1 /* 2 * Procedures for creating, accessing and interpreting the device tree. 3 * 4 * Paul Mackerras August 1996. 5 * Copyright (C) 1996-2005 Paul Mackerras. 6 * 7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 8 * {engebret|bergner}@us.ibm.com 9 * 10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 11 * 12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 13 * Grant Likely. 14 * 15 * This program is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU General Public License 17 * as published by the Free Software Foundation; either version 18 * 2 of the License, or (at your option) any later version. 19 */ 20 #include <linux/console.h> 21 #include <linux/ctype.h> 22 #include <linux/cpu.h> 23 #include <linux/module.h> 24 #include <linux/of.h> 25 #include <linux/of_graph.h> 26 #include <linux/spinlock.h> 27 #include <linux/slab.h> 28 #include <linux/string.h> 29 #include <linux/proc_fs.h> 30 31 #include "of_private.h" 32 33 LIST_HEAD(aliases_lookup); 34 35 struct device_node *of_root; 36 EXPORT_SYMBOL(of_root); 37 struct device_node *of_chosen; 38 struct device_node *of_aliases; 39 struct device_node *of_stdout; 40 static const char *of_stdout_options; 41 42 struct kset *of_kset; 43 44 /* 45 * Used to protect the of_aliases, to hold off addition of nodes to sysfs. 46 * This mutex must be held whenever modifications are being made to the 47 * device tree. The of_{attach,detach}_node() and 48 * of_{add,remove,update}_property() helpers make sure this happens. 49 */ 50 DEFINE_MUTEX(of_mutex); 51 52 /* use when traversing tree through the child, sibling, 53 * or parent members of struct device_node. 54 */ 55 DEFINE_RAW_SPINLOCK(devtree_lock); 56 57 int of_n_addr_cells(struct device_node *np) 58 { 59 const __be32 *ip; 60 61 do { 62 if (np->parent) 63 np = np->parent; 64 ip = of_get_property(np, "#address-cells", NULL); 65 if (ip) 66 return be32_to_cpup(ip); 67 } while (np->parent); 68 /* No #address-cells property for the root node */ 69 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 70 } 71 EXPORT_SYMBOL(of_n_addr_cells); 72 73 int of_n_size_cells(struct device_node *np) 74 { 75 const __be32 *ip; 76 77 do { 78 if (np->parent) 79 np = np->parent; 80 ip = of_get_property(np, "#size-cells", NULL); 81 if (ip) 82 return be32_to_cpup(ip); 83 } while (np->parent); 84 /* No #size-cells property for the root node */ 85 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 86 } 87 EXPORT_SYMBOL(of_n_size_cells); 88 89 #ifdef CONFIG_NUMA 90 int __weak of_node_to_nid(struct device_node *np) 91 { 92 return numa_node_id(); 93 } 94 #endif 95 96 #ifndef CONFIG_OF_DYNAMIC 97 static void of_node_release(struct kobject *kobj) 98 { 99 /* Without CONFIG_OF_DYNAMIC, no nodes gets freed */ 100 } 101 #endif /* CONFIG_OF_DYNAMIC */ 102 103 struct kobj_type of_node_ktype = { 104 .release = of_node_release, 105 }; 106 107 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj, 108 struct bin_attribute *bin_attr, char *buf, 109 loff_t offset, size_t count) 110 { 111 struct property *pp = container_of(bin_attr, struct property, attr); 112 return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length); 113 } 114 115 static const char *safe_name(struct kobject *kobj, const char *orig_name) 116 { 117 const char *name = orig_name; 118 struct kernfs_node *kn; 119 int i = 0; 120 121 /* don't be a hero. After 16 tries give up */ 122 while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) { 123 sysfs_put(kn); 124 if (name != orig_name) 125 kfree(name); 126 name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i); 127 } 128 129 if (name != orig_name) 130 pr_warn("device-tree: Duplicate name in %s, renamed to \"%s\"\n", 131 kobject_name(kobj), name); 132 return name; 133 } 134 135 int __of_add_property_sysfs(struct device_node *np, struct property *pp) 136 { 137 int rc; 138 139 /* Important: Don't leak passwords */ 140 bool secure = strncmp(pp->name, "security-", 9) == 0; 141 142 if (!IS_ENABLED(CONFIG_SYSFS)) 143 return 0; 144 145 if (!of_kset || !of_node_is_attached(np)) 146 return 0; 147 148 sysfs_bin_attr_init(&pp->attr); 149 pp->attr.attr.name = safe_name(&np->kobj, pp->name); 150 pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO; 151 pp->attr.size = secure ? 0 : pp->length; 152 pp->attr.read = of_node_property_read; 153 154 rc = sysfs_create_bin_file(&np->kobj, &pp->attr); 155 WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name); 156 return rc; 157 } 158 159 int __of_attach_node_sysfs(struct device_node *np) 160 { 161 const char *name; 162 struct property *pp; 163 int rc; 164 165 if (!IS_ENABLED(CONFIG_SYSFS)) 166 return 0; 167 168 if (!of_kset) 169 return 0; 170 171 np->kobj.kset = of_kset; 172 if (!np->parent) { 173 /* Nodes without parents are new top level trees */ 174 rc = kobject_add(&np->kobj, NULL, "%s", 175 safe_name(&of_kset->kobj, "base")); 176 } else { 177 name = safe_name(&np->parent->kobj, kbasename(np->full_name)); 178 if (!name || !name[0]) 179 return -EINVAL; 180 181 rc = kobject_add(&np->kobj, &np->parent->kobj, "%s", name); 182 } 183 if (rc) 184 return rc; 185 186 for_each_property_of_node(np, pp) 187 __of_add_property_sysfs(np, pp); 188 189 return 0; 190 } 191 192 static int __init of_init(void) 193 { 194 struct device_node *np; 195 196 /* Create the kset, and register existing nodes */ 197 mutex_lock(&of_mutex); 198 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj); 199 if (!of_kset) { 200 mutex_unlock(&of_mutex); 201 return -ENOMEM; 202 } 203 for_each_of_allnodes(np) 204 __of_attach_node_sysfs(np); 205 mutex_unlock(&of_mutex); 206 207 /* Symlink in /proc as required by userspace ABI */ 208 if (of_root) 209 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base"); 210 211 return 0; 212 } 213 core_initcall(of_init); 214 215 static struct property *__of_find_property(const struct device_node *np, 216 const char *name, int *lenp) 217 { 218 struct property *pp; 219 220 if (!np) 221 return NULL; 222 223 for (pp = np->properties; pp; pp = pp->next) { 224 if (of_prop_cmp(pp->name, name) == 0) { 225 if (lenp) 226 *lenp = pp->length; 227 break; 228 } 229 } 230 231 return pp; 232 } 233 234 struct property *of_find_property(const struct device_node *np, 235 const char *name, 236 int *lenp) 237 { 238 struct property *pp; 239 unsigned long flags; 240 241 raw_spin_lock_irqsave(&devtree_lock, flags); 242 pp = __of_find_property(np, name, lenp); 243 raw_spin_unlock_irqrestore(&devtree_lock, flags); 244 245 return pp; 246 } 247 EXPORT_SYMBOL(of_find_property); 248 249 struct device_node *__of_find_all_nodes(struct device_node *prev) 250 { 251 struct device_node *np; 252 if (!prev) { 253 np = of_root; 254 } else if (prev->child) { 255 np = prev->child; 256 } else { 257 /* Walk back up looking for a sibling, or the end of the structure */ 258 np = prev; 259 while (np->parent && !np->sibling) 260 np = np->parent; 261 np = np->sibling; /* Might be null at the end of the tree */ 262 } 263 return np; 264 } 265 266 /** 267 * of_find_all_nodes - Get next node in global list 268 * @prev: Previous node or NULL to start iteration 269 * of_node_put() will be called on it 270 * 271 * Returns a node pointer with refcount incremented, use 272 * of_node_put() on it when done. 273 */ 274 struct device_node *of_find_all_nodes(struct device_node *prev) 275 { 276 struct device_node *np; 277 unsigned long flags; 278 279 raw_spin_lock_irqsave(&devtree_lock, flags); 280 np = __of_find_all_nodes(prev); 281 of_node_get(np); 282 of_node_put(prev); 283 raw_spin_unlock_irqrestore(&devtree_lock, flags); 284 return np; 285 } 286 EXPORT_SYMBOL(of_find_all_nodes); 287 288 /* 289 * Find a property with a given name for a given node 290 * and return the value. 291 */ 292 const void *__of_get_property(const struct device_node *np, 293 const char *name, int *lenp) 294 { 295 struct property *pp = __of_find_property(np, name, lenp); 296 297 return pp ? pp->value : NULL; 298 } 299 300 /* 301 * Find a property with a given name for a given node 302 * and return the value. 303 */ 304 const void *of_get_property(const struct device_node *np, const char *name, 305 int *lenp) 306 { 307 struct property *pp = of_find_property(np, name, lenp); 308 309 return pp ? pp->value : NULL; 310 } 311 EXPORT_SYMBOL(of_get_property); 312 313 /* 314 * arch_match_cpu_phys_id - Match the given logical CPU and physical id 315 * 316 * @cpu: logical cpu index of a core/thread 317 * @phys_id: physical identifier of a core/thread 318 * 319 * CPU logical to physical index mapping is architecture specific. 320 * However this __weak function provides a default match of physical 321 * id to logical cpu index. phys_id provided here is usually values read 322 * from the device tree which must match the hardware internal registers. 323 * 324 * Returns true if the physical identifier and the logical cpu index 325 * correspond to the same core/thread, false otherwise. 326 */ 327 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id) 328 { 329 return (u32)phys_id == cpu; 330 } 331 332 /** 333 * Checks if the given "prop_name" property holds the physical id of the 334 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not 335 * NULL, local thread number within the core is returned in it. 336 */ 337 static bool __of_find_n_match_cpu_property(struct device_node *cpun, 338 const char *prop_name, int cpu, unsigned int *thread) 339 { 340 const __be32 *cell; 341 int ac, prop_len, tid; 342 u64 hwid; 343 344 ac = of_n_addr_cells(cpun); 345 cell = of_get_property(cpun, prop_name, &prop_len); 346 if (!cell || !ac) 347 return false; 348 prop_len /= sizeof(*cell) * ac; 349 for (tid = 0; tid < prop_len; tid++) { 350 hwid = of_read_number(cell, ac); 351 if (arch_match_cpu_phys_id(cpu, hwid)) { 352 if (thread) 353 *thread = tid; 354 return true; 355 } 356 cell += ac; 357 } 358 return false; 359 } 360 361 /* 362 * arch_find_n_match_cpu_physical_id - See if the given device node is 363 * for the cpu corresponding to logical cpu 'cpu'. Return true if so, 364 * else false. If 'thread' is non-NULL, the local thread number within the 365 * core is returned in it. 366 */ 367 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun, 368 int cpu, unsigned int *thread) 369 { 370 /* Check for non-standard "ibm,ppc-interrupt-server#s" property 371 * for thread ids on PowerPC. If it doesn't exist fallback to 372 * standard "reg" property. 373 */ 374 if (IS_ENABLED(CONFIG_PPC) && 375 __of_find_n_match_cpu_property(cpun, 376 "ibm,ppc-interrupt-server#s", 377 cpu, thread)) 378 return true; 379 380 if (__of_find_n_match_cpu_property(cpun, "reg", cpu, thread)) 381 return true; 382 383 return false; 384 } 385 386 /** 387 * of_get_cpu_node - Get device node associated with the given logical CPU 388 * 389 * @cpu: CPU number(logical index) for which device node is required 390 * @thread: if not NULL, local thread number within the physical core is 391 * returned 392 * 393 * The main purpose of this function is to retrieve the device node for the 394 * given logical CPU index. It should be used to initialize the of_node in 395 * cpu device. Once of_node in cpu device is populated, all the further 396 * references can use that instead. 397 * 398 * CPU logical to physical index mapping is architecture specific and is built 399 * before booting secondary cores. This function uses arch_match_cpu_phys_id 400 * which can be overridden by architecture specific implementation. 401 * 402 * Returns a node pointer for the logical cpu if found, else NULL. 403 */ 404 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread) 405 { 406 struct device_node *cpun; 407 408 for_each_node_by_type(cpun, "cpu") { 409 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread)) 410 return cpun; 411 } 412 return NULL; 413 } 414 EXPORT_SYMBOL(of_get_cpu_node); 415 416 /** 417 * __of_device_is_compatible() - Check if the node matches given constraints 418 * @device: pointer to node 419 * @compat: required compatible string, NULL or "" for any match 420 * @type: required device_type value, NULL or "" for any match 421 * @name: required node name, NULL or "" for any match 422 * 423 * Checks if the given @compat, @type and @name strings match the 424 * properties of the given @device. A constraints can be skipped by 425 * passing NULL or an empty string as the constraint. 426 * 427 * Returns 0 for no match, and a positive integer on match. The return 428 * value is a relative score with larger values indicating better 429 * matches. The score is weighted for the most specific compatible value 430 * to get the highest score. Matching type is next, followed by matching 431 * name. Practically speaking, this results in the following priority 432 * order for matches: 433 * 434 * 1. specific compatible && type && name 435 * 2. specific compatible && type 436 * 3. specific compatible && name 437 * 4. specific compatible 438 * 5. general compatible && type && name 439 * 6. general compatible && type 440 * 7. general compatible && name 441 * 8. general compatible 442 * 9. type && name 443 * 10. type 444 * 11. name 445 */ 446 static int __of_device_is_compatible(const struct device_node *device, 447 const char *compat, const char *type, const char *name) 448 { 449 struct property *prop; 450 const char *cp; 451 int index = 0, score = 0; 452 453 /* Compatible match has highest priority */ 454 if (compat && compat[0]) { 455 prop = __of_find_property(device, "compatible", NULL); 456 for (cp = of_prop_next_string(prop, NULL); cp; 457 cp = of_prop_next_string(prop, cp), index++) { 458 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) { 459 score = INT_MAX/2 - (index << 2); 460 break; 461 } 462 } 463 if (!score) 464 return 0; 465 } 466 467 /* Matching type is better than matching name */ 468 if (type && type[0]) { 469 if (!device->type || of_node_cmp(type, device->type)) 470 return 0; 471 score += 2; 472 } 473 474 /* Matching name is a bit better than not */ 475 if (name && name[0]) { 476 if (!device->name || of_node_cmp(name, device->name)) 477 return 0; 478 score++; 479 } 480 481 return score; 482 } 483 484 /** Checks if the given "compat" string matches one of the strings in 485 * the device's "compatible" property 486 */ 487 int of_device_is_compatible(const struct device_node *device, 488 const char *compat) 489 { 490 unsigned long flags; 491 int res; 492 493 raw_spin_lock_irqsave(&devtree_lock, flags); 494 res = __of_device_is_compatible(device, compat, NULL, NULL); 495 raw_spin_unlock_irqrestore(&devtree_lock, flags); 496 return res; 497 } 498 EXPORT_SYMBOL(of_device_is_compatible); 499 500 /** 501 * of_machine_is_compatible - Test root of device tree for a given compatible value 502 * @compat: compatible string to look for in root node's compatible property. 503 * 504 * Returns a positive integer if the root node has the given value in its 505 * compatible property. 506 */ 507 int of_machine_is_compatible(const char *compat) 508 { 509 struct device_node *root; 510 int rc = 0; 511 512 root = of_find_node_by_path("/"); 513 if (root) { 514 rc = of_device_is_compatible(root, compat); 515 of_node_put(root); 516 } 517 return rc; 518 } 519 EXPORT_SYMBOL(of_machine_is_compatible); 520 521 /** 522 * __of_device_is_available - check if a device is available for use 523 * 524 * @device: Node to check for availability, with locks already held 525 * 526 * Returns true if the status property is absent or set to "okay" or "ok", 527 * false otherwise 528 */ 529 static bool __of_device_is_available(const struct device_node *device) 530 { 531 const char *status; 532 int statlen; 533 534 if (!device) 535 return false; 536 537 status = __of_get_property(device, "status", &statlen); 538 if (status == NULL) 539 return true; 540 541 if (statlen > 0) { 542 if (!strcmp(status, "okay") || !strcmp(status, "ok")) 543 return true; 544 } 545 546 return false; 547 } 548 549 /** 550 * of_device_is_available - check if a device is available for use 551 * 552 * @device: Node to check for availability 553 * 554 * Returns true if the status property is absent or set to "okay" or "ok", 555 * false otherwise 556 */ 557 bool of_device_is_available(const struct device_node *device) 558 { 559 unsigned long flags; 560 bool res; 561 562 raw_spin_lock_irqsave(&devtree_lock, flags); 563 res = __of_device_is_available(device); 564 raw_spin_unlock_irqrestore(&devtree_lock, flags); 565 return res; 566 567 } 568 EXPORT_SYMBOL(of_device_is_available); 569 570 /** 571 * of_get_parent - Get a node's parent if any 572 * @node: Node to get parent 573 * 574 * Returns a node pointer with refcount incremented, use 575 * of_node_put() on it when done. 576 */ 577 struct device_node *of_get_parent(const struct device_node *node) 578 { 579 struct device_node *np; 580 unsigned long flags; 581 582 if (!node) 583 return NULL; 584 585 raw_spin_lock_irqsave(&devtree_lock, flags); 586 np = of_node_get(node->parent); 587 raw_spin_unlock_irqrestore(&devtree_lock, flags); 588 return np; 589 } 590 EXPORT_SYMBOL(of_get_parent); 591 592 /** 593 * of_get_next_parent - Iterate to a node's parent 594 * @node: Node to get parent of 595 * 596 * This is like of_get_parent() except that it drops the 597 * refcount on the passed node, making it suitable for iterating 598 * through a node's parents. 599 * 600 * Returns a node pointer with refcount incremented, use 601 * of_node_put() on it when done. 602 */ 603 struct device_node *of_get_next_parent(struct device_node *node) 604 { 605 struct device_node *parent; 606 unsigned long flags; 607 608 if (!node) 609 return NULL; 610 611 raw_spin_lock_irqsave(&devtree_lock, flags); 612 parent = of_node_get(node->parent); 613 of_node_put(node); 614 raw_spin_unlock_irqrestore(&devtree_lock, flags); 615 return parent; 616 } 617 EXPORT_SYMBOL(of_get_next_parent); 618 619 static struct device_node *__of_get_next_child(const struct device_node *node, 620 struct device_node *prev) 621 { 622 struct device_node *next; 623 624 if (!node) 625 return NULL; 626 627 next = prev ? prev->sibling : node->child; 628 for (; next; next = next->sibling) 629 if (of_node_get(next)) 630 break; 631 of_node_put(prev); 632 return next; 633 } 634 #define __for_each_child_of_node(parent, child) \ 635 for (child = __of_get_next_child(parent, NULL); child != NULL; \ 636 child = __of_get_next_child(parent, child)) 637 638 /** 639 * of_get_next_child - Iterate a node childs 640 * @node: parent node 641 * @prev: previous child of the parent node, or NULL to get first 642 * 643 * Returns a node pointer with refcount incremented, use 644 * of_node_put() on it when done. 645 */ 646 struct device_node *of_get_next_child(const struct device_node *node, 647 struct device_node *prev) 648 { 649 struct device_node *next; 650 unsigned long flags; 651 652 raw_spin_lock_irqsave(&devtree_lock, flags); 653 next = __of_get_next_child(node, prev); 654 raw_spin_unlock_irqrestore(&devtree_lock, flags); 655 return next; 656 } 657 EXPORT_SYMBOL(of_get_next_child); 658 659 /** 660 * of_get_next_available_child - Find the next available child node 661 * @node: parent node 662 * @prev: previous child of the parent node, or NULL to get first 663 * 664 * This function is like of_get_next_child(), except that it 665 * automatically skips any disabled nodes (i.e. status = "disabled"). 666 */ 667 struct device_node *of_get_next_available_child(const struct device_node *node, 668 struct device_node *prev) 669 { 670 struct device_node *next; 671 unsigned long flags; 672 673 if (!node) 674 return NULL; 675 676 raw_spin_lock_irqsave(&devtree_lock, flags); 677 next = prev ? prev->sibling : node->child; 678 for (; next; next = next->sibling) { 679 if (!__of_device_is_available(next)) 680 continue; 681 if (of_node_get(next)) 682 break; 683 } 684 of_node_put(prev); 685 raw_spin_unlock_irqrestore(&devtree_lock, flags); 686 return next; 687 } 688 EXPORT_SYMBOL(of_get_next_available_child); 689 690 /** 691 * of_get_child_by_name - Find the child node by name for a given parent 692 * @node: parent node 693 * @name: child name to look for. 694 * 695 * This function looks for child node for given matching name 696 * 697 * Returns a node pointer if found, with refcount incremented, use 698 * of_node_put() on it when done. 699 * Returns NULL if node is not found. 700 */ 701 struct device_node *of_get_child_by_name(const struct device_node *node, 702 const char *name) 703 { 704 struct device_node *child; 705 706 for_each_child_of_node(node, child) 707 if (child->name && (of_node_cmp(child->name, name) == 0)) 708 break; 709 return child; 710 } 711 EXPORT_SYMBOL(of_get_child_by_name); 712 713 static struct device_node *__of_find_node_by_path(struct device_node *parent, 714 const char *path) 715 { 716 struct device_node *child; 717 int len; 718 const char *end; 719 720 end = strchr(path, ':'); 721 if (!end) 722 end = strchrnul(path, '/'); 723 724 len = end - path; 725 if (!len) 726 return NULL; 727 728 __for_each_child_of_node(parent, child) { 729 const char *name = strrchr(child->full_name, '/'); 730 if (WARN(!name, "malformed device_node %s\n", child->full_name)) 731 continue; 732 name++; 733 if (strncmp(path, name, len) == 0 && (strlen(name) == len)) 734 return child; 735 } 736 return NULL; 737 } 738 739 /** 740 * of_find_node_opts_by_path - Find a node matching a full OF path 741 * @path: Either the full path to match, or if the path does not 742 * start with '/', the name of a property of the /aliases 743 * node (an alias). In the case of an alias, the node 744 * matching the alias' value will be returned. 745 * @opts: Address of a pointer into which to store the start of 746 * an options string appended to the end of the path with 747 * a ':' separator. 748 * 749 * Valid paths: 750 * /foo/bar Full path 751 * foo Valid alias 752 * foo/bar Valid alias + relative path 753 * 754 * Returns a node pointer with refcount incremented, use 755 * of_node_put() on it when done. 756 */ 757 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts) 758 { 759 struct device_node *np = NULL; 760 struct property *pp; 761 unsigned long flags; 762 const char *separator = strchr(path, ':'); 763 764 if (opts) 765 *opts = separator ? separator + 1 : NULL; 766 767 if (strcmp(path, "/") == 0) 768 return of_node_get(of_root); 769 770 /* The path could begin with an alias */ 771 if (*path != '/') { 772 int len; 773 const char *p = separator; 774 775 if (!p) 776 p = strchrnul(path, '/'); 777 len = p - path; 778 779 /* of_aliases must not be NULL */ 780 if (!of_aliases) 781 return NULL; 782 783 for_each_property_of_node(of_aliases, pp) { 784 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) { 785 np = of_find_node_by_path(pp->value); 786 break; 787 } 788 } 789 if (!np) 790 return NULL; 791 path = p; 792 } 793 794 /* Step down the tree matching path components */ 795 raw_spin_lock_irqsave(&devtree_lock, flags); 796 if (!np) 797 np = of_node_get(of_root); 798 while (np && *path == '/') { 799 path++; /* Increment past '/' delimiter */ 800 np = __of_find_node_by_path(np, path); 801 path = strchrnul(path, '/'); 802 if (separator && separator < path) 803 break; 804 } 805 raw_spin_unlock_irqrestore(&devtree_lock, flags); 806 return np; 807 } 808 EXPORT_SYMBOL(of_find_node_opts_by_path); 809 810 /** 811 * of_find_node_by_name - Find a node by its "name" property 812 * @from: The node to start searching from or NULL, the node 813 * you pass will not be searched, only the next one 814 * will; typically, you pass what the previous call 815 * returned. of_node_put() will be called on it 816 * @name: The name string to match against 817 * 818 * Returns a node pointer with refcount incremented, use 819 * of_node_put() on it when done. 820 */ 821 struct device_node *of_find_node_by_name(struct device_node *from, 822 const char *name) 823 { 824 struct device_node *np; 825 unsigned long flags; 826 827 raw_spin_lock_irqsave(&devtree_lock, flags); 828 for_each_of_allnodes_from(from, np) 829 if (np->name && (of_node_cmp(np->name, name) == 0) 830 && of_node_get(np)) 831 break; 832 of_node_put(from); 833 raw_spin_unlock_irqrestore(&devtree_lock, flags); 834 return np; 835 } 836 EXPORT_SYMBOL(of_find_node_by_name); 837 838 /** 839 * of_find_node_by_type - Find a node by its "device_type" property 840 * @from: The node to start searching from, or NULL to start searching 841 * the entire device tree. The node you pass will not be 842 * searched, only the next one will; typically, you pass 843 * what the previous call returned. of_node_put() will be 844 * called on from for you. 845 * @type: The type string to match against 846 * 847 * Returns a node pointer with refcount incremented, use 848 * of_node_put() on it when done. 849 */ 850 struct device_node *of_find_node_by_type(struct device_node *from, 851 const char *type) 852 { 853 struct device_node *np; 854 unsigned long flags; 855 856 raw_spin_lock_irqsave(&devtree_lock, flags); 857 for_each_of_allnodes_from(from, np) 858 if (np->type && (of_node_cmp(np->type, type) == 0) 859 && of_node_get(np)) 860 break; 861 of_node_put(from); 862 raw_spin_unlock_irqrestore(&devtree_lock, flags); 863 return np; 864 } 865 EXPORT_SYMBOL(of_find_node_by_type); 866 867 /** 868 * of_find_compatible_node - Find a node based on type and one of the 869 * tokens in its "compatible" property 870 * @from: The node to start searching from or NULL, the node 871 * you pass will not be searched, only the next one 872 * will; typically, you pass what the previous call 873 * returned. of_node_put() will be called on it 874 * @type: The type string to match "device_type" or NULL to ignore 875 * @compatible: The string to match to one of the tokens in the device 876 * "compatible" list. 877 * 878 * Returns a node pointer with refcount incremented, use 879 * of_node_put() on it when done. 880 */ 881 struct device_node *of_find_compatible_node(struct device_node *from, 882 const char *type, const char *compatible) 883 { 884 struct device_node *np; 885 unsigned long flags; 886 887 raw_spin_lock_irqsave(&devtree_lock, flags); 888 for_each_of_allnodes_from(from, np) 889 if (__of_device_is_compatible(np, compatible, type, NULL) && 890 of_node_get(np)) 891 break; 892 of_node_put(from); 893 raw_spin_unlock_irqrestore(&devtree_lock, flags); 894 return np; 895 } 896 EXPORT_SYMBOL(of_find_compatible_node); 897 898 /** 899 * of_find_node_with_property - Find a node which has a property with 900 * the given name. 901 * @from: The node to start searching from or NULL, the node 902 * you pass will not be searched, only the next one 903 * will; typically, you pass what the previous call 904 * returned. of_node_put() will be called on it 905 * @prop_name: The name of the property to look for. 906 * 907 * Returns a node pointer with refcount incremented, use 908 * of_node_put() on it when done. 909 */ 910 struct device_node *of_find_node_with_property(struct device_node *from, 911 const char *prop_name) 912 { 913 struct device_node *np; 914 struct property *pp; 915 unsigned long flags; 916 917 raw_spin_lock_irqsave(&devtree_lock, flags); 918 for_each_of_allnodes_from(from, np) { 919 for (pp = np->properties; pp; pp = pp->next) { 920 if (of_prop_cmp(pp->name, prop_name) == 0) { 921 of_node_get(np); 922 goto out; 923 } 924 } 925 } 926 out: 927 of_node_put(from); 928 raw_spin_unlock_irqrestore(&devtree_lock, flags); 929 return np; 930 } 931 EXPORT_SYMBOL(of_find_node_with_property); 932 933 static 934 const struct of_device_id *__of_match_node(const struct of_device_id *matches, 935 const struct device_node *node) 936 { 937 const struct of_device_id *best_match = NULL; 938 int score, best_score = 0; 939 940 if (!matches) 941 return NULL; 942 943 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) { 944 score = __of_device_is_compatible(node, matches->compatible, 945 matches->type, matches->name); 946 if (score > best_score) { 947 best_match = matches; 948 best_score = score; 949 } 950 } 951 952 return best_match; 953 } 954 955 /** 956 * of_match_node - Tell if a device_node has a matching of_match structure 957 * @matches: array of of device match structures to search in 958 * @node: the of device structure to match against 959 * 960 * Low level utility function used by device matching. 961 */ 962 const struct of_device_id *of_match_node(const struct of_device_id *matches, 963 const struct device_node *node) 964 { 965 const struct of_device_id *match; 966 unsigned long flags; 967 968 raw_spin_lock_irqsave(&devtree_lock, flags); 969 match = __of_match_node(matches, node); 970 raw_spin_unlock_irqrestore(&devtree_lock, flags); 971 return match; 972 } 973 EXPORT_SYMBOL(of_match_node); 974 975 /** 976 * of_find_matching_node_and_match - Find a node based on an of_device_id 977 * match table. 978 * @from: The node to start searching from or NULL, the node 979 * you pass will not be searched, only the next one 980 * will; typically, you pass what the previous call 981 * returned. of_node_put() will be called on it 982 * @matches: array of of device match structures to search in 983 * @match Updated to point at the matches entry which matched 984 * 985 * Returns a node pointer with refcount incremented, use 986 * of_node_put() on it when done. 987 */ 988 struct device_node *of_find_matching_node_and_match(struct device_node *from, 989 const struct of_device_id *matches, 990 const struct of_device_id **match) 991 { 992 struct device_node *np; 993 const struct of_device_id *m; 994 unsigned long flags; 995 996 if (match) 997 *match = NULL; 998 999 raw_spin_lock_irqsave(&devtree_lock, flags); 1000 for_each_of_allnodes_from(from, np) { 1001 m = __of_match_node(matches, np); 1002 if (m && of_node_get(np)) { 1003 if (match) 1004 *match = m; 1005 break; 1006 } 1007 } 1008 of_node_put(from); 1009 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1010 return np; 1011 } 1012 EXPORT_SYMBOL(of_find_matching_node_and_match); 1013 1014 /** 1015 * of_modalias_node - Lookup appropriate modalias for a device node 1016 * @node: pointer to a device tree node 1017 * @modalias: Pointer to buffer that modalias value will be copied into 1018 * @len: Length of modalias value 1019 * 1020 * Based on the value of the compatible property, this routine will attempt 1021 * to choose an appropriate modalias value for a particular device tree node. 1022 * It does this by stripping the manufacturer prefix (as delimited by a ',') 1023 * from the first entry in the compatible list property. 1024 * 1025 * This routine returns 0 on success, <0 on failure. 1026 */ 1027 int of_modalias_node(struct device_node *node, char *modalias, int len) 1028 { 1029 const char *compatible, *p; 1030 int cplen; 1031 1032 compatible = of_get_property(node, "compatible", &cplen); 1033 if (!compatible || strlen(compatible) > cplen) 1034 return -ENODEV; 1035 p = strchr(compatible, ','); 1036 strlcpy(modalias, p ? p + 1 : compatible, len); 1037 return 0; 1038 } 1039 EXPORT_SYMBOL_GPL(of_modalias_node); 1040 1041 /** 1042 * of_find_node_by_phandle - Find a node given a phandle 1043 * @handle: phandle of the node to find 1044 * 1045 * Returns a node pointer with refcount incremented, use 1046 * of_node_put() on it when done. 1047 */ 1048 struct device_node *of_find_node_by_phandle(phandle handle) 1049 { 1050 struct device_node *np; 1051 unsigned long flags; 1052 1053 if (!handle) 1054 return NULL; 1055 1056 raw_spin_lock_irqsave(&devtree_lock, flags); 1057 for_each_of_allnodes(np) 1058 if (np->phandle == handle) 1059 break; 1060 of_node_get(np); 1061 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1062 return np; 1063 } 1064 EXPORT_SYMBOL(of_find_node_by_phandle); 1065 1066 /** 1067 * of_property_count_elems_of_size - Count the number of elements in a property 1068 * 1069 * @np: device node from which the property value is to be read. 1070 * @propname: name of the property to be searched. 1071 * @elem_size: size of the individual element 1072 * 1073 * Search for a property in a device node and count the number of elements of 1074 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the 1075 * property does not exist or its length does not match a multiple of elem_size 1076 * and -ENODATA if the property does not have a value. 1077 */ 1078 int of_property_count_elems_of_size(const struct device_node *np, 1079 const char *propname, int elem_size) 1080 { 1081 struct property *prop = of_find_property(np, propname, NULL); 1082 1083 if (!prop) 1084 return -EINVAL; 1085 if (!prop->value) 1086 return -ENODATA; 1087 1088 if (prop->length % elem_size != 0) { 1089 pr_err("size of %s in node %s is not a multiple of %d\n", 1090 propname, np->full_name, elem_size); 1091 return -EINVAL; 1092 } 1093 1094 return prop->length / elem_size; 1095 } 1096 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size); 1097 1098 /** 1099 * of_find_property_value_of_size 1100 * 1101 * @np: device node from which the property value is to be read. 1102 * @propname: name of the property to be searched. 1103 * @len: requested length of property value 1104 * 1105 * Search for a property in a device node and valid the requested size. 1106 * Returns the property value on success, -EINVAL if the property does not 1107 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the 1108 * property data isn't large enough. 1109 * 1110 */ 1111 static void *of_find_property_value_of_size(const struct device_node *np, 1112 const char *propname, u32 len) 1113 { 1114 struct property *prop = of_find_property(np, propname, NULL); 1115 1116 if (!prop) 1117 return ERR_PTR(-EINVAL); 1118 if (!prop->value) 1119 return ERR_PTR(-ENODATA); 1120 if (len > prop->length) 1121 return ERR_PTR(-EOVERFLOW); 1122 1123 return prop->value; 1124 } 1125 1126 /** 1127 * of_property_read_u32_index - Find and read a u32 from a multi-value property. 1128 * 1129 * @np: device node from which the property value is to be read. 1130 * @propname: name of the property to be searched. 1131 * @index: index of the u32 in the list of values 1132 * @out_value: pointer to return value, modified only if no error. 1133 * 1134 * Search for a property in a device node and read nth 32-bit value from 1135 * it. Returns 0 on success, -EINVAL if the property does not exist, 1136 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1137 * property data isn't large enough. 1138 * 1139 * The out_value is modified only if a valid u32 value can be decoded. 1140 */ 1141 int of_property_read_u32_index(const struct device_node *np, 1142 const char *propname, 1143 u32 index, u32 *out_value) 1144 { 1145 const u32 *val = of_find_property_value_of_size(np, propname, 1146 ((index + 1) * sizeof(*out_value))); 1147 1148 if (IS_ERR(val)) 1149 return PTR_ERR(val); 1150 1151 *out_value = be32_to_cpup(((__be32 *)val) + index); 1152 return 0; 1153 } 1154 EXPORT_SYMBOL_GPL(of_property_read_u32_index); 1155 1156 /** 1157 * of_property_read_u8_array - Find and read an array of u8 from a property. 1158 * 1159 * @np: device node from which the property value is to be read. 1160 * @propname: name of the property to be searched. 1161 * @out_values: pointer to return value, modified only if return value is 0. 1162 * @sz: number of array elements to read 1163 * 1164 * Search for a property in a device node and read 8-bit value(s) from 1165 * it. Returns 0 on success, -EINVAL if the property does not exist, 1166 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1167 * property data isn't large enough. 1168 * 1169 * dts entry of array should be like: 1170 * property = /bits/ 8 <0x50 0x60 0x70>; 1171 * 1172 * The out_values is modified only if a valid u8 value can be decoded. 1173 */ 1174 int of_property_read_u8_array(const struct device_node *np, 1175 const char *propname, u8 *out_values, size_t sz) 1176 { 1177 const u8 *val = of_find_property_value_of_size(np, propname, 1178 (sz * sizeof(*out_values))); 1179 1180 if (IS_ERR(val)) 1181 return PTR_ERR(val); 1182 1183 while (sz--) 1184 *out_values++ = *val++; 1185 return 0; 1186 } 1187 EXPORT_SYMBOL_GPL(of_property_read_u8_array); 1188 1189 /** 1190 * of_property_read_u16_array - Find and read an array of u16 from a property. 1191 * 1192 * @np: device node from which the property value is to be read. 1193 * @propname: name of the property to be searched. 1194 * @out_values: pointer to return value, modified only if return value is 0. 1195 * @sz: number of array elements to read 1196 * 1197 * Search for a property in a device node and read 16-bit value(s) from 1198 * it. Returns 0 on success, -EINVAL if the property does not exist, 1199 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1200 * property data isn't large enough. 1201 * 1202 * dts entry of array should be like: 1203 * property = /bits/ 16 <0x5000 0x6000 0x7000>; 1204 * 1205 * The out_values is modified only if a valid u16 value can be decoded. 1206 */ 1207 int of_property_read_u16_array(const struct device_node *np, 1208 const char *propname, u16 *out_values, size_t sz) 1209 { 1210 const __be16 *val = of_find_property_value_of_size(np, propname, 1211 (sz * sizeof(*out_values))); 1212 1213 if (IS_ERR(val)) 1214 return PTR_ERR(val); 1215 1216 while (sz--) 1217 *out_values++ = be16_to_cpup(val++); 1218 return 0; 1219 } 1220 EXPORT_SYMBOL_GPL(of_property_read_u16_array); 1221 1222 /** 1223 * of_property_read_u32_array - Find and read an array of 32 bit integers 1224 * from a property. 1225 * 1226 * @np: device node from which the property value is to be read. 1227 * @propname: name of the property to be searched. 1228 * @out_values: pointer to return value, modified only if return value is 0. 1229 * @sz: number of array elements to read 1230 * 1231 * Search for a property in a device node and read 32-bit value(s) from 1232 * it. Returns 0 on success, -EINVAL if the property does not exist, 1233 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1234 * property data isn't large enough. 1235 * 1236 * The out_values is modified only if a valid u32 value can be decoded. 1237 */ 1238 int of_property_read_u32_array(const struct device_node *np, 1239 const char *propname, u32 *out_values, 1240 size_t sz) 1241 { 1242 const __be32 *val = of_find_property_value_of_size(np, propname, 1243 (sz * sizeof(*out_values))); 1244 1245 if (IS_ERR(val)) 1246 return PTR_ERR(val); 1247 1248 while (sz--) 1249 *out_values++ = be32_to_cpup(val++); 1250 return 0; 1251 } 1252 EXPORT_SYMBOL_GPL(of_property_read_u32_array); 1253 1254 /** 1255 * of_property_read_u64 - Find and read a 64 bit integer from a property 1256 * @np: device node from which the property value is to be read. 1257 * @propname: name of the property to be searched. 1258 * @out_value: pointer to return value, modified only if return value is 0. 1259 * 1260 * Search for a property in a device node and read a 64-bit value from 1261 * it. Returns 0 on success, -EINVAL if the property does not exist, 1262 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1263 * property data isn't large enough. 1264 * 1265 * The out_value is modified only if a valid u64 value can be decoded. 1266 */ 1267 int of_property_read_u64(const struct device_node *np, const char *propname, 1268 u64 *out_value) 1269 { 1270 const __be32 *val = of_find_property_value_of_size(np, propname, 1271 sizeof(*out_value)); 1272 1273 if (IS_ERR(val)) 1274 return PTR_ERR(val); 1275 1276 *out_value = of_read_number(val, 2); 1277 return 0; 1278 } 1279 EXPORT_SYMBOL_GPL(of_property_read_u64); 1280 1281 /** 1282 * of_property_read_u64_array - Find and read an array of 64 bit integers 1283 * from a property. 1284 * 1285 * @np: device node from which the property value is to be read. 1286 * @propname: name of the property to be searched. 1287 * @out_values: pointer to return value, modified only if return value is 0. 1288 * @sz: number of array elements to read 1289 * 1290 * Search for a property in a device node and read 64-bit value(s) from 1291 * it. Returns 0 on success, -EINVAL if the property does not exist, 1292 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1293 * property data isn't large enough. 1294 * 1295 * The out_values is modified only if a valid u64 value can be decoded. 1296 */ 1297 int of_property_read_u64_array(const struct device_node *np, 1298 const char *propname, u64 *out_values, 1299 size_t sz) 1300 { 1301 const __be32 *val = of_find_property_value_of_size(np, propname, 1302 (sz * sizeof(*out_values))); 1303 1304 if (IS_ERR(val)) 1305 return PTR_ERR(val); 1306 1307 while (sz--) { 1308 *out_values++ = of_read_number(val, 2); 1309 val += 2; 1310 } 1311 return 0; 1312 } 1313 EXPORT_SYMBOL_GPL(of_property_read_u64_array); 1314 1315 /** 1316 * of_property_read_string - Find and read a string from a property 1317 * @np: device node from which the property value is to be read. 1318 * @propname: name of the property to be searched. 1319 * @out_string: pointer to null terminated return string, modified only if 1320 * return value is 0. 1321 * 1322 * Search for a property in a device tree node and retrieve a null 1323 * terminated string value (pointer to data, not a copy). Returns 0 on 1324 * success, -EINVAL if the property does not exist, -ENODATA if property 1325 * does not have a value, and -EILSEQ if the string is not null-terminated 1326 * within the length of the property data. 1327 * 1328 * The out_string pointer is modified only if a valid string can be decoded. 1329 */ 1330 int of_property_read_string(struct device_node *np, const char *propname, 1331 const char **out_string) 1332 { 1333 struct property *prop = of_find_property(np, propname, NULL); 1334 if (!prop) 1335 return -EINVAL; 1336 if (!prop->value) 1337 return -ENODATA; 1338 if (strnlen(prop->value, prop->length) >= prop->length) 1339 return -EILSEQ; 1340 *out_string = prop->value; 1341 return 0; 1342 } 1343 EXPORT_SYMBOL_GPL(of_property_read_string); 1344 1345 /** 1346 * of_property_match_string() - Find string in a list and return index 1347 * @np: pointer to node containing string list property 1348 * @propname: string list property name 1349 * @string: pointer to string to search for in string list 1350 * 1351 * This function searches a string list property and returns the index 1352 * of a specific string value. 1353 */ 1354 int of_property_match_string(struct device_node *np, const char *propname, 1355 const char *string) 1356 { 1357 struct property *prop = of_find_property(np, propname, NULL); 1358 size_t l; 1359 int i; 1360 const char *p, *end; 1361 1362 if (!prop) 1363 return -EINVAL; 1364 if (!prop->value) 1365 return -ENODATA; 1366 1367 p = prop->value; 1368 end = p + prop->length; 1369 1370 for (i = 0; p < end; i++, p += l) { 1371 l = strnlen(p, end - p) + 1; 1372 if (p + l > end) 1373 return -EILSEQ; 1374 pr_debug("comparing %s with %s\n", string, p); 1375 if (strcmp(string, p) == 0) 1376 return i; /* Found it; return index */ 1377 } 1378 return -ENODATA; 1379 } 1380 EXPORT_SYMBOL_GPL(of_property_match_string); 1381 1382 /** 1383 * of_property_read_string_helper() - Utility helper for parsing string properties 1384 * @np: device node from which the property value is to be read. 1385 * @propname: name of the property to be searched. 1386 * @out_strs: output array of string pointers. 1387 * @sz: number of array elements to read. 1388 * @skip: Number of strings to skip over at beginning of list. 1389 * 1390 * Don't call this function directly. It is a utility helper for the 1391 * of_property_read_string*() family of functions. 1392 */ 1393 int of_property_read_string_helper(struct device_node *np, const char *propname, 1394 const char **out_strs, size_t sz, int skip) 1395 { 1396 struct property *prop = of_find_property(np, propname, NULL); 1397 int l = 0, i = 0; 1398 const char *p, *end; 1399 1400 if (!prop) 1401 return -EINVAL; 1402 if (!prop->value) 1403 return -ENODATA; 1404 p = prop->value; 1405 end = p + prop->length; 1406 1407 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) { 1408 l = strnlen(p, end - p) + 1; 1409 if (p + l > end) 1410 return -EILSEQ; 1411 if (out_strs && i >= skip) 1412 *out_strs++ = p; 1413 } 1414 i -= skip; 1415 return i <= 0 ? -ENODATA : i; 1416 } 1417 EXPORT_SYMBOL_GPL(of_property_read_string_helper); 1418 1419 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args) 1420 { 1421 int i; 1422 printk("%s %s", msg, of_node_full_name(args->np)); 1423 for (i = 0; i < args->args_count; i++) 1424 printk(i ? ",%08x" : ":%08x", args->args[i]); 1425 printk("\n"); 1426 } 1427 1428 static int __of_parse_phandle_with_args(const struct device_node *np, 1429 const char *list_name, 1430 const char *cells_name, 1431 int cell_count, int index, 1432 struct of_phandle_args *out_args) 1433 { 1434 const __be32 *list, *list_end; 1435 int rc = 0, size, cur_index = 0; 1436 uint32_t count = 0; 1437 struct device_node *node = NULL; 1438 phandle phandle; 1439 1440 /* Retrieve the phandle list property */ 1441 list = of_get_property(np, list_name, &size); 1442 if (!list) 1443 return -ENOENT; 1444 list_end = list + size / sizeof(*list); 1445 1446 /* Loop over the phandles until all the requested entry is found */ 1447 while (list < list_end) { 1448 rc = -EINVAL; 1449 count = 0; 1450 1451 /* 1452 * If phandle is 0, then it is an empty entry with no 1453 * arguments. Skip forward to the next entry. 1454 */ 1455 phandle = be32_to_cpup(list++); 1456 if (phandle) { 1457 /* 1458 * Find the provider node and parse the #*-cells 1459 * property to determine the argument length. 1460 * 1461 * This is not needed if the cell count is hard-coded 1462 * (i.e. cells_name not set, but cell_count is set), 1463 * except when we're going to return the found node 1464 * below. 1465 */ 1466 if (cells_name || cur_index == index) { 1467 node = of_find_node_by_phandle(phandle); 1468 if (!node) { 1469 pr_err("%s: could not find phandle\n", 1470 np->full_name); 1471 goto err; 1472 } 1473 } 1474 1475 if (cells_name) { 1476 if (of_property_read_u32(node, cells_name, 1477 &count)) { 1478 pr_err("%s: could not get %s for %s\n", 1479 np->full_name, cells_name, 1480 node->full_name); 1481 goto err; 1482 } 1483 } else { 1484 count = cell_count; 1485 } 1486 1487 /* 1488 * Make sure that the arguments actually fit in the 1489 * remaining property data length 1490 */ 1491 if (list + count > list_end) { 1492 pr_err("%s: arguments longer than property\n", 1493 np->full_name); 1494 goto err; 1495 } 1496 } 1497 1498 /* 1499 * All of the error cases above bail out of the loop, so at 1500 * this point, the parsing is successful. If the requested 1501 * index matches, then fill the out_args structure and return, 1502 * or return -ENOENT for an empty entry. 1503 */ 1504 rc = -ENOENT; 1505 if (cur_index == index) { 1506 if (!phandle) 1507 goto err; 1508 1509 if (out_args) { 1510 int i; 1511 if (WARN_ON(count > MAX_PHANDLE_ARGS)) 1512 count = MAX_PHANDLE_ARGS; 1513 out_args->np = node; 1514 out_args->args_count = count; 1515 for (i = 0; i < count; i++) 1516 out_args->args[i] = be32_to_cpup(list++); 1517 } else { 1518 of_node_put(node); 1519 } 1520 1521 /* Found it! return success */ 1522 return 0; 1523 } 1524 1525 of_node_put(node); 1526 node = NULL; 1527 list += count; 1528 cur_index++; 1529 } 1530 1531 /* 1532 * Unlock node before returning result; will be one of: 1533 * -ENOENT : index is for empty phandle 1534 * -EINVAL : parsing error on data 1535 * [1..n] : Number of phandle (count mode; when index = -1) 1536 */ 1537 rc = index < 0 ? cur_index : -ENOENT; 1538 err: 1539 if (node) 1540 of_node_put(node); 1541 return rc; 1542 } 1543 1544 /** 1545 * of_parse_phandle - Resolve a phandle property to a device_node pointer 1546 * @np: Pointer to device node holding phandle property 1547 * @phandle_name: Name of property holding a phandle value 1548 * @index: For properties holding a table of phandles, this is the index into 1549 * the table 1550 * 1551 * Returns the device_node pointer with refcount incremented. Use 1552 * of_node_put() on it when done. 1553 */ 1554 struct device_node *of_parse_phandle(const struct device_node *np, 1555 const char *phandle_name, int index) 1556 { 1557 struct of_phandle_args args; 1558 1559 if (index < 0) 1560 return NULL; 1561 1562 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0, 1563 index, &args)) 1564 return NULL; 1565 1566 return args.np; 1567 } 1568 EXPORT_SYMBOL(of_parse_phandle); 1569 1570 /** 1571 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list 1572 * @np: pointer to a device tree node containing a list 1573 * @list_name: property name that contains a list 1574 * @cells_name: property name that specifies phandles' arguments count 1575 * @index: index of a phandle to parse out 1576 * @out_args: optional pointer to output arguments structure (will be filled) 1577 * 1578 * This function is useful to parse lists of phandles and their arguments. 1579 * Returns 0 on success and fills out_args, on error returns appropriate 1580 * errno value. 1581 * 1582 * Caller is responsible to call of_node_put() on the returned out_args->np 1583 * pointer. 1584 * 1585 * Example: 1586 * 1587 * phandle1: node1 { 1588 * #list-cells = <2>; 1589 * } 1590 * 1591 * phandle2: node2 { 1592 * #list-cells = <1>; 1593 * } 1594 * 1595 * node3 { 1596 * list = <&phandle1 1 2 &phandle2 3>; 1597 * } 1598 * 1599 * To get a device_node of the `node2' node you may call this: 1600 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args); 1601 */ 1602 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name, 1603 const char *cells_name, int index, 1604 struct of_phandle_args *out_args) 1605 { 1606 if (index < 0) 1607 return -EINVAL; 1608 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, 1609 index, out_args); 1610 } 1611 EXPORT_SYMBOL(of_parse_phandle_with_args); 1612 1613 /** 1614 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list 1615 * @np: pointer to a device tree node containing a list 1616 * @list_name: property name that contains a list 1617 * @cell_count: number of argument cells following the phandle 1618 * @index: index of a phandle to parse out 1619 * @out_args: optional pointer to output arguments structure (will be filled) 1620 * 1621 * This function is useful to parse lists of phandles and their arguments. 1622 * Returns 0 on success and fills out_args, on error returns appropriate 1623 * errno value. 1624 * 1625 * Caller is responsible to call of_node_put() on the returned out_args->np 1626 * pointer. 1627 * 1628 * Example: 1629 * 1630 * phandle1: node1 { 1631 * } 1632 * 1633 * phandle2: node2 { 1634 * } 1635 * 1636 * node3 { 1637 * list = <&phandle1 0 2 &phandle2 2 3>; 1638 * } 1639 * 1640 * To get a device_node of the `node2' node you may call this: 1641 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args); 1642 */ 1643 int of_parse_phandle_with_fixed_args(const struct device_node *np, 1644 const char *list_name, int cell_count, 1645 int index, struct of_phandle_args *out_args) 1646 { 1647 if (index < 0) 1648 return -EINVAL; 1649 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count, 1650 index, out_args); 1651 } 1652 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args); 1653 1654 /** 1655 * of_count_phandle_with_args() - Find the number of phandles references in a property 1656 * @np: pointer to a device tree node containing a list 1657 * @list_name: property name that contains a list 1658 * @cells_name: property name that specifies phandles' arguments count 1659 * 1660 * Returns the number of phandle + argument tuples within a property. It 1661 * is a typical pattern to encode a list of phandle and variable 1662 * arguments into a single property. The number of arguments is encoded 1663 * by a property in the phandle-target node. For example, a gpios 1664 * property would contain a list of GPIO specifies consisting of a 1665 * phandle and 1 or more arguments. The number of arguments are 1666 * determined by the #gpio-cells property in the node pointed to by the 1667 * phandle. 1668 */ 1669 int of_count_phandle_with_args(const struct device_node *np, const char *list_name, 1670 const char *cells_name) 1671 { 1672 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1, 1673 NULL); 1674 } 1675 EXPORT_SYMBOL(of_count_phandle_with_args); 1676 1677 /** 1678 * __of_add_property - Add a property to a node without lock operations 1679 */ 1680 int __of_add_property(struct device_node *np, struct property *prop) 1681 { 1682 struct property **next; 1683 1684 prop->next = NULL; 1685 next = &np->properties; 1686 while (*next) { 1687 if (strcmp(prop->name, (*next)->name) == 0) 1688 /* duplicate ! don't insert it */ 1689 return -EEXIST; 1690 1691 next = &(*next)->next; 1692 } 1693 *next = prop; 1694 1695 return 0; 1696 } 1697 1698 /** 1699 * of_add_property - Add a property to a node 1700 */ 1701 int of_add_property(struct device_node *np, struct property *prop) 1702 { 1703 unsigned long flags; 1704 int rc; 1705 1706 mutex_lock(&of_mutex); 1707 1708 raw_spin_lock_irqsave(&devtree_lock, flags); 1709 rc = __of_add_property(np, prop); 1710 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1711 1712 if (!rc) 1713 __of_add_property_sysfs(np, prop); 1714 1715 mutex_unlock(&of_mutex); 1716 1717 if (!rc) 1718 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL); 1719 1720 return rc; 1721 } 1722 1723 int __of_remove_property(struct device_node *np, struct property *prop) 1724 { 1725 struct property **next; 1726 1727 for (next = &np->properties; *next; next = &(*next)->next) { 1728 if (*next == prop) 1729 break; 1730 } 1731 if (*next == NULL) 1732 return -ENODEV; 1733 1734 /* found the node */ 1735 *next = prop->next; 1736 prop->next = np->deadprops; 1737 np->deadprops = prop; 1738 1739 return 0; 1740 } 1741 1742 void __of_remove_property_sysfs(struct device_node *np, struct property *prop) 1743 { 1744 if (!IS_ENABLED(CONFIG_SYSFS)) 1745 return; 1746 1747 /* at early boot, bail here and defer setup to of_init() */ 1748 if (of_kset && of_node_is_attached(np)) 1749 sysfs_remove_bin_file(&np->kobj, &prop->attr); 1750 } 1751 1752 /** 1753 * of_remove_property - Remove a property from a node. 1754 * 1755 * Note that we don't actually remove it, since we have given out 1756 * who-knows-how-many pointers to the data using get-property. 1757 * Instead we just move the property to the "dead properties" 1758 * list, so it won't be found any more. 1759 */ 1760 int of_remove_property(struct device_node *np, struct property *prop) 1761 { 1762 unsigned long flags; 1763 int rc; 1764 1765 mutex_lock(&of_mutex); 1766 1767 raw_spin_lock_irqsave(&devtree_lock, flags); 1768 rc = __of_remove_property(np, prop); 1769 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1770 1771 if (!rc) 1772 __of_remove_property_sysfs(np, prop); 1773 1774 mutex_unlock(&of_mutex); 1775 1776 if (!rc) 1777 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL); 1778 1779 return rc; 1780 } 1781 1782 int __of_update_property(struct device_node *np, struct property *newprop, 1783 struct property **oldpropp) 1784 { 1785 struct property **next, *oldprop; 1786 1787 for (next = &np->properties; *next; next = &(*next)->next) { 1788 if (of_prop_cmp((*next)->name, newprop->name) == 0) 1789 break; 1790 } 1791 *oldpropp = oldprop = *next; 1792 1793 if (oldprop) { 1794 /* replace the node */ 1795 newprop->next = oldprop->next; 1796 *next = newprop; 1797 oldprop->next = np->deadprops; 1798 np->deadprops = oldprop; 1799 } else { 1800 /* new node */ 1801 newprop->next = NULL; 1802 *next = newprop; 1803 } 1804 1805 return 0; 1806 } 1807 1808 void __of_update_property_sysfs(struct device_node *np, struct property *newprop, 1809 struct property *oldprop) 1810 { 1811 if (!IS_ENABLED(CONFIG_SYSFS)) 1812 return; 1813 1814 /* At early boot, bail out and defer setup to of_init() */ 1815 if (!of_kset) 1816 return; 1817 1818 if (oldprop) 1819 sysfs_remove_bin_file(&np->kobj, &oldprop->attr); 1820 __of_add_property_sysfs(np, newprop); 1821 } 1822 1823 /* 1824 * of_update_property - Update a property in a node, if the property does 1825 * not exist, add it. 1826 * 1827 * Note that we don't actually remove it, since we have given out 1828 * who-knows-how-many pointers to the data using get-property. 1829 * Instead we just move the property to the "dead properties" list, 1830 * and add the new property to the property list 1831 */ 1832 int of_update_property(struct device_node *np, struct property *newprop) 1833 { 1834 struct property *oldprop; 1835 unsigned long flags; 1836 int rc; 1837 1838 if (!newprop->name) 1839 return -EINVAL; 1840 1841 mutex_lock(&of_mutex); 1842 1843 raw_spin_lock_irqsave(&devtree_lock, flags); 1844 rc = __of_update_property(np, newprop, &oldprop); 1845 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1846 1847 if (!rc) 1848 __of_update_property_sysfs(np, newprop, oldprop); 1849 1850 mutex_unlock(&of_mutex); 1851 1852 if (!rc) 1853 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop); 1854 1855 return rc; 1856 } 1857 1858 static void of_alias_add(struct alias_prop *ap, struct device_node *np, 1859 int id, const char *stem, int stem_len) 1860 { 1861 ap->np = np; 1862 ap->id = id; 1863 strncpy(ap->stem, stem, stem_len); 1864 ap->stem[stem_len] = 0; 1865 list_add_tail(&ap->link, &aliases_lookup); 1866 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n", 1867 ap->alias, ap->stem, ap->id, of_node_full_name(np)); 1868 } 1869 1870 /** 1871 * of_alias_scan - Scan all properties of the 'aliases' node 1872 * 1873 * The function scans all the properties of the 'aliases' node and populates 1874 * the global lookup table with the properties. It returns the 1875 * number of alias properties found, or an error code in case of failure. 1876 * 1877 * @dt_alloc: An allocator that provides a virtual address to memory 1878 * for storing the resulting tree 1879 */ 1880 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align)) 1881 { 1882 struct property *pp; 1883 1884 of_aliases = of_find_node_by_path("/aliases"); 1885 of_chosen = of_find_node_by_path("/chosen"); 1886 if (of_chosen == NULL) 1887 of_chosen = of_find_node_by_path("/chosen@0"); 1888 1889 if (of_chosen) { 1890 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */ 1891 const char *name = of_get_property(of_chosen, "stdout-path", NULL); 1892 if (!name) 1893 name = of_get_property(of_chosen, "linux,stdout-path", NULL); 1894 if (IS_ENABLED(CONFIG_PPC) && !name) 1895 name = of_get_property(of_aliases, "stdout", NULL); 1896 if (name) { 1897 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options); 1898 add_preferred_console("stdout-path", 0, NULL); 1899 } 1900 } 1901 1902 if (!of_aliases) 1903 return; 1904 1905 for_each_property_of_node(of_aliases, pp) { 1906 const char *start = pp->name; 1907 const char *end = start + strlen(start); 1908 struct device_node *np; 1909 struct alias_prop *ap; 1910 int id, len; 1911 1912 /* Skip those we do not want to proceed */ 1913 if (!strcmp(pp->name, "name") || 1914 !strcmp(pp->name, "phandle") || 1915 !strcmp(pp->name, "linux,phandle")) 1916 continue; 1917 1918 np = of_find_node_by_path(pp->value); 1919 if (!np) 1920 continue; 1921 1922 /* walk the alias backwards to extract the id and work out 1923 * the 'stem' string */ 1924 while (isdigit(*(end-1)) && end > start) 1925 end--; 1926 len = end - start; 1927 1928 if (kstrtoint(end, 10, &id) < 0) 1929 continue; 1930 1931 /* Allocate an alias_prop with enough space for the stem */ 1932 ap = dt_alloc(sizeof(*ap) + len + 1, 4); 1933 if (!ap) 1934 continue; 1935 memset(ap, 0, sizeof(*ap) + len + 1); 1936 ap->alias = start; 1937 of_alias_add(ap, np, id, start, len); 1938 } 1939 } 1940 1941 /** 1942 * of_alias_get_id - Get alias id for the given device_node 1943 * @np: Pointer to the given device_node 1944 * @stem: Alias stem of the given device_node 1945 * 1946 * The function travels the lookup table to get the alias id for the given 1947 * device_node and alias stem. It returns the alias id if found. 1948 */ 1949 int of_alias_get_id(struct device_node *np, const char *stem) 1950 { 1951 struct alias_prop *app; 1952 int id = -ENODEV; 1953 1954 mutex_lock(&of_mutex); 1955 list_for_each_entry(app, &aliases_lookup, link) { 1956 if (strcmp(app->stem, stem) != 0) 1957 continue; 1958 1959 if (np == app->np) { 1960 id = app->id; 1961 break; 1962 } 1963 } 1964 mutex_unlock(&of_mutex); 1965 1966 return id; 1967 } 1968 EXPORT_SYMBOL_GPL(of_alias_get_id); 1969 1970 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur, 1971 u32 *pu) 1972 { 1973 const void *curv = cur; 1974 1975 if (!prop) 1976 return NULL; 1977 1978 if (!cur) { 1979 curv = prop->value; 1980 goto out_val; 1981 } 1982 1983 curv += sizeof(*cur); 1984 if (curv >= prop->value + prop->length) 1985 return NULL; 1986 1987 out_val: 1988 *pu = be32_to_cpup(curv); 1989 return curv; 1990 } 1991 EXPORT_SYMBOL_GPL(of_prop_next_u32); 1992 1993 const char *of_prop_next_string(struct property *prop, const char *cur) 1994 { 1995 const void *curv = cur; 1996 1997 if (!prop) 1998 return NULL; 1999 2000 if (!cur) 2001 return prop->value; 2002 2003 curv += strlen(cur) + 1; 2004 if (curv >= prop->value + prop->length) 2005 return NULL; 2006 2007 return curv; 2008 } 2009 EXPORT_SYMBOL_GPL(of_prop_next_string); 2010 2011 /** 2012 * of_console_check() - Test and setup console for DT setup 2013 * @dn - Pointer to device node 2014 * @name - Name to use for preferred console without index. ex. "ttyS" 2015 * @index - Index to use for preferred console. 2016 * 2017 * Check if the given device node matches the stdout-path property in the 2018 * /chosen node. If it does then register it as the preferred console and return 2019 * TRUE. Otherwise return FALSE. 2020 */ 2021 bool of_console_check(struct device_node *dn, char *name, int index) 2022 { 2023 if (!dn || dn != of_stdout || console_set_on_cmdline) 2024 return false; 2025 return !add_preferred_console(name, index, 2026 kstrdup(of_stdout_options, GFP_KERNEL)); 2027 } 2028 EXPORT_SYMBOL_GPL(of_console_check); 2029 2030 /** 2031 * of_find_next_cache_node - Find a node's subsidiary cache 2032 * @np: node of type "cpu" or "cache" 2033 * 2034 * Returns a node pointer with refcount incremented, use 2035 * of_node_put() on it when done. Caller should hold a reference 2036 * to np. 2037 */ 2038 struct device_node *of_find_next_cache_node(const struct device_node *np) 2039 { 2040 struct device_node *child; 2041 const phandle *handle; 2042 2043 handle = of_get_property(np, "l2-cache", NULL); 2044 if (!handle) 2045 handle = of_get_property(np, "next-level-cache", NULL); 2046 2047 if (handle) 2048 return of_find_node_by_phandle(be32_to_cpup(handle)); 2049 2050 /* OF on pmac has nodes instead of properties named "l2-cache" 2051 * beneath CPU nodes. 2052 */ 2053 if (!strcmp(np->type, "cpu")) 2054 for_each_child_of_node(np, child) 2055 if (!strcmp(child->type, "cache")) 2056 return child; 2057 2058 return NULL; 2059 } 2060 2061 /** 2062 * of_graph_parse_endpoint() - parse common endpoint node properties 2063 * @node: pointer to endpoint device_node 2064 * @endpoint: pointer to the OF endpoint data structure 2065 * 2066 * The caller should hold a reference to @node. 2067 */ 2068 int of_graph_parse_endpoint(const struct device_node *node, 2069 struct of_endpoint *endpoint) 2070 { 2071 struct device_node *port_node = of_get_parent(node); 2072 2073 WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n", 2074 __func__, node->full_name); 2075 2076 memset(endpoint, 0, sizeof(*endpoint)); 2077 2078 endpoint->local_node = node; 2079 /* 2080 * It doesn't matter whether the two calls below succeed. 2081 * If they don't then the default value 0 is used. 2082 */ 2083 of_property_read_u32(port_node, "reg", &endpoint->port); 2084 of_property_read_u32(node, "reg", &endpoint->id); 2085 2086 of_node_put(port_node); 2087 2088 return 0; 2089 } 2090 EXPORT_SYMBOL(of_graph_parse_endpoint); 2091 2092 /** 2093 * of_graph_get_next_endpoint() - get next endpoint node 2094 * @parent: pointer to the parent device node 2095 * @prev: previous endpoint node, or NULL to get first 2096 * 2097 * Return: An 'endpoint' node pointer with refcount incremented. Refcount 2098 * of the passed @prev node is not decremented, the caller have to use 2099 * of_node_put() on it when done. 2100 */ 2101 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent, 2102 struct device_node *prev) 2103 { 2104 struct device_node *endpoint; 2105 struct device_node *port; 2106 2107 if (!parent) 2108 return NULL; 2109 2110 /* 2111 * Start by locating the port node. If no previous endpoint is specified 2112 * search for the first port node, otherwise get the previous endpoint 2113 * parent port node. 2114 */ 2115 if (!prev) { 2116 struct device_node *node; 2117 2118 node = of_get_child_by_name(parent, "ports"); 2119 if (node) 2120 parent = node; 2121 2122 port = of_get_child_by_name(parent, "port"); 2123 of_node_put(node); 2124 2125 if (!port) { 2126 pr_err("%s(): no port node found in %s\n", 2127 __func__, parent->full_name); 2128 return NULL; 2129 } 2130 } else { 2131 port = of_get_parent(prev); 2132 if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n", 2133 __func__, prev->full_name)) 2134 return NULL; 2135 2136 /* 2137 * Avoid dropping prev node refcount to 0 when getting the next 2138 * child below. 2139 */ 2140 of_node_get(prev); 2141 } 2142 2143 while (1) { 2144 /* 2145 * Now that we have a port node, get the next endpoint by 2146 * getting the next child. If the previous endpoint is NULL this 2147 * will return the first child. 2148 */ 2149 endpoint = of_get_next_child(port, prev); 2150 if (endpoint) { 2151 of_node_put(port); 2152 return endpoint; 2153 } 2154 2155 /* No more endpoints under this port, try the next one. */ 2156 prev = NULL; 2157 2158 do { 2159 port = of_get_next_child(parent, port); 2160 if (!port) 2161 return NULL; 2162 } while (of_node_cmp(port->name, "port")); 2163 } 2164 } 2165 EXPORT_SYMBOL(of_graph_get_next_endpoint); 2166 2167 /** 2168 * of_graph_get_remote_port_parent() - get remote port's parent node 2169 * @node: pointer to a local endpoint device_node 2170 * 2171 * Return: Remote device node associated with remote endpoint node linked 2172 * to @node. Use of_node_put() on it when done. 2173 */ 2174 struct device_node *of_graph_get_remote_port_parent( 2175 const struct device_node *node) 2176 { 2177 struct device_node *np; 2178 unsigned int depth; 2179 2180 /* Get remote endpoint node. */ 2181 np = of_parse_phandle(node, "remote-endpoint", 0); 2182 2183 /* Walk 3 levels up only if there is 'ports' node. */ 2184 for (depth = 3; depth && np; depth--) { 2185 np = of_get_next_parent(np); 2186 if (depth == 2 && of_node_cmp(np->name, "ports")) 2187 break; 2188 } 2189 return np; 2190 } 2191 EXPORT_SYMBOL(of_graph_get_remote_port_parent); 2192 2193 /** 2194 * of_graph_get_remote_port() - get remote port node 2195 * @node: pointer to a local endpoint device_node 2196 * 2197 * Return: Remote port node associated with remote endpoint node linked 2198 * to @node. Use of_node_put() on it when done. 2199 */ 2200 struct device_node *of_graph_get_remote_port(const struct device_node *node) 2201 { 2202 struct device_node *np; 2203 2204 /* Get remote endpoint node. */ 2205 np = of_parse_phandle(node, "remote-endpoint", 0); 2206 if (!np) 2207 return NULL; 2208 return of_get_next_parent(np); 2209 } 2210 EXPORT_SYMBOL(of_graph_get_remote_port); 2211