 1550 goto put; 1551 } 1552 1553 /* Move forward by new node's #<list>-cells amount */ 1554 map += new_size; 1555 map_len -= new_size; 1556 } 1557 if (!match) { 1558 ret = -ENOENT; 1559 goto put; 1560 } 1561 1562 /* Get the <list>-map-pass-thru property (optional) */ 1563 pass = of_get_property(cur, pass_name, NULL); 1564 if (!pass) 1565 pass = dummy_pass; 1566 1567 /* 1568 * Successfully parsed a <list>-map translation; copy new 1569 * specifier into the out_args structure, keeping the 1570 * bits specified in <list>-map-pass-thru. 1571 */ 1572 for (i = 0; i < new_size; i++) { 1573 __be32 val = *(map - new_size + i); 1574 1575 if (i < list_size) { 1576 val &= ~pass[i]; 1577 val |= cpu_to_be32(out_args->args[i]) & pass[i]; 1578 } 1579 1580 initial_match_array[i] = val; 1581 out_args->args[i] = be32_to_cpu(val); 1582 } 1583 out_args->args_count = list_size = new_size; 1584 /* Iterate again with new provider */ 1585 out_args->np = new; 1586 of_node_put(cur); 1587 cur = new; 1588 new = NULL; 1589 } 1590 put: 1591 of_node_put(cur); 1592 of_node_put(new); 1593 return ret; 1594 } 1595 EXPORT_SYMBOL(of_parse_phandle_with_args_map); 1596 1597 /** 1598 * of_count_phandle_with_args() - Find the number of phandles references in a property 1599 * @np: pointer to a device tree node containing a list 1600 * @list_name: property name that contains a list 1601 * @cells_name: property name that specifies phandles' arguments count 1602 * 1603 * Return: The number of phandle + argument tuples within a property. It 1604 * is a typical pattern to encode a list of phandle and variable 1605 * arguments into a single property. The number of arguments is encoded 1606 * by a property in the phandle-target node. For example, a gpios 1607 * property would contain a list of GPIO specifies consisting of a 1608 * phandle and 1 or more arguments. The number of arguments are 1609 * determined by the #gpio-cells property in the node pointed to by the 1610 * phandle. 1611 */ 1612 int of_count_phandle_with_args(const struct device_node *np, const char *list_name, 1613 const char *cells_name) 1614 { 1615 struct of_phandle_iterator it; 1616 int rc, cur_index = 0; 1617 1618 /* 1619 * If cells_name is NULL we assume a cell count of 0. This makes 1620 * counting the phandles trivial as each 32bit word in the list is a 1621 * phandle and no arguments are to consider. So we don't iterate through 1622 * the list but just use the length to determine the phandle count. 1623 */ 1624 if (!cells_name) { 1625 const __be32 *list; 1626 int size; 1627 1628 list = of_get_property(np, list_name, &size); 1629 if (!list) 1630 return -ENOENT; 1631 1632 return size / sizeof(*list); 1633 } 1634 1635 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1); 1636 if (rc) 1637 return rc; 1638 1639 while ((rc = of_phandle_iterator_next(&it)) == 0) 1640 cur_index += 1; 1641 1642 if (rc != -ENOENT) 1643 return rc; 1644 1645 return cur_index; 1646 } 1647 EXPORT_SYMBOL(of_count_phandle_with_args); 1648 1649 static struct property *__of_remove_property_from_list(struct property **list, struct property *prop) 1650 { 1651 struct property **next; 1652 1653 for (next = list; *next; next = &(*next)->next) { 1654 if (*next == prop) { 1655 *next = prop->next; 1656 prop->next = NULL; 1657 return prop; 1658 } 1659 } 1660 return NULL; 1661 } 1662 1663 /** 1664 * __of_add_property - Add a property to a node without lock operations 1665 * @np: Caller's Device Node 1666 * @prop: Property to add 1667 */ 1668 int __of_add_property(struct device_node *np, struct property *prop) 1669 { 1670 int rc = 0; 1671 unsigned long flags; 1672 struct property **next; 1673 1674 raw_spin_lock_irqsave(&devtree_lock, flags); 1675 1676 __of_remove_property_from_list(&np->deadprops, prop); 1677 1678 prop->next = NULL; 1679 next = &np->properties; 1680 while (*next) { 1681 if (of_prop_cmp(prop->name, (*next)->name) == 0) { 1682 /* duplicate ! don't insert it */ 1683 rc = -EEXIST; 1684 goto out_unlock; 1685 } 1686 next = &(*next)->next; 1687 } 1688 *next = prop; 1689 1690 out_unlock: 1691 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1692 if (rc) 1693 return rc; 1694 1695 __of_add_property_sysfs(np, prop); 1696 return 0; 1697 } 1698 1699 /** 1700 * of_add_property - Add a property to a node 1701 * @np: Caller's Device Node 1702 * @prop: Property to add 1703 */ 1704 int of_add_property(struct device_node *np, struct property *prop) 1705 { 1706 int rc; 1707 1708 mutex_lock(&of_mutex); 1709 rc = __of_add_property(np, prop); 1710 mutex_unlock(&of_mutex); 1711 1712 if (!rc) 1713 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL); 1714 1715 return rc; 1716 } 1717 EXPORT_SYMBOL_GPL(of_add_property); 1718 1719 int __of_remove_property(struct device_node *np, struct property *prop) 1720 { 1721 unsigned long flags; 1722 int rc = -ENODEV; 1723 1724 raw_spin_lock_irqsave(&devtree_lock, flags); 1725 1726 if (__of_remove_property_from_list(&np->properties, prop)) { 1727 /* Found the property, add it to deadprops list */ 1728 prop->next = np->deadprops; 1729 np->deadprops = prop; 1730 rc = 0; 1731 } 1732 1733 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1734 if (rc) 1735 return rc; 1736 1737 __of_remove_property_sysfs(np, prop); 1738 return 0; 1739 } 1740 1741 /** 1742 * of_remove_property - Remove a property from a node. 1743 * @np: Caller's Device Node 1744 * @prop: Property to remove 1745 * 1746 * Note that we don't actually remove it, since we have given out 1747 * who-knows-how-many pointers to the data using get-property. 1748 * Instead we just move the property to the "dead properties" 1749 * list, so it won't be found any more. 1750 */ 1751 int of_remove_property(struct device_node *np, struct property *prop) 1752 { 1753 int rc; 1754 1755 if (!prop) 1756 return -ENODEV; 1757 1758 mutex_lock(&of_mutex); 1759 rc = __of_remove_property(np, prop); 1760 mutex_unlock(&of_mutex); 1761 1762 if (!rc) 1763 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL); 1764 1765 return rc; 1766 } 1767 EXPORT_SYMBOL_GPL(of_remove_property); 1768 1769 int __of_update_property(struct device_node *np, struct property *newprop, 1770 struct property **oldpropp) 1771 { 1772 struct property **next, *oldprop; 1773 unsigned long flags; 1774 1775 raw_spin_lock_irqsave(&devtree_lock, flags); 1776 1777 __of_remove_property_from_list(&np->deadprops, newprop); 1778 1779 for (next = &np->properties; *next; next = &(*next)->next) { 1780 if (of_prop_cmp((*next)->name, newprop->name) == 0) 1781 break; 1782 } 1783 *oldpropp = oldprop = *next; 1784 1785 if (oldprop) { 1786 /* replace the node */ 1787 newprop->next = oldprop->next; 1788 *next = newprop; 1789 oldprop->next = np->deadprops; 1790 np->deadprops = oldprop; 1791 } else { 1792 /* new node */ 1793 newprop->next = NULL; 1794 *next = newprop; 1795 } 1796 1797 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1798 1799 __of_update_property_sysfs(np, newprop, oldprop); 1800 1801 return 0; 1802 } 1803 1804 /* 1805 * of_update_property - Update a property in a node, if the property does 1806 * not exist, add it. 1807 * 1808 * Note that we don't actually remove it, since we have given out 1809 * who-knows-how-many pointers to the data using get-property. 1810 * Instead we just move the property to the "dead properties" list, 1811 * and add the new property to the property list 1812 */ 1813 int of_update_property(struct device_node *np, struct property *newprop) 1814 { 1815 struct property *oldprop; 1816 int rc; 1817 1818 if (!newprop->name) 1819 return -EINVAL; 1820 1821 mutex_lock(&of_mutex); 1822 rc = __of_update_property(np, newprop, &oldprop); 1823 mutex_unlock(&of_mutex); 1824 1825 if (!rc) 1826 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop); 1827 1828 return rc; 1829 } 1830 1831 static void of_alias_add(struct alias_prop *ap, struct device_node *np, 1832 int id, const char *stem, int stem_len) 1833 { 1834 ap->np = np; 1835 ap->id = id; 1836 strscpy(ap->stem, stem, stem_len + 1); 1837 list_add_tail(&ap->link, &aliases_lookup); 1838 pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n", 1839 ap->alias, ap->stem, ap->id, np); 1840 } 1841 1842 /** 1843 * of_alias_scan - Scan all properties of the 'aliases' node 1844 * @dt_alloc: An allocator that provides a virtual address to memory 1845 * for storing the resulting tree 1846 * 1847 * The function scans all the properties of the 'aliases' node and populates 1848 * the global lookup table with the properties. 1849 */ 1850 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align)) 1851 { 1852 const struct property *pp; 1853 1854 of_aliases = of_find_node_by_path("/aliases"); 1855 of_chosen = of_find_node_by_path("/chosen"); 1856 if (of_chosen == NULL) 1857 of_chosen = of_find_node_by_path("/chosen@0"); 1858 1859 if (of_chosen) { 1860 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */ 1861 const char *name = NULL; 1862 1863 if (of_property_read_string(of_chosen, "stdout-path", &name)) 1864 of_property_read_string(of_chosen, "linux,stdout-path", 1865 &name); 1866 if (IS_ENABLED(CONFIG_PPC) && !name) 1867 of_property_read_string(of_aliases, "stdout", &name); 1868 if (name) 1869 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options); 1870 if (of_stdout) 1871 of_stdout->fwnode.flags |= FWNODE_FLAG_BEST_EFFORT; 1872 } 1873 1874 if (!of_aliases) 1875 return; 1876 1877 for_each_property_of_node(of_aliases, pp) { 1878 const char *start = pp->name; 1879 const char *end = start + strlen(start); 1880 struct device_node *np; 1881 struct alias_prop *ap; 1882 int id, len; 1883 1884 /* Skip those we do not want to proceed */ 1885 if (is_pseudo_property(pp->name)) 1886 continue; 1887 1888 np = of_find_node_by_path(pp->value); 1889 if (!np) 1890 continue; 1891 1892 /* walk the alias backwards to extract the id and work out 1893 * the 'stem' string */ 1894 while (isdigit(*(end-1)) && end > start) 1895 end--; 1896 len = end - start; 1897 1898 if (kstrtoint(end, 10, &id) < 0) 1899 continue; 1900 1901 /* Allocate an alias_prop with enough space for the stem */ 1902 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap)); 1903 if (!ap) 1904 continue; 1905 memset(ap, 0, sizeof(*ap) + len + 1); 1906 ap->alias = start; 1907 of_alias_add(ap, np, id, start, len); 1908 } 1909 } 1910 1911 /** 1912 * of_alias_get_id - Get alias id for the given device_node 1913 * @np: Pointer to the given device_node 1914 * @stem: Alias stem of the given device_node 1915 * 1916 * The function travels the lookup table to get the alias id for the given 1917 * device_node and alias stem. 1918 * 1919 * Return: The alias id if found. 1920 */ 1921 int of_alias_get_id(const struct device_node *np, const char *stem) 1922 { 1923 struct alias_prop *app; 1924 int id = -ENODEV; 1925 1926 mutex_lock(&of_mutex); 1927 list_for_each_entry(app, &aliases_lookup, link) { 1928 if (strcmp(app->stem, stem) != 0) 1929 continue; 1930 1931 if (np == app->np) { 1932 id = app->id; 1933 break; 1934 } 1935 } 1936 mutex_unlock(&of_mutex); 1937 1938 return id; 1939 } 1940 EXPORT_SYMBOL_GPL(of_alias_get_id); 1941 1942 /** 1943 * of_alias_get_highest_id - Get highest alias id for the given stem 1944 * @stem: Alias stem to be examined 1945 * 1946 * The function travels the lookup table to get the highest alias id for the 1947 * given alias stem. It returns the alias id if found. 1948 */ 1949 int of_alias_get_highest_id(const char *stem) 1950 { 1951 struct alias_prop *app; 1952 int id = -ENODEV; 1953 1954 mutex_lock(&of_mutex); 1955 list_for_each_entry(app, &aliases_lookup, link) { 1956 if (strcmp(app->stem, stem) != 0) 1957 continue; 1958 1959 if (app->id > id) 1960 id = app->id; 1961 } 1962 mutex_unlock(&of_mutex); 1963 1964 return id; 1965 } 1966 EXPORT_SYMBOL_GPL(of_alias_get_highest_id); 1967 1968 /** 1969 * of_console_check() - Test and setup console for DT setup 1970 * @dn: Pointer to device node 1971 * @name: Name to use for preferred console without index. ex. "ttyS" 1972 * @index: Index to use for preferred console. 1973 * 1974 * Check if the given device node matches the stdout-path property in the 1975 * /chosen node. If it does then register it as the preferred console. 1976 * 1977 * Return: TRUE if console successfully setup. Otherwise return FALSE. 1978 */ 1979 bool of_console_check(const struct device_node *dn, char *name, int index) 1980 { 1981 if (!dn || dn != of_stdout || console_set_on_cmdline) 1982 return false; 1983 1984 /* 1985 * XXX: cast `options' to char pointer to suppress complication 1986 * warnings: printk, UART and console drivers expect char pointer. 1987 */ 1988 return !add_preferred_console(name, index, (char *)of_stdout_options); 1989 } 1990 EXPORT_SYMBOL_GPL(of_console_check); 1991 1992 /** 1993 * of_find_next_cache_node - Find a node's subsidiary cache 1994 * @np: node of type "cpu" or "cache" 1995 * 1996 * Return: A node pointer with refcount incremented, use 1997 * of_node_put() on it when done. Caller should hold a reference 1998 * to np. 1999 */ 2000 struct device_node *of_find_next_cache_node(const struct device_node *np) 2001 { 2002 struct device_node *child, *cache_node; 2003 2004 cache_node = of_parse_phandle(np, "l2-cache", 0); 2005 if (!cache_node) 2006 cache_node = of_parse_phandle(np, "next-level-cache", 0); 2007 2008 if (cache_node) 2009 return cache_node; 2010 2011 /* OF on pmac has nodes instead of properties named "l2-cache" 2012 * beneath CPU nodes. 2013 */ 2014 if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu")) 2015 for_each_child_of_node(np, child) 2016 if (of_node_is_type(child, "cache")) 2017 return child; 2018 2019 return NULL; 2020 } 2021 2022 /** 2023 * of_find_last_cache_level - Find the level at which the last cache is 2024 * present for the given logical cpu 2025 * 2026 * @cpu: cpu number(logical index) for which the last cache level is needed 2027 * 2028 * Return: The level at which the last cache is present. It is exactly 2029 * same as the total number of cache levels for the given logical cpu. 2030 */ 2031 int of_find_last_cache_level(unsigned int cpu) 2032 { 2033 u32 cache_level = 0; 2034 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu); 2035 2036 while (np) { 2037 of_node_put(prev); 2038 prev = np; 2039 np = of_find_next_cache_node(np); 2040 } 2041 2042 of_property_read_u32(prev, "cache-level", &cache_level); 2043 of_node_put(prev); 2044 2045 return cache_level; 2046 } 2047 2048 /** 2049 * of_map_id - Translate an ID through a downstream mapping. 2050 * @np: root complex device node. 2051 * @id: device ID to map. 2052 * @map_name: property name of the map to use. 2053 * @map_mask_name: optional property name of the mask to use. 2054 * @target: optional pointer to a target device node. 2055 * @id_out: optional pointer to receive the translated ID. 2056 * 2057 * Given a device ID, look up the appropriate implementation-defined 2058 * platform ID and/or the target device which receives transactions on that 2059 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or 2060 * @id_out may be NULL if only the other is required. If @target points to 2061 * a non-NULL device node pointer, only entries targeting that node will be 2062 * matched; if it points to a NULL value, it will receive the device node of 2063 * the first matching target phandle, with a reference held. 2064 * 2065 * Return: 0 on success or a standard error code on failure. 2066 */ 2067 int of_map_id(const struct device_node *np, u32 id, 2068 const char *map_name, const char *map_mask_name, 2069 struct device_node **target, u32 *id_out) 2070 { 2071 u32 map_mask, masked_id; 2072 int map_len; 2073 const __be32 *map = NULL; 2074 2075 if (!np || !map_name || (!target && !id_out)) 2076 return -EINVAL; 2077 2078 map = of_get_property(np, map_name, &map_len); 2079 if (!map) { 2080 if (target) 2081 return -ENODEV; 2082 /* Otherwise, no map implies no translation */ 2083 *id_out = id; 2084 return 0; 2085 } 2086 2087 if (!map_len || map_len % (4 * sizeof(*map))) { 2088 pr_err("%pOF: Error: Bad %s length: %d\n", np, 2089 map_name, map_len); 2090 return -EINVAL; 2091 } 2092 2093 /* The default is to select all bits. */ 2094 map_mask = 0xffffffff; 2095 2096 /* 2097 * Can be overridden by "{iommu,msi}-map-mask" property. 2098 * If of_property_read_u32() fails, the default is used. 2099 */ 2100 if (map_mask_name) 2101 of_property_read_u32(np, map_mask_name, &map_mask); 2102 2103 masked_id = map_mask & id; 2104 for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) { 2105 struct device_node *phandle_node; 2106 u32 id_base = be32_to_cpup(map + 0); 2107 u32 phandle = be32_to_cpup(map + 1); 2108 u32 out_base = be32_to_cpup(map + 2); 2109 u32 id_len = be32_to_cpup(map + 3); 2110 2111 if (id_base & ~map_mask) { 2112 pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n", 2113 np, map_name, map_name, 2114 map_mask, id_base); 2115 return -EFAULT; 2116 } 2117 2118 if (masked_id < id_base || masked_id >= id_base + id_len) 2119 continue; 2120 2121 phandle_node = of_find_node_by_phandle(phandle); 2122 if (!phandle_node) 2123 return -ENODEV; 2124 2125 if (target) { 2126 if (*target) 2127 of_node_put(phandle_node); 2128 else 2129 *target = phandle_node; 2130 2131 if (*target != phandle_node) 2132 continue; 2133 } 2134 2135 if (id_out) 2136 *id_out = masked_id - id_base + out_base; 2137 2138 pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n", 2139 np, map_name, map_mask, id_base, out_base, 2140 id_len, id, masked_id - id_base + out_base); 2141 return 0; 2142 } 2143 2144 pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name, 2145 id, target && *target ? *target : NULL); 2146 2147 /* Bypasses translation */ 2148 if (id_out) 2149 *id_out = id; 2150 return 0; 2151 } 2152 EXPORT_SYMBOL_GPL(of_map_id); 2153