1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Procedures for creating, accessing and interpreting the device tree. 4 * 5 * Paul Mackerras August 1996. 6 * Copyright (C) 1996-2005 Paul Mackerras. 7 * 8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 9 * {engebret|bergner}@us.ibm.com 10 * 11 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 12 * 13 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 14 * Grant Likely. 15 */ 16 17 #define pr_fmt(fmt) "OF: " fmt 18 19 #include <linux/console.h> 20 #include <linux/ctype.h> 21 #include <linux/cpu.h> 22 #include <linux/module.h> 23 #include <linux/of.h> 24 #include <linux/of_device.h> 25 #include <linux/of_graph.h> 26 #include <linux/spinlock.h> 27 #include <linux/slab.h> 28 #include <linux/string.h> 29 #include <linux/proc_fs.h> 30 31 #include "of_private.h" 32 33 LIST_HEAD(aliases_lookup); 34 35 struct device_node *of_root; 36 EXPORT_SYMBOL(of_root); 37 struct device_node *of_chosen; 38 EXPORT_SYMBOL(of_chosen); 39 struct device_node *of_aliases; 40 struct device_node *of_stdout; 41 static const char *of_stdout_options; 42 43 struct kset *of_kset; 44 45 /* 46 * Used to protect the of_aliases, to hold off addition of nodes to sysfs. 47 * This mutex must be held whenever modifications are being made to the 48 * device tree. The of_{attach,detach}_node() and 49 * of_{add,remove,update}_property() helpers make sure this happens. 50 */ 51 DEFINE_MUTEX(of_mutex); 52 53 /* use when traversing tree through the child, sibling, 54 * or parent members of struct device_node. 55 */ 56 DEFINE_RAW_SPINLOCK(devtree_lock); 57 58 bool of_node_name_eq(const struct device_node *np, const char *name) 59 { 60 const char *node_name; 61 size_t len; 62 63 if (!np) 64 return false; 65 66 node_name = kbasename(np->full_name); 67 len = strchrnul(node_name, '@') - node_name; 68 69 return (strlen(name) == len) && (strncmp(node_name, name, len) == 0); 70 } 71 EXPORT_SYMBOL(of_node_name_eq); 72 73 bool of_node_name_prefix(const struct device_node *np, const char *prefix) 74 { 75 if (!np) 76 return false; 77 78 return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0; 79 } 80 EXPORT_SYMBOL(of_node_name_prefix); 81 82 static bool __of_node_is_type(const struct device_node *np, const char *type) 83 { 84 const char *match = __of_get_property(np, "device_type", NULL); 85 86 return np && match && type && !strcmp(match, type); 87 } 88 89 int of_bus_n_addr_cells(struct device_node *np) 90 { 91 u32 cells; 92 93 for (; np; np = np->parent) 94 if (!of_property_read_u32(np, "#address-cells", &cells)) 95 return cells; 96 97 /* No #address-cells property for the root node */ 98 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 99 } 100 101 int of_n_addr_cells(struct device_node *np) 102 { 103 if (np->parent) 104 np = np->parent; 105 106 return of_bus_n_addr_cells(np); 107 } 108 EXPORT_SYMBOL(of_n_addr_cells); 109 110 int of_bus_n_size_cells(struct device_node *np) 111 { 112 u32 cells; 113 114 for (; np; np = np->parent) 115 if (!of_property_read_u32(np, "#size-cells", &cells)) 116 return cells; 117 118 /* No #size-cells property for the root node */ 119 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 120 } 121 122 int of_n_size_cells(struct device_node *np) 123 { 124 if (np->parent) 125 np = np->parent; 126 127 return of_bus_n_size_cells(np); 128 } 129 EXPORT_SYMBOL(of_n_size_cells); 130 131 #ifdef CONFIG_NUMA 132 int __weak of_node_to_nid(struct device_node *np) 133 { 134 return NUMA_NO_NODE; 135 } 136 #endif 137 138 #define OF_PHANDLE_CACHE_BITS 7 139 #define OF_PHANDLE_CACHE_SZ BIT(OF_PHANDLE_CACHE_BITS) 140 141 static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ]; 142 143 static u32 of_phandle_cache_hash(phandle handle) 144 { 145 return hash_32(handle, OF_PHANDLE_CACHE_BITS); 146 } 147 148 /* 149 * Caller must hold devtree_lock. 150 */ 151 void __of_phandle_cache_inv_entry(phandle handle) 152 { 153 u32 handle_hash; 154 struct device_node *np; 155 156 if (!handle) 157 return; 158 159 handle_hash = of_phandle_cache_hash(handle); 160 161 np = phandle_cache[handle_hash]; 162 if (np && handle == np->phandle) 163 phandle_cache[handle_hash] = NULL; 164 } 165 166 void __init of_core_init(void) 167 { 168 struct device_node *np; 169 170 of_platform_register_reconfig_notifier(); 171 172 /* Create the kset, and register existing nodes */ 173 mutex_lock(&of_mutex); 174 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj); 175 if (!of_kset) { 176 mutex_unlock(&of_mutex); 177 pr_err("failed to register existing nodes\n"); 178 return; 179 } 180 for_each_of_allnodes(np) { 181 __of_attach_node_sysfs(np); 182 if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)]) 183 phandle_cache[of_phandle_cache_hash(np->phandle)] = np; 184 } 185 mutex_unlock(&of_mutex); 186 187 /* Symlink in /proc as required by userspace ABI */ 188 if (of_root) 189 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base"); 190 } 191 192 static struct property *__of_find_property(const struct device_node *np, 193 const char *name, int *lenp) 194 { 195 struct property *pp; 196 197 if (!np) 198 return NULL; 199 200 for (pp = np->properties; pp; pp = pp->next) { 201 if (of_prop_cmp(pp->name, name) == 0) { 202 if (lenp) 203 *lenp = pp->length; 204 break; 205 } 206 } 207 208 return pp; 209 } 210 211 struct property *of_find_property(const struct device_node *np, 212 const char *name, 213 int *lenp) 214 { 215 struct property *pp; 216 unsigned long flags; 217 218 raw_spin_lock_irqsave(&devtree_lock, flags); 219 pp = __of_find_property(np, name, lenp); 220 raw_spin_unlock_irqrestore(&devtree_lock, flags); 221 222 return pp; 223 } 224 EXPORT_SYMBOL(of_find_property); 225 226 struct device_node *__of_find_all_nodes(struct device_node *prev) 227 { 228 struct device_node *np; 229 if (!prev) { 230 np = of_root; 231 } else if (prev->child) { 232 np = prev->child; 233 } else { 234 /* Walk back up looking for a sibling, or the end of the structure */ 235 np = prev; 236 while (np->parent && !np->sibling) 237 np = np->parent; 238 np = np->sibling; /* Might be null at the end of the tree */ 239 } 240 return np; 241 } 242 243 /** 244 * of_find_all_nodes - Get next node in global list 245 * @prev: Previous node or NULL to start iteration 246 * of_node_put() will be called on it 247 * 248 * Return: A node pointer with refcount incremented, use 249 * of_node_put() on it when done. 250 */ 251 struct device_node *of_find_all_nodes(struct device_node *prev) 252 { 253 struct device_node *np; 254 unsigned long flags; 255 256 raw_spin_lock_irqsave(&devtree_lock, flags); 257 np = __of_find_all_nodes(prev); 258 of_node_get(np); 259 of_node_put(prev); 260 raw_spin_unlock_irqrestore(&devtree_lock, flags); 261 return np; 262 } 263 EXPORT_SYMBOL(of_find_all_nodes); 264 265 /* 266 * Find a property with a given name for a given node 267 * and return the value. 268 */ 269 const void *__of_get_property(const struct device_node *np, 270 const char *name, int *lenp) 271 { 272 struct property *pp = __of_find_property(np, name, lenp); 273 274 return pp ? pp->value : NULL; 275 } 276 277 /* 278 * Find a property with a given name for a given node 279 * and return the value. 280 */ 281 const void *of_get_property(const struct device_node *np, const char *name, 282 int *lenp) 283 { 284 struct property *pp = of_find_property(np, name, lenp); 285 286 return pp ? pp->value : NULL; 287 } 288 EXPORT_SYMBOL(of_get_property); 289 290 /** 291 * __of_device_is_compatible() - Check if the node matches given constraints 292 * @device: pointer to node 293 * @compat: required compatible string, NULL or "" for any match 294 * @type: required device_type value, NULL or "" for any match 295 * @name: required node name, NULL or "" for any match 296 * 297 * Checks if the given @compat, @type and @name strings match the 298 * properties of the given @device. A constraints can be skipped by 299 * passing NULL or an empty string as the constraint. 300 * 301 * Returns 0 for no match, and a positive integer on match. The return 302 * value is a relative score with larger values indicating better 303 * matches. The score is weighted for the most specific compatible value 304 * to get the highest score. Matching type is next, followed by matching 305 * name. Practically speaking, this results in the following priority 306 * order for matches: 307 * 308 * 1. specific compatible && type && name 309 * 2. specific compatible && type 310 * 3. specific compatible && name 311 * 4. specific compatible 312 * 5. general compatible && type && name 313 * 6. general compatible && type 314 * 7. general compatible && name 315 * 8. general compatible 316 * 9. type && name 317 * 10. type 318 * 11. name 319 */ 320 static int __of_device_is_compatible(const struct device_node *device, 321 const char *compat, const char *type, const char *name) 322 { 323 struct property *prop; 324 const char *cp; 325 int index = 0, score = 0; 326 327 /* Compatible match has highest priority */ 328 if (compat && compat[0]) { 329 prop = __of_find_property(device, "compatible", NULL); 330 for (cp = of_prop_next_string(prop, NULL); cp; 331 cp = of_prop_next_string(prop, cp), index++) { 332 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) { 333 score = INT_MAX/2 - (index << 2); 334 break; 335 } 336 } 337 if (!score) 338 return 0; 339 } 340 341 /* Matching type is better than matching name */ 342 if (type && type[0]) { 343 if (!__of_node_is_type(device, type)) 344 return 0; 345 score += 2; 346 } 347 348 /* Matching name is a bit better than not */ 349 if (name && name[0]) { 350 if (!of_node_name_eq(device, name)) 351 return 0; 352 score++; 353 } 354 355 return score; 356 } 357 358 /** Checks if the given "compat" string matches one of the strings in 359 * the device's "compatible" property 360 */ 361 int of_device_is_compatible(const struct device_node *device, 362 const char *compat) 363 { 364 unsigned long flags; 365 int res; 366 367 raw_spin_lock_irqsave(&devtree_lock, flags); 368 res = __of_device_is_compatible(device, compat, NULL, NULL); 369 raw_spin_unlock_irqrestore(&devtree_lock, flags); 370 return res; 371 } 372 EXPORT_SYMBOL(of_device_is_compatible); 373 374 /** Checks if the device is compatible with any of the entries in 375 * a NULL terminated array of strings. Returns the best match 376 * score or 0. 377 */ 378 int of_device_compatible_match(const struct device_node *device, 379 const char *const *compat) 380 { 381 unsigned int tmp, score = 0; 382 383 if (!compat) 384 return 0; 385 386 while (*compat) { 387 tmp = of_device_is_compatible(device, *compat); 388 if (tmp > score) 389 score = tmp; 390 compat++; 391 } 392 393 return score; 394 } 395 EXPORT_SYMBOL_GPL(of_device_compatible_match); 396 397 /** 398 * of_machine_compatible_match - Test root of device tree against a compatible array 399 * @compats: NULL terminated array of compatible strings to look for in root node's compatible property. 400 * 401 * Returns true if the root node has any of the given compatible values in its 402 * compatible property. 403 */ 404 bool of_machine_compatible_match(const char *const *compats) 405 { 406 struct device_node *root; 407 int rc = 0; 408 409 root = of_find_node_by_path("/"); 410 if (root) { 411 rc = of_device_compatible_match(root, compats); 412 of_node_put(root); 413 } 414 415 return rc != 0; 416 } 417 EXPORT_SYMBOL(of_machine_compatible_match); 418 419 static bool __of_device_is_status(const struct device_node *device, 420 const char * const*strings) 421 { 422 const char *status; 423 int statlen; 424 425 if (!device) 426 return false; 427 428 status = __of_get_property(device, "status", &statlen); 429 if (status == NULL) 430 return false; 431 432 if (statlen > 0) { 433 while (*strings) { 434 unsigned int len = strlen(*strings); 435 436 if ((*strings)[len - 1] == '-') { 437 if (!strncmp(status, *strings, len)) 438 return true; 439 } else { 440 if (!strcmp(status, *strings)) 441 return true; 442 } 443 strings++; 444 } 445 } 446 447 return false; 448 } 449 450 /** 451 * __of_device_is_available - check if a device is available for use 452 * 453 * @device: Node to check for availability, with locks already held 454 * 455 * Return: True if the status property is absent or set to "okay" or "ok", 456 * false otherwise 457 */ 458 static bool __of_device_is_available(const struct device_node *device) 459 { 460 static const char * const ok[] = {"okay", "ok", NULL}; 461 462 if (!device) 463 return false; 464 465 return !__of_get_property(device, "status", NULL) || 466 __of_device_is_status(device, ok); 467 } 468 469 /** 470 * __of_device_is_reserved - check if a device is reserved 471 * 472 * @device: Node to check for availability, with locks already held 473 * 474 * Return: True if the status property is set to "reserved", false otherwise 475 */ 476 static bool __of_device_is_reserved(const struct device_node *device) 477 { 478 static const char * const reserved[] = {"reserved", NULL}; 479 480 return __of_device_is_status(device, reserved); 481 } 482 483 /** 484 * of_device_is_available - check if a device is available for use 485 * 486 * @device: Node to check for availability 487 * 488 * Return: True if the status property is absent or set to "okay" or "ok", 489 * false otherwise 490 */ 491 bool of_device_is_available(const struct device_node *device) 492 { 493 unsigned long flags; 494 bool res; 495 496 raw_spin_lock_irqsave(&devtree_lock, flags); 497 res = __of_device_is_available(device); 498 raw_spin_unlock_irqrestore(&devtree_lock, flags); 499 return res; 500 501 } 502 EXPORT_SYMBOL(of_device_is_available); 503 504 /** 505 * __of_device_is_fail - check if a device has status "fail" or "fail-..." 506 * 507 * @device: Node to check status for, with locks already held 508 * 509 * Return: True if the status property is set to "fail" or "fail-..." (for any 510 * error code suffix), false otherwise 511 */ 512 static bool __of_device_is_fail(const struct device_node *device) 513 { 514 static const char * const fail[] = {"fail", "fail-", NULL}; 515 516 return __of_device_is_status(device, fail); 517 } 518 519 /** 520 * of_device_is_big_endian - check if a device has BE registers 521 * 522 * @device: Node to check for endianness 523 * 524 * Return: True if the device has a "big-endian" property, or if the kernel 525 * was compiled for BE *and* the device has a "native-endian" property. 526 * Returns false otherwise. 527 * 528 * Callers would nominally use ioread32be/iowrite32be if 529 * of_device_is_big_endian() == true, or readl/writel otherwise. 530 */ 531 bool of_device_is_big_endian(const struct device_node *device) 532 { 533 if (of_property_read_bool(device, "big-endian")) 534 return true; 535 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) && 536 of_property_read_bool(device, "native-endian")) 537 return true; 538 return false; 539 } 540 EXPORT_SYMBOL(of_device_is_big_endian); 541 542 /** 543 * of_get_parent - Get a node's parent if any 544 * @node: Node to get parent 545 * 546 * Return: A node pointer with refcount incremented, use 547 * of_node_put() on it when done. 548 */ 549 struct device_node *of_get_parent(const struct device_node *node) 550 { 551 struct device_node *np; 552 unsigned long flags; 553 554 if (!node) 555 return NULL; 556 557 raw_spin_lock_irqsave(&devtree_lock, flags); 558 np = of_node_get(node->parent); 559 raw_spin_unlock_irqrestore(&devtree_lock, flags); 560 return np; 561 } 562 EXPORT_SYMBOL(of_get_parent); 563 564 /** 565 * of_get_next_parent - Iterate to a node's parent 566 * @node: Node to get parent of 567 * 568 * This is like of_get_parent() except that it drops the 569 * refcount on the passed node, making it suitable for iterating 570 * through a node's parents. 571 * 572 * Return: A node pointer with refcount incremented, use 573 * of_node_put() on it when done. 574 */ 575 struct device_node *of_get_next_parent(struct device_node *node) 576 { 577 struct device_node *parent; 578 unsigned long flags; 579 580 if (!node) 581 return NULL; 582 583 raw_spin_lock_irqsave(&devtree_lock, flags); 584 parent = of_node_get(node->parent); 585 of_node_put(node); 586 raw_spin_unlock_irqrestore(&devtree_lock, flags); 587 return parent; 588 } 589 EXPORT_SYMBOL(of_get_next_parent); 590 591 static struct device_node *__of_get_next_child(const struct device_node *node, 592 struct device_node *prev) 593 { 594 struct device_node *next; 595 596 if (!node) 597 return NULL; 598 599 next = prev ? prev->sibling : node->child; 600 of_node_get(next); 601 of_node_put(prev); 602 return next; 603 } 604 #define __for_each_child_of_node(parent, child) \ 605 for (child = __of_get_next_child(parent, NULL); child != NULL; \ 606 child = __of_get_next_child(parent, child)) 607 608 /** 609 * of_get_next_child - Iterate a node childs 610 * @node: parent node 611 * @prev: previous child of the parent node, or NULL to get first 612 * 613 * Return: A node pointer with refcount incremented, use of_node_put() on 614 * it when done. Returns NULL when prev is the last child. Decrements the 615 * refcount of prev. 616 */ 617 struct device_node *of_get_next_child(const struct device_node *node, 618 struct device_node *prev) 619 { 620 struct device_node *next; 621 unsigned long flags; 622 623 raw_spin_lock_irqsave(&devtree_lock, flags); 624 next = __of_get_next_child(node, prev); 625 raw_spin_unlock_irqrestore(&devtree_lock, flags); 626 return next; 627 } 628 EXPORT_SYMBOL(of_get_next_child); 629 630 static struct device_node *of_get_next_status_child(const struct device_node *node, 631 struct device_node *prev, 632 bool (*checker)(const struct device_node *)) 633 { 634 struct device_node *next; 635 unsigned long flags; 636 637 if (!node) 638 return NULL; 639 640 raw_spin_lock_irqsave(&devtree_lock, flags); 641 next = prev ? prev->sibling : node->child; 642 for (; next; next = next->sibling) { 643 if (!checker(next)) 644 continue; 645 if (of_node_get(next)) 646 break; 647 } 648 of_node_put(prev); 649 raw_spin_unlock_irqrestore(&devtree_lock, flags); 650 return next; 651 } 652 653 /** 654 * of_get_next_available_child - Find the next available child node 655 * @node: parent node 656 * @prev: previous child of the parent node, or NULL to get first 657 * 658 * This function is like of_get_next_child(), except that it 659 * automatically skips any disabled nodes (i.e. status = "disabled"). 660 */ 661 struct device_node *of_get_next_available_child(const struct device_node *node, 662 struct device_node *prev) 663 { 664 return of_get_next_status_child(node, prev, __of_device_is_available); 665 } 666 EXPORT_SYMBOL(of_get_next_available_child); 667 668 /** 669 * of_get_next_reserved_child - Find the next reserved child node 670 * @node: parent node 671 * @prev: previous child of the parent node, or NULL to get first 672 * 673 * This function is like of_get_next_child(), except that it 674 * automatically skips any disabled nodes (i.e. status = "disabled"). 675 */ 676 struct device_node *of_get_next_reserved_child(const struct device_node *node, 677 struct device_node *prev) 678 { 679 return of_get_next_status_child(node, prev, __of_device_is_reserved); 680 } 681 EXPORT_SYMBOL(of_get_next_reserved_child); 682 683 /** 684 * of_get_next_cpu_node - Iterate on cpu nodes 685 * @prev: previous child of the /cpus node, or NULL to get first 686 * 687 * Unusable CPUs (those with the status property set to "fail" or "fail-...") 688 * will be skipped. 689 * 690 * Return: A cpu node pointer with refcount incremented, use of_node_put() 691 * on it when done. Returns NULL when prev is the last child. Decrements 692 * the refcount of prev. 693 */ 694 struct device_node *of_get_next_cpu_node(struct device_node *prev) 695 { 696 struct device_node *next = NULL; 697 unsigned long flags; 698 struct device_node *node; 699 700 if (!prev) 701 node = of_find_node_by_path("/cpus"); 702 703 raw_spin_lock_irqsave(&devtree_lock, flags); 704 if (prev) 705 next = prev->sibling; 706 else if (node) { 707 next = node->child; 708 of_node_put(node); 709 } 710 for (; next; next = next->sibling) { 711 if (__of_device_is_fail(next)) 712 continue; 713 if (!(of_node_name_eq(next, "cpu") || 714 __of_node_is_type(next, "cpu"))) 715 continue; 716 if (of_node_get(next)) 717 break; 718 } 719 of_node_put(prev); 720 raw_spin_unlock_irqrestore(&devtree_lock, flags); 721 return next; 722 } 723 EXPORT_SYMBOL(of_get_next_cpu_node); 724 725 /** 726 * of_get_compatible_child - Find compatible child node 727 * @parent: parent node 728 * @compatible: compatible string 729 * 730 * Lookup child node whose compatible property contains the given compatible 731 * string. 732 * 733 * Return: a node pointer with refcount incremented, use of_node_put() on it 734 * when done; or NULL if not found. 735 */ 736 struct device_node *of_get_compatible_child(const struct device_node *parent, 737 const char *compatible) 738 { 739 struct device_node *child; 740 741 for_each_child_of_node(parent, child) { 742 if (of_device_is_compatible(child, compatible)) 743 break; 744 } 745 746 return child; 747 } 748 EXPORT_SYMBOL(of_get_compatible_child); 749 750 /** 751 * of_get_child_by_name - Find the child node by name for a given parent 752 * @node: parent node 753 * @name: child name to look for. 754 * 755 * This function looks for child node for given matching name 756 * 757 * Return: A node pointer if found, with refcount incremented, use 758 * of_node_put() on it when done. 759 * Returns NULL if node is not found. 760 */ 761 struct device_node *of_get_child_by_name(const struct device_node *node, 762 const char *name) 763 { 764 struct device_node *child; 765 766 for_each_child_of_node(node, child) 767 if (of_node_name_eq(child, name)) 768 break; 769 return child; 770 } 771 EXPORT_SYMBOL(of_get_child_by_name); 772 773 struct device_node *__of_find_node_by_path(struct device_node *parent, 774 const char *path) 775 { 776 struct device_node *child; 777 int len; 778 779 len = strcspn(path, "/:"); 780 if (!len) 781 return NULL; 782 783 __for_each_child_of_node(parent, child) { 784 const char *name = kbasename(child->full_name); 785 if (strncmp(path, name, len) == 0 && (strlen(name) == len)) 786 return child; 787 } 788 return NULL; 789 } 790 791 struct device_node *__of_find_node_by_full_path(struct device_node *node, 792 const char *path) 793 { 794 const char *separator = strchr(path, ':'); 795 796 while (node && *path == '/') { 797 struct device_node *tmp = node; 798 799 path++; /* Increment past '/' delimiter */ 800 node = __of_find_node_by_path(node, path); 801 of_node_put(tmp); 802 path = strchrnul(path, '/'); 803 if (separator && separator < path) 804 break; 805 } 806 return node; 807 } 808 809 /** 810 * of_find_node_opts_by_path - Find a node matching a full OF path 811 * @path: Either the full path to match, or if the path does not 812 * start with '/', the name of a property of the /aliases 813 * node (an alias). In the case of an alias, the node 814 * matching the alias' value will be returned. 815 * @opts: Address of a pointer into which to store the start of 816 * an options string appended to the end of the path with 817 * a ':' separator. 818 * 819 * Valid paths: 820 * * /foo/bar Full path 821 * * foo Valid alias 822 * * foo/bar Valid alias + relative path 823 * 824 * Return: A node pointer with refcount incremented, use 825 * of_node_put() on it when done. 826 */ 827 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts) 828 { 829 struct device_node *np = NULL; 830 struct property *pp; 831 unsigned long flags; 832 const char *separator = strchr(path, ':'); 833 834 if (opts) 835 *opts = separator ? separator + 1 : NULL; 836 837 if (strcmp(path, "/") == 0) 838 return of_node_get(of_root); 839 840 /* The path could begin with an alias */ 841 if (*path != '/') { 842 int len; 843 const char *p = separator; 844 845 if (!p) 846 p = strchrnul(path, '/'); 847 len = p - path; 848 849 /* of_aliases must not be NULL */ 850 if (!of_aliases) 851 return NULL; 852 853 for_each_property_of_node(of_aliases, pp) { 854 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) { 855 np = of_find_node_by_path(pp->value); 856 break; 857 } 858 } 859 if (!np) 860 return NULL; 861 path = p; 862 } 863 864 /* Step down the tree matching path components */ 865 raw_spin_lock_irqsave(&devtree_lock, flags); 866 if (!np) 867 np = of_node_get(of_root); 868 np = __of_find_node_by_full_path(np, path); 869 raw_spin_unlock_irqrestore(&devtree_lock, flags); 870 return np; 871 } 872 EXPORT_SYMBOL(of_find_node_opts_by_path); 873 874 /** 875 * of_find_node_by_name - Find a node by its "name" property 876 * @from: The node to start searching from or NULL; the node 877 * you pass will not be searched, only the next one 878 * will. Typically, you pass what the previous call 879 * returned. of_node_put() will be called on @from. 880 * @name: The name string to match against 881 * 882 * Return: A node pointer with refcount incremented, use 883 * of_node_put() on it when done. 884 */ 885 struct device_node *of_find_node_by_name(struct device_node *from, 886 const char *name) 887 { 888 struct device_node *np; 889 unsigned long flags; 890 891 raw_spin_lock_irqsave(&devtree_lock, flags); 892 for_each_of_allnodes_from(from, np) 893 if (of_node_name_eq(np, name) && of_node_get(np)) 894 break; 895 of_node_put(from); 896 raw_spin_unlock_irqrestore(&devtree_lock, flags); 897 return np; 898 } 899 EXPORT_SYMBOL(of_find_node_by_name); 900 901 /** 902 * of_find_node_by_type - Find a node by its "device_type" property 903 * @from: The node to start searching from, or NULL to start searching 904 * the entire device tree. The node you pass will not be 905 * searched, only the next one will; typically, you pass 906 * what the previous call returned. of_node_put() will be 907 * called on from for you. 908 * @type: The type string to match against 909 * 910 * Return: A node pointer with refcount incremented, use 911 * of_node_put() on it when done. 912 */ 913 struct device_node *of_find_node_by_type(struct device_node *from, 914 const char *type) 915 { 916 struct device_node *np; 917 unsigned long flags; 918 919 raw_spin_lock_irqsave(&devtree_lock, flags); 920 for_each_of_allnodes_from(from, np) 921 if (__of_node_is_type(np, type) && of_node_get(np)) 922 break; 923 of_node_put(from); 924 raw_spin_unlock_irqrestore(&devtree_lock, flags); 925 return np; 926 } 927 EXPORT_SYMBOL(of_find_node_by_type); 928 929 /** 930 * of_find_compatible_node - Find a node based on type and one of the 931 * tokens in its "compatible" property 932 * @from: The node to start searching from or NULL, the node 933 * you pass will not be searched, only the next one 934 * will; typically, you pass what the previous call 935 * returned. of_node_put() will be called on it 936 * @type: The type string to match "device_type" or NULL to ignore 937 * @compatible: The string to match to one of the tokens in the device 938 * "compatible" list. 939 * 940 * Return: A node pointer with refcount incremented, use 941 * of_node_put() on it when done. 942 */ 943 struct device_node *of_find_compatible_node(struct device_node *from, 944 const char *type, const char *compatible) 945 { 946 struct device_node *np; 947 unsigned long flags; 948 949 raw_spin_lock_irqsave(&devtree_lock, flags); 950 for_each_of_allnodes_from(from, np) 951 if (__of_device_is_compatible(np, compatible, type, NULL) && 952 of_node_get(np)) 953 break; 954 of_node_put(from); 955 raw_spin_unlock_irqrestore(&devtree_lock, flags); 956 return np; 957 } 958 EXPORT_SYMBOL(of_find_compatible_node); 959 960 /** 961 * of_find_node_with_property - Find a node which has a property with 962 * the given name. 963 * @from: The node to start searching from or NULL, the node 964 * you pass will not be searched, only the next one 965 * will; typically, you pass what the previous call 966 * returned. of_node_put() will be called on it 967 * @prop_name: The name of the property to look for. 968 * 969 * Return: A node pointer with refcount incremented, use 970 * of_node_put() on it when done. 971 */ 972 struct device_node *of_find_node_with_property(struct device_node *from, 973 const char *prop_name) 974 { 975 struct device_node *np; 976 struct property *pp; 977 unsigned long flags; 978 979 raw_spin_lock_irqsave(&devtree_lock, flags); 980 for_each_of_allnodes_from(from, np) { 981 for (pp = np->properties; pp; pp = pp->next) { 982 if (of_prop_cmp(pp->name, prop_name) == 0) { 983 of_node_get(np); 984 goto out; 985 } 986 } 987 } 988 out: 989 of_node_put(from); 990 raw_spin_unlock_irqrestore(&devtree_lock, flags); 991 return np; 992 } 993 EXPORT_SYMBOL(of_find_node_with_property); 994 995 static 996 const struct of_device_id *__of_match_node(const struct of_device_id *matches, 997 const struct device_node *node) 998 { 999 const struct of_device_id *best_match = NULL; 1000 int score, best_score = 0; 1001 1002 if (!matches) 1003 return NULL; 1004 1005 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) { 1006 score = __of_device_is_compatible(node, matches->compatible, 1007 matches->type, matches->name); 1008 if (score > best_score) { 1009 best_match = matches; 1010 best_score = score; 1011 } 1012 } 1013 1014 return best_match; 1015 } 1016 1017 /** 1018 * of_match_node - Tell if a device_node has a matching of_match structure 1019 * @matches: array of of device match structures to search in 1020 * @node: the of device structure to match against 1021 * 1022 * Low level utility function used by device matching. 1023 */ 1024 const struct of_device_id *of_match_node(const struct of_device_id *matches, 1025 const struct device_node *node) 1026 { 1027 const struct of_device_id *match; 1028 unsigned long flags; 1029 1030 raw_spin_lock_irqsave(&devtree_lock, flags); 1031 match = __of_match_node(matches, node); 1032 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1033 return match; 1034 } 1035 EXPORT_SYMBOL(of_match_node); 1036 1037 /** 1038 * of_find_matching_node_and_match - Find a node based on an of_device_id 1039 * match table. 1040 * @from: The node to start searching from or NULL, the node 1041 * you pass will not be searched, only the next one 1042 * will; typically, you pass what the previous call 1043 * returned. of_node_put() will be called on it 1044 * @matches: array of of device match structures to search in 1045 * @match: Updated to point at the matches entry which matched 1046 * 1047 * Return: A node pointer with refcount incremented, use 1048 * of_node_put() on it when done. 1049 */ 1050 struct device_node *of_find_matching_node_and_match(struct device_node *from, 1051 const struct of_device_id *matches, 1052 const struct of_device_id **match) 1053 { 1054 struct device_node *np; 1055 const struct of_device_id *m; 1056 unsigned long flags; 1057 1058 if (match) 1059 *match = NULL; 1060 1061 raw_spin_lock_irqsave(&devtree_lock, flags); 1062 for_each_of_allnodes_from(from, np) { 1063 m = __of_match_node(matches, np); 1064 if (m && of_node_get(np)) { 1065 if (match) 1066 *match = m; 1067 break; 1068 } 1069 } 1070 of_node_put(from); 1071 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1072 return np; 1073 } 1074 EXPORT_SYMBOL(of_find_matching_node_and_match); 1075 1076 /** 1077 * of_alias_from_compatible - Lookup appropriate alias for a device node 1078 * depending on compatible 1079 * @node: pointer to a device tree node 1080 * @alias: Pointer to buffer that alias value will be copied into 1081 * @len: Length of alias value 1082 * 1083 * Based on the value of the compatible property, this routine will attempt 1084 * to choose an appropriate alias value for a particular device tree node. 1085 * It does this by stripping the manufacturer prefix (as delimited by a ',') 1086 * from the first entry in the compatible list property. 1087 * 1088 * Note: The matching on just the "product" side of the compatible is a relic 1089 * from I2C and SPI. Please do not add any new user. 1090 * 1091 * Return: This routine returns 0 on success, <0 on failure. 1092 */ 1093 int of_alias_from_compatible(const struct device_node *node, char *alias, int len) 1094 { 1095 const char *compatible, *p; 1096 int cplen; 1097 1098 compatible = of_get_property(node, "compatible", &cplen); 1099 if (!compatible || strlen(compatible) > cplen) 1100 return -ENODEV; 1101 p = strchr(compatible, ','); 1102 strscpy(alias, p ? p + 1 : compatible, len); 1103 return 0; 1104 } 1105 EXPORT_SYMBOL_GPL(of_alias_from_compatible); 1106 1107 /** 1108 * of_find_node_by_phandle - Find a node given a phandle 1109 * @handle: phandle of the node to find 1110 * 1111 * Return: A node pointer with refcount incremented, use 1112 * of_node_put() on it when done. 1113 */ 1114 struct device_node *of_find_node_by_phandle(phandle handle) 1115 { 1116 struct device_node *np = NULL; 1117 unsigned long flags; 1118 u32 handle_hash; 1119 1120 if (!handle) 1121 return NULL; 1122 1123 handle_hash = of_phandle_cache_hash(handle); 1124 1125 raw_spin_lock_irqsave(&devtree_lock, flags); 1126 1127 if (phandle_cache[handle_hash] && 1128 handle == phandle_cache[handle_hash]->phandle) 1129 np = phandle_cache[handle_hash]; 1130 1131 if (!np) { 1132 for_each_of_allnodes(np) 1133 if (np->phandle == handle && 1134 !of_node_check_flag(np, OF_DETACHED)) { 1135 phandle_cache[handle_hash] = np; 1136 break; 1137 } 1138 } 1139 1140 of_node_get(np); 1141 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1142 return np; 1143 } 1144 EXPORT_SYMBOL(of_find_node_by_phandle); 1145 1146 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args) 1147 { 1148 int i; 1149 printk("%s %pOF", msg, args->np); 1150 for (i = 0; i < args->args_count; i++) { 1151 const char delim = i ? ',' : ':'; 1152 1153 pr_cont("%c%08x", delim, args->args[i]); 1154 } 1155 pr_cont("\n"); 1156 } 1157 1158 int of_phandle_iterator_init(struct of_phandle_iterator *it, 1159 const struct device_node *np, 1160 const char *list_name, 1161 const char *cells_name, 1162 int cell_count) 1163 { 1164 const __be32 *list; 1165 int size; 1166 1167 memset(it, 0, sizeof(*it)); 1168 1169 /* 1170 * one of cell_count or cells_name must be provided to determine the 1171 * argument length. 1172 */ 1173 if (cell_count < 0 && !cells_name) 1174 return -EINVAL; 1175 1176 list = of_get_property(np, list_name, &size); 1177 if (!list) 1178 return -ENOENT; 1179 1180 it->cells_name = cells_name; 1181 it->cell_count = cell_count; 1182 it->parent = np; 1183 it->list_end = list + size / sizeof(*list); 1184 it->phandle_end = list; 1185 it->cur = list; 1186 1187 return 0; 1188 } 1189 EXPORT_SYMBOL_GPL(of_phandle_iterator_init); 1190 1191 int of_phandle_iterator_next(struct of_phandle_iterator *it) 1192 { 1193 uint32_t count = 0; 1194 1195 if (it->node) { 1196 of_node_put(it->node); 1197 it->node = NULL; 1198 } 1199 1200 if (!it->cur || it->phandle_end >= it->list_end) 1201 return -ENOENT; 1202 1203 it->cur = it->phandle_end; 1204 1205 /* If phandle is 0, then it is an empty entry with no arguments. */ 1206 it->phandle = be32_to_cpup(it->cur++); 1207 1208 if (it->phandle) { 1209 1210 /* 1211 * Find the provider node and parse the #*-cells property to 1212 * determine the argument length. 1213 */ 1214 it->node = of_find_node_by_phandle(it->phandle); 1215 1216 if (it->cells_name) { 1217 if (!it->node) { 1218 pr_err("%pOF: could not find phandle %d\n", 1219 it->parent, it->phandle); 1220 goto err; 1221 } 1222 1223 if (of_property_read_u32(it->node, it->cells_name, 1224 &count)) { 1225 /* 1226 * If both cell_count and cells_name is given, 1227 * fall back to cell_count in absence 1228 * of the cells_name property 1229 */ 1230 if (it->cell_count >= 0) { 1231 count = it->cell_count; 1232 } else { 1233 pr_err("%pOF: could not get %s for %pOF\n", 1234 it->parent, 1235 it->cells_name, 1236 it->node); 1237 goto err; 1238 } 1239 } 1240 } else { 1241 count = it->cell_count; 1242 } 1243 1244 /* 1245 * Make sure that the arguments actually fit in the remaining 1246 * property data length 1247 */ 1248 if (it->cur + count > it->list_end) { 1249 if (it->cells_name) 1250 pr_err("%pOF: %s = %d found %td\n", 1251 it->parent, it->cells_name, 1252 count, it->list_end - it->cur); 1253 else 1254 pr_err("%pOF: phandle %s needs %d, found %td\n", 1255 it->parent, of_node_full_name(it->node), 1256 count, it->list_end - it->cur); 1257 goto err; 1258 } 1259 } 1260 1261 it->phandle_end = it->cur + count; 1262 it->cur_count = count; 1263 1264 return 0; 1265 1266 err: 1267 if (it->node) { 1268 of_node_put(it->node); 1269 it->node = NULL; 1270 } 1271 1272 return -EINVAL; 1273 } 1274 EXPORT_SYMBOL_GPL(of_phandle_iterator_next); 1275 1276 int of_phandle_iterator_args(struct of_phandle_iterator *it, 1277 uint32_t *args, 1278 int size) 1279 { 1280 int i, count; 1281 1282 count = it->cur_count; 1283 1284 if (WARN_ON(size < count)) 1285 count = size; 1286 1287 for (i = 0; i < count; i++) 1288 args[i] = be32_to_cpup(it->cur++); 1289 1290 return count; 1291 } 1292 1293 int __of_parse_phandle_with_args(const struct device_node *np, 1294 const char *list_name, 1295 const char *cells_name, 1296 int cell_count, int index, 1297 struct of_phandle_args *out_args) 1298 { 1299 struct of_phandle_iterator it; 1300 int rc, cur_index = 0; 1301 1302 if (index < 0) 1303 return -EINVAL; 1304 1305 /* Loop over the phandles until all the requested entry is found */ 1306 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) { 1307 /* 1308 * All of the error cases bail out of the loop, so at 1309 * this point, the parsing is successful. If the requested 1310 * index matches, then fill the out_args structure and return, 1311 * or return -ENOENT for an empty entry. 1312 */ 1313 rc = -ENOENT; 1314 if (cur_index == index) { 1315 if (!it.phandle) 1316 goto err; 1317 1318 if (out_args) { 1319 int c; 1320 1321 c = of_phandle_iterator_args(&it, 1322 out_args->args, 1323 MAX_PHANDLE_ARGS); 1324 out_args->np = it.node; 1325 out_args->args_count = c; 1326 } else { 1327 of_node_put(it.node); 1328 } 1329 1330 /* Found it! return success */ 1331 return 0; 1332 } 1333 1334 cur_index++; 1335 } 1336 1337 /* 1338 * Unlock node before returning result; will be one of: 1339 * -ENOENT : index is for empty phandle 1340 * -EINVAL : parsing error on data 1341 */ 1342 1343 err: 1344 of_node_put(it.node); 1345 return rc; 1346 } 1347 EXPORT_SYMBOL(__of_parse_phandle_with_args); 1348 1349 /** 1350 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it 1351 * @np: pointer to a device tree node containing a list 1352 * @list_name: property name that contains a list 1353 * @stem_name: stem of property names that specify phandles' arguments count 1354 * @index: index of a phandle to parse out 1355 * @out_args: optional pointer to output arguments structure (will be filled) 1356 * 1357 * This function is useful to parse lists of phandles and their arguments. 1358 * Returns 0 on success and fills out_args, on error returns appropriate errno 1359 * value. The difference between this function and of_parse_phandle_with_args() 1360 * is that this API remaps a phandle if the node the phandle points to has 1361 * a <@stem_name>-map property. 1362 * 1363 * Caller is responsible to call of_node_put() on the returned out_args->np 1364 * pointer. 1365 * 1366 * Example:: 1367 * 1368 * phandle1: node1 { 1369 * #list-cells = <2>; 1370 * }; 1371 * 1372 * phandle2: node2 { 1373 * #list-cells = <1>; 1374 * }; 1375 * 1376 * phandle3: node3 { 1377 * #list-cells = <1>; 1378 * list-map = <0 &phandle2 3>, 1379 * <1 &phandle2 2>, 1380 * <2 &phandle1 5 1>; 1381 * list-map-mask = <0x3>; 1382 * }; 1383 * 1384 * node4 { 1385 * list = <&phandle1 1 2 &phandle3 0>; 1386 * }; 1387 * 1388 * To get a device_node of the ``node2`` node you may call this: 1389 * of_parse_phandle_with_args(node4, "list", "list", 1, &args); 1390 */ 1391 int of_parse_phandle_with_args_map(const struct device_node *np, 1392 const char *list_name, 1393 const char *stem_name, 1394 int index, struct of_phandle_args *out_args) 1395 { 1396 char *cells_name, *map_name = NULL, *mask_name = NULL; 1397 char *pass_name = NULL; 1398 struct device_node *cur, *new = NULL; 1399 const __be32 *map, *mask, *pass; 1400 static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = cpu_to_be32(~0) }; 1401 static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = cpu_to_be32(0) }; 1402 __be32 initial_match_array[MAX_PHANDLE_ARGS]; 1403 const __be32 *match_array = initial_match_array; 1404 int i, ret, map_len, match; 1405 u32 list_size, new_size; 1406 1407 if (index < 0) 1408 return -EINVAL; 1409 1410 cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name); 1411 if (!cells_name) 1412 return -ENOMEM; 1413 1414 ret = -ENOMEM; 1415 map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name); 1416 if (!map_name) 1417 goto free; 1418 1419 mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name); 1420 if (!mask_name) 1421 goto free; 1422 1423 pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name); 1424 if (!pass_name) 1425 goto free; 1426 1427 ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index, 1428 out_args); 1429 if (ret) 1430 goto free; 1431 1432 /* Get the #<list>-cells property */ 1433 cur = out_args->np; 1434 ret = of_property_read_u32(cur, cells_name, &list_size); 1435 if (ret < 0) 1436 goto put; 1437 1438 /* Precalculate the match array - this simplifies match loop */ 1439 for (i = 0; i < list_size; i++) 1440 initial_match_array[i] = cpu_to_be32(out_args->args[i]); 1441 1442 ret = -EINVAL; 1443 while (cur) { 1444 /* Get the <list>-map property */ 1445 map = of_get_property(cur, map_name, &map_len); 1446 if (!map) { 1447 ret = 0; 1448 goto free; 1449 } 1450 map_len /= sizeof(u32); 1451 1452 /* Get the <list>-map-mask property (optional) */ 1453 mask = of_get_property(cur, mask_name, NULL); 1454 if (!mask) 1455 mask = dummy_mask; 1456 /* Iterate through <list>-map property */ 1457 match = 0; 1458 while (map_len > (list_size + 1) && !match) { 1459 /* Compare specifiers */ 1460 match = 1; 1461 for (i = 0; i < list_size; i++, map_len--) 1462 match &= !((match_array[i] ^ *map++) & mask[i]); 1463 1464 of_node_put(new); 1465 new = of_find_node_by_phandle(be32_to_cpup(map)); 1466 map++; 1467 map_len--; 1468 1469 /* Check if not found */ 1470 if (!new) 1471 goto put; 1472 1473 if (!of_device_is_available(new)) 1474 match = 0; 1475 1476 ret = of_property_read_u32(new, cells_name, &new_size); 1477 if (ret) 1478 goto put; 1479 1480 /* Check for malformed properties */ 1481 if (WARN_ON(new_size > MAX_PHANDLE_ARGS)) 1482 goto put; 1483 if (map_len < new_size) 1484 goto put; 1485 1486 /* Move forward by new node's #<list>-cells amount */ 1487 map += new_size; 1488 map_len -= new_size; 1489 } 1490 if (!match) 1491 goto put; 1492 1493 /* Get the <list>-map-pass-thru property (optional) */ 1494 pass = of_get_property(cur, pass_name, NULL); 1495 if (!pass) 1496 pass = dummy_pass; 1497 1498 /* 1499 * Successfully parsed a <list>-map translation; copy new 1500 * specifier into the out_args structure, keeping the 1501 * bits specified in <list>-map-pass-thru. 1502 */ 1503 match_array = map - new_size; 1504 for (i = 0; i < new_size; i++) { 1505 __be32 val = *(map - new_size + i); 1506 1507 if (i < list_size) { 1508 val &= ~pass[i]; 1509 val |= cpu_to_be32(out_args->args[i]) & pass[i]; 1510 } 1511 1512 out_args->args[i] = be32_to_cpu(val); 1513 } 1514 out_args->args_count = list_size = new_size; 1515 /* Iterate again with new provider */ 1516 out_args->np = new; 1517 of_node_put(cur); 1518 cur = new; 1519 new = NULL; 1520 } 1521 put: 1522 of_node_put(cur); 1523 of_node_put(new); 1524 free: 1525 kfree(mask_name); 1526 kfree(map_name); 1527 kfree(cells_name); 1528 kfree(pass_name); 1529 1530 return ret; 1531 } 1532 EXPORT_SYMBOL(of_parse_phandle_with_args_map); 1533 1534 /** 1535 * of_count_phandle_with_args() - Find the number of phandles references in a property 1536 * @np: pointer to a device tree node containing a list 1537 * @list_name: property name that contains a list 1538 * @cells_name: property name that specifies phandles' arguments count 1539 * 1540 * Return: The number of phandle + argument tuples within a property. It 1541 * is a typical pattern to encode a list of phandle and variable 1542 * arguments into a single property. The number of arguments is encoded 1543 * by a property in the phandle-target node. For example, a gpios 1544 * property would contain a list of GPIO specifies consisting of a 1545 * phandle and 1 or more arguments. The number of arguments are 1546 * determined by the #gpio-cells property in the node pointed to by the 1547 * phandle. 1548 */ 1549 int of_count_phandle_with_args(const struct device_node *np, const char *list_name, 1550 const char *cells_name) 1551 { 1552 struct of_phandle_iterator it; 1553 int rc, cur_index = 0; 1554 1555 /* 1556 * If cells_name is NULL we assume a cell count of 0. This makes 1557 * counting the phandles trivial as each 32bit word in the list is a 1558 * phandle and no arguments are to consider. So we don't iterate through 1559 * the list but just use the length to determine the phandle count. 1560 */ 1561 if (!cells_name) { 1562 const __be32 *list; 1563 int size; 1564 1565 list = of_get_property(np, list_name, &size); 1566 if (!list) 1567 return -ENOENT; 1568 1569 return size / sizeof(*list); 1570 } 1571 1572 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1); 1573 if (rc) 1574 return rc; 1575 1576 while ((rc = of_phandle_iterator_next(&it)) == 0) 1577 cur_index += 1; 1578 1579 if (rc != -ENOENT) 1580 return rc; 1581 1582 return cur_index; 1583 } 1584 EXPORT_SYMBOL(of_count_phandle_with_args); 1585 1586 static struct property *__of_remove_property_from_list(struct property **list, struct property *prop) 1587 { 1588 struct property **next; 1589 1590 for (next = list; *next; next = &(*next)->next) { 1591 if (*next == prop) { 1592 *next = prop->next; 1593 prop->next = NULL; 1594 return prop; 1595 } 1596 } 1597 return NULL; 1598 } 1599 1600 /** 1601 * __of_add_property - Add a property to a node without lock operations 1602 * @np: Caller's Device Node 1603 * @prop: Property to add 1604 */ 1605 int __of_add_property(struct device_node *np, struct property *prop) 1606 { 1607 int rc = 0; 1608 unsigned long flags; 1609 struct property **next; 1610 1611 raw_spin_lock_irqsave(&devtree_lock, flags); 1612 1613 __of_remove_property_from_list(&np->deadprops, prop); 1614 1615 prop->next = NULL; 1616 next = &np->properties; 1617 while (*next) { 1618 if (strcmp(prop->name, (*next)->name) == 0) { 1619 /* duplicate ! don't insert it */ 1620 rc = -EEXIST; 1621 goto out_unlock; 1622 } 1623 next = &(*next)->next; 1624 } 1625 *next = prop; 1626 1627 out_unlock: 1628 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1629 if (rc) 1630 return rc; 1631 1632 __of_add_property_sysfs(np, prop); 1633 return 0; 1634 } 1635 1636 /** 1637 * of_add_property - Add a property to a node 1638 * @np: Caller's Device Node 1639 * @prop: Property to add 1640 */ 1641 int of_add_property(struct device_node *np, struct property *prop) 1642 { 1643 int rc; 1644 1645 mutex_lock(&of_mutex); 1646 rc = __of_add_property(np, prop); 1647 mutex_unlock(&of_mutex); 1648 1649 if (!rc) 1650 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL); 1651 1652 return rc; 1653 } 1654 EXPORT_SYMBOL_GPL(of_add_property); 1655 1656 int __of_remove_property(struct device_node *np, struct property *prop) 1657 { 1658 unsigned long flags; 1659 int rc = -ENODEV; 1660 1661 raw_spin_lock_irqsave(&devtree_lock, flags); 1662 1663 if (__of_remove_property_from_list(&np->properties, prop)) { 1664 /* Found the property, add it to deadprops list */ 1665 prop->next = np->deadprops; 1666 np->deadprops = prop; 1667 rc = 0; 1668 } 1669 1670 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1671 if (rc) 1672 return rc; 1673 1674 __of_remove_property_sysfs(np, prop); 1675 return 0; 1676 } 1677 1678 /** 1679 * of_remove_property - Remove a property from a node. 1680 * @np: Caller's Device Node 1681 * @prop: Property to remove 1682 * 1683 * Note that we don't actually remove it, since we have given out 1684 * who-knows-how-many pointers to the data using get-property. 1685 * Instead we just move the property to the "dead properties" 1686 * list, so it won't be found any more. 1687 */ 1688 int of_remove_property(struct device_node *np, struct property *prop) 1689 { 1690 int rc; 1691 1692 if (!prop) 1693 return -ENODEV; 1694 1695 mutex_lock(&of_mutex); 1696 rc = __of_remove_property(np, prop); 1697 mutex_unlock(&of_mutex); 1698 1699 if (!rc) 1700 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL); 1701 1702 return rc; 1703 } 1704 EXPORT_SYMBOL_GPL(of_remove_property); 1705 1706 int __of_update_property(struct device_node *np, struct property *newprop, 1707 struct property **oldpropp) 1708 { 1709 struct property **next, *oldprop; 1710 unsigned long flags; 1711 1712 raw_spin_lock_irqsave(&devtree_lock, flags); 1713 1714 __of_remove_property_from_list(&np->deadprops, newprop); 1715 1716 for (next = &np->properties; *next; next = &(*next)->next) { 1717 if (of_prop_cmp((*next)->name, newprop->name) == 0) 1718 break; 1719 } 1720 *oldpropp = oldprop = *next; 1721 1722 if (oldprop) { 1723 /* replace the node */ 1724 newprop->next = oldprop->next; 1725 *next = newprop; 1726 oldprop->next = np->deadprops; 1727 np->deadprops = oldprop; 1728 } else { 1729 /* new node */ 1730 newprop->next = NULL; 1731 *next = newprop; 1732 } 1733 1734 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1735 1736 __of_update_property_sysfs(np, newprop, oldprop); 1737 1738 return 0; 1739 } 1740 1741 /* 1742 * of_update_property - Update a property in a node, if the property does 1743 * not exist, add it. 1744 * 1745 * Note that we don't actually remove it, since we have given out 1746 * who-knows-how-many pointers to the data using get-property. 1747 * Instead we just move the property to the "dead properties" list, 1748 * and add the new property to the property list 1749 */ 1750 int of_update_property(struct device_node *np, struct property *newprop) 1751 { 1752 struct property *oldprop; 1753 int rc; 1754 1755 if (!newprop->name) 1756 return -EINVAL; 1757 1758 mutex_lock(&of_mutex); 1759 rc = __of_update_property(np, newprop, &oldprop); 1760 mutex_unlock(&of_mutex); 1761 1762 if (!rc) 1763 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop); 1764 1765 return rc; 1766 } 1767 1768 static void of_alias_add(struct alias_prop *ap, struct device_node *np, 1769 int id, const char *stem, int stem_len) 1770 { 1771 ap->np = np; 1772 ap->id = id; 1773 strscpy(ap->stem, stem, stem_len + 1); 1774 list_add_tail(&ap->link, &aliases_lookup); 1775 pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n", 1776 ap->alias, ap->stem, ap->id, np); 1777 } 1778 1779 /** 1780 * of_alias_scan - Scan all properties of the 'aliases' node 1781 * @dt_alloc: An allocator that provides a virtual address to memory 1782 * for storing the resulting tree 1783 * 1784 * The function scans all the properties of the 'aliases' node and populates 1785 * the global lookup table with the properties. It returns the 1786 * number of alias properties found, or an error code in case of failure. 1787 */ 1788 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align)) 1789 { 1790 struct property *pp; 1791 1792 of_aliases = of_find_node_by_path("/aliases"); 1793 of_chosen = of_find_node_by_path("/chosen"); 1794 if (of_chosen == NULL) 1795 of_chosen = of_find_node_by_path("/chosen@0"); 1796 1797 if (of_chosen) { 1798 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */ 1799 const char *name = NULL; 1800 1801 if (of_property_read_string(of_chosen, "stdout-path", &name)) 1802 of_property_read_string(of_chosen, "linux,stdout-path", 1803 &name); 1804 if (IS_ENABLED(CONFIG_PPC) && !name) 1805 of_property_read_string(of_aliases, "stdout", &name); 1806 if (name) 1807 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options); 1808 if (of_stdout) 1809 of_stdout->fwnode.flags |= FWNODE_FLAG_BEST_EFFORT; 1810 } 1811 1812 if (!of_aliases) 1813 return; 1814 1815 for_each_property_of_node(of_aliases, pp) { 1816 const char *start = pp->name; 1817 const char *end = start + strlen(start); 1818 struct device_node *np; 1819 struct alias_prop *ap; 1820 int id, len; 1821 1822 /* Skip those we do not want to proceed */ 1823 if (!strcmp(pp->name, "name") || 1824 !strcmp(pp->name, "phandle") || 1825 !strcmp(pp->name, "linux,phandle")) 1826 continue; 1827 1828 np = of_find_node_by_path(pp->value); 1829 if (!np) 1830 continue; 1831 1832 /* walk the alias backwards to extract the id and work out 1833 * the 'stem' string */ 1834 while (isdigit(*(end-1)) && end > start) 1835 end--; 1836 len = end - start; 1837 1838 if (kstrtoint(end, 10, &id) < 0) 1839 continue; 1840 1841 /* Allocate an alias_prop with enough space for the stem */ 1842 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap)); 1843 if (!ap) 1844 continue; 1845 memset(ap, 0, sizeof(*ap) + len + 1); 1846 ap->alias = start; 1847 of_alias_add(ap, np, id, start, len); 1848 } 1849 } 1850 1851 /** 1852 * of_alias_get_id - Get alias id for the given device_node 1853 * @np: Pointer to the given device_node 1854 * @stem: Alias stem of the given device_node 1855 * 1856 * The function travels the lookup table to get the alias id for the given 1857 * device_node and alias stem. 1858 * 1859 * Return: The alias id if found. 1860 */ 1861 int of_alias_get_id(struct device_node *np, const char *stem) 1862 { 1863 struct alias_prop *app; 1864 int id = -ENODEV; 1865 1866 mutex_lock(&of_mutex); 1867 list_for_each_entry(app, &aliases_lookup, link) { 1868 if (strcmp(app->stem, stem) != 0) 1869 continue; 1870 1871 if (np == app->np) { 1872 id = app->id; 1873 break; 1874 } 1875 } 1876 mutex_unlock(&of_mutex); 1877 1878 return id; 1879 } 1880 EXPORT_SYMBOL_GPL(of_alias_get_id); 1881 1882 /** 1883 * of_alias_get_highest_id - Get highest alias id for the given stem 1884 * @stem: Alias stem to be examined 1885 * 1886 * The function travels the lookup table to get the highest alias id for the 1887 * given alias stem. It returns the alias id if found. 1888 */ 1889 int of_alias_get_highest_id(const char *stem) 1890 { 1891 struct alias_prop *app; 1892 int id = -ENODEV; 1893 1894 mutex_lock(&of_mutex); 1895 list_for_each_entry(app, &aliases_lookup, link) { 1896 if (strcmp(app->stem, stem) != 0) 1897 continue; 1898 1899 if (app->id > id) 1900 id = app->id; 1901 } 1902 mutex_unlock(&of_mutex); 1903 1904 return id; 1905 } 1906 EXPORT_SYMBOL_GPL(of_alias_get_highest_id); 1907 1908 /** 1909 * of_console_check() - Test and setup console for DT setup 1910 * @dn: Pointer to device node 1911 * @name: Name to use for preferred console without index. ex. "ttyS" 1912 * @index: Index to use for preferred console. 1913 * 1914 * Check if the given device node matches the stdout-path property in the 1915 * /chosen node. If it does then register it as the preferred console. 1916 * 1917 * Return: TRUE if console successfully setup. Otherwise return FALSE. 1918 */ 1919 bool of_console_check(struct device_node *dn, char *name, int index) 1920 { 1921 if (!dn || dn != of_stdout || console_set_on_cmdline) 1922 return false; 1923 1924 /* 1925 * XXX: cast `options' to char pointer to suppress complication 1926 * warnings: printk, UART and console drivers expect char pointer. 1927 */ 1928 return !add_preferred_console(name, index, (char *)of_stdout_options); 1929 } 1930 EXPORT_SYMBOL_GPL(of_console_check); 1931 1932 /** 1933 * of_find_next_cache_node - Find a node's subsidiary cache 1934 * @np: node of type "cpu" or "cache" 1935 * 1936 * Return: A node pointer with refcount incremented, use 1937 * of_node_put() on it when done. Caller should hold a reference 1938 * to np. 1939 */ 1940 struct device_node *of_find_next_cache_node(const struct device_node *np) 1941 { 1942 struct device_node *child, *cache_node; 1943 1944 cache_node = of_parse_phandle(np, "l2-cache", 0); 1945 if (!cache_node) 1946 cache_node = of_parse_phandle(np, "next-level-cache", 0); 1947 1948 if (cache_node) 1949 return cache_node; 1950 1951 /* OF on pmac has nodes instead of properties named "l2-cache" 1952 * beneath CPU nodes. 1953 */ 1954 if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu")) 1955 for_each_child_of_node(np, child) 1956 if (of_node_is_type(child, "cache")) 1957 return child; 1958 1959 return NULL; 1960 } 1961 1962 /** 1963 * of_find_last_cache_level - Find the level at which the last cache is 1964 * present for the given logical cpu 1965 * 1966 * @cpu: cpu number(logical index) for which the last cache level is needed 1967 * 1968 * Return: The level at which the last cache is present. It is exactly 1969 * same as the total number of cache levels for the given logical cpu. 1970 */ 1971 int of_find_last_cache_level(unsigned int cpu) 1972 { 1973 u32 cache_level = 0; 1974 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu); 1975 1976 while (np) { 1977 of_node_put(prev); 1978 prev = np; 1979 np = of_find_next_cache_node(np); 1980 } 1981 1982 of_property_read_u32(prev, "cache-level", &cache_level); 1983 of_node_put(prev); 1984 1985 return cache_level; 1986 } 1987 1988 /** 1989 * of_map_id - Translate an ID through a downstream mapping. 1990 * @np: root complex device node. 1991 * @id: device ID to map. 1992 * @map_name: property name of the map to use. 1993 * @map_mask_name: optional property name of the mask to use. 1994 * @target: optional pointer to a target device node. 1995 * @id_out: optional pointer to receive the translated ID. 1996 * 1997 * Given a device ID, look up the appropriate implementation-defined 1998 * platform ID and/or the target device which receives transactions on that 1999 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or 2000 * @id_out may be NULL if only the other is required. If @target points to 2001 * a non-NULL device node pointer, only entries targeting that node will be 2002 * matched; if it points to a NULL value, it will receive the device node of 2003 * the first matching target phandle, with a reference held. 2004 * 2005 * Return: 0 on success or a standard error code on failure. 2006 */ 2007 int of_map_id(struct device_node *np, u32 id, 2008 const char *map_name, const char *map_mask_name, 2009 struct device_node **target, u32 *id_out) 2010 { 2011 u32 map_mask, masked_id; 2012 int map_len; 2013 const __be32 *map = NULL; 2014 2015 if (!np || !map_name || (!target && !id_out)) 2016 return -EINVAL; 2017 2018 map = of_get_property(np, map_name, &map_len); 2019 if (!map) { 2020 if (target) 2021 return -ENODEV; 2022 /* Otherwise, no map implies no translation */ 2023 *id_out = id; 2024 return 0; 2025 } 2026 2027 if (!map_len || map_len % (4 * sizeof(*map))) { 2028 pr_err("%pOF: Error: Bad %s length: %d\n", np, 2029 map_name, map_len); 2030 return -EINVAL; 2031 } 2032 2033 /* The default is to select all bits. */ 2034 map_mask = 0xffffffff; 2035 2036 /* 2037 * Can be overridden by "{iommu,msi}-map-mask" property. 2038 * If of_property_read_u32() fails, the default is used. 2039 */ 2040 if (map_mask_name) 2041 of_property_read_u32(np, map_mask_name, &map_mask); 2042 2043 masked_id = map_mask & id; 2044 for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) { 2045 struct device_node *phandle_node; 2046 u32 id_base = be32_to_cpup(map + 0); 2047 u32 phandle = be32_to_cpup(map + 1); 2048 u32 out_base = be32_to_cpup(map + 2); 2049 u32 id_len = be32_to_cpup(map + 3); 2050 2051 if (id_base & ~map_mask) { 2052 pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n", 2053 np, map_name, map_name, 2054 map_mask, id_base); 2055 return -EFAULT; 2056 } 2057 2058 if (masked_id < id_base || masked_id >= id_base + id_len) 2059 continue; 2060 2061 phandle_node = of_find_node_by_phandle(phandle); 2062 if (!phandle_node) 2063 return -ENODEV; 2064 2065 if (target) { 2066 if (*target) 2067 of_node_put(phandle_node); 2068 else 2069 *target = phandle_node; 2070 2071 if (*target != phandle_node) 2072 continue; 2073 } 2074 2075 if (id_out) 2076 *id_out = masked_id - id_base + out_base; 2077 2078 pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n", 2079 np, map_name, map_mask, id_base, out_base, 2080 id_len, id, masked_id - id_base + out_base); 2081 return 0; 2082 } 2083 2084 pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name, 2085 id, target && *target ? *target : NULL); 2086 2087 /* Bypasses translation */ 2088 if (id_out) 2089 *id_out = id; 2090 return 0; 2091 } 2092 EXPORT_SYMBOL_GPL(of_map_id); 2093