xref: /linux/drivers/of/base.c (revision d5e7cafd69da24e6d6cc988fab6ea313a2577efc)
1 /*
2  * Procedures for creating, accessing and interpreting the device tree.
3  *
4  * Paul Mackerras	August 1996.
5  * Copyright (C) 1996-2005 Paul Mackerras.
6  *
7  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8  *    {engebret|bergner}@us.ibm.com
9  *
10  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11  *
12  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13  *  Grant Likely.
14  *
15  *      This program is free software; you can redistribute it and/or
16  *      modify it under the terms of the GNU General Public License
17  *      as published by the Free Software Foundation; either version
18  *      2 of the License, or (at your option) any later version.
19  */
20 #include <linux/console.h>
21 #include <linux/ctype.h>
22 #include <linux/cpu.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_graph.h>
26 #include <linux/spinlock.h>
27 #include <linux/slab.h>
28 #include <linux/string.h>
29 #include <linux/proc_fs.h>
30 
31 #include "of_private.h"
32 
33 LIST_HEAD(aliases_lookup);
34 
35 struct device_node *of_root;
36 EXPORT_SYMBOL(of_root);
37 struct device_node *of_chosen;
38 struct device_node *of_aliases;
39 struct device_node *of_stdout;
40 static const char *of_stdout_options;
41 
42 struct kset *of_kset;
43 
44 /*
45  * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
46  * This mutex must be held whenever modifications are being made to the
47  * device tree. The of_{attach,detach}_node() and
48  * of_{add,remove,update}_property() helpers make sure this happens.
49  */
50 DEFINE_MUTEX(of_mutex);
51 
52 /* use when traversing tree through the child, sibling,
53  * or parent members of struct device_node.
54  */
55 DEFINE_RAW_SPINLOCK(devtree_lock);
56 
57 int of_n_addr_cells(struct device_node *np)
58 {
59 	const __be32 *ip;
60 
61 	do {
62 		if (np->parent)
63 			np = np->parent;
64 		ip = of_get_property(np, "#address-cells", NULL);
65 		if (ip)
66 			return be32_to_cpup(ip);
67 	} while (np->parent);
68 	/* No #address-cells property for the root node */
69 	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
70 }
71 EXPORT_SYMBOL(of_n_addr_cells);
72 
73 int of_n_size_cells(struct device_node *np)
74 {
75 	const __be32 *ip;
76 
77 	do {
78 		if (np->parent)
79 			np = np->parent;
80 		ip = of_get_property(np, "#size-cells", NULL);
81 		if (ip)
82 			return be32_to_cpup(ip);
83 	} while (np->parent);
84 	/* No #size-cells property for the root node */
85 	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
86 }
87 EXPORT_SYMBOL(of_n_size_cells);
88 
89 #ifdef CONFIG_NUMA
90 int __weak of_node_to_nid(struct device_node *np)
91 {
92 	return numa_node_id();
93 }
94 #endif
95 
96 #ifndef CONFIG_OF_DYNAMIC
97 static void of_node_release(struct kobject *kobj)
98 {
99 	/* Without CONFIG_OF_DYNAMIC, no nodes gets freed */
100 }
101 #endif /* CONFIG_OF_DYNAMIC */
102 
103 struct kobj_type of_node_ktype = {
104 	.release = of_node_release,
105 };
106 
107 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj,
108 				struct bin_attribute *bin_attr, char *buf,
109 				loff_t offset, size_t count)
110 {
111 	struct property *pp = container_of(bin_attr, struct property, attr);
112 	return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length);
113 }
114 
115 static const char *safe_name(struct kobject *kobj, const char *orig_name)
116 {
117 	const char *name = orig_name;
118 	struct kernfs_node *kn;
119 	int i = 0;
120 
121 	/* don't be a hero. After 16 tries give up */
122 	while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) {
123 		sysfs_put(kn);
124 		if (name != orig_name)
125 			kfree(name);
126 		name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i);
127 	}
128 
129 	if (name != orig_name)
130 		pr_warn("device-tree: Duplicate name in %s, renamed to \"%s\"\n",
131 			kobject_name(kobj), name);
132 	return name;
133 }
134 
135 int __of_add_property_sysfs(struct device_node *np, struct property *pp)
136 {
137 	int rc;
138 
139 	/* Important: Don't leak passwords */
140 	bool secure = strncmp(pp->name, "security-", 9) == 0;
141 
142 	if (!IS_ENABLED(CONFIG_SYSFS))
143 		return 0;
144 
145 	if (!of_kset || !of_node_is_attached(np))
146 		return 0;
147 
148 	sysfs_bin_attr_init(&pp->attr);
149 	pp->attr.attr.name = safe_name(&np->kobj, pp->name);
150 	pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO;
151 	pp->attr.size = secure ? 0 : pp->length;
152 	pp->attr.read = of_node_property_read;
153 
154 	rc = sysfs_create_bin_file(&np->kobj, &pp->attr);
155 	WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name);
156 	return rc;
157 }
158 
159 int __of_attach_node_sysfs(struct device_node *np)
160 {
161 	const char *name;
162 	struct property *pp;
163 	int rc;
164 
165 	if (!IS_ENABLED(CONFIG_SYSFS))
166 		return 0;
167 
168 	if (!of_kset)
169 		return 0;
170 
171 	np->kobj.kset = of_kset;
172 	if (!np->parent) {
173 		/* Nodes without parents are new top level trees */
174 		rc = kobject_add(&np->kobj, NULL, "%s",
175 				 safe_name(&of_kset->kobj, "base"));
176 	} else {
177 		name = safe_name(&np->parent->kobj, kbasename(np->full_name));
178 		if (!name || !name[0])
179 			return -EINVAL;
180 
181 		rc = kobject_add(&np->kobj, &np->parent->kobj, "%s", name);
182 	}
183 	if (rc)
184 		return rc;
185 
186 	for_each_property_of_node(np, pp)
187 		__of_add_property_sysfs(np, pp);
188 
189 	return 0;
190 }
191 
192 static int __init of_init(void)
193 {
194 	struct device_node *np;
195 
196 	/* Create the kset, and register existing nodes */
197 	mutex_lock(&of_mutex);
198 	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
199 	if (!of_kset) {
200 		mutex_unlock(&of_mutex);
201 		return -ENOMEM;
202 	}
203 	for_each_of_allnodes(np)
204 		__of_attach_node_sysfs(np);
205 	mutex_unlock(&of_mutex);
206 
207 	/* Symlink in /proc as required by userspace ABI */
208 	if (of_root)
209 		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
210 
211 	return 0;
212 }
213 core_initcall(of_init);
214 
215 static struct property *__of_find_property(const struct device_node *np,
216 					   const char *name, int *lenp)
217 {
218 	struct property *pp;
219 
220 	if (!np)
221 		return NULL;
222 
223 	for (pp = np->properties; pp; pp = pp->next) {
224 		if (of_prop_cmp(pp->name, name) == 0) {
225 			if (lenp)
226 				*lenp = pp->length;
227 			break;
228 		}
229 	}
230 
231 	return pp;
232 }
233 
234 struct property *of_find_property(const struct device_node *np,
235 				  const char *name,
236 				  int *lenp)
237 {
238 	struct property *pp;
239 	unsigned long flags;
240 
241 	raw_spin_lock_irqsave(&devtree_lock, flags);
242 	pp = __of_find_property(np, name, lenp);
243 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
244 
245 	return pp;
246 }
247 EXPORT_SYMBOL(of_find_property);
248 
249 struct device_node *__of_find_all_nodes(struct device_node *prev)
250 {
251 	struct device_node *np;
252 	if (!prev) {
253 		np = of_root;
254 	} else if (prev->child) {
255 		np = prev->child;
256 	} else {
257 		/* Walk back up looking for a sibling, or the end of the structure */
258 		np = prev;
259 		while (np->parent && !np->sibling)
260 			np = np->parent;
261 		np = np->sibling; /* Might be null at the end of the tree */
262 	}
263 	return np;
264 }
265 
266 /**
267  * of_find_all_nodes - Get next node in global list
268  * @prev:	Previous node or NULL to start iteration
269  *		of_node_put() will be called on it
270  *
271  * Returns a node pointer with refcount incremented, use
272  * of_node_put() on it when done.
273  */
274 struct device_node *of_find_all_nodes(struct device_node *prev)
275 {
276 	struct device_node *np;
277 	unsigned long flags;
278 
279 	raw_spin_lock_irqsave(&devtree_lock, flags);
280 	np = __of_find_all_nodes(prev);
281 	of_node_get(np);
282 	of_node_put(prev);
283 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
284 	return np;
285 }
286 EXPORT_SYMBOL(of_find_all_nodes);
287 
288 /*
289  * Find a property with a given name for a given node
290  * and return the value.
291  */
292 const void *__of_get_property(const struct device_node *np,
293 			      const char *name, int *lenp)
294 {
295 	struct property *pp = __of_find_property(np, name, lenp);
296 
297 	return pp ? pp->value : NULL;
298 }
299 
300 /*
301  * Find a property with a given name for a given node
302  * and return the value.
303  */
304 const void *of_get_property(const struct device_node *np, const char *name,
305 			    int *lenp)
306 {
307 	struct property *pp = of_find_property(np, name, lenp);
308 
309 	return pp ? pp->value : NULL;
310 }
311 EXPORT_SYMBOL(of_get_property);
312 
313 /*
314  * arch_match_cpu_phys_id - Match the given logical CPU and physical id
315  *
316  * @cpu: logical cpu index of a core/thread
317  * @phys_id: physical identifier of a core/thread
318  *
319  * CPU logical to physical index mapping is architecture specific.
320  * However this __weak function provides a default match of physical
321  * id to logical cpu index. phys_id provided here is usually values read
322  * from the device tree which must match the hardware internal registers.
323  *
324  * Returns true if the physical identifier and the logical cpu index
325  * correspond to the same core/thread, false otherwise.
326  */
327 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
328 {
329 	return (u32)phys_id == cpu;
330 }
331 
332 /**
333  * Checks if the given "prop_name" property holds the physical id of the
334  * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
335  * NULL, local thread number within the core is returned in it.
336  */
337 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
338 			const char *prop_name, int cpu, unsigned int *thread)
339 {
340 	const __be32 *cell;
341 	int ac, prop_len, tid;
342 	u64 hwid;
343 
344 	ac = of_n_addr_cells(cpun);
345 	cell = of_get_property(cpun, prop_name, &prop_len);
346 	if (!cell || !ac)
347 		return false;
348 	prop_len /= sizeof(*cell) * ac;
349 	for (tid = 0; tid < prop_len; tid++) {
350 		hwid = of_read_number(cell, ac);
351 		if (arch_match_cpu_phys_id(cpu, hwid)) {
352 			if (thread)
353 				*thread = tid;
354 			return true;
355 		}
356 		cell += ac;
357 	}
358 	return false;
359 }
360 
361 /*
362  * arch_find_n_match_cpu_physical_id - See if the given device node is
363  * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
364  * else false.  If 'thread' is non-NULL, the local thread number within the
365  * core is returned in it.
366  */
367 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
368 					      int cpu, unsigned int *thread)
369 {
370 	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
371 	 * for thread ids on PowerPC. If it doesn't exist fallback to
372 	 * standard "reg" property.
373 	 */
374 	if (IS_ENABLED(CONFIG_PPC) &&
375 	    __of_find_n_match_cpu_property(cpun,
376 					   "ibm,ppc-interrupt-server#s",
377 					   cpu, thread))
378 		return true;
379 
380 	if (__of_find_n_match_cpu_property(cpun, "reg", cpu, thread))
381 		return true;
382 
383 	return false;
384 }
385 
386 /**
387  * of_get_cpu_node - Get device node associated with the given logical CPU
388  *
389  * @cpu: CPU number(logical index) for which device node is required
390  * @thread: if not NULL, local thread number within the physical core is
391  *          returned
392  *
393  * The main purpose of this function is to retrieve the device node for the
394  * given logical CPU index. It should be used to initialize the of_node in
395  * cpu device. Once of_node in cpu device is populated, all the further
396  * references can use that instead.
397  *
398  * CPU logical to physical index mapping is architecture specific and is built
399  * before booting secondary cores. This function uses arch_match_cpu_phys_id
400  * which can be overridden by architecture specific implementation.
401  *
402  * Returns a node pointer for the logical cpu if found, else NULL.
403  */
404 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
405 {
406 	struct device_node *cpun;
407 
408 	for_each_node_by_type(cpun, "cpu") {
409 		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
410 			return cpun;
411 	}
412 	return NULL;
413 }
414 EXPORT_SYMBOL(of_get_cpu_node);
415 
416 /**
417  * __of_device_is_compatible() - Check if the node matches given constraints
418  * @device: pointer to node
419  * @compat: required compatible string, NULL or "" for any match
420  * @type: required device_type value, NULL or "" for any match
421  * @name: required node name, NULL or "" for any match
422  *
423  * Checks if the given @compat, @type and @name strings match the
424  * properties of the given @device. A constraints can be skipped by
425  * passing NULL or an empty string as the constraint.
426  *
427  * Returns 0 for no match, and a positive integer on match. The return
428  * value is a relative score with larger values indicating better
429  * matches. The score is weighted for the most specific compatible value
430  * to get the highest score. Matching type is next, followed by matching
431  * name. Practically speaking, this results in the following priority
432  * order for matches:
433  *
434  * 1. specific compatible && type && name
435  * 2. specific compatible && type
436  * 3. specific compatible && name
437  * 4. specific compatible
438  * 5. general compatible && type && name
439  * 6. general compatible && type
440  * 7. general compatible && name
441  * 8. general compatible
442  * 9. type && name
443  * 10. type
444  * 11. name
445  */
446 static int __of_device_is_compatible(const struct device_node *device,
447 				     const char *compat, const char *type, const char *name)
448 {
449 	struct property *prop;
450 	const char *cp;
451 	int index = 0, score = 0;
452 
453 	/* Compatible match has highest priority */
454 	if (compat && compat[0]) {
455 		prop = __of_find_property(device, "compatible", NULL);
456 		for (cp = of_prop_next_string(prop, NULL); cp;
457 		     cp = of_prop_next_string(prop, cp), index++) {
458 			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
459 				score = INT_MAX/2 - (index << 2);
460 				break;
461 			}
462 		}
463 		if (!score)
464 			return 0;
465 	}
466 
467 	/* Matching type is better than matching name */
468 	if (type && type[0]) {
469 		if (!device->type || of_node_cmp(type, device->type))
470 			return 0;
471 		score += 2;
472 	}
473 
474 	/* Matching name is a bit better than not */
475 	if (name && name[0]) {
476 		if (!device->name || of_node_cmp(name, device->name))
477 			return 0;
478 		score++;
479 	}
480 
481 	return score;
482 }
483 
484 /** Checks if the given "compat" string matches one of the strings in
485  * the device's "compatible" property
486  */
487 int of_device_is_compatible(const struct device_node *device,
488 		const char *compat)
489 {
490 	unsigned long flags;
491 	int res;
492 
493 	raw_spin_lock_irqsave(&devtree_lock, flags);
494 	res = __of_device_is_compatible(device, compat, NULL, NULL);
495 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
496 	return res;
497 }
498 EXPORT_SYMBOL(of_device_is_compatible);
499 
500 /**
501  * of_machine_is_compatible - Test root of device tree for a given compatible value
502  * @compat: compatible string to look for in root node's compatible property.
503  *
504  * Returns a positive integer if the root node has the given value in its
505  * compatible property.
506  */
507 int of_machine_is_compatible(const char *compat)
508 {
509 	struct device_node *root;
510 	int rc = 0;
511 
512 	root = of_find_node_by_path("/");
513 	if (root) {
514 		rc = of_device_is_compatible(root, compat);
515 		of_node_put(root);
516 	}
517 	return rc;
518 }
519 EXPORT_SYMBOL(of_machine_is_compatible);
520 
521 /**
522  *  __of_device_is_available - check if a device is available for use
523  *
524  *  @device: Node to check for availability, with locks already held
525  *
526  *  Returns true if the status property is absent or set to "okay" or "ok",
527  *  false otherwise
528  */
529 static bool __of_device_is_available(const struct device_node *device)
530 {
531 	const char *status;
532 	int statlen;
533 
534 	if (!device)
535 		return false;
536 
537 	status = __of_get_property(device, "status", &statlen);
538 	if (status == NULL)
539 		return true;
540 
541 	if (statlen > 0) {
542 		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
543 			return true;
544 	}
545 
546 	return false;
547 }
548 
549 /**
550  *  of_device_is_available - check if a device is available for use
551  *
552  *  @device: Node to check for availability
553  *
554  *  Returns true if the status property is absent or set to "okay" or "ok",
555  *  false otherwise
556  */
557 bool of_device_is_available(const struct device_node *device)
558 {
559 	unsigned long flags;
560 	bool res;
561 
562 	raw_spin_lock_irqsave(&devtree_lock, flags);
563 	res = __of_device_is_available(device);
564 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
565 	return res;
566 
567 }
568 EXPORT_SYMBOL(of_device_is_available);
569 
570 /**
571  *	of_get_parent - Get a node's parent if any
572  *	@node:	Node to get parent
573  *
574  *	Returns a node pointer with refcount incremented, use
575  *	of_node_put() on it when done.
576  */
577 struct device_node *of_get_parent(const struct device_node *node)
578 {
579 	struct device_node *np;
580 	unsigned long flags;
581 
582 	if (!node)
583 		return NULL;
584 
585 	raw_spin_lock_irqsave(&devtree_lock, flags);
586 	np = of_node_get(node->parent);
587 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
588 	return np;
589 }
590 EXPORT_SYMBOL(of_get_parent);
591 
592 /**
593  *	of_get_next_parent - Iterate to a node's parent
594  *	@node:	Node to get parent of
595  *
596  *	This is like of_get_parent() except that it drops the
597  *	refcount on the passed node, making it suitable for iterating
598  *	through a node's parents.
599  *
600  *	Returns a node pointer with refcount incremented, use
601  *	of_node_put() on it when done.
602  */
603 struct device_node *of_get_next_parent(struct device_node *node)
604 {
605 	struct device_node *parent;
606 	unsigned long flags;
607 
608 	if (!node)
609 		return NULL;
610 
611 	raw_spin_lock_irqsave(&devtree_lock, flags);
612 	parent = of_node_get(node->parent);
613 	of_node_put(node);
614 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
615 	return parent;
616 }
617 EXPORT_SYMBOL(of_get_next_parent);
618 
619 static struct device_node *__of_get_next_child(const struct device_node *node,
620 						struct device_node *prev)
621 {
622 	struct device_node *next;
623 
624 	if (!node)
625 		return NULL;
626 
627 	next = prev ? prev->sibling : node->child;
628 	for (; next; next = next->sibling)
629 		if (of_node_get(next))
630 			break;
631 	of_node_put(prev);
632 	return next;
633 }
634 #define __for_each_child_of_node(parent, child) \
635 	for (child = __of_get_next_child(parent, NULL); child != NULL; \
636 	     child = __of_get_next_child(parent, child))
637 
638 /**
639  *	of_get_next_child - Iterate a node childs
640  *	@node:	parent node
641  *	@prev:	previous child of the parent node, or NULL to get first
642  *
643  *	Returns a node pointer with refcount incremented, use
644  *	of_node_put() on it when done.
645  */
646 struct device_node *of_get_next_child(const struct device_node *node,
647 	struct device_node *prev)
648 {
649 	struct device_node *next;
650 	unsigned long flags;
651 
652 	raw_spin_lock_irqsave(&devtree_lock, flags);
653 	next = __of_get_next_child(node, prev);
654 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
655 	return next;
656 }
657 EXPORT_SYMBOL(of_get_next_child);
658 
659 /**
660  *	of_get_next_available_child - Find the next available child node
661  *	@node:	parent node
662  *	@prev:	previous child of the parent node, or NULL to get first
663  *
664  *      This function is like of_get_next_child(), except that it
665  *      automatically skips any disabled nodes (i.e. status = "disabled").
666  */
667 struct device_node *of_get_next_available_child(const struct device_node *node,
668 	struct device_node *prev)
669 {
670 	struct device_node *next;
671 	unsigned long flags;
672 
673 	if (!node)
674 		return NULL;
675 
676 	raw_spin_lock_irqsave(&devtree_lock, flags);
677 	next = prev ? prev->sibling : node->child;
678 	for (; next; next = next->sibling) {
679 		if (!__of_device_is_available(next))
680 			continue;
681 		if (of_node_get(next))
682 			break;
683 	}
684 	of_node_put(prev);
685 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
686 	return next;
687 }
688 EXPORT_SYMBOL(of_get_next_available_child);
689 
690 /**
691  *	of_get_child_by_name - Find the child node by name for a given parent
692  *	@node:	parent node
693  *	@name:	child name to look for.
694  *
695  *      This function looks for child node for given matching name
696  *
697  *	Returns a node pointer if found, with refcount incremented, use
698  *	of_node_put() on it when done.
699  *	Returns NULL if node is not found.
700  */
701 struct device_node *of_get_child_by_name(const struct device_node *node,
702 				const char *name)
703 {
704 	struct device_node *child;
705 
706 	for_each_child_of_node(node, child)
707 		if (child->name && (of_node_cmp(child->name, name) == 0))
708 			break;
709 	return child;
710 }
711 EXPORT_SYMBOL(of_get_child_by_name);
712 
713 static struct device_node *__of_find_node_by_path(struct device_node *parent,
714 						const char *path)
715 {
716 	struct device_node *child;
717 	int len;
718 	const char *end;
719 
720 	end = strchr(path, ':');
721 	if (!end)
722 		end = strchrnul(path, '/');
723 
724 	len = end - path;
725 	if (!len)
726 		return NULL;
727 
728 	__for_each_child_of_node(parent, child) {
729 		const char *name = strrchr(child->full_name, '/');
730 		if (WARN(!name, "malformed device_node %s\n", child->full_name))
731 			continue;
732 		name++;
733 		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
734 			return child;
735 	}
736 	return NULL;
737 }
738 
739 /**
740  *	of_find_node_opts_by_path - Find a node matching a full OF path
741  *	@path: Either the full path to match, or if the path does not
742  *	       start with '/', the name of a property of the /aliases
743  *	       node (an alias).  In the case of an alias, the node
744  *	       matching the alias' value will be returned.
745  *	@opts: Address of a pointer into which to store the start of
746  *	       an options string appended to the end of the path with
747  *	       a ':' separator.
748  *
749  *	Valid paths:
750  *		/foo/bar	Full path
751  *		foo		Valid alias
752  *		foo/bar		Valid alias + relative path
753  *
754  *	Returns a node pointer with refcount incremented, use
755  *	of_node_put() on it when done.
756  */
757 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
758 {
759 	struct device_node *np = NULL;
760 	struct property *pp;
761 	unsigned long flags;
762 	const char *separator = strchr(path, ':');
763 
764 	if (opts)
765 		*opts = separator ? separator + 1 : NULL;
766 
767 	if (strcmp(path, "/") == 0)
768 		return of_node_get(of_root);
769 
770 	/* The path could begin with an alias */
771 	if (*path != '/') {
772 		int len;
773 		const char *p = separator;
774 
775 		if (!p)
776 			p = strchrnul(path, '/');
777 		len = p - path;
778 
779 		/* of_aliases must not be NULL */
780 		if (!of_aliases)
781 			return NULL;
782 
783 		for_each_property_of_node(of_aliases, pp) {
784 			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
785 				np = of_find_node_by_path(pp->value);
786 				break;
787 			}
788 		}
789 		if (!np)
790 			return NULL;
791 		path = p;
792 	}
793 
794 	/* Step down the tree matching path components */
795 	raw_spin_lock_irqsave(&devtree_lock, flags);
796 	if (!np)
797 		np = of_node_get(of_root);
798 	while (np && *path == '/') {
799 		path++; /* Increment past '/' delimiter */
800 		np = __of_find_node_by_path(np, path);
801 		path = strchrnul(path, '/');
802 		if (separator && separator < path)
803 			break;
804 	}
805 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
806 	return np;
807 }
808 EXPORT_SYMBOL(of_find_node_opts_by_path);
809 
810 /**
811  *	of_find_node_by_name - Find a node by its "name" property
812  *	@from:	The node to start searching from or NULL, the node
813  *		you pass will not be searched, only the next one
814  *		will; typically, you pass what the previous call
815  *		returned. of_node_put() will be called on it
816  *	@name:	The name string to match against
817  *
818  *	Returns a node pointer with refcount incremented, use
819  *	of_node_put() on it when done.
820  */
821 struct device_node *of_find_node_by_name(struct device_node *from,
822 	const char *name)
823 {
824 	struct device_node *np;
825 	unsigned long flags;
826 
827 	raw_spin_lock_irqsave(&devtree_lock, flags);
828 	for_each_of_allnodes_from(from, np)
829 		if (np->name && (of_node_cmp(np->name, name) == 0)
830 		    && of_node_get(np))
831 			break;
832 	of_node_put(from);
833 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
834 	return np;
835 }
836 EXPORT_SYMBOL(of_find_node_by_name);
837 
838 /**
839  *	of_find_node_by_type - Find a node by its "device_type" property
840  *	@from:	The node to start searching from, or NULL to start searching
841  *		the entire device tree. The node you pass will not be
842  *		searched, only the next one will; typically, you pass
843  *		what the previous call returned. of_node_put() will be
844  *		called on from for you.
845  *	@type:	The type string to match against
846  *
847  *	Returns a node pointer with refcount incremented, use
848  *	of_node_put() on it when done.
849  */
850 struct device_node *of_find_node_by_type(struct device_node *from,
851 	const char *type)
852 {
853 	struct device_node *np;
854 	unsigned long flags;
855 
856 	raw_spin_lock_irqsave(&devtree_lock, flags);
857 	for_each_of_allnodes_from(from, np)
858 		if (np->type && (of_node_cmp(np->type, type) == 0)
859 		    && of_node_get(np))
860 			break;
861 	of_node_put(from);
862 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
863 	return np;
864 }
865 EXPORT_SYMBOL(of_find_node_by_type);
866 
867 /**
868  *	of_find_compatible_node - Find a node based on type and one of the
869  *                                tokens in its "compatible" property
870  *	@from:		The node to start searching from or NULL, the node
871  *			you pass will not be searched, only the next one
872  *			will; typically, you pass what the previous call
873  *			returned. of_node_put() will be called on it
874  *	@type:		The type string to match "device_type" or NULL to ignore
875  *	@compatible:	The string to match to one of the tokens in the device
876  *			"compatible" list.
877  *
878  *	Returns a node pointer with refcount incremented, use
879  *	of_node_put() on it when done.
880  */
881 struct device_node *of_find_compatible_node(struct device_node *from,
882 	const char *type, const char *compatible)
883 {
884 	struct device_node *np;
885 	unsigned long flags;
886 
887 	raw_spin_lock_irqsave(&devtree_lock, flags);
888 	for_each_of_allnodes_from(from, np)
889 		if (__of_device_is_compatible(np, compatible, type, NULL) &&
890 		    of_node_get(np))
891 			break;
892 	of_node_put(from);
893 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
894 	return np;
895 }
896 EXPORT_SYMBOL(of_find_compatible_node);
897 
898 /**
899  *	of_find_node_with_property - Find a node which has a property with
900  *                                   the given name.
901  *	@from:		The node to start searching from or NULL, the node
902  *			you pass will not be searched, only the next one
903  *			will; typically, you pass what the previous call
904  *			returned. of_node_put() will be called on it
905  *	@prop_name:	The name of the property to look for.
906  *
907  *	Returns a node pointer with refcount incremented, use
908  *	of_node_put() on it when done.
909  */
910 struct device_node *of_find_node_with_property(struct device_node *from,
911 	const char *prop_name)
912 {
913 	struct device_node *np;
914 	struct property *pp;
915 	unsigned long flags;
916 
917 	raw_spin_lock_irqsave(&devtree_lock, flags);
918 	for_each_of_allnodes_from(from, np) {
919 		for (pp = np->properties; pp; pp = pp->next) {
920 			if (of_prop_cmp(pp->name, prop_name) == 0) {
921 				of_node_get(np);
922 				goto out;
923 			}
924 		}
925 	}
926 out:
927 	of_node_put(from);
928 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
929 	return np;
930 }
931 EXPORT_SYMBOL(of_find_node_with_property);
932 
933 static
934 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
935 					   const struct device_node *node)
936 {
937 	const struct of_device_id *best_match = NULL;
938 	int score, best_score = 0;
939 
940 	if (!matches)
941 		return NULL;
942 
943 	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
944 		score = __of_device_is_compatible(node, matches->compatible,
945 						  matches->type, matches->name);
946 		if (score > best_score) {
947 			best_match = matches;
948 			best_score = score;
949 		}
950 	}
951 
952 	return best_match;
953 }
954 
955 /**
956  * of_match_node - Tell if a device_node has a matching of_match structure
957  *	@matches:	array of of device match structures to search in
958  *	@node:		the of device structure to match against
959  *
960  *	Low level utility function used by device matching.
961  */
962 const struct of_device_id *of_match_node(const struct of_device_id *matches,
963 					 const struct device_node *node)
964 {
965 	const struct of_device_id *match;
966 	unsigned long flags;
967 
968 	raw_spin_lock_irqsave(&devtree_lock, flags);
969 	match = __of_match_node(matches, node);
970 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
971 	return match;
972 }
973 EXPORT_SYMBOL(of_match_node);
974 
975 /**
976  *	of_find_matching_node_and_match - Find a node based on an of_device_id
977  *					  match table.
978  *	@from:		The node to start searching from or NULL, the node
979  *			you pass will not be searched, only the next one
980  *			will; typically, you pass what the previous call
981  *			returned. of_node_put() will be called on it
982  *	@matches:	array of of device match structures to search in
983  *	@match		Updated to point at the matches entry which matched
984  *
985  *	Returns a node pointer with refcount incremented, use
986  *	of_node_put() on it when done.
987  */
988 struct device_node *of_find_matching_node_and_match(struct device_node *from,
989 					const struct of_device_id *matches,
990 					const struct of_device_id **match)
991 {
992 	struct device_node *np;
993 	const struct of_device_id *m;
994 	unsigned long flags;
995 
996 	if (match)
997 		*match = NULL;
998 
999 	raw_spin_lock_irqsave(&devtree_lock, flags);
1000 	for_each_of_allnodes_from(from, np) {
1001 		m = __of_match_node(matches, np);
1002 		if (m && of_node_get(np)) {
1003 			if (match)
1004 				*match = m;
1005 			break;
1006 		}
1007 	}
1008 	of_node_put(from);
1009 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1010 	return np;
1011 }
1012 EXPORT_SYMBOL(of_find_matching_node_and_match);
1013 
1014 /**
1015  * of_modalias_node - Lookup appropriate modalias for a device node
1016  * @node:	pointer to a device tree node
1017  * @modalias:	Pointer to buffer that modalias value will be copied into
1018  * @len:	Length of modalias value
1019  *
1020  * Based on the value of the compatible property, this routine will attempt
1021  * to choose an appropriate modalias value for a particular device tree node.
1022  * It does this by stripping the manufacturer prefix (as delimited by a ',')
1023  * from the first entry in the compatible list property.
1024  *
1025  * This routine returns 0 on success, <0 on failure.
1026  */
1027 int of_modalias_node(struct device_node *node, char *modalias, int len)
1028 {
1029 	const char *compatible, *p;
1030 	int cplen;
1031 
1032 	compatible = of_get_property(node, "compatible", &cplen);
1033 	if (!compatible || strlen(compatible) > cplen)
1034 		return -ENODEV;
1035 	p = strchr(compatible, ',');
1036 	strlcpy(modalias, p ? p + 1 : compatible, len);
1037 	return 0;
1038 }
1039 EXPORT_SYMBOL_GPL(of_modalias_node);
1040 
1041 /**
1042  * of_find_node_by_phandle - Find a node given a phandle
1043  * @handle:	phandle of the node to find
1044  *
1045  * Returns a node pointer with refcount incremented, use
1046  * of_node_put() on it when done.
1047  */
1048 struct device_node *of_find_node_by_phandle(phandle handle)
1049 {
1050 	struct device_node *np;
1051 	unsigned long flags;
1052 
1053 	if (!handle)
1054 		return NULL;
1055 
1056 	raw_spin_lock_irqsave(&devtree_lock, flags);
1057 	for_each_of_allnodes(np)
1058 		if (np->phandle == handle)
1059 			break;
1060 	of_node_get(np);
1061 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1062 	return np;
1063 }
1064 EXPORT_SYMBOL(of_find_node_by_phandle);
1065 
1066 /**
1067  * of_property_count_elems_of_size - Count the number of elements in a property
1068  *
1069  * @np:		device node from which the property value is to be read.
1070  * @propname:	name of the property to be searched.
1071  * @elem_size:	size of the individual element
1072  *
1073  * Search for a property in a device node and count the number of elements of
1074  * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
1075  * property does not exist or its length does not match a multiple of elem_size
1076  * and -ENODATA if the property does not have a value.
1077  */
1078 int of_property_count_elems_of_size(const struct device_node *np,
1079 				const char *propname, int elem_size)
1080 {
1081 	struct property *prop = of_find_property(np, propname, NULL);
1082 
1083 	if (!prop)
1084 		return -EINVAL;
1085 	if (!prop->value)
1086 		return -ENODATA;
1087 
1088 	if (prop->length % elem_size != 0) {
1089 		pr_err("size of %s in node %s is not a multiple of %d\n",
1090 		       propname, np->full_name, elem_size);
1091 		return -EINVAL;
1092 	}
1093 
1094 	return prop->length / elem_size;
1095 }
1096 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
1097 
1098 /**
1099  * of_find_property_value_of_size
1100  *
1101  * @np:		device node from which the property value is to be read.
1102  * @propname:	name of the property to be searched.
1103  * @len:	requested length of property value
1104  *
1105  * Search for a property in a device node and valid the requested size.
1106  * Returns the property value on success, -EINVAL if the property does not
1107  *  exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
1108  * property data isn't large enough.
1109  *
1110  */
1111 static void *of_find_property_value_of_size(const struct device_node *np,
1112 			const char *propname, u32 len)
1113 {
1114 	struct property *prop = of_find_property(np, propname, NULL);
1115 
1116 	if (!prop)
1117 		return ERR_PTR(-EINVAL);
1118 	if (!prop->value)
1119 		return ERR_PTR(-ENODATA);
1120 	if (len > prop->length)
1121 		return ERR_PTR(-EOVERFLOW);
1122 
1123 	return prop->value;
1124 }
1125 
1126 /**
1127  * of_property_read_u32_index - Find and read a u32 from a multi-value property.
1128  *
1129  * @np:		device node from which the property value is to be read.
1130  * @propname:	name of the property to be searched.
1131  * @index:	index of the u32 in the list of values
1132  * @out_value:	pointer to return value, modified only if no error.
1133  *
1134  * Search for a property in a device node and read nth 32-bit value from
1135  * it. Returns 0 on success, -EINVAL if the property does not exist,
1136  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1137  * property data isn't large enough.
1138  *
1139  * The out_value is modified only if a valid u32 value can be decoded.
1140  */
1141 int of_property_read_u32_index(const struct device_node *np,
1142 				       const char *propname,
1143 				       u32 index, u32 *out_value)
1144 {
1145 	const u32 *val = of_find_property_value_of_size(np, propname,
1146 					((index + 1) * sizeof(*out_value)));
1147 
1148 	if (IS_ERR(val))
1149 		return PTR_ERR(val);
1150 
1151 	*out_value = be32_to_cpup(((__be32 *)val) + index);
1152 	return 0;
1153 }
1154 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
1155 
1156 /**
1157  * of_property_read_u8_array - Find and read an array of u8 from a property.
1158  *
1159  * @np:		device node from which the property value is to be read.
1160  * @propname:	name of the property to be searched.
1161  * @out_values:	pointer to return value, modified only if return value is 0.
1162  * @sz:		number of array elements to read
1163  *
1164  * Search for a property in a device node and read 8-bit value(s) from
1165  * it. Returns 0 on success, -EINVAL if the property does not exist,
1166  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1167  * property data isn't large enough.
1168  *
1169  * dts entry of array should be like:
1170  *	property = /bits/ 8 <0x50 0x60 0x70>;
1171  *
1172  * The out_values is modified only if a valid u8 value can be decoded.
1173  */
1174 int of_property_read_u8_array(const struct device_node *np,
1175 			const char *propname, u8 *out_values, size_t sz)
1176 {
1177 	const u8 *val = of_find_property_value_of_size(np, propname,
1178 						(sz * sizeof(*out_values)));
1179 
1180 	if (IS_ERR(val))
1181 		return PTR_ERR(val);
1182 
1183 	while (sz--)
1184 		*out_values++ = *val++;
1185 	return 0;
1186 }
1187 EXPORT_SYMBOL_GPL(of_property_read_u8_array);
1188 
1189 /**
1190  * of_property_read_u16_array - Find and read an array of u16 from a property.
1191  *
1192  * @np:		device node from which the property value is to be read.
1193  * @propname:	name of the property to be searched.
1194  * @out_values:	pointer to return value, modified only if return value is 0.
1195  * @sz:		number of array elements to read
1196  *
1197  * Search for a property in a device node and read 16-bit value(s) from
1198  * it. Returns 0 on success, -EINVAL if the property does not exist,
1199  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1200  * property data isn't large enough.
1201  *
1202  * dts entry of array should be like:
1203  *	property = /bits/ 16 <0x5000 0x6000 0x7000>;
1204  *
1205  * The out_values is modified only if a valid u16 value can be decoded.
1206  */
1207 int of_property_read_u16_array(const struct device_node *np,
1208 			const char *propname, u16 *out_values, size_t sz)
1209 {
1210 	const __be16 *val = of_find_property_value_of_size(np, propname,
1211 						(sz * sizeof(*out_values)));
1212 
1213 	if (IS_ERR(val))
1214 		return PTR_ERR(val);
1215 
1216 	while (sz--)
1217 		*out_values++ = be16_to_cpup(val++);
1218 	return 0;
1219 }
1220 EXPORT_SYMBOL_GPL(of_property_read_u16_array);
1221 
1222 /**
1223  * of_property_read_u32_array - Find and read an array of 32 bit integers
1224  * from a property.
1225  *
1226  * @np:		device node from which the property value is to be read.
1227  * @propname:	name of the property to be searched.
1228  * @out_values:	pointer to return value, modified only if return value is 0.
1229  * @sz:		number of array elements to read
1230  *
1231  * Search for a property in a device node and read 32-bit value(s) from
1232  * it. Returns 0 on success, -EINVAL if the property does not exist,
1233  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1234  * property data isn't large enough.
1235  *
1236  * The out_values is modified only if a valid u32 value can be decoded.
1237  */
1238 int of_property_read_u32_array(const struct device_node *np,
1239 			       const char *propname, u32 *out_values,
1240 			       size_t sz)
1241 {
1242 	const __be32 *val = of_find_property_value_of_size(np, propname,
1243 						(sz * sizeof(*out_values)));
1244 
1245 	if (IS_ERR(val))
1246 		return PTR_ERR(val);
1247 
1248 	while (sz--)
1249 		*out_values++ = be32_to_cpup(val++);
1250 	return 0;
1251 }
1252 EXPORT_SYMBOL_GPL(of_property_read_u32_array);
1253 
1254 /**
1255  * of_property_read_u64 - Find and read a 64 bit integer from a property
1256  * @np:		device node from which the property value is to be read.
1257  * @propname:	name of the property to be searched.
1258  * @out_value:	pointer to return value, modified only if return value is 0.
1259  *
1260  * Search for a property in a device node and read a 64-bit value from
1261  * it. Returns 0 on success, -EINVAL if the property does not exist,
1262  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1263  * property data isn't large enough.
1264  *
1265  * The out_value is modified only if a valid u64 value can be decoded.
1266  */
1267 int of_property_read_u64(const struct device_node *np, const char *propname,
1268 			 u64 *out_value)
1269 {
1270 	const __be32 *val = of_find_property_value_of_size(np, propname,
1271 						sizeof(*out_value));
1272 
1273 	if (IS_ERR(val))
1274 		return PTR_ERR(val);
1275 
1276 	*out_value = of_read_number(val, 2);
1277 	return 0;
1278 }
1279 EXPORT_SYMBOL_GPL(of_property_read_u64);
1280 
1281 /**
1282  * of_property_read_u64_array - Find and read an array of 64 bit integers
1283  * from a property.
1284  *
1285  * @np:		device node from which the property value is to be read.
1286  * @propname:	name of the property to be searched.
1287  * @out_values:	pointer to return value, modified only if return value is 0.
1288  * @sz:		number of array elements to read
1289  *
1290  * Search for a property in a device node and read 64-bit value(s) from
1291  * it. Returns 0 on success, -EINVAL if the property does not exist,
1292  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1293  * property data isn't large enough.
1294  *
1295  * The out_values is modified only if a valid u64 value can be decoded.
1296  */
1297 int of_property_read_u64_array(const struct device_node *np,
1298 			       const char *propname, u64 *out_values,
1299 			       size_t sz)
1300 {
1301 	const __be32 *val = of_find_property_value_of_size(np, propname,
1302 						(sz * sizeof(*out_values)));
1303 
1304 	if (IS_ERR(val))
1305 		return PTR_ERR(val);
1306 
1307 	while (sz--) {
1308 		*out_values++ = of_read_number(val, 2);
1309 		val += 2;
1310 	}
1311 	return 0;
1312 }
1313 EXPORT_SYMBOL_GPL(of_property_read_u64_array);
1314 
1315 /**
1316  * of_property_read_string - Find and read a string from a property
1317  * @np:		device node from which the property value is to be read.
1318  * @propname:	name of the property to be searched.
1319  * @out_string:	pointer to null terminated return string, modified only if
1320  *		return value is 0.
1321  *
1322  * Search for a property in a device tree node and retrieve a null
1323  * terminated string value (pointer to data, not a copy). Returns 0 on
1324  * success, -EINVAL if the property does not exist, -ENODATA if property
1325  * does not have a value, and -EILSEQ if the string is not null-terminated
1326  * within the length of the property data.
1327  *
1328  * The out_string pointer is modified only if a valid string can be decoded.
1329  */
1330 int of_property_read_string(struct device_node *np, const char *propname,
1331 				const char **out_string)
1332 {
1333 	struct property *prop = of_find_property(np, propname, NULL);
1334 	if (!prop)
1335 		return -EINVAL;
1336 	if (!prop->value)
1337 		return -ENODATA;
1338 	if (strnlen(prop->value, prop->length) >= prop->length)
1339 		return -EILSEQ;
1340 	*out_string = prop->value;
1341 	return 0;
1342 }
1343 EXPORT_SYMBOL_GPL(of_property_read_string);
1344 
1345 /**
1346  * of_property_match_string() - Find string in a list and return index
1347  * @np: pointer to node containing string list property
1348  * @propname: string list property name
1349  * @string: pointer to string to search for in string list
1350  *
1351  * This function searches a string list property and returns the index
1352  * of a specific string value.
1353  */
1354 int of_property_match_string(struct device_node *np, const char *propname,
1355 			     const char *string)
1356 {
1357 	struct property *prop = of_find_property(np, propname, NULL);
1358 	size_t l;
1359 	int i;
1360 	const char *p, *end;
1361 
1362 	if (!prop)
1363 		return -EINVAL;
1364 	if (!prop->value)
1365 		return -ENODATA;
1366 
1367 	p = prop->value;
1368 	end = p + prop->length;
1369 
1370 	for (i = 0; p < end; i++, p += l) {
1371 		l = strnlen(p, end - p) + 1;
1372 		if (p + l > end)
1373 			return -EILSEQ;
1374 		pr_debug("comparing %s with %s\n", string, p);
1375 		if (strcmp(string, p) == 0)
1376 			return i; /* Found it; return index */
1377 	}
1378 	return -ENODATA;
1379 }
1380 EXPORT_SYMBOL_GPL(of_property_match_string);
1381 
1382 /**
1383  * of_property_read_string_helper() - Utility helper for parsing string properties
1384  * @np:		device node from which the property value is to be read.
1385  * @propname:	name of the property to be searched.
1386  * @out_strs:	output array of string pointers.
1387  * @sz:		number of array elements to read.
1388  * @skip:	Number of strings to skip over at beginning of list.
1389  *
1390  * Don't call this function directly. It is a utility helper for the
1391  * of_property_read_string*() family of functions.
1392  */
1393 int of_property_read_string_helper(struct device_node *np, const char *propname,
1394 				   const char **out_strs, size_t sz, int skip)
1395 {
1396 	struct property *prop = of_find_property(np, propname, NULL);
1397 	int l = 0, i = 0;
1398 	const char *p, *end;
1399 
1400 	if (!prop)
1401 		return -EINVAL;
1402 	if (!prop->value)
1403 		return -ENODATA;
1404 	p = prop->value;
1405 	end = p + prop->length;
1406 
1407 	for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
1408 		l = strnlen(p, end - p) + 1;
1409 		if (p + l > end)
1410 			return -EILSEQ;
1411 		if (out_strs && i >= skip)
1412 			*out_strs++ = p;
1413 	}
1414 	i -= skip;
1415 	return i <= 0 ? -ENODATA : i;
1416 }
1417 EXPORT_SYMBOL_GPL(of_property_read_string_helper);
1418 
1419 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1420 {
1421 	int i;
1422 	printk("%s %s", msg, of_node_full_name(args->np));
1423 	for (i = 0; i < args->args_count; i++)
1424 		printk(i ? ",%08x" : ":%08x", args->args[i]);
1425 	printk("\n");
1426 }
1427 
1428 static int __of_parse_phandle_with_args(const struct device_node *np,
1429 					const char *list_name,
1430 					const char *cells_name,
1431 					int cell_count, int index,
1432 					struct of_phandle_args *out_args)
1433 {
1434 	const __be32 *list, *list_end;
1435 	int rc = 0, size, cur_index = 0;
1436 	uint32_t count = 0;
1437 	struct device_node *node = NULL;
1438 	phandle phandle;
1439 
1440 	/* Retrieve the phandle list property */
1441 	list = of_get_property(np, list_name, &size);
1442 	if (!list)
1443 		return -ENOENT;
1444 	list_end = list + size / sizeof(*list);
1445 
1446 	/* Loop over the phandles until all the requested entry is found */
1447 	while (list < list_end) {
1448 		rc = -EINVAL;
1449 		count = 0;
1450 
1451 		/*
1452 		 * If phandle is 0, then it is an empty entry with no
1453 		 * arguments.  Skip forward to the next entry.
1454 		 */
1455 		phandle = be32_to_cpup(list++);
1456 		if (phandle) {
1457 			/*
1458 			 * Find the provider node and parse the #*-cells
1459 			 * property to determine the argument length.
1460 			 *
1461 			 * This is not needed if the cell count is hard-coded
1462 			 * (i.e. cells_name not set, but cell_count is set),
1463 			 * except when we're going to return the found node
1464 			 * below.
1465 			 */
1466 			if (cells_name || cur_index == index) {
1467 				node = of_find_node_by_phandle(phandle);
1468 				if (!node) {
1469 					pr_err("%s: could not find phandle\n",
1470 						np->full_name);
1471 					goto err;
1472 				}
1473 			}
1474 
1475 			if (cells_name) {
1476 				if (of_property_read_u32(node, cells_name,
1477 							 &count)) {
1478 					pr_err("%s: could not get %s for %s\n",
1479 						np->full_name, cells_name,
1480 						node->full_name);
1481 					goto err;
1482 				}
1483 			} else {
1484 				count = cell_count;
1485 			}
1486 
1487 			/*
1488 			 * Make sure that the arguments actually fit in the
1489 			 * remaining property data length
1490 			 */
1491 			if (list + count > list_end) {
1492 				pr_err("%s: arguments longer than property\n",
1493 					 np->full_name);
1494 				goto err;
1495 			}
1496 		}
1497 
1498 		/*
1499 		 * All of the error cases above bail out of the loop, so at
1500 		 * this point, the parsing is successful. If the requested
1501 		 * index matches, then fill the out_args structure and return,
1502 		 * or return -ENOENT for an empty entry.
1503 		 */
1504 		rc = -ENOENT;
1505 		if (cur_index == index) {
1506 			if (!phandle)
1507 				goto err;
1508 
1509 			if (out_args) {
1510 				int i;
1511 				if (WARN_ON(count > MAX_PHANDLE_ARGS))
1512 					count = MAX_PHANDLE_ARGS;
1513 				out_args->np = node;
1514 				out_args->args_count = count;
1515 				for (i = 0; i < count; i++)
1516 					out_args->args[i] = be32_to_cpup(list++);
1517 			} else {
1518 				of_node_put(node);
1519 			}
1520 
1521 			/* Found it! return success */
1522 			return 0;
1523 		}
1524 
1525 		of_node_put(node);
1526 		node = NULL;
1527 		list += count;
1528 		cur_index++;
1529 	}
1530 
1531 	/*
1532 	 * Unlock node before returning result; will be one of:
1533 	 * -ENOENT : index is for empty phandle
1534 	 * -EINVAL : parsing error on data
1535 	 * [1..n]  : Number of phandle (count mode; when index = -1)
1536 	 */
1537 	rc = index < 0 ? cur_index : -ENOENT;
1538  err:
1539 	if (node)
1540 		of_node_put(node);
1541 	return rc;
1542 }
1543 
1544 /**
1545  * of_parse_phandle - Resolve a phandle property to a device_node pointer
1546  * @np: Pointer to device node holding phandle property
1547  * @phandle_name: Name of property holding a phandle value
1548  * @index: For properties holding a table of phandles, this is the index into
1549  *         the table
1550  *
1551  * Returns the device_node pointer with refcount incremented.  Use
1552  * of_node_put() on it when done.
1553  */
1554 struct device_node *of_parse_phandle(const struct device_node *np,
1555 				     const char *phandle_name, int index)
1556 {
1557 	struct of_phandle_args args;
1558 
1559 	if (index < 0)
1560 		return NULL;
1561 
1562 	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1563 					 index, &args))
1564 		return NULL;
1565 
1566 	return args.np;
1567 }
1568 EXPORT_SYMBOL(of_parse_phandle);
1569 
1570 /**
1571  * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1572  * @np:		pointer to a device tree node containing a list
1573  * @list_name:	property name that contains a list
1574  * @cells_name:	property name that specifies phandles' arguments count
1575  * @index:	index of a phandle to parse out
1576  * @out_args:	optional pointer to output arguments structure (will be filled)
1577  *
1578  * This function is useful to parse lists of phandles and their arguments.
1579  * Returns 0 on success and fills out_args, on error returns appropriate
1580  * errno value.
1581  *
1582  * Caller is responsible to call of_node_put() on the returned out_args->np
1583  * pointer.
1584  *
1585  * Example:
1586  *
1587  * phandle1: node1 {
1588  *	#list-cells = <2>;
1589  * }
1590  *
1591  * phandle2: node2 {
1592  *	#list-cells = <1>;
1593  * }
1594  *
1595  * node3 {
1596  *	list = <&phandle1 1 2 &phandle2 3>;
1597  * }
1598  *
1599  * To get a device_node of the `node2' node you may call this:
1600  * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1601  */
1602 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1603 				const char *cells_name, int index,
1604 				struct of_phandle_args *out_args)
1605 {
1606 	if (index < 0)
1607 		return -EINVAL;
1608 	return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1609 					    index, out_args);
1610 }
1611 EXPORT_SYMBOL(of_parse_phandle_with_args);
1612 
1613 /**
1614  * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1615  * @np:		pointer to a device tree node containing a list
1616  * @list_name:	property name that contains a list
1617  * @cell_count: number of argument cells following the phandle
1618  * @index:	index of a phandle to parse out
1619  * @out_args:	optional pointer to output arguments structure (will be filled)
1620  *
1621  * This function is useful to parse lists of phandles and their arguments.
1622  * Returns 0 on success and fills out_args, on error returns appropriate
1623  * errno value.
1624  *
1625  * Caller is responsible to call of_node_put() on the returned out_args->np
1626  * pointer.
1627  *
1628  * Example:
1629  *
1630  * phandle1: node1 {
1631  * }
1632  *
1633  * phandle2: node2 {
1634  * }
1635  *
1636  * node3 {
1637  *	list = <&phandle1 0 2 &phandle2 2 3>;
1638  * }
1639  *
1640  * To get a device_node of the `node2' node you may call this:
1641  * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1642  */
1643 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1644 				const char *list_name, int cell_count,
1645 				int index, struct of_phandle_args *out_args)
1646 {
1647 	if (index < 0)
1648 		return -EINVAL;
1649 	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1650 					   index, out_args);
1651 }
1652 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1653 
1654 /**
1655  * of_count_phandle_with_args() - Find the number of phandles references in a property
1656  * @np:		pointer to a device tree node containing a list
1657  * @list_name:	property name that contains a list
1658  * @cells_name:	property name that specifies phandles' arguments count
1659  *
1660  * Returns the number of phandle + argument tuples within a property. It
1661  * is a typical pattern to encode a list of phandle and variable
1662  * arguments into a single property. The number of arguments is encoded
1663  * by a property in the phandle-target node. For example, a gpios
1664  * property would contain a list of GPIO specifies consisting of a
1665  * phandle and 1 or more arguments. The number of arguments are
1666  * determined by the #gpio-cells property in the node pointed to by the
1667  * phandle.
1668  */
1669 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1670 				const char *cells_name)
1671 {
1672 	return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1,
1673 					    NULL);
1674 }
1675 EXPORT_SYMBOL(of_count_phandle_with_args);
1676 
1677 /**
1678  * __of_add_property - Add a property to a node without lock operations
1679  */
1680 int __of_add_property(struct device_node *np, struct property *prop)
1681 {
1682 	struct property **next;
1683 
1684 	prop->next = NULL;
1685 	next = &np->properties;
1686 	while (*next) {
1687 		if (strcmp(prop->name, (*next)->name) == 0)
1688 			/* duplicate ! don't insert it */
1689 			return -EEXIST;
1690 
1691 		next = &(*next)->next;
1692 	}
1693 	*next = prop;
1694 
1695 	return 0;
1696 }
1697 
1698 /**
1699  * of_add_property - Add a property to a node
1700  */
1701 int of_add_property(struct device_node *np, struct property *prop)
1702 {
1703 	unsigned long flags;
1704 	int rc;
1705 
1706 	mutex_lock(&of_mutex);
1707 
1708 	raw_spin_lock_irqsave(&devtree_lock, flags);
1709 	rc = __of_add_property(np, prop);
1710 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1711 
1712 	if (!rc)
1713 		__of_add_property_sysfs(np, prop);
1714 
1715 	mutex_unlock(&of_mutex);
1716 
1717 	if (!rc)
1718 		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1719 
1720 	return rc;
1721 }
1722 
1723 int __of_remove_property(struct device_node *np, struct property *prop)
1724 {
1725 	struct property **next;
1726 
1727 	for (next = &np->properties; *next; next = &(*next)->next) {
1728 		if (*next == prop)
1729 			break;
1730 	}
1731 	if (*next == NULL)
1732 		return -ENODEV;
1733 
1734 	/* found the node */
1735 	*next = prop->next;
1736 	prop->next = np->deadprops;
1737 	np->deadprops = prop;
1738 
1739 	return 0;
1740 }
1741 
1742 void __of_remove_property_sysfs(struct device_node *np, struct property *prop)
1743 {
1744 	if (!IS_ENABLED(CONFIG_SYSFS))
1745 		return;
1746 
1747 	/* at early boot, bail here and defer setup to of_init() */
1748 	if (of_kset && of_node_is_attached(np))
1749 		sysfs_remove_bin_file(&np->kobj, &prop->attr);
1750 }
1751 
1752 /**
1753  * of_remove_property - Remove a property from a node.
1754  *
1755  * Note that we don't actually remove it, since we have given out
1756  * who-knows-how-many pointers to the data using get-property.
1757  * Instead we just move the property to the "dead properties"
1758  * list, so it won't be found any more.
1759  */
1760 int of_remove_property(struct device_node *np, struct property *prop)
1761 {
1762 	unsigned long flags;
1763 	int rc;
1764 
1765 	mutex_lock(&of_mutex);
1766 
1767 	raw_spin_lock_irqsave(&devtree_lock, flags);
1768 	rc = __of_remove_property(np, prop);
1769 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1770 
1771 	if (!rc)
1772 		__of_remove_property_sysfs(np, prop);
1773 
1774 	mutex_unlock(&of_mutex);
1775 
1776 	if (!rc)
1777 		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1778 
1779 	return rc;
1780 }
1781 
1782 int __of_update_property(struct device_node *np, struct property *newprop,
1783 		struct property **oldpropp)
1784 {
1785 	struct property **next, *oldprop;
1786 
1787 	for (next = &np->properties; *next; next = &(*next)->next) {
1788 		if (of_prop_cmp((*next)->name, newprop->name) == 0)
1789 			break;
1790 	}
1791 	*oldpropp = oldprop = *next;
1792 
1793 	if (oldprop) {
1794 		/* replace the node */
1795 		newprop->next = oldprop->next;
1796 		*next = newprop;
1797 		oldprop->next = np->deadprops;
1798 		np->deadprops = oldprop;
1799 	} else {
1800 		/* new node */
1801 		newprop->next = NULL;
1802 		*next = newprop;
1803 	}
1804 
1805 	return 0;
1806 }
1807 
1808 void __of_update_property_sysfs(struct device_node *np, struct property *newprop,
1809 		struct property *oldprop)
1810 {
1811 	if (!IS_ENABLED(CONFIG_SYSFS))
1812 		return;
1813 
1814 	/* At early boot, bail out and defer setup to of_init() */
1815 	if (!of_kset)
1816 		return;
1817 
1818 	if (oldprop)
1819 		sysfs_remove_bin_file(&np->kobj, &oldprop->attr);
1820 	__of_add_property_sysfs(np, newprop);
1821 }
1822 
1823 /*
1824  * of_update_property - Update a property in a node, if the property does
1825  * not exist, add it.
1826  *
1827  * Note that we don't actually remove it, since we have given out
1828  * who-knows-how-many pointers to the data using get-property.
1829  * Instead we just move the property to the "dead properties" list,
1830  * and add the new property to the property list
1831  */
1832 int of_update_property(struct device_node *np, struct property *newprop)
1833 {
1834 	struct property *oldprop;
1835 	unsigned long flags;
1836 	int rc;
1837 
1838 	if (!newprop->name)
1839 		return -EINVAL;
1840 
1841 	mutex_lock(&of_mutex);
1842 
1843 	raw_spin_lock_irqsave(&devtree_lock, flags);
1844 	rc = __of_update_property(np, newprop, &oldprop);
1845 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1846 
1847 	if (!rc)
1848 		__of_update_property_sysfs(np, newprop, oldprop);
1849 
1850 	mutex_unlock(&of_mutex);
1851 
1852 	if (!rc)
1853 		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1854 
1855 	return rc;
1856 }
1857 
1858 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1859 			 int id, const char *stem, int stem_len)
1860 {
1861 	ap->np = np;
1862 	ap->id = id;
1863 	strncpy(ap->stem, stem, stem_len);
1864 	ap->stem[stem_len] = 0;
1865 	list_add_tail(&ap->link, &aliases_lookup);
1866 	pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1867 		 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1868 }
1869 
1870 /**
1871  * of_alias_scan - Scan all properties of the 'aliases' node
1872  *
1873  * The function scans all the properties of the 'aliases' node and populates
1874  * the global lookup table with the properties.  It returns the
1875  * number of alias properties found, or an error code in case of failure.
1876  *
1877  * @dt_alloc:	An allocator that provides a virtual address to memory
1878  *		for storing the resulting tree
1879  */
1880 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1881 {
1882 	struct property *pp;
1883 
1884 	of_aliases = of_find_node_by_path("/aliases");
1885 	of_chosen = of_find_node_by_path("/chosen");
1886 	if (of_chosen == NULL)
1887 		of_chosen = of_find_node_by_path("/chosen@0");
1888 
1889 	if (of_chosen) {
1890 		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1891 		const char *name = of_get_property(of_chosen, "stdout-path", NULL);
1892 		if (!name)
1893 			name = of_get_property(of_chosen, "linux,stdout-path", NULL);
1894 		if (IS_ENABLED(CONFIG_PPC) && !name)
1895 			name = of_get_property(of_aliases, "stdout", NULL);
1896 		if (name) {
1897 			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1898 			add_preferred_console("stdout-path", 0, NULL);
1899 		}
1900 	}
1901 
1902 	if (!of_aliases)
1903 		return;
1904 
1905 	for_each_property_of_node(of_aliases, pp) {
1906 		const char *start = pp->name;
1907 		const char *end = start + strlen(start);
1908 		struct device_node *np;
1909 		struct alias_prop *ap;
1910 		int id, len;
1911 
1912 		/* Skip those we do not want to proceed */
1913 		if (!strcmp(pp->name, "name") ||
1914 		    !strcmp(pp->name, "phandle") ||
1915 		    !strcmp(pp->name, "linux,phandle"))
1916 			continue;
1917 
1918 		np = of_find_node_by_path(pp->value);
1919 		if (!np)
1920 			continue;
1921 
1922 		/* walk the alias backwards to extract the id and work out
1923 		 * the 'stem' string */
1924 		while (isdigit(*(end-1)) && end > start)
1925 			end--;
1926 		len = end - start;
1927 
1928 		if (kstrtoint(end, 10, &id) < 0)
1929 			continue;
1930 
1931 		/* Allocate an alias_prop with enough space for the stem */
1932 		ap = dt_alloc(sizeof(*ap) + len + 1, 4);
1933 		if (!ap)
1934 			continue;
1935 		memset(ap, 0, sizeof(*ap) + len + 1);
1936 		ap->alias = start;
1937 		of_alias_add(ap, np, id, start, len);
1938 	}
1939 }
1940 
1941 /**
1942  * of_alias_get_id - Get alias id for the given device_node
1943  * @np:		Pointer to the given device_node
1944  * @stem:	Alias stem of the given device_node
1945  *
1946  * The function travels the lookup table to get the alias id for the given
1947  * device_node and alias stem.  It returns the alias id if found.
1948  */
1949 int of_alias_get_id(struct device_node *np, const char *stem)
1950 {
1951 	struct alias_prop *app;
1952 	int id = -ENODEV;
1953 
1954 	mutex_lock(&of_mutex);
1955 	list_for_each_entry(app, &aliases_lookup, link) {
1956 		if (strcmp(app->stem, stem) != 0)
1957 			continue;
1958 
1959 		if (np == app->np) {
1960 			id = app->id;
1961 			break;
1962 		}
1963 	}
1964 	mutex_unlock(&of_mutex);
1965 
1966 	return id;
1967 }
1968 EXPORT_SYMBOL_GPL(of_alias_get_id);
1969 
1970 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
1971 			       u32 *pu)
1972 {
1973 	const void *curv = cur;
1974 
1975 	if (!prop)
1976 		return NULL;
1977 
1978 	if (!cur) {
1979 		curv = prop->value;
1980 		goto out_val;
1981 	}
1982 
1983 	curv += sizeof(*cur);
1984 	if (curv >= prop->value + prop->length)
1985 		return NULL;
1986 
1987 out_val:
1988 	*pu = be32_to_cpup(curv);
1989 	return curv;
1990 }
1991 EXPORT_SYMBOL_GPL(of_prop_next_u32);
1992 
1993 const char *of_prop_next_string(struct property *prop, const char *cur)
1994 {
1995 	const void *curv = cur;
1996 
1997 	if (!prop)
1998 		return NULL;
1999 
2000 	if (!cur)
2001 		return prop->value;
2002 
2003 	curv += strlen(cur) + 1;
2004 	if (curv >= prop->value + prop->length)
2005 		return NULL;
2006 
2007 	return curv;
2008 }
2009 EXPORT_SYMBOL_GPL(of_prop_next_string);
2010 
2011 /**
2012  * of_console_check() - Test and setup console for DT setup
2013  * @dn - Pointer to device node
2014  * @name - Name to use for preferred console without index. ex. "ttyS"
2015  * @index - Index to use for preferred console.
2016  *
2017  * Check if the given device node matches the stdout-path property in the
2018  * /chosen node. If it does then register it as the preferred console and return
2019  * TRUE. Otherwise return FALSE.
2020  */
2021 bool of_console_check(struct device_node *dn, char *name, int index)
2022 {
2023 	if (!dn || dn != of_stdout || console_set_on_cmdline)
2024 		return false;
2025 	return !add_preferred_console(name, index,
2026 				      kstrdup(of_stdout_options, GFP_KERNEL));
2027 }
2028 EXPORT_SYMBOL_GPL(of_console_check);
2029 
2030 /**
2031  *	of_find_next_cache_node - Find a node's subsidiary cache
2032  *	@np:	node of type "cpu" or "cache"
2033  *
2034  *	Returns a node pointer with refcount incremented, use
2035  *	of_node_put() on it when done.  Caller should hold a reference
2036  *	to np.
2037  */
2038 struct device_node *of_find_next_cache_node(const struct device_node *np)
2039 {
2040 	struct device_node *child;
2041 	const phandle *handle;
2042 
2043 	handle = of_get_property(np, "l2-cache", NULL);
2044 	if (!handle)
2045 		handle = of_get_property(np, "next-level-cache", NULL);
2046 
2047 	if (handle)
2048 		return of_find_node_by_phandle(be32_to_cpup(handle));
2049 
2050 	/* OF on pmac has nodes instead of properties named "l2-cache"
2051 	 * beneath CPU nodes.
2052 	 */
2053 	if (!strcmp(np->type, "cpu"))
2054 		for_each_child_of_node(np, child)
2055 			if (!strcmp(child->type, "cache"))
2056 				return child;
2057 
2058 	return NULL;
2059 }
2060 
2061 /**
2062  * of_graph_parse_endpoint() - parse common endpoint node properties
2063  * @node: pointer to endpoint device_node
2064  * @endpoint: pointer to the OF endpoint data structure
2065  *
2066  * The caller should hold a reference to @node.
2067  */
2068 int of_graph_parse_endpoint(const struct device_node *node,
2069 			    struct of_endpoint *endpoint)
2070 {
2071 	struct device_node *port_node = of_get_parent(node);
2072 
2073 	WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n",
2074 		  __func__, node->full_name);
2075 
2076 	memset(endpoint, 0, sizeof(*endpoint));
2077 
2078 	endpoint->local_node = node;
2079 	/*
2080 	 * It doesn't matter whether the two calls below succeed.
2081 	 * If they don't then the default value 0 is used.
2082 	 */
2083 	of_property_read_u32(port_node, "reg", &endpoint->port);
2084 	of_property_read_u32(node, "reg", &endpoint->id);
2085 
2086 	of_node_put(port_node);
2087 
2088 	return 0;
2089 }
2090 EXPORT_SYMBOL(of_graph_parse_endpoint);
2091 
2092 /**
2093  * of_graph_get_next_endpoint() - get next endpoint node
2094  * @parent: pointer to the parent device node
2095  * @prev: previous endpoint node, or NULL to get first
2096  *
2097  * Return: An 'endpoint' node pointer with refcount incremented. Refcount
2098  * of the passed @prev node is not decremented, the caller have to use
2099  * of_node_put() on it when done.
2100  */
2101 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
2102 					struct device_node *prev)
2103 {
2104 	struct device_node *endpoint;
2105 	struct device_node *port;
2106 
2107 	if (!parent)
2108 		return NULL;
2109 
2110 	/*
2111 	 * Start by locating the port node. If no previous endpoint is specified
2112 	 * search for the first port node, otherwise get the previous endpoint
2113 	 * parent port node.
2114 	 */
2115 	if (!prev) {
2116 		struct device_node *node;
2117 
2118 		node = of_get_child_by_name(parent, "ports");
2119 		if (node)
2120 			parent = node;
2121 
2122 		port = of_get_child_by_name(parent, "port");
2123 		of_node_put(node);
2124 
2125 		if (!port) {
2126 			pr_err("%s(): no port node found in %s\n",
2127 			       __func__, parent->full_name);
2128 			return NULL;
2129 		}
2130 	} else {
2131 		port = of_get_parent(prev);
2132 		if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n",
2133 			      __func__, prev->full_name))
2134 			return NULL;
2135 
2136 		/*
2137 		 * Avoid dropping prev node refcount to 0 when getting the next
2138 		 * child below.
2139 		 */
2140 		of_node_get(prev);
2141 	}
2142 
2143 	while (1) {
2144 		/*
2145 		 * Now that we have a port node, get the next endpoint by
2146 		 * getting the next child. If the previous endpoint is NULL this
2147 		 * will return the first child.
2148 		 */
2149 		endpoint = of_get_next_child(port, prev);
2150 		if (endpoint) {
2151 			of_node_put(port);
2152 			return endpoint;
2153 		}
2154 
2155 		/* No more endpoints under this port, try the next one. */
2156 		prev = NULL;
2157 
2158 		do {
2159 			port = of_get_next_child(parent, port);
2160 			if (!port)
2161 				return NULL;
2162 		} while (of_node_cmp(port->name, "port"));
2163 	}
2164 }
2165 EXPORT_SYMBOL(of_graph_get_next_endpoint);
2166 
2167 /**
2168  * of_graph_get_remote_port_parent() - get remote port's parent node
2169  * @node: pointer to a local endpoint device_node
2170  *
2171  * Return: Remote device node associated with remote endpoint node linked
2172  *	   to @node. Use of_node_put() on it when done.
2173  */
2174 struct device_node *of_graph_get_remote_port_parent(
2175 			       const struct device_node *node)
2176 {
2177 	struct device_node *np;
2178 	unsigned int depth;
2179 
2180 	/* Get remote endpoint node. */
2181 	np = of_parse_phandle(node, "remote-endpoint", 0);
2182 
2183 	/* Walk 3 levels up only if there is 'ports' node. */
2184 	for (depth = 3; depth && np; depth--) {
2185 		np = of_get_next_parent(np);
2186 		if (depth == 2 && of_node_cmp(np->name, "ports"))
2187 			break;
2188 	}
2189 	return np;
2190 }
2191 EXPORT_SYMBOL(of_graph_get_remote_port_parent);
2192 
2193 /**
2194  * of_graph_get_remote_port() - get remote port node
2195  * @node: pointer to a local endpoint device_node
2196  *
2197  * Return: Remote port node associated with remote endpoint node linked
2198  *	   to @node. Use of_node_put() on it when done.
2199  */
2200 struct device_node *of_graph_get_remote_port(const struct device_node *node)
2201 {
2202 	struct device_node *np;
2203 
2204 	/* Get remote endpoint node. */
2205 	np = of_parse_phandle(node, "remote-endpoint", 0);
2206 	if (!np)
2207 		return NULL;
2208 	return of_get_next_parent(np);
2209 }
2210 EXPORT_SYMBOL(of_graph_get_remote_port);
2211