1 /* 2 * Procedures for creating, accessing and interpreting the device tree. 3 * 4 * Paul Mackerras August 1996. 5 * Copyright (C) 1996-2005 Paul Mackerras. 6 * 7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 8 * {engebret|bergner}@us.ibm.com 9 * 10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 11 * 12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 13 * Grant Likely. 14 * 15 * This program is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU General Public License 17 * as published by the Free Software Foundation; either version 18 * 2 of the License, or (at your option) any later version. 19 */ 20 #include <linux/console.h> 21 #include <linux/ctype.h> 22 #include <linux/cpu.h> 23 #include <linux/module.h> 24 #include <linux/of.h> 25 #include <linux/of_graph.h> 26 #include <linux/spinlock.h> 27 #include <linux/slab.h> 28 #include <linux/string.h> 29 #include <linux/proc_fs.h> 30 31 #include "of_private.h" 32 33 LIST_HEAD(aliases_lookup); 34 35 struct device_node *of_root; 36 EXPORT_SYMBOL(of_root); 37 struct device_node *of_chosen; 38 struct device_node *of_aliases; 39 struct device_node *of_stdout; 40 static const char *of_stdout_options; 41 42 struct kset *of_kset; 43 44 /* 45 * Used to protect the of_aliases, to hold off addition of nodes to sysfs. 46 * This mutex must be held whenever modifications are being made to the 47 * device tree. The of_{attach,detach}_node() and 48 * of_{add,remove,update}_property() helpers make sure this happens. 49 */ 50 DEFINE_MUTEX(of_mutex); 51 52 /* use when traversing tree through the child, sibling, 53 * or parent members of struct device_node. 54 */ 55 DEFINE_RAW_SPINLOCK(devtree_lock); 56 57 int of_n_addr_cells(struct device_node *np) 58 { 59 const __be32 *ip; 60 61 do { 62 if (np->parent) 63 np = np->parent; 64 ip = of_get_property(np, "#address-cells", NULL); 65 if (ip) 66 return be32_to_cpup(ip); 67 } while (np->parent); 68 /* No #address-cells property for the root node */ 69 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 70 } 71 EXPORT_SYMBOL(of_n_addr_cells); 72 73 int of_n_size_cells(struct device_node *np) 74 { 75 const __be32 *ip; 76 77 do { 78 if (np->parent) 79 np = np->parent; 80 ip = of_get_property(np, "#size-cells", NULL); 81 if (ip) 82 return be32_to_cpup(ip); 83 } while (np->parent); 84 /* No #size-cells property for the root node */ 85 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 86 } 87 EXPORT_SYMBOL(of_n_size_cells); 88 89 #ifdef CONFIG_NUMA 90 int __weak of_node_to_nid(struct device_node *np) 91 { 92 return NUMA_NO_NODE; 93 } 94 #endif 95 96 #ifndef CONFIG_OF_DYNAMIC 97 static void of_node_release(struct kobject *kobj) 98 { 99 /* Without CONFIG_OF_DYNAMIC, no nodes gets freed */ 100 } 101 #endif /* CONFIG_OF_DYNAMIC */ 102 103 struct kobj_type of_node_ktype = { 104 .release = of_node_release, 105 }; 106 107 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj, 108 struct bin_attribute *bin_attr, char *buf, 109 loff_t offset, size_t count) 110 { 111 struct property *pp = container_of(bin_attr, struct property, attr); 112 return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length); 113 } 114 115 static const char *safe_name(struct kobject *kobj, const char *orig_name) 116 { 117 const char *name = orig_name; 118 struct kernfs_node *kn; 119 int i = 0; 120 121 /* don't be a hero. After 16 tries give up */ 122 while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) { 123 sysfs_put(kn); 124 if (name != orig_name) 125 kfree(name); 126 name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i); 127 } 128 129 if (name != orig_name) 130 pr_warn("device-tree: Duplicate name in %s, renamed to \"%s\"\n", 131 kobject_name(kobj), name); 132 return name; 133 } 134 135 int __of_add_property_sysfs(struct device_node *np, struct property *pp) 136 { 137 int rc; 138 139 /* Important: Don't leak passwords */ 140 bool secure = strncmp(pp->name, "security-", 9) == 0; 141 142 if (!IS_ENABLED(CONFIG_SYSFS)) 143 return 0; 144 145 if (!of_kset || !of_node_is_attached(np)) 146 return 0; 147 148 sysfs_bin_attr_init(&pp->attr); 149 pp->attr.attr.name = safe_name(&np->kobj, pp->name); 150 pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO; 151 pp->attr.size = secure ? 0 : pp->length; 152 pp->attr.read = of_node_property_read; 153 154 rc = sysfs_create_bin_file(&np->kobj, &pp->attr); 155 WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name); 156 return rc; 157 } 158 159 int __of_attach_node_sysfs(struct device_node *np) 160 { 161 const char *name; 162 struct property *pp; 163 int rc; 164 165 if (!IS_ENABLED(CONFIG_SYSFS)) 166 return 0; 167 168 if (!of_kset) 169 return 0; 170 171 np->kobj.kset = of_kset; 172 if (!np->parent) { 173 /* Nodes without parents are new top level trees */ 174 rc = kobject_add(&np->kobj, NULL, "%s", 175 safe_name(&of_kset->kobj, "base")); 176 } else { 177 name = safe_name(&np->parent->kobj, kbasename(np->full_name)); 178 if (!name || !name[0]) 179 return -EINVAL; 180 181 rc = kobject_add(&np->kobj, &np->parent->kobj, "%s", name); 182 } 183 if (rc) 184 return rc; 185 186 for_each_property_of_node(np, pp) 187 __of_add_property_sysfs(np, pp); 188 189 return 0; 190 } 191 192 void __init of_core_init(void) 193 { 194 struct device_node *np; 195 196 /* Create the kset, and register existing nodes */ 197 mutex_lock(&of_mutex); 198 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj); 199 if (!of_kset) { 200 mutex_unlock(&of_mutex); 201 pr_err("devicetree: failed to register existing nodes\n"); 202 return; 203 } 204 for_each_of_allnodes(np) 205 __of_attach_node_sysfs(np); 206 mutex_unlock(&of_mutex); 207 208 /* Symlink in /proc as required by userspace ABI */ 209 if (of_root) 210 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base"); 211 } 212 213 static struct property *__of_find_property(const struct device_node *np, 214 const char *name, int *lenp) 215 { 216 struct property *pp; 217 218 if (!np) 219 return NULL; 220 221 for (pp = np->properties; pp; pp = pp->next) { 222 if (of_prop_cmp(pp->name, name) == 0) { 223 if (lenp) 224 *lenp = pp->length; 225 break; 226 } 227 } 228 229 return pp; 230 } 231 232 struct property *of_find_property(const struct device_node *np, 233 const char *name, 234 int *lenp) 235 { 236 struct property *pp; 237 unsigned long flags; 238 239 raw_spin_lock_irqsave(&devtree_lock, flags); 240 pp = __of_find_property(np, name, lenp); 241 raw_spin_unlock_irqrestore(&devtree_lock, flags); 242 243 return pp; 244 } 245 EXPORT_SYMBOL(of_find_property); 246 247 struct device_node *__of_find_all_nodes(struct device_node *prev) 248 { 249 struct device_node *np; 250 if (!prev) { 251 np = of_root; 252 } else if (prev->child) { 253 np = prev->child; 254 } else { 255 /* Walk back up looking for a sibling, or the end of the structure */ 256 np = prev; 257 while (np->parent && !np->sibling) 258 np = np->parent; 259 np = np->sibling; /* Might be null at the end of the tree */ 260 } 261 return np; 262 } 263 264 /** 265 * of_find_all_nodes - Get next node in global list 266 * @prev: Previous node or NULL to start iteration 267 * of_node_put() will be called on it 268 * 269 * Returns a node pointer with refcount incremented, use 270 * of_node_put() on it when done. 271 */ 272 struct device_node *of_find_all_nodes(struct device_node *prev) 273 { 274 struct device_node *np; 275 unsigned long flags; 276 277 raw_spin_lock_irqsave(&devtree_lock, flags); 278 np = __of_find_all_nodes(prev); 279 of_node_get(np); 280 of_node_put(prev); 281 raw_spin_unlock_irqrestore(&devtree_lock, flags); 282 return np; 283 } 284 EXPORT_SYMBOL(of_find_all_nodes); 285 286 /* 287 * Find a property with a given name for a given node 288 * and return the value. 289 */ 290 const void *__of_get_property(const struct device_node *np, 291 const char *name, int *lenp) 292 { 293 struct property *pp = __of_find_property(np, name, lenp); 294 295 return pp ? pp->value : NULL; 296 } 297 298 /* 299 * Find a property with a given name for a given node 300 * and return the value. 301 */ 302 const void *of_get_property(const struct device_node *np, const char *name, 303 int *lenp) 304 { 305 struct property *pp = of_find_property(np, name, lenp); 306 307 return pp ? pp->value : NULL; 308 } 309 EXPORT_SYMBOL(of_get_property); 310 311 /* 312 * arch_match_cpu_phys_id - Match the given logical CPU and physical id 313 * 314 * @cpu: logical cpu index of a core/thread 315 * @phys_id: physical identifier of a core/thread 316 * 317 * CPU logical to physical index mapping is architecture specific. 318 * However this __weak function provides a default match of physical 319 * id to logical cpu index. phys_id provided here is usually values read 320 * from the device tree which must match the hardware internal registers. 321 * 322 * Returns true if the physical identifier and the logical cpu index 323 * correspond to the same core/thread, false otherwise. 324 */ 325 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id) 326 { 327 return (u32)phys_id == cpu; 328 } 329 330 /** 331 * Checks if the given "prop_name" property holds the physical id of the 332 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not 333 * NULL, local thread number within the core is returned in it. 334 */ 335 static bool __of_find_n_match_cpu_property(struct device_node *cpun, 336 const char *prop_name, int cpu, unsigned int *thread) 337 { 338 const __be32 *cell; 339 int ac, prop_len, tid; 340 u64 hwid; 341 342 ac = of_n_addr_cells(cpun); 343 cell = of_get_property(cpun, prop_name, &prop_len); 344 if (!cell || !ac) 345 return false; 346 prop_len /= sizeof(*cell) * ac; 347 for (tid = 0; tid < prop_len; tid++) { 348 hwid = of_read_number(cell, ac); 349 if (arch_match_cpu_phys_id(cpu, hwid)) { 350 if (thread) 351 *thread = tid; 352 return true; 353 } 354 cell += ac; 355 } 356 return false; 357 } 358 359 /* 360 * arch_find_n_match_cpu_physical_id - See if the given device node is 361 * for the cpu corresponding to logical cpu 'cpu'. Return true if so, 362 * else false. If 'thread' is non-NULL, the local thread number within the 363 * core is returned in it. 364 */ 365 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun, 366 int cpu, unsigned int *thread) 367 { 368 /* Check for non-standard "ibm,ppc-interrupt-server#s" property 369 * for thread ids on PowerPC. If it doesn't exist fallback to 370 * standard "reg" property. 371 */ 372 if (IS_ENABLED(CONFIG_PPC) && 373 __of_find_n_match_cpu_property(cpun, 374 "ibm,ppc-interrupt-server#s", 375 cpu, thread)) 376 return true; 377 378 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread); 379 } 380 381 /** 382 * of_get_cpu_node - Get device node associated with the given logical CPU 383 * 384 * @cpu: CPU number(logical index) for which device node is required 385 * @thread: if not NULL, local thread number within the physical core is 386 * returned 387 * 388 * The main purpose of this function is to retrieve the device node for the 389 * given logical CPU index. It should be used to initialize the of_node in 390 * cpu device. Once of_node in cpu device is populated, all the further 391 * references can use that instead. 392 * 393 * CPU logical to physical index mapping is architecture specific and is built 394 * before booting secondary cores. This function uses arch_match_cpu_phys_id 395 * which can be overridden by architecture specific implementation. 396 * 397 * Returns a node pointer for the logical cpu if found, else NULL. 398 */ 399 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread) 400 { 401 struct device_node *cpun; 402 403 for_each_node_by_type(cpun, "cpu") { 404 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread)) 405 return cpun; 406 } 407 return NULL; 408 } 409 EXPORT_SYMBOL(of_get_cpu_node); 410 411 /** 412 * __of_device_is_compatible() - Check if the node matches given constraints 413 * @device: pointer to node 414 * @compat: required compatible string, NULL or "" for any match 415 * @type: required device_type value, NULL or "" for any match 416 * @name: required node name, NULL or "" for any match 417 * 418 * Checks if the given @compat, @type and @name strings match the 419 * properties of the given @device. A constraints can be skipped by 420 * passing NULL or an empty string as the constraint. 421 * 422 * Returns 0 for no match, and a positive integer on match. The return 423 * value is a relative score with larger values indicating better 424 * matches. The score is weighted for the most specific compatible value 425 * to get the highest score. Matching type is next, followed by matching 426 * name. Practically speaking, this results in the following priority 427 * order for matches: 428 * 429 * 1. specific compatible && type && name 430 * 2. specific compatible && type 431 * 3. specific compatible && name 432 * 4. specific compatible 433 * 5. general compatible && type && name 434 * 6. general compatible && type 435 * 7. general compatible && name 436 * 8. general compatible 437 * 9. type && name 438 * 10. type 439 * 11. name 440 */ 441 static int __of_device_is_compatible(const struct device_node *device, 442 const char *compat, const char *type, const char *name) 443 { 444 struct property *prop; 445 const char *cp; 446 int index = 0, score = 0; 447 448 /* Compatible match has highest priority */ 449 if (compat && compat[0]) { 450 prop = __of_find_property(device, "compatible", NULL); 451 for (cp = of_prop_next_string(prop, NULL); cp; 452 cp = of_prop_next_string(prop, cp), index++) { 453 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) { 454 score = INT_MAX/2 - (index << 2); 455 break; 456 } 457 } 458 if (!score) 459 return 0; 460 } 461 462 /* Matching type is better than matching name */ 463 if (type && type[0]) { 464 if (!device->type || of_node_cmp(type, device->type)) 465 return 0; 466 score += 2; 467 } 468 469 /* Matching name is a bit better than not */ 470 if (name && name[0]) { 471 if (!device->name || of_node_cmp(name, device->name)) 472 return 0; 473 score++; 474 } 475 476 return score; 477 } 478 479 /** Checks if the given "compat" string matches one of the strings in 480 * the device's "compatible" property 481 */ 482 int of_device_is_compatible(const struct device_node *device, 483 const char *compat) 484 { 485 unsigned long flags; 486 int res; 487 488 raw_spin_lock_irqsave(&devtree_lock, flags); 489 res = __of_device_is_compatible(device, compat, NULL, NULL); 490 raw_spin_unlock_irqrestore(&devtree_lock, flags); 491 return res; 492 } 493 EXPORT_SYMBOL(of_device_is_compatible); 494 495 /** 496 * of_machine_is_compatible - Test root of device tree for a given compatible value 497 * @compat: compatible string to look for in root node's compatible property. 498 * 499 * Returns a positive integer if the root node has the given value in its 500 * compatible property. 501 */ 502 int of_machine_is_compatible(const char *compat) 503 { 504 struct device_node *root; 505 int rc = 0; 506 507 root = of_find_node_by_path("/"); 508 if (root) { 509 rc = of_device_is_compatible(root, compat); 510 of_node_put(root); 511 } 512 return rc; 513 } 514 EXPORT_SYMBOL(of_machine_is_compatible); 515 516 /** 517 * __of_device_is_available - check if a device is available for use 518 * 519 * @device: Node to check for availability, with locks already held 520 * 521 * Returns true if the status property is absent or set to "okay" or "ok", 522 * false otherwise 523 */ 524 static bool __of_device_is_available(const struct device_node *device) 525 { 526 const char *status; 527 int statlen; 528 529 if (!device) 530 return false; 531 532 status = __of_get_property(device, "status", &statlen); 533 if (status == NULL) 534 return true; 535 536 if (statlen > 0) { 537 if (!strcmp(status, "okay") || !strcmp(status, "ok")) 538 return true; 539 } 540 541 return false; 542 } 543 544 /** 545 * of_device_is_available - check if a device is available for use 546 * 547 * @device: Node to check for availability 548 * 549 * Returns true if the status property is absent or set to "okay" or "ok", 550 * false otherwise 551 */ 552 bool of_device_is_available(const struct device_node *device) 553 { 554 unsigned long flags; 555 bool res; 556 557 raw_spin_lock_irqsave(&devtree_lock, flags); 558 res = __of_device_is_available(device); 559 raw_spin_unlock_irqrestore(&devtree_lock, flags); 560 return res; 561 562 } 563 EXPORT_SYMBOL(of_device_is_available); 564 565 /** 566 * of_device_is_big_endian - check if a device has BE registers 567 * 568 * @device: Node to check for endianness 569 * 570 * Returns true if the device has a "big-endian" property, or if the kernel 571 * was compiled for BE *and* the device has a "native-endian" property. 572 * Returns false otherwise. 573 * 574 * Callers would nominally use ioread32be/iowrite32be if 575 * of_device_is_big_endian() == true, or readl/writel otherwise. 576 */ 577 bool of_device_is_big_endian(const struct device_node *device) 578 { 579 if (of_property_read_bool(device, "big-endian")) 580 return true; 581 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) && 582 of_property_read_bool(device, "native-endian")) 583 return true; 584 return false; 585 } 586 EXPORT_SYMBOL(of_device_is_big_endian); 587 588 /** 589 * of_get_parent - Get a node's parent if any 590 * @node: Node to get parent 591 * 592 * Returns a node pointer with refcount incremented, use 593 * of_node_put() on it when done. 594 */ 595 struct device_node *of_get_parent(const struct device_node *node) 596 { 597 struct device_node *np; 598 unsigned long flags; 599 600 if (!node) 601 return NULL; 602 603 raw_spin_lock_irqsave(&devtree_lock, flags); 604 np = of_node_get(node->parent); 605 raw_spin_unlock_irqrestore(&devtree_lock, flags); 606 return np; 607 } 608 EXPORT_SYMBOL(of_get_parent); 609 610 /** 611 * of_get_next_parent - Iterate to a node's parent 612 * @node: Node to get parent of 613 * 614 * This is like of_get_parent() except that it drops the 615 * refcount on the passed node, making it suitable for iterating 616 * through a node's parents. 617 * 618 * Returns a node pointer with refcount incremented, use 619 * of_node_put() on it when done. 620 */ 621 struct device_node *of_get_next_parent(struct device_node *node) 622 { 623 struct device_node *parent; 624 unsigned long flags; 625 626 if (!node) 627 return NULL; 628 629 raw_spin_lock_irqsave(&devtree_lock, flags); 630 parent = of_node_get(node->parent); 631 of_node_put(node); 632 raw_spin_unlock_irqrestore(&devtree_lock, flags); 633 return parent; 634 } 635 EXPORT_SYMBOL(of_get_next_parent); 636 637 static struct device_node *__of_get_next_child(const struct device_node *node, 638 struct device_node *prev) 639 { 640 struct device_node *next; 641 642 if (!node) 643 return NULL; 644 645 next = prev ? prev->sibling : node->child; 646 for (; next; next = next->sibling) 647 if (of_node_get(next)) 648 break; 649 of_node_put(prev); 650 return next; 651 } 652 #define __for_each_child_of_node(parent, child) \ 653 for (child = __of_get_next_child(parent, NULL); child != NULL; \ 654 child = __of_get_next_child(parent, child)) 655 656 /** 657 * of_get_next_child - Iterate a node childs 658 * @node: parent node 659 * @prev: previous child of the parent node, or NULL to get first 660 * 661 * Returns a node pointer with refcount incremented, use of_node_put() on 662 * it when done. Returns NULL when prev is the last child. Decrements the 663 * refcount of prev. 664 */ 665 struct device_node *of_get_next_child(const struct device_node *node, 666 struct device_node *prev) 667 { 668 struct device_node *next; 669 unsigned long flags; 670 671 raw_spin_lock_irqsave(&devtree_lock, flags); 672 next = __of_get_next_child(node, prev); 673 raw_spin_unlock_irqrestore(&devtree_lock, flags); 674 return next; 675 } 676 EXPORT_SYMBOL(of_get_next_child); 677 678 /** 679 * of_get_next_available_child - Find the next available child node 680 * @node: parent node 681 * @prev: previous child of the parent node, or NULL to get first 682 * 683 * This function is like of_get_next_child(), except that it 684 * automatically skips any disabled nodes (i.e. status = "disabled"). 685 */ 686 struct device_node *of_get_next_available_child(const struct device_node *node, 687 struct device_node *prev) 688 { 689 struct device_node *next; 690 unsigned long flags; 691 692 if (!node) 693 return NULL; 694 695 raw_spin_lock_irqsave(&devtree_lock, flags); 696 next = prev ? prev->sibling : node->child; 697 for (; next; next = next->sibling) { 698 if (!__of_device_is_available(next)) 699 continue; 700 if (of_node_get(next)) 701 break; 702 } 703 of_node_put(prev); 704 raw_spin_unlock_irqrestore(&devtree_lock, flags); 705 return next; 706 } 707 EXPORT_SYMBOL(of_get_next_available_child); 708 709 /** 710 * of_get_child_by_name - Find the child node by name for a given parent 711 * @node: parent node 712 * @name: child name to look for. 713 * 714 * This function looks for child node for given matching name 715 * 716 * Returns a node pointer if found, with refcount incremented, use 717 * of_node_put() on it when done. 718 * Returns NULL if node is not found. 719 */ 720 struct device_node *of_get_child_by_name(const struct device_node *node, 721 const char *name) 722 { 723 struct device_node *child; 724 725 for_each_child_of_node(node, child) 726 if (child->name && (of_node_cmp(child->name, name) == 0)) 727 break; 728 return child; 729 } 730 EXPORT_SYMBOL(of_get_child_by_name); 731 732 static struct device_node *__of_find_node_by_path(struct device_node *parent, 733 const char *path) 734 { 735 struct device_node *child; 736 int len; 737 738 len = strcspn(path, "/:"); 739 if (!len) 740 return NULL; 741 742 __for_each_child_of_node(parent, child) { 743 const char *name = strrchr(child->full_name, '/'); 744 if (WARN(!name, "malformed device_node %s\n", child->full_name)) 745 continue; 746 name++; 747 if (strncmp(path, name, len) == 0 && (strlen(name) == len)) 748 return child; 749 } 750 return NULL; 751 } 752 753 /** 754 * of_find_node_opts_by_path - Find a node matching a full OF path 755 * @path: Either the full path to match, or if the path does not 756 * start with '/', the name of a property of the /aliases 757 * node (an alias). In the case of an alias, the node 758 * matching the alias' value will be returned. 759 * @opts: Address of a pointer into which to store the start of 760 * an options string appended to the end of the path with 761 * a ':' separator. 762 * 763 * Valid paths: 764 * /foo/bar Full path 765 * foo Valid alias 766 * foo/bar Valid alias + relative path 767 * 768 * Returns a node pointer with refcount incremented, use 769 * of_node_put() on it when done. 770 */ 771 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts) 772 { 773 struct device_node *np = NULL; 774 struct property *pp; 775 unsigned long flags; 776 const char *separator = strchr(path, ':'); 777 778 if (opts) 779 *opts = separator ? separator + 1 : NULL; 780 781 if (strcmp(path, "/") == 0) 782 return of_node_get(of_root); 783 784 /* The path could begin with an alias */ 785 if (*path != '/') { 786 int len; 787 const char *p = separator; 788 789 if (!p) 790 p = strchrnul(path, '/'); 791 len = p - path; 792 793 /* of_aliases must not be NULL */ 794 if (!of_aliases) 795 return NULL; 796 797 for_each_property_of_node(of_aliases, pp) { 798 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) { 799 np = of_find_node_by_path(pp->value); 800 break; 801 } 802 } 803 if (!np) 804 return NULL; 805 path = p; 806 } 807 808 /* Step down the tree matching path components */ 809 raw_spin_lock_irqsave(&devtree_lock, flags); 810 if (!np) 811 np = of_node_get(of_root); 812 while (np && *path == '/') { 813 path++; /* Increment past '/' delimiter */ 814 np = __of_find_node_by_path(np, path); 815 path = strchrnul(path, '/'); 816 if (separator && separator < path) 817 break; 818 } 819 raw_spin_unlock_irqrestore(&devtree_lock, flags); 820 return np; 821 } 822 EXPORT_SYMBOL(of_find_node_opts_by_path); 823 824 /** 825 * of_find_node_by_name - Find a node by its "name" property 826 * @from: The node to start searching from or NULL, the node 827 * you pass will not be searched, only the next one 828 * will; typically, you pass what the previous call 829 * returned. of_node_put() will be called on it 830 * @name: The name string to match against 831 * 832 * Returns a node pointer with refcount incremented, use 833 * of_node_put() on it when done. 834 */ 835 struct device_node *of_find_node_by_name(struct device_node *from, 836 const char *name) 837 { 838 struct device_node *np; 839 unsigned long flags; 840 841 raw_spin_lock_irqsave(&devtree_lock, flags); 842 for_each_of_allnodes_from(from, np) 843 if (np->name && (of_node_cmp(np->name, name) == 0) 844 && of_node_get(np)) 845 break; 846 of_node_put(from); 847 raw_spin_unlock_irqrestore(&devtree_lock, flags); 848 return np; 849 } 850 EXPORT_SYMBOL(of_find_node_by_name); 851 852 /** 853 * of_find_node_by_type - Find a node by its "device_type" property 854 * @from: The node to start searching from, or NULL to start searching 855 * the entire device tree. The node you pass will not be 856 * searched, only the next one will; typically, you pass 857 * what the previous call returned. of_node_put() will be 858 * called on from for you. 859 * @type: The type string to match against 860 * 861 * Returns a node pointer with refcount incremented, use 862 * of_node_put() on it when done. 863 */ 864 struct device_node *of_find_node_by_type(struct device_node *from, 865 const char *type) 866 { 867 struct device_node *np; 868 unsigned long flags; 869 870 raw_spin_lock_irqsave(&devtree_lock, flags); 871 for_each_of_allnodes_from(from, np) 872 if (np->type && (of_node_cmp(np->type, type) == 0) 873 && of_node_get(np)) 874 break; 875 of_node_put(from); 876 raw_spin_unlock_irqrestore(&devtree_lock, flags); 877 return np; 878 } 879 EXPORT_SYMBOL(of_find_node_by_type); 880 881 /** 882 * of_find_compatible_node - Find a node based on type and one of the 883 * tokens in its "compatible" property 884 * @from: The node to start searching from or NULL, the node 885 * you pass will not be searched, only the next one 886 * will; typically, you pass what the previous call 887 * returned. of_node_put() will be called on it 888 * @type: The type string to match "device_type" or NULL to ignore 889 * @compatible: The string to match to one of the tokens in the device 890 * "compatible" list. 891 * 892 * Returns a node pointer with refcount incremented, use 893 * of_node_put() on it when done. 894 */ 895 struct device_node *of_find_compatible_node(struct device_node *from, 896 const char *type, const char *compatible) 897 { 898 struct device_node *np; 899 unsigned long flags; 900 901 raw_spin_lock_irqsave(&devtree_lock, flags); 902 for_each_of_allnodes_from(from, np) 903 if (__of_device_is_compatible(np, compatible, type, NULL) && 904 of_node_get(np)) 905 break; 906 of_node_put(from); 907 raw_spin_unlock_irqrestore(&devtree_lock, flags); 908 return np; 909 } 910 EXPORT_SYMBOL(of_find_compatible_node); 911 912 /** 913 * of_find_node_with_property - Find a node which has a property with 914 * the given name. 915 * @from: The node to start searching from or NULL, the node 916 * you pass will not be searched, only the next one 917 * will; typically, you pass what the previous call 918 * returned. of_node_put() will be called on it 919 * @prop_name: The name of the property to look for. 920 * 921 * Returns a node pointer with refcount incremented, use 922 * of_node_put() on it when done. 923 */ 924 struct device_node *of_find_node_with_property(struct device_node *from, 925 const char *prop_name) 926 { 927 struct device_node *np; 928 struct property *pp; 929 unsigned long flags; 930 931 raw_spin_lock_irqsave(&devtree_lock, flags); 932 for_each_of_allnodes_from(from, np) { 933 for (pp = np->properties; pp; pp = pp->next) { 934 if (of_prop_cmp(pp->name, prop_name) == 0) { 935 of_node_get(np); 936 goto out; 937 } 938 } 939 } 940 out: 941 of_node_put(from); 942 raw_spin_unlock_irqrestore(&devtree_lock, flags); 943 return np; 944 } 945 EXPORT_SYMBOL(of_find_node_with_property); 946 947 static 948 const struct of_device_id *__of_match_node(const struct of_device_id *matches, 949 const struct device_node *node) 950 { 951 const struct of_device_id *best_match = NULL; 952 int score, best_score = 0; 953 954 if (!matches) 955 return NULL; 956 957 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) { 958 score = __of_device_is_compatible(node, matches->compatible, 959 matches->type, matches->name); 960 if (score > best_score) { 961 best_match = matches; 962 best_score = score; 963 } 964 } 965 966 return best_match; 967 } 968 969 /** 970 * of_match_node - Tell if a device_node has a matching of_match structure 971 * @matches: array of of device match structures to search in 972 * @node: the of device structure to match against 973 * 974 * Low level utility function used by device matching. 975 */ 976 const struct of_device_id *of_match_node(const struct of_device_id *matches, 977 const struct device_node *node) 978 { 979 const struct of_device_id *match; 980 unsigned long flags; 981 982 raw_spin_lock_irqsave(&devtree_lock, flags); 983 match = __of_match_node(matches, node); 984 raw_spin_unlock_irqrestore(&devtree_lock, flags); 985 return match; 986 } 987 EXPORT_SYMBOL(of_match_node); 988 989 /** 990 * of_find_matching_node_and_match - Find a node based on an of_device_id 991 * match table. 992 * @from: The node to start searching from or NULL, the node 993 * you pass will not be searched, only the next one 994 * will; typically, you pass what the previous call 995 * returned. of_node_put() will be called on it 996 * @matches: array of of device match structures to search in 997 * @match Updated to point at the matches entry which matched 998 * 999 * Returns a node pointer with refcount incremented, use 1000 * of_node_put() on it when done. 1001 */ 1002 struct device_node *of_find_matching_node_and_match(struct device_node *from, 1003 const struct of_device_id *matches, 1004 const struct of_device_id **match) 1005 { 1006 struct device_node *np; 1007 const struct of_device_id *m; 1008 unsigned long flags; 1009 1010 if (match) 1011 *match = NULL; 1012 1013 raw_spin_lock_irqsave(&devtree_lock, flags); 1014 for_each_of_allnodes_from(from, np) { 1015 m = __of_match_node(matches, np); 1016 if (m && of_node_get(np)) { 1017 if (match) 1018 *match = m; 1019 break; 1020 } 1021 } 1022 of_node_put(from); 1023 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1024 return np; 1025 } 1026 EXPORT_SYMBOL(of_find_matching_node_and_match); 1027 1028 /** 1029 * of_modalias_node - Lookup appropriate modalias for a device node 1030 * @node: pointer to a device tree node 1031 * @modalias: Pointer to buffer that modalias value will be copied into 1032 * @len: Length of modalias value 1033 * 1034 * Based on the value of the compatible property, this routine will attempt 1035 * to choose an appropriate modalias value for a particular device tree node. 1036 * It does this by stripping the manufacturer prefix (as delimited by a ',') 1037 * from the first entry in the compatible list property. 1038 * 1039 * This routine returns 0 on success, <0 on failure. 1040 */ 1041 int of_modalias_node(struct device_node *node, char *modalias, int len) 1042 { 1043 const char *compatible, *p; 1044 int cplen; 1045 1046 compatible = of_get_property(node, "compatible", &cplen); 1047 if (!compatible || strlen(compatible) > cplen) 1048 return -ENODEV; 1049 p = strchr(compatible, ','); 1050 strlcpy(modalias, p ? p + 1 : compatible, len); 1051 return 0; 1052 } 1053 EXPORT_SYMBOL_GPL(of_modalias_node); 1054 1055 /** 1056 * of_find_node_by_phandle - Find a node given a phandle 1057 * @handle: phandle of the node to find 1058 * 1059 * Returns a node pointer with refcount incremented, use 1060 * of_node_put() on it when done. 1061 */ 1062 struct device_node *of_find_node_by_phandle(phandle handle) 1063 { 1064 struct device_node *np; 1065 unsigned long flags; 1066 1067 if (!handle) 1068 return NULL; 1069 1070 raw_spin_lock_irqsave(&devtree_lock, flags); 1071 for_each_of_allnodes(np) 1072 if (np->phandle == handle) 1073 break; 1074 of_node_get(np); 1075 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1076 return np; 1077 } 1078 EXPORT_SYMBOL(of_find_node_by_phandle); 1079 1080 /** 1081 * of_property_count_elems_of_size - Count the number of elements in a property 1082 * 1083 * @np: device node from which the property value is to be read. 1084 * @propname: name of the property to be searched. 1085 * @elem_size: size of the individual element 1086 * 1087 * Search for a property in a device node and count the number of elements of 1088 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the 1089 * property does not exist or its length does not match a multiple of elem_size 1090 * and -ENODATA if the property does not have a value. 1091 */ 1092 int of_property_count_elems_of_size(const struct device_node *np, 1093 const char *propname, int elem_size) 1094 { 1095 struct property *prop = of_find_property(np, propname, NULL); 1096 1097 if (!prop) 1098 return -EINVAL; 1099 if (!prop->value) 1100 return -ENODATA; 1101 1102 if (prop->length % elem_size != 0) { 1103 pr_err("size of %s in node %s is not a multiple of %d\n", 1104 propname, np->full_name, elem_size); 1105 return -EINVAL; 1106 } 1107 1108 return prop->length / elem_size; 1109 } 1110 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size); 1111 1112 /** 1113 * of_find_property_value_of_size 1114 * 1115 * @np: device node from which the property value is to be read. 1116 * @propname: name of the property to be searched. 1117 * @len: requested length of property value 1118 * 1119 * Search for a property in a device node and valid the requested size. 1120 * Returns the property value on success, -EINVAL if the property does not 1121 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the 1122 * property data isn't large enough. 1123 * 1124 */ 1125 static void *of_find_property_value_of_size(const struct device_node *np, 1126 const char *propname, u32 len) 1127 { 1128 struct property *prop = of_find_property(np, propname, NULL); 1129 1130 if (!prop) 1131 return ERR_PTR(-EINVAL); 1132 if (!prop->value) 1133 return ERR_PTR(-ENODATA); 1134 if (len > prop->length) 1135 return ERR_PTR(-EOVERFLOW); 1136 1137 return prop->value; 1138 } 1139 1140 /** 1141 * of_property_read_u32_index - Find and read a u32 from a multi-value property. 1142 * 1143 * @np: device node from which the property value is to be read. 1144 * @propname: name of the property to be searched. 1145 * @index: index of the u32 in the list of values 1146 * @out_value: pointer to return value, modified only if no error. 1147 * 1148 * Search for a property in a device node and read nth 32-bit value from 1149 * it. Returns 0 on success, -EINVAL if the property does not exist, 1150 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1151 * property data isn't large enough. 1152 * 1153 * The out_value is modified only if a valid u32 value can be decoded. 1154 */ 1155 int of_property_read_u32_index(const struct device_node *np, 1156 const char *propname, 1157 u32 index, u32 *out_value) 1158 { 1159 const u32 *val = of_find_property_value_of_size(np, propname, 1160 ((index + 1) * sizeof(*out_value))); 1161 1162 if (IS_ERR(val)) 1163 return PTR_ERR(val); 1164 1165 *out_value = be32_to_cpup(((__be32 *)val) + index); 1166 return 0; 1167 } 1168 EXPORT_SYMBOL_GPL(of_property_read_u32_index); 1169 1170 /** 1171 * of_property_read_u8_array - Find and read an array of u8 from a property. 1172 * 1173 * @np: device node from which the property value is to be read. 1174 * @propname: name of the property to be searched. 1175 * @out_values: pointer to return value, modified only if return value is 0. 1176 * @sz: number of array elements to read 1177 * 1178 * Search for a property in a device node and read 8-bit value(s) from 1179 * it. Returns 0 on success, -EINVAL if the property does not exist, 1180 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1181 * property data isn't large enough. 1182 * 1183 * dts entry of array should be like: 1184 * property = /bits/ 8 <0x50 0x60 0x70>; 1185 * 1186 * The out_values is modified only if a valid u8 value can be decoded. 1187 */ 1188 int of_property_read_u8_array(const struct device_node *np, 1189 const char *propname, u8 *out_values, size_t sz) 1190 { 1191 const u8 *val = of_find_property_value_of_size(np, propname, 1192 (sz * sizeof(*out_values))); 1193 1194 if (IS_ERR(val)) 1195 return PTR_ERR(val); 1196 1197 while (sz--) 1198 *out_values++ = *val++; 1199 return 0; 1200 } 1201 EXPORT_SYMBOL_GPL(of_property_read_u8_array); 1202 1203 /** 1204 * of_property_read_u16_array - Find and read an array of u16 from a property. 1205 * 1206 * @np: device node from which the property value is to be read. 1207 * @propname: name of the property to be searched. 1208 * @out_values: pointer to return value, modified only if return value is 0. 1209 * @sz: number of array elements to read 1210 * 1211 * Search for a property in a device node and read 16-bit value(s) from 1212 * it. Returns 0 on success, -EINVAL if the property does not exist, 1213 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1214 * property data isn't large enough. 1215 * 1216 * dts entry of array should be like: 1217 * property = /bits/ 16 <0x5000 0x6000 0x7000>; 1218 * 1219 * The out_values is modified only if a valid u16 value can be decoded. 1220 */ 1221 int of_property_read_u16_array(const struct device_node *np, 1222 const char *propname, u16 *out_values, size_t sz) 1223 { 1224 const __be16 *val = of_find_property_value_of_size(np, propname, 1225 (sz * sizeof(*out_values))); 1226 1227 if (IS_ERR(val)) 1228 return PTR_ERR(val); 1229 1230 while (sz--) 1231 *out_values++ = be16_to_cpup(val++); 1232 return 0; 1233 } 1234 EXPORT_SYMBOL_GPL(of_property_read_u16_array); 1235 1236 /** 1237 * of_property_read_u32_array - Find and read an array of 32 bit integers 1238 * from a property. 1239 * 1240 * @np: device node from which the property value is to be read. 1241 * @propname: name of the property to be searched. 1242 * @out_values: pointer to return value, modified only if return value is 0. 1243 * @sz: number of array elements to read 1244 * 1245 * Search for a property in a device node and read 32-bit value(s) from 1246 * it. Returns 0 on success, -EINVAL if the property does not exist, 1247 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1248 * property data isn't large enough. 1249 * 1250 * The out_values is modified only if a valid u32 value can be decoded. 1251 */ 1252 int of_property_read_u32_array(const struct device_node *np, 1253 const char *propname, u32 *out_values, 1254 size_t sz) 1255 { 1256 const __be32 *val = of_find_property_value_of_size(np, propname, 1257 (sz * sizeof(*out_values))); 1258 1259 if (IS_ERR(val)) 1260 return PTR_ERR(val); 1261 1262 while (sz--) 1263 *out_values++ = be32_to_cpup(val++); 1264 return 0; 1265 } 1266 EXPORT_SYMBOL_GPL(of_property_read_u32_array); 1267 1268 /** 1269 * of_property_read_u64 - Find and read a 64 bit integer from a property 1270 * @np: device node from which the property value is to be read. 1271 * @propname: name of the property to be searched. 1272 * @out_value: pointer to return value, modified only if return value is 0. 1273 * 1274 * Search for a property in a device node and read a 64-bit value from 1275 * it. Returns 0 on success, -EINVAL if the property does not exist, 1276 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1277 * property data isn't large enough. 1278 * 1279 * The out_value is modified only if a valid u64 value can be decoded. 1280 */ 1281 int of_property_read_u64(const struct device_node *np, const char *propname, 1282 u64 *out_value) 1283 { 1284 const __be32 *val = of_find_property_value_of_size(np, propname, 1285 sizeof(*out_value)); 1286 1287 if (IS_ERR(val)) 1288 return PTR_ERR(val); 1289 1290 *out_value = of_read_number(val, 2); 1291 return 0; 1292 } 1293 EXPORT_SYMBOL_GPL(of_property_read_u64); 1294 1295 /** 1296 * of_property_read_u64_array - Find and read an array of 64 bit integers 1297 * from a property. 1298 * 1299 * @np: device node from which the property value is to be read. 1300 * @propname: name of the property to be searched. 1301 * @out_values: pointer to return value, modified only if return value is 0. 1302 * @sz: number of array elements to read 1303 * 1304 * Search for a property in a device node and read 64-bit value(s) from 1305 * it. Returns 0 on success, -EINVAL if the property does not exist, 1306 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1307 * property data isn't large enough. 1308 * 1309 * The out_values is modified only if a valid u64 value can be decoded. 1310 */ 1311 int of_property_read_u64_array(const struct device_node *np, 1312 const char *propname, u64 *out_values, 1313 size_t sz) 1314 { 1315 const __be32 *val = of_find_property_value_of_size(np, propname, 1316 (sz * sizeof(*out_values))); 1317 1318 if (IS_ERR(val)) 1319 return PTR_ERR(val); 1320 1321 while (sz--) { 1322 *out_values++ = of_read_number(val, 2); 1323 val += 2; 1324 } 1325 return 0; 1326 } 1327 EXPORT_SYMBOL_GPL(of_property_read_u64_array); 1328 1329 /** 1330 * of_property_read_string - Find and read a string from a property 1331 * @np: device node from which the property value is to be read. 1332 * @propname: name of the property to be searched. 1333 * @out_string: pointer to null terminated return string, modified only if 1334 * return value is 0. 1335 * 1336 * Search for a property in a device tree node and retrieve a null 1337 * terminated string value (pointer to data, not a copy). Returns 0 on 1338 * success, -EINVAL if the property does not exist, -ENODATA if property 1339 * does not have a value, and -EILSEQ if the string is not null-terminated 1340 * within the length of the property data. 1341 * 1342 * The out_string pointer is modified only if a valid string can be decoded. 1343 */ 1344 int of_property_read_string(const struct device_node *np, const char *propname, 1345 const char **out_string) 1346 { 1347 const struct property *prop = of_find_property(np, propname, NULL); 1348 if (!prop) 1349 return -EINVAL; 1350 if (!prop->value) 1351 return -ENODATA; 1352 if (strnlen(prop->value, prop->length) >= prop->length) 1353 return -EILSEQ; 1354 *out_string = prop->value; 1355 return 0; 1356 } 1357 EXPORT_SYMBOL_GPL(of_property_read_string); 1358 1359 /** 1360 * of_property_match_string() - Find string in a list and return index 1361 * @np: pointer to node containing string list property 1362 * @propname: string list property name 1363 * @string: pointer to string to search for in string list 1364 * 1365 * This function searches a string list property and returns the index 1366 * of a specific string value. 1367 */ 1368 int of_property_match_string(const struct device_node *np, const char *propname, 1369 const char *string) 1370 { 1371 const struct property *prop = of_find_property(np, propname, NULL); 1372 size_t l; 1373 int i; 1374 const char *p, *end; 1375 1376 if (!prop) 1377 return -EINVAL; 1378 if (!prop->value) 1379 return -ENODATA; 1380 1381 p = prop->value; 1382 end = p + prop->length; 1383 1384 for (i = 0; p < end; i++, p += l) { 1385 l = strnlen(p, end - p) + 1; 1386 if (p + l > end) 1387 return -EILSEQ; 1388 pr_debug("comparing %s with %s\n", string, p); 1389 if (strcmp(string, p) == 0) 1390 return i; /* Found it; return index */ 1391 } 1392 return -ENODATA; 1393 } 1394 EXPORT_SYMBOL_GPL(of_property_match_string); 1395 1396 /** 1397 * of_property_read_string_helper() - Utility helper for parsing string properties 1398 * @np: device node from which the property value is to be read. 1399 * @propname: name of the property to be searched. 1400 * @out_strs: output array of string pointers. 1401 * @sz: number of array elements to read. 1402 * @skip: Number of strings to skip over at beginning of list. 1403 * 1404 * Don't call this function directly. It is a utility helper for the 1405 * of_property_read_string*() family of functions. 1406 */ 1407 int of_property_read_string_helper(const struct device_node *np, 1408 const char *propname, const char **out_strs, 1409 size_t sz, int skip) 1410 { 1411 const struct property *prop = of_find_property(np, propname, NULL); 1412 int l = 0, i = 0; 1413 const char *p, *end; 1414 1415 if (!prop) 1416 return -EINVAL; 1417 if (!prop->value) 1418 return -ENODATA; 1419 p = prop->value; 1420 end = p + prop->length; 1421 1422 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) { 1423 l = strnlen(p, end - p) + 1; 1424 if (p + l > end) 1425 return -EILSEQ; 1426 if (out_strs && i >= skip) 1427 *out_strs++ = p; 1428 } 1429 i -= skip; 1430 return i <= 0 ? -ENODATA : i; 1431 } 1432 EXPORT_SYMBOL_GPL(of_property_read_string_helper); 1433 1434 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args) 1435 { 1436 int i; 1437 printk("%s %s", msg, of_node_full_name(args->np)); 1438 for (i = 0; i < args->args_count; i++) 1439 printk(i ? ",%08x" : ":%08x", args->args[i]); 1440 printk("\n"); 1441 } 1442 1443 int of_phandle_iterator_init(struct of_phandle_iterator *it, 1444 const struct device_node *np, 1445 const char *list_name, 1446 const char *cells_name, 1447 int cell_count) 1448 { 1449 const __be32 *list; 1450 int size; 1451 1452 memset(it, 0, sizeof(*it)); 1453 1454 list = of_get_property(np, list_name, &size); 1455 if (!list) 1456 return -ENOENT; 1457 1458 it->cells_name = cells_name; 1459 it->cell_count = cell_count; 1460 it->parent = np; 1461 it->list_end = list + size / sizeof(*list); 1462 it->phandle_end = list; 1463 it->cur = list; 1464 1465 return 0; 1466 } 1467 1468 int of_phandle_iterator_next(struct of_phandle_iterator *it) 1469 { 1470 uint32_t count = 0; 1471 1472 if (it->node) { 1473 of_node_put(it->node); 1474 it->node = NULL; 1475 } 1476 1477 if (!it->cur || it->phandle_end >= it->list_end) 1478 return -ENOENT; 1479 1480 it->cur = it->phandle_end; 1481 1482 /* If phandle is 0, then it is an empty entry with no arguments. */ 1483 it->phandle = be32_to_cpup(it->cur++); 1484 1485 if (it->phandle) { 1486 1487 /* 1488 * Find the provider node and parse the #*-cells property to 1489 * determine the argument length. 1490 */ 1491 it->node = of_find_node_by_phandle(it->phandle); 1492 1493 if (it->cells_name) { 1494 if (!it->node) { 1495 pr_err("%s: could not find phandle\n", 1496 it->parent->full_name); 1497 goto err; 1498 } 1499 1500 if (of_property_read_u32(it->node, it->cells_name, 1501 &count)) { 1502 pr_err("%s: could not get %s for %s\n", 1503 it->parent->full_name, 1504 it->cells_name, 1505 it->node->full_name); 1506 goto err; 1507 } 1508 } else { 1509 count = it->cell_count; 1510 } 1511 1512 /* 1513 * Make sure that the arguments actually fit in the remaining 1514 * property data length 1515 */ 1516 if (it->cur + count > it->list_end) { 1517 pr_err("%s: arguments longer than property\n", 1518 it->parent->full_name); 1519 goto err; 1520 } 1521 } 1522 1523 it->phandle_end = it->cur + count; 1524 it->cur_count = count; 1525 1526 return 0; 1527 1528 err: 1529 if (it->node) { 1530 of_node_put(it->node); 1531 it->node = NULL; 1532 } 1533 1534 return -EINVAL; 1535 } 1536 1537 int of_phandle_iterator_args(struct of_phandle_iterator *it, 1538 uint32_t *args, 1539 int size) 1540 { 1541 int i, count; 1542 1543 count = it->cur_count; 1544 1545 if (WARN_ON(size < count)) 1546 count = size; 1547 1548 for (i = 0; i < count; i++) 1549 args[i] = be32_to_cpup(it->cur++); 1550 1551 return count; 1552 } 1553 1554 static int __of_parse_phandle_with_args(const struct device_node *np, 1555 const char *list_name, 1556 const char *cells_name, 1557 int cell_count, int index, 1558 struct of_phandle_args *out_args) 1559 { 1560 struct of_phandle_iterator it; 1561 int rc, cur_index = 0; 1562 1563 /* Loop over the phandles until all the requested entry is found */ 1564 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) { 1565 /* 1566 * All of the error cases bail out of the loop, so at 1567 * this point, the parsing is successful. If the requested 1568 * index matches, then fill the out_args structure and return, 1569 * or return -ENOENT for an empty entry. 1570 */ 1571 rc = -ENOENT; 1572 if (cur_index == index) { 1573 if (!it.phandle) 1574 goto err; 1575 1576 if (out_args) { 1577 int c; 1578 1579 c = of_phandle_iterator_args(&it, 1580 out_args->args, 1581 MAX_PHANDLE_ARGS); 1582 out_args->np = it.node; 1583 out_args->args_count = c; 1584 } else { 1585 of_node_put(it.node); 1586 } 1587 1588 /* Found it! return success */ 1589 return 0; 1590 } 1591 1592 cur_index++; 1593 } 1594 1595 /* 1596 * Unlock node before returning result; will be one of: 1597 * -ENOENT : index is for empty phandle 1598 * -EINVAL : parsing error on data 1599 */ 1600 1601 err: 1602 if (it.node) 1603 of_node_put(it.node); 1604 return rc; 1605 } 1606 1607 /** 1608 * of_parse_phandle - Resolve a phandle property to a device_node pointer 1609 * @np: Pointer to device node holding phandle property 1610 * @phandle_name: Name of property holding a phandle value 1611 * @index: For properties holding a table of phandles, this is the index into 1612 * the table 1613 * 1614 * Returns the device_node pointer with refcount incremented. Use 1615 * of_node_put() on it when done. 1616 */ 1617 struct device_node *of_parse_phandle(const struct device_node *np, 1618 const char *phandle_name, int index) 1619 { 1620 struct of_phandle_args args; 1621 1622 if (index < 0) 1623 return NULL; 1624 1625 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0, 1626 index, &args)) 1627 return NULL; 1628 1629 return args.np; 1630 } 1631 EXPORT_SYMBOL(of_parse_phandle); 1632 1633 /** 1634 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list 1635 * @np: pointer to a device tree node containing a list 1636 * @list_name: property name that contains a list 1637 * @cells_name: property name that specifies phandles' arguments count 1638 * @index: index of a phandle to parse out 1639 * @out_args: optional pointer to output arguments structure (will be filled) 1640 * 1641 * This function is useful to parse lists of phandles and their arguments. 1642 * Returns 0 on success and fills out_args, on error returns appropriate 1643 * errno value. 1644 * 1645 * Caller is responsible to call of_node_put() on the returned out_args->np 1646 * pointer. 1647 * 1648 * Example: 1649 * 1650 * phandle1: node1 { 1651 * #list-cells = <2>; 1652 * } 1653 * 1654 * phandle2: node2 { 1655 * #list-cells = <1>; 1656 * } 1657 * 1658 * node3 { 1659 * list = <&phandle1 1 2 &phandle2 3>; 1660 * } 1661 * 1662 * To get a device_node of the `node2' node you may call this: 1663 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args); 1664 */ 1665 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name, 1666 const char *cells_name, int index, 1667 struct of_phandle_args *out_args) 1668 { 1669 if (index < 0) 1670 return -EINVAL; 1671 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, 1672 index, out_args); 1673 } 1674 EXPORT_SYMBOL(of_parse_phandle_with_args); 1675 1676 /** 1677 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list 1678 * @np: pointer to a device tree node containing a list 1679 * @list_name: property name that contains a list 1680 * @cell_count: number of argument cells following the phandle 1681 * @index: index of a phandle to parse out 1682 * @out_args: optional pointer to output arguments structure (will be filled) 1683 * 1684 * This function is useful to parse lists of phandles and their arguments. 1685 * Returns 0 on success and fills out_args, on error returns appropriate 1686 * errno value. 1687 * 1688 * Caller is responsible to call of_node_put() on the returned out_args->np 1689 * pointer. 1690 * 1691 * Example: 1692 * 1693 * phandle1: node1 { 1694 * } 1695 * 1696 * phandle2: node2 { 1697 * } 1698 * 1699 * node3 { 1700 * list = <&phandle1 0 2 &phandle2 2 3>; 1701 * } 1702 * 1703 * To get a device_node of the `node2' node you may call this: 1704 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args); 1705 */ 1706 int of_parse_phandle_with_fixed_args(const struct device_node *np, 1707 const char *list_name, int cell_count, 1708 int index, struct of_phandle_args *out_args) 1709 { 1710 if (index < 0) 1711 return -EINVAL; 1712 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count, 1713 index, out_args); 1714 } 1715 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args); 1716 1717 /** 1718 * of_count_phandle_with_args() - Find the number of phandles references in a property 1719 * @np: pointer to a device tree node containing a list 1720 * @list_name: property name that contains a list 1721 * @cells_name: property name that specifies phandles' arguments count 1722 * 1723 * Returns the number of phandle + argument tuples within a property. It 1724 * is a typical pattern to encode a list of phandle and variable 1725 * arguments into a single property. The number of arguments is encoded 1726 * by a property in the phandle-target node. For example, a gpios 1727 * property would contain a list of GPIO specifies consisting of a 1728 * phandle and 1 or more arguments. The number of arguments are 1729 * determined by the #gpio-cells property in the node pointed to by the 1730 * phandle. 1731 */ 1732 int of_count_phandle_with_args(const struct device_node *np, const char *list_name, 1733 const char *cells_name) 1734 { 1735 struct of_phandle_iterator it; 1736 int rc, cur_index = 0; 1737 1738 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0); 1739 if (rc) 1740 return rc; 1741 1742 while ((rc = of_phandle_iterator_next(&it)) == 0) 1743 cur_index += 1; 1744 1745 if (rc != -ENOENT) 1746 return rc; 1747 1748 return cur_index; 1749 } 1750 EXPORT_SYMBOL(of_count_phandle_with_args); 1751 1752 /** 1753 * __of_add_property - Add a property to a node without lock operations 1754 */ 1755 int __of_add_property(struct device_node *np, struct property *prop) 1756 { 1757 struct property **next; 1758 1759 prop->next = NULL; 1760 next = &np->properties; 1761 while (*next) { 1762 if (strcmp(prop->name, (*next)->name) == 0) 1763 /* duplicate ! don't insert it */ 1764 return -EEXIST; 1765 1766 next = &(*next)->next; 1767 } 1768 *next = prop; 1769 1770 return 0; 1771 } 1772 1773 /** 1774 * of_add_property - Add a property to a node 1775 */ 1776 int of_add_property(struct device_node *np, struct property *prop) 1777 { 1778 unsigned long flags; 1779 int rc; 1780 1781 mutex_lock(&of_mutex); 1782 1783 raw_spin_lock_irqsave(&devtree_lock, flags); 1784 rc = __of_add_property(np, prop); 1785 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1786 1787 if (!rc) 1788 __of_add_property_sysfs(np, prop); 1789 1790 mutex_unlock(&of_mutex); 1791 1792 if (!rc) 1793 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL); 1794 1795 return rc; 1796 } 1797 1798 int __of_remove_property(struct device_node *np, struct property *prop) 1799 { 1800 struct property **next; 1801 1802 for (next = &np->properties; *next; next = &(*next)->next) { 1803 if (*next == prop) 1804 break; 1805 } 1806 if (*next == NULL) 1807 return -ENODEV; 1808 1809 /* found the node */ 1810 *next = prop->next; 1811 prop->next = np->deadprops; 1812 np->deadprops = prop; 1813 1814 return 0; 1815 } 1816 1817 void __of_remove_property_sysfs(struct device_node *np, struct property *prop) 1818 { 1819 if (!IS_ENABLED(CONFIG_SYSFS)) 1820 return; 1821 1822 /* at early boot, bail here and defer setup to of_init() */ 1823 if (of_kset && of_node_is_attached(np)) 1824 sysfs_remove_bin_file(&np->kobj, &prop->attr); 1825 } 1826 1827 /** 1828 * of_remove_property - Remove a property from a node. 1829 * 1830 * Note that we don't actually remove it, since we have given out 1831 * who-knows-how-many pointers to the data using get-property. 1832 * Instead we just move the property to the "dead properties" 1833 * list, so it won't be found any more. 1834 */ 1835 int of_remove_property(struct device_node *np, struct property *prop) 1836 { 1837 unsigned long flags; 1838 int rc; 1839 1840 mutex_lock(&of_mutex); 1841 1842 raw_spin_lock_irqsave(&devtree_lock, flags); 1843 rc = __of_remove_property(np, prop); 1844 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1845 1846 if (!rc) 1847 __of_remove_property_sysfs(np, prop); 1848 1849 mutex_unlock(&of_mutex); 1850 1851 if (!rc) 1852 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL); 1853 1854 return rc; 1855 } 1856 1857 int __of_update_property(struct device_node *np, struct property *newprop, 1858 struct property **oldpropp) 1859 { 1860 struct property **next, *oldprop; 1861 1862 for (next = &np->properties; *next; next = &(*next)->next) { 1863 if (of_prop_cmp((*next)->name, newprop->name) == 0) 1864 break; 1865 } 1866 *oldpropp = oldprop = *next; 1867 1868 if (oldprop) { 1869 /* replace the node */ 1870 newprop->next = oldprop->next; 1871 *next = newprop; 1872 oldprop->next = np->deadprops; 1873 np->deadprops = oldprop; 1874 } else { 1875 /* new node */ 1876 newprop->next = NULL; 1877 *next = newprop; 1878 } 1879 1880 return 0; 1881 } 1882 1883 void __of_update_property_sysfs(struct device_node *np, struct property *newprop, 1884 struct property *oldprop) 1885 { 1886 if (!IS_ENABLED(CONFIG_SYSFS)) 1887 return; 1888 1889 /* At early boot, bail out and defer setup to of_init() */ 1890 if (!of_kset) 1891 return; 1892 1893 if (oldprop) 1894 sysfs_remove_bin_file(&np->kobj, &oldprop->attr); 1895 __of_add_property_sysfs(np, newprop); 1896 } 1897 1898 /* 1899 * of_update_property - Update a property in a node, if the property does 1900 * not exist, add it. 1901 * 1902 * Note that we don't actually remove it, since we have given out 1903 * who-knows-how-many pointers to the data using get-property. 1904 * Instead we just move the property to the "dead properties" list, 1905 * and add the new property to the property list 1906 */ 1907 int of_update_property(struct device_node *np, struct property *newprop) 1908 { 1909 struct property *oldprop; 1910 unsigned long flags; 1911 int rc; 1912 1913 if (!newprop->name) 1914 return -EINVAL; 1915 1916 mutex_lock(&of_mutex); 1917 1918 raw_spin_lock_irqsave(&devtree_lock, flags); 1919 rc = __of_update_property(np, newprop, &oldprop); 1920 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1921 1922 if (!rc) 1923 __of_update_property_sysfs(np, newprop, oldprop); 1924 1925 mutex_unlock(&of_mutex); 1926 1927 if (!rc) 1928 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop); 1929 1930 return rc; 1931 } 1932 1933 static void of_alias_add(struct alias_prop *ap, struct device_node *np, 1934 int id, const char *stem, int stem_len) 1935 { 1936 ap->np = np; 1937 ap->id = id; 1938 strncpy(ap->stem, stem, stem_len); 1939 ap->stem[stem_len] = 0; 1940 list_add_tail(&ap->link, &aliases_lookup); 1941 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n", 1942 ap->alias, ap->stem, ap->id, of_node_full_name(np)); 1943 } 1944 1945 /** 1946 * of_alias_scan - Scan all properties of the 'aliases' node 1947 * 1948 * The function scans all the properties of the 'aliases' node and populates 1949 * the global lookup table with the properties. It returns the 1950 * number of alias properties found, or an error code in case of failure. 1951 * 1952 * @dt_alloc: An allocator that provides a virtual address to memory 1953 * for storing the resulting tree 1954 */ 1955 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align)) 1956 { 1957 struct property *pp; 1958 1959 of_aliases = of_find_node_by_path("/aliases"); 1960 of_chosen = of_find_node_by_path("/chosen"); 1961 if (of_chosen == NULL) 1962 of_chosen = of_find_node_by_path("/chosen@0"); 1963 1964 if (of_chosen) { 1965 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */ 1966 const char *name = of_get_property(of_chosen, "stdout-path", NULL); 1967 if (!name) 1968 name = of_get_property(of_chosen, "linux,stdout-path", NULL); 1969 if (IS_ENABLED(CONFIG_PPC) && !name) 1970 name = of_get_property(of_aliases, "stdout", NULL); 1971 if (name) 1972 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options); 1973 } 1974 1975 if (!of_aliases) 1976 return; 1977 1978 for_each_property_of_node(of_aliases, pp) { 1979 const char *start = pp->name; 1980 const char *end = start + strlen(start); 1981 struct device_node *np; 1982 struct alias_prop *ap; 1983 int id, len; 1984 1985 /* Skip those we do not want to proceed */ 1986 if (!strcmp(pp->name, "name") || 1987 !strcmp(pp->name, "phandle") || 1988 !strcmp(pp->name, "linux,phandle")) 1989 continue; 1990 1991 np = of_find_node_by_path(pp->value); 1992 if (!np) 1993 continue; 1994 1995 /* walk the alias backwards to extract the id and work out 1996 * the 'stem' string */ 1997 while (isdigit(*(end-1)) && end > start) 1998 end--; 1999 len = end - start; 2000 2001 if (kstrtoint(end, 10, &id) < 0) 2002 continue; 2003 2004 /* Allocate an alias_prop with enough space for the stem */ 2005 ap = dt_alloc(sizeof(*ap) + len + 1, 4); 2006 if (!ap) 2007 continue; 2008 memset(ap, 0, sizeof(*ap) + len + 1); 2009 ap->alias = start; 2010 of_alias_add(ap, np, id, start, len); 2011 } 2012 } 2013 2014 /** 2015 * of_alias_get_id - Get alias id for the given device_node 2016 * @np: Pointer to the given device_node 2017 * @stem: Alias stem of the given device_node 2018 * 2019 * The function travels the lookup table to get the alias id for the given 2020 * device_node and alias stem. It returns the alias id if found. 2021 */ 2022 int of_alias_get_id(struct device_node *np, const char *stem) 2023 { 2024 struct alias_prop *app; 2025 int id = -ENODEV; 2026 2027 mutex_lock(&of_mutex); 2028 list_for_each_entry(app, &aliases_lookup, link) { 2029 if (strcmp(app->stem, stem) != 0) 2030 continue; 2031 2032 if (np == app->np) { 2033 id = app->id; 2034 break; 2035 } 2036 } 2037 mutex_unlock(&of_mutex); 2038 2039 return id; 2040 } 2041 EXPORT_SYMBOL_GPL(of_alias_get_id); 2042 2043 /** 2044 * of_alias_get_highest_id - Get highest alias id for the given stem 2045 * @stem: Alias stem to be examined 2046 * 2047 * The function travels the lookup table to get the highest alias id for the 2048 * given alias stem. It returns the alias id if found. 2049 */ 2050 int of_alias_get_highest_id(const char *stem) 2051 { 2052 struct alias_prop *app; 2053 int id = -ENODEV; 2054 2055 mutex_lock(&of_mutex); 2056 list_for_each_entry(app, &aliases_lookup, link) { 2057 if (strcmp(app->stem, stem) != 0) 2058 continue; 2059 2060 if (app->id > id) 2061 id = app->id; 2062 } 2063 mutex_unlock(&of_mutex); 2064 2065 return id; 2066 } 2067 EXPORT_SYMBOL_GPL(of_alias_get_highest_id); 2068 2069 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur, 2070 u32 *pu) 2071 { 2072 const void *curv = cur; 2073 2074 if (!prop) 2075 return NULL; 2076 2077 if (!cur) { 2078 curv = prop->value; 2079 goto out_val; 2080 } 2081 2082 curv += sizeof(*cur); 2083 if (curv >= prop->value + prop->length) 2084 return NULL; 2085 2086 out_val: 2087 *pu = be32_to_cpup(curv); 2088 return curv; 2089 } 2090 EXPORT_SYMBOL_GPL(of_prop_next_u32); 2091 2092 const char *of_prop_next_string(struct property *prop, const char *cur) 2093 { 2094 const void *curv = cur; 2095 2096 if (!prop) 2097 return NULL; 2098 2099 if (!cur) 2100 return prop->value; 2101 2102 curv += strlen(cur) + 1; 2103 if (curv >= prop->value + prop->length) 2104 return NULL; 2105 2106 return curv; 2107 } 2108 EXPORT_SYMBOL_GPL(of_prop_next_string); 2109 2110 /** 2111 * of_console_check() - Test and setup console for DT setup 2112 * @dn - Pointer to device node 2113 * @name - Name to use for preferred console without index. ex. "ttyS" 2114 * @index - Index to use for preferred console. 2115 * 2116 * Check if the given device node matches the stdout-path property in the 2117 * /chosen node. If it does then register it as the preferred console and return 2118 * TRUE. Otherwise return FALSE. 2119 */ 2120 bool of_console_check(struct device_node *dn, char *name, int index) 2121 { 2122 if (!dn || dn != of_stdout || console_set_on_cmdline) 2123 return false; 2124 return !add_preferred_console(name, index, 2125 kstrdup(of_stdout_options, GFP_KERNEL)); 2126 } 2127 EXPORT_SYMBOL_GPL(of_console_check); 2128 2129 /** 2130 * of_find_next_cache_node - Find a node's subsidiary cache 2131 * @np: node of type "cpu" or "cache" 2132 * 2133 * Returns a node pointer with refcount incremented, use 2134 * of_node_put() on it when done. Caller should hold a reference 2135 * to np. 2136 */ 2137 struct device_node *of_find_next_cache_node(const struct device_node *np) 2138 { 2139 struct device_node *child; 2140 const phandle *handle; 2141 2142 handle = of_get_property(np, "l2-cache", NULL); 2143 if (!handle) 2144 handle = of_get_property(np, "next-level-cache", NULL); 2145 2146 if (handle) 2147 return of_find_node_by_phandle(be32_to_cpup(handle)); 2148 2149 /* OF on pmac has nodes instead of properties named "l2-cache" 2150 * beneath CPU nodes. 2151 */ 2152 if (!strcmp(np->type, "cpu")) 2153 for_each_child_of_node(np, child) 2154 if (!strcmp(child->type, "cache")) 2155 return child; 2156 2157 return NULL; 2158 } 2159 2160 /** 2161 * of_graph_parse_endpoint() - parse common endpoint node properties 2162 * @node: pointer to endpoint device_node 2163 * @endpoint: pointer to the OF endpoint data structure 2164 * 2165 * The caller should hold a reference to @node. 2166 */ 2167 int of_graph_parse_endpoint(const struct device_node *node, 2168 struct of_endpoint *endpoint) 2169 { 2170 struct device_node *port_node = of_get_parent(node); 2171 2172 WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n", 2173 __func__, node->full_name); 2174 2175 memset(endpoint, 0, sizeof(*endpoint)); 2176 2177 endpoint->local_node = node; 2178 /* 2179 * It doesn't matter whether the two calls below succeed. 2180 * If they don't then the default value 0 is used. 2181 */ 2182 of_property_read_u32(port_node, "reg", &endpoint->port); 2183 of_property_read_u32(node, "reg", &endpoint->id); 2184 2185 of_node_put(port_node); 2186 2187 return 0; 2188 } 2189 EXPORT_SYMBOL(of_graph_parse_endpoint); 2190 2191 /** 2192 * of_graph_get_port_by_id() - get the port matching a given id 2193 * @parent: pointer to the parent device node 2194 * @id: id of the port 2195 * 2196 * Return: A 'port' node pointer with refcount incremented. The caller 2197 * has to use of_node_put() on it when done. 2198 */ 2199 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id) 2200 { 2201 struct device_node *node, *port; 2202 2203 node = of_get_child_by_name(parent, "ports"); 2204 if (node) 2205 parent = node; 2206 2207 for_each_child_of_node(parent, port) { 2208 u32 port_id = 0; 2209 2210 if (of_node_cmp(port->name, "port") != 0) 2211 continue; 2212 of_property_read_u32(port, "reg", &port_id); 2213 if (id == port_id) 2214 break; 2215 } 2216 2217 of_node_put(node); 2218 2219 return port; 2220 } 2221 EXPORT_SYMBOL(of_graph_get_port_by_id); 2222 2223 /** 2224 * of_graph_get_next_endpoint() - get next endpoint node 2225 * @parent: pointer to the parent device node 2226 * @prev: previous endpoint node, or NULL to get first 2227 * 2228 * Return: An 'endpoint' node pointer with refcount incremented. Refcount 2229 * of the passed @prev node is decremented. 2230 */ 2231 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent, 2232 struct device_node *prev) 2233 { 2234 struct device_node *endpoint; 2235 struct device_node *port; 2236 2237 if (!parent) 2238 return NULL; 2239 2240 /* 2241 * Start by locating the port node. If no previous endpoint is specified 2242 * search for the first port node, otherwise get the previous endpoint 2243 * parent port node. 2244 */ 2245 if (!prev) { 2246 struct device_node *node; 2247 2248 node = of_get_child_by_name(parent, "ports"); 2249 if (node) 2250 parent = node; 2251 2252 port = of_get_child_by_name(parent, "port"); 2253 of_node_put(node); 2254 2255 if (!port) { 2256 pr_err("%s(): no port node found in %s\n", 2257 __func__, parent->full_name); 2258 return NULL; 2259 } 2260 } else { 2261 port = of_get_parent(prev); 2262 if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n", 2263 __func__, prev->full_name)) 2264 return NULL; 2265 } 2266 2267 while (1) { 2268 /* 2269 * Now that we have a port node, get the next endpoint by 2270 * getting the next child. If the previous endpoint is NULL this 2271 * will return the first child. 2272 */ 2273 endpoint = of_get_next_child(port, prev); 2274 if (endpoint) { 2275 of_node_put(port); 2276 return endpoint; 2277 } 2278 2279 /* No more endpoints under this port, try the next one. */ 2280 prev = NULL; 2281 2282 do { 2283 port = of_get_next_child(parent, port); 2284 if (!port) 2285 return NULL; 2286 } while (of_node_cmp(port->name, "port")); 2287 } 2288 } 2289 EXPORT_SYMBOL(of_graph_get_next_endpoint); 2290 2291 /** 2292 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers 2293 * @parent: pointer to the parent device node 2294 * @port_reg: identifier (value of reg property) of the parent port node 2295 * @reg: identifier (value of reg property) of the endpoint node 2296 * 2297 * Return: An 'endpoint' node pointer which is identified by reg and at the same 2298 * is the child of a port node identified by port_reg. reg and port_reg are 2299 * ignored when they are -1. 2300 */ 2301 struct device_node *of_graph_get_endpoint_by_regs( 2302 const struct device_node *parent, int port_reg, int reg) 2303 { 2304 struct of_endpoint endpoint; 2305 struct device_node *node, *prev_node = NULL; 2306 2307 while (1) { 2308 node = of_graph_get_next_endpoint(parent, prev_node); 2309 of_node_put(prev_node); 2310 if (!node) 2311 break; 2312 2313 of_graph_parse_endpoint(node, &endpoint); 2314 if (((port_reg == -1) || (endpoint.port == port_reg)) && 2315 ((reg == -1) || (endpoint.id == reg))) 2316 return node; 2317 2318 prev_node = node; 2319 } 2320 2321 return NULL; 2322 } 2323 EXPORT_SYMBOL(of_graph_get_endpoint_by_regs); 2324 2325 /** 2326 * of_graph_get_remote_port_parent() - get remote port's parent node 2327 * @node: pointer to a local endpoint device_node 2328 * 2329 * Return: Remote device node associated with remote endpoint node linked 2330 * to @node. Use of_node_put() on it when done. 2331 */ 2332 struct device_node *of_graph_get_remote_port_parent( 2333 const struct device_node *node) 2334 { 2335 struct device_node *np; 2336 unsigned int depth; 2337 2338 /* Get remote endpoint node. */ 2339 np = of_parse_phandle(node, "remote-endpoint", 0); 2340 2341 /* Walk 3 levels up only if there is 'ports' node. */ 2342 for (depth = 3; depth && np; depth--) { 2343 np = of_get_next_parent(np); 2344 if (depth == 2 && of_node_cmp(np->name, "ports")) 2345 break; 2346 } 2347 return np; 2348 } 2349 EXPORT_SYMBOL(of_graph_get_remote_port_parent); 2350 2351 /** 2352 * of_graph_get_remote_port() - get remote port node 2353 * @node: pointer to a local endpoint device_node 2354 * 2355 * Return: Remote port node associated with remote endpoint node linked 2356 * to @node. Use of_node_put() on it when done. 2357 */ 2358 struct device_node *of_graph_get_remote_port(const struct device_node *node) 2359 { 2360 struct device_node *np; 2361 2362 /* Get remote endpoint node. */ 2363 np = of_parse_phandle(node, "remote-endpoint", 0); 2364 if (!np) 2365 return NULL; 2366 return of_get_next_parent(np); 2367 } 2368 EXPORT_SYMBOL(of_graph_get_remote_port); 2369