1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Procedures for creating, accessing and interpreting the device tree. 4 * 5 * Paul Mackerras August 1996. 6 * Copyright (C) 1996-2005 Paul Mackerras. 7 * 8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 9 * {engebret|bergner}@us.ibm.com 10 * 11 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 12 * 13 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 14 * Grant Likely. 15 */ 16 17 #define pr_fmt(fmt) "OF: " fmt 18 19 #include <linux/console.h> 20 #include <linux/ctype.h> 21 #include <linux/cpu.h> 22 #include <linux/module.h> 23 #include <linux/of.h> 24 #include <linux/of_device.h> 25 #include <linux/of_graph.h> 26 #include <linux/spinlock.h> 27 #include <linux/slab.h> 28 #include <linux/string.h> 29 #include <linux/proc_fs.h> 30 31 #include "of_private.h" 32 33 LIST_HEAD(aliases_lookup); 34 35 struct device_node *of_root; 36 EXPORT_SYMBOL(of_root); 37 struct device_node *of_chosen; 38 EXPORT_SYMBOL(of_chosen); 39 struct device_node *of_aliases; 40 struct device_node *of_stdout; 41 static const char *of_stdout_options; 42 43 struct kset *of_kset; 44 45 /* 46 * Used to protect the of_aliases, to hold off addition of nodes to sysfs. 47 * This mutex must be held whenever modifications are being made to the 48 * device tree. The of_{attach,detach}_node() and 49 * of_{add,remove,update}_property() helpers make sure this happens. 50 */ 51 DEFINE_MUTEX(of_mutex); 52 53 /* use when traversing tree through the child, sibling, 54 * or parent members of struct device_node. 55 */ 56 DEFINE_RAW_SPINLOCK(devtree_lock); 57 58 bool of_node_name_eq(const struct device_node *np, const char *name) 59 { 60 const char *node_name; 61 size_t len; 62 63 if (!np) 64 return false; 65 66 node_name = kbasename(np->full_name); 67 len = strchrnul(node_name, '@') - node_name; 68 69 return (strlen(name) == len) && (strncmp(node_name, name, len) == 0); 70 } 71 EXPORT_SYMBOL(of_node_name_eq); 72 73 bool of_node_name_prefix(const struct device_node *np, const char *prefix) 74 { 75 if (!np) 76 return false; 77 78 return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0; 79 } 80 EXPORT_SYMBOL(of_node_name_prefix); 81 82 static bool __of_node_is_type(const struct device_node *np, const char *type) 83 { 84 const char *match = __of_get_property(np, "device_type", NULL); 85 86 return np && match && type && !strcmp(match, type); 87 } 88 89 int of_bus_n_addr_cells(struct device_node *np) 90 { 91 u32 cells; 92 93 for (; np; np = np->parent) 94 if (!of_property_read_u32(np, "#address-cells", &cells)) 95 return cells; 96 97 /* No #address-cells property for the root node */ 98 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 99 } 100 101 int of_n_addr_cells(struct device_node *np) 102 { 103 if (np->parent) 104 np = np->parent; 105 106 return of_bus_n_addr_cells(np); 107 } 108 EXPORT_SYMBOL(of_n_addr_cells); 109 110 int of_bus_n_size_cells(struct device_node *np) 111 { 112 u32 cells; 113 114 for (; np; np = np->parent) 115 if (!of_property_read_u32(np, "#size-cells", &cells)) 116 return cells; 117 118 /* No #size-cells property for the root node */ 119 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 120 } 121 122 int of_n_size_cells(struct device_node *np) 123 { 124 if (np->parent) 125 np = np->parent; 126 127 return of_bus_n_size_cells(np); 128 } 129 EXPORT_SYMBOL(of_n_size_cells); 130 131 #ifdef CONFIG_NUMA 132 int __weak of_node_to_nid(struct device_node *np) 133 { 134 return NUMA_NO_NODE; 135 } 136 #endif 137 138 #define OF_PHANDLE_CACHE_BITS 7 139 #define OF_PHANDLE_CACHE_SZ BIT(OF_PHANDLE_CACHE_BITS) 140 141 static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ]; 142 143 static u32 of_phandle_cache_hash(phandle handle) 144 { 145 return hash_32(handle, OF_PHANDLE_CACHE_BITS); 146 } 147 148 /* 149 * Caller must hold devtree_lock. 150 */ 151 void __of_phandle_cache_inv_entry(phandle handle) 152 { 153 u32 handle_hash; 154 struct device_node *np; 155 156 if (!handle) 157 return; 158 159 handle_hash = of_phandle_cache_hash(handle); 160 161 np = phandle_cache[handle_hash]; 162 if (np && handle == np->phandle) 163 phandle_cache[handle_hash] = NULL; 164 } 165 166 void __init of_core_init(void) 167 { 168 struct device_node *np; 169 170 of_platform_register_reconfig_notifier(); 171 172 /* Create the kset, and register existing nodes */ 173 mutex_lock(&of_mutex); 174 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj); 175 if (!of_kset) { 176 mutex_unlock(&of_mutex); 177 pr_err("failed to register existing nodes\n"); 178 return; 179 } 180 for_each_of_allnodes(np) { 181 __of_attach_node_sysfs(np); 182 if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)]) 183 phandle_cache[of_phandle_cache_hash(np->phandle)] = np; 184 } 185 mutex_unlock(&of_mutex); 186 187 /* Symlink in /proc as required by userspace ABI */ 188 if (of_root) 189 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base"); 190 } 191 192 static struct property *__of_find_property(const struct device_node *np, 193 const char *name, int *lenp) 194 { 195 struct property *pp; 196 197 if (!np) 198 return NULL; 199 200 for (pp = np->properties; pp; pp = pp->next) { 201 if (of_prop_cmp(pp->name, name) == 0) { 202 if (lenp) 203 *lenp = pp->length; 204 break; 205 } 206 } 207 208 return pp; 209 } 210 211 struct property *of_find_property(const struct device_node *np, 212 const char *name, 213 int *lenp) 214 { 215 struct property *pp; 216 unsigned long flags; 217 218 raw_spin_lock_irqsave(&devtree_lock, flags); 219 pp = __of_find_property(np, name, lenp); 220 raw_spin_unlock_irqrestore(&devtree_lock, flags); 221 222 return pp; 223 } 224 EXPORT_SYMBOL(of_find_property); 225 226 struct device_node *__of_find_all_nodes(struct device_node *prev) 227 { 228 struct device_node *np; 229 if (!prev) { 230 np = of_root; 231 } else if (prev->child) { 232 np = prev->child; 233 } else { 234 /* Walk back up looking for a sibling, or the end of the structure */ 235 np = prev; 236 while (np->parent && !np->sibling) 237 np = np->parent; 238 np = np->sibling; /* Might be null at the end of the tree */ 239 } 240 return np; 241 } 242 243 /** 244 * of_find_all_nodes - Get next node in global list 245 * @prev: Previous node or NULL to start iteration 246 * of_node_put() will be called on it 247 * 248 * Return: A node pointer with refcount incremented, use 249 * of_node_put() on it when done. 250 */ 251 struct device_node *of_find_all_nodes(struct device_node *prev) 252 { 253 struct device_node *np; 254 unsigned long flags; 255 256 raw_spin_lock_irqsave(&devtree_lock, flags); 257 np = __of_find_all_nodes(prev); 258 of_node_get(np); 259 of_node_put(prev); 260 raw_spin_unlock_irqrestore(&devtree_lock, flags); 261 return np; 262 } 263 EXPORT_SYMBOL(of_find_all_nodes); 264 265 /* 266 * Find a property with a given name for a given node 267 * and return the value. 268 */ 269 const void *__of_get_property(const struct device_node *np, 270 const char *name, int *lenp) 271 { 272 struct property *pp = __of_find_property(np, name, lenp); 273 274 return pp ? pp->value : NULL; 275 } 276 277 /* 278 * Find a property with a given name for a given node 279 * and return the value. 280 */ 281 const void *of_get_property(const struct device_node *np, const char *name, 282 int *lenp) 283 { 284 struct property *pp = of_find_property(np, name, lenp); 285 286 return pp ? pp->value : NULL; 287 } 288 EXPORT_SYMBOL(of_get_property); 289 290 /** 291 * __of_device_is_compatible() - Check if the node matches given constraints 292 * @device: pointer to node 293 * @compat: required compatible string, NULL or "" for any match 294 * @type: required device_type value, NULL or "" for any match 295 * @name: required node name, NULL or "" for any match 296 * 297 * Checks if the given @compat, @type and @name strings match the 298 * properties of the given @device. A constraints can be skipped by 299 * passing NULL or an empty string as the constraint. 300 * 301 * Returns 0 for no match, and a positive integer on match. The return 302 * value is a relative score with larger values indicating better 303 * matches. The score is weighted for the most specific compatible value 304 * to get the highest score. Matching type is next, followed by matching 305 * name. Practically speaking, this results in the following priority 306 * order for matches: 307 * 308 * 1. specific compatible && type && name 309 * 2. specific compatible && type 310 * 3. specific compatible && name 311 * 4. specific compatible 312 * 5. general compatible && type && name 313 * 6. general compatible && type 314 * 7. general compatible && name 315 * 8. general compatible 316 * 9. type && name 317 * 10. type 318 * 11. name 319 */ 320 static int __of_device_is_compatible(const struct device_node *device, 321 const char *compat, const char *type, const char *name) 322 { 323 struct property *prop; 324 const char *cp; 325 int index = 0, score = 0; 326 327 /* Compatible match has highest priority */ 328 if (compat && compat[0]) { 329 prop = __of_find_property(device, "compatible", NULL); 330 for (cp = of_prop_next_string(prop, NULL); cp; 331 cp = of_prop_next_string(prop, cp), index++) { 332 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) { 333 score = INT_MAX/2 - (index << 2); 334 break; 335 } 336 } 337 if (!score) 338 return 0; 339 } 340 341 /* Matching type is better than matching name */ 342 if (type && type[0]) { 343 if (!__of_node_is_type(device, type)) 344 return 0; 345 score += 2; 346 } 347 348 /* Matching name is a bit better than not */ 349 if (name && name[0]) { 350 if (!of_node_name_eq(device, name)) 351 return 0; 352 score++; 353 } 354 355 return score; 356 } 357 358 /** Checks if the given "compat" string matches one of the strings in 359 * the device's "compatible" property 360 */ 361 int of_device_is_compatible(const struct device_node *device, 362 const char *compat) 363 { 364 unsigned long flags; 365 int res; 366 367 raw_spin_lock_irqsave(&devtree_lock, flags); 368 res = __of_device_is_compatible(device, compat, NULL, NULL); 369 raw_spin_unlock_irqrestore(&devtree_lock, flags); 370 return res; 371 } 372 EXPORT_SYMBOL(of_device_is_compatible); 373 374 /** Checks if the device is compatible with any of the entries in 375 * a NULL terminated array of strings. Returns the best match 376 * score or 0. 377 */ 378 int of_device_compatible_match(const struct device_node *device, 379 const char *const *compat) 380 { 381 unsigned int tmp, score = 0; 382 383 if (!compat) 384 return 0; 385 386 while (*compat) { 387 tmp = of_device_is_compatible(device, *compat); 388 if (tmp > score) 389 score = tmp; 390 compat++; 391 } 392 393 return score; 394 } 395 EXPORT_SYMBOL_GPL(of_device_compatible_match); 396 397 /** 398 * of_machine_is_compatible - Test root of device tree for a given compatible value 399 * @compat: compatible string to look for in root node's compatible property. 400 * 401 * Return: A positive integer if the root node has the given value in its 402 * compatible property. 403 */ 404 int of_machine_is_compatible(const char *compat) 405 { 406 struct device_node *root; 407 int rc = 0; 408 409 root = of_find_node_by_path("/"); 410 if (root) { 411 rc = of_device_is_compatible(root, compat); 412 of_node_put(root); 413 } 414 return rc; 415 } 416 EXPORT_SYMBOL(of_machine_is_compatible); 417 418 /** 419 * __of_device_is_available - check if a device is available for use 420 * 421 * @device: Node to check for availability, with locks already held 422 * 423 * Return: True if the status property is absent or set to "okay" or "ok", 424 * false otherwise 425 */ 426 static bool __of_device_is_available(const struct device_node *device) 427 { 428 const char *status; 429 int statlen; 430 431 if (!device) 432 return false; 433 434 status = __of_get_property(device, "status", &statlen); 435 if (status == NULL) 436 return true; 437 438 if (statlen > 0) { 439 if (!strcmp(status, "okay") || !strcmp(status, "ok")) 440 return true; 441 } 442 443 return false; 444 } 445 446 /** 447 * of_device_is_available - check if a device is available for use 448 * 449 * @device: Node to check for availability 450 * 451 * Return: True if the status property is absent or set to "okay" or "ok", 452 * false otherwise 453 */ 454 bool of_device_is_available(const struct device_node *device) 455 { 456 unsigned long flags; 457 bool res; 458 459 raw_spin_lock_irqsave(&devtree_lock, flags); 460 res = __of_device_is_available(device); 461 raw_spin_unlock_irqrestore(&devtree_lock, flags); 462 return res; 463 464 } 465 EXPORT_SYMBOL(of_device_is_available); 466 467 /** 468 * __of_device_is_fail - check if a device has status "fail" or "fail-..." 469 * 470 * @device: Node to check status for, with locks already held 471 * 472 * Return: True if the status property is set to "fail" or "fail-..." (for any 473 * error code suffix), false otherwise 474 */ 475 static bool __of_device_is_fail(const struct device_node *device) 476 { 477 const char *status; 478 479 if (!device) 480 return false; 481 482 status = __of_get_property(device, "status", NULL); 483 if (status == NULL) 484 return false; 485 486 return !strcmp(status, "fail") || !strncmp(status, "fail-", 5); 487 } 488 489 /** 490 * of_device_is_big_endian - check if a device has BE registers 491 * 492 * @device: Node to check for endianness 493 * 494 * Return: True if the device has a "big-endian" property, or if the kernel 495 * was compiled for BE *and* the device has a "native-endian" property. 496 * Returns false otherwise. 497 * 498 * Callers would nominally use ioread32be/iowrite32be if 499 * of_device_is_big_endian() == true, or readl/writel otherwise. 500 */ 501 bool of_device_is_big_endian(const struct device_node *device) 502 { 503 if (of_property_read_bool(device, "big-endian")) 504 return true; 505 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) && 506 of_property_read_bool(device, "native-endian")) 507 return true; 508 return false; 509 } 510 EXPORT_SYMBOL(of_device_is_big_endian); 511 512 /** 513 * of_get_parent - Get a node's parent if any 514 * @node: Node to get parent 515 * 516 * Return: A node pointer with refcount incremented, use 517 * of_node_put() on it when done. 518 */ 519 struct device_node *of_get_parent(const struct device_node *node) 520 { 521 struct device_node *np; 522 unsigned long flags; 523 524 if (!node) 525 return NULL; 526 527 raw_spin_lock_irqsave(&devtree_lock, flags); 528 np = of_node_get(node->parent); 529 raw_spin_unlock_irqrestore(&devtree_lock, flags); 530 return np; 531 } 532 EXPORT_SYMBOL(of_get_parent); 533 534 /** 535 * of_get_next_parent - Iterate to a node's parent 536 * @node: Node to get parent of 537 * 538 * This is like of_get_parent() except that it drops the 539 * refcount on the passed node, making it suitable for iterating 540 * through a node's parents. 541 * 542 * Return: A node pointer with refcount incremented, use 543 * of_node_put() on it when done. 544 */ 545 struct device_node *of_get_next_parent(struct device_node *node) 546 { 547 struct device_node *parent; 548 unsigned long flags; 549 550 if (!node) 551 return NULL; 552 553 raw_spin_lock_irqsave(&devtree_lock, flags); 554 parent = of_node_get(node->parent); 555 of_node_put(node); 556 raw_spin_unlock_irqrestore(&devtree_lock, flags); 557 return parent; 558 } 559 EXPORT_SYMBOL(of_get_next_parent); 560 561 static struct device_node *__of_get_next_child(const struct device_node *node, 562 struct device_node *prev) 563 { 564 struct device_node *next; 565 566 if (!node) 567 return NULL; 568 569 next = prev ? prev->sibling : node->child; 570 of_node_get(next); 571 of_node_put(prev); 572 return next; 573 } 574 #define __for_each_child_of_node(parent, child) \ 575 for (child = __of_get_next_child(parent, NULL); child != NULL; \ 576 child = __of_get_next_child(parent, child)) 577 578 /** 579 * of_get_next_child - Iterate a node childs 580 * @node: parent node 581 * @prev: previous child of the parent node, or NULL to get first 582 * 583 * Return: A node pointer with refcount incremented, use of_node_put() on 584 * it when done. Returns NULL when prev is the last child. Decrements the 585 * refcount of prev. 586 */ 587 struct device_node *of_get_next_child(const struct device_node *node, 588 struct device_node *prev) 589 { 590 struct device_node *next; 591 unsigned long flags; 592 593 raw_spin_lock_irqsave(&devtree_lock, flags); 594 next = __of_get_next_child(node, prev); 595 raw_spin_unlock_irqrestore(&devtree_lock, flags); 596 return next; 597 } 598 EXPORT_SYMBOL(of_get_next_child); 599 600 /** 601 * of_get_next_available_child - Find the next available child node 602 * @node: parent node 603 * @prev: previous child of the parent node, or NULL to get first 604 * 605 * This function is like of_get_next_child(), except that it 606 * automatically skips any disabled nodes (i.e. status = "disabled"). 607 */ 608 struct device_node *of_get_next_available_child(const struct device_node *node, 609 struct device_node *prev) 610 { 611 struct device_node *next; 612 unsigned long flags; 613 614 if (!node) 615 return NULL; 616 617 raw_spin_lock_irqsave(&devtree_lock, flags); 618 next = prev ? prev->sibling : node->child; 619 for (; next; next = next->sibling) { 620 if (!__of_device_is_available(next)) 621 continue; 622 if (of_node_get(next)) 623 break; 624 } 625 of_node_put(prev); 626 raw_spin_unlock_irqrestore(&devtree_lock, flags); 627 return next; 628 } 629 EXPORT_SYMBOL(of_get_next_available_child); 630 631 /** 632 * of_get_next_cpu_node - Iterate on cpu nodes 633 * @prev: previous child of the /cpus node, or NULL to get first 634 * 635 * Unusable CPUs (those with the status property set to "fail" or "fail-...") 636 * will be skipped. 637 * 638 * Return: A cpu node pointer with refcount incremented, use of_node_put() 639 * on it when done. Returns NULL when prev is the last child. Decrements 640 * the refcount of prev. 641 */ 642 struct device_node *of_get_next_cpu_node(struct device_node *prev) 643 { 644 struct device_node *next = NULL; 645 unsigned long flags; 646 struct device_node *node; 647 648 if (!prev) 649 node = of_find_node_by_path("/cpus"); 650 651 raw_spin_lock_irqsave(&devtree_lock, flags); 652 if (prev) 653 next = prev->sibling; 654 else if (node) { 655 next = node->child; 656 of_node_put(node); 657 } 658 for (; next; next = next->sibling) { 659 if (__of_device_is_fail(next)) 660 continue; 661 if (!(of_node_name_eq(next, "cpu") || 662 __of_node_is_type(next, "cpu"))) 663 continue; 664 if (of_node_get(next)) 665 break; 666 } 667 of_node_put(prev); 668 raw_spin_unlock_irqrestore(&devtree_lock, flags); 669 return next; 670 } 671 EXPORT_SYMBOL(of_get_next_cpu_node); 672 673 /** 674 * of_get_compatible_child - Find compatible child node 675 * @parent: parent node 676 * @compatible: compatible string 677 * 678 * Lookup child node whose compatible property contains the given compatible 679 * string. 680 * 681 * Return: a node pointer with refcount incremented, use of_node_put() on it 682 * when done; or NULL if not found. 683 */ 684 struct device_node *of_get_compatible_child(const struct device_node *parent, 685 const char *compatible) 686 { 687 struct device_node *child; 688 689 for_each_child_of_node(parent, child) { 690 if (of_device_is_compatible(child, compatible)) 691 break; 692 } 693 694 return child; 695 } 696 EXPORT_SYMBOL(of_get_compatible_child); 697 698 /** 699 * of_get_child_by_name - Find the child node by name for a given parent 700 * @node: parent node 701 * @name: child name to look for. 702 * 703 * This function looks for child node for given matching name 704 * 705 * Return: A node pointer if found, with refcount incremented, use 706 * of_node_put() on it when done. 707 * Returns NULL if node is not found. 708 */ 709 struct device_node *of_get_child_by_name(const struct device_node *node, 710 const char *name) 711 { 712 struct device_node *child; 713 714 for_each_child_of_node(node, child) 715 if (of_node_name_eq(child, name)) 716 break; 717 return child; 718 } 719 EXPORT_SYMBOL(of_get_child_by_name); 720 721 struct device_node *__of_find_node_by_path(struct device_node *parent, 722 const char *path) 723 { 724 struct device_node *child; 725 int len; 726 727 len = strcspn(path, "/:"); 728 if (!len) 729 return NULL; 730 731 __for_each_child_of_node(parent, child) { 732 const char *name = kbasename(child->full_name); 733 if (strncmp(path, name, len) == 0 && (strlen(name) == len)) 734 return child; 735 } 736 return NULL; 737 } 738 739 struct device_node *__of_find_node_by_full_path(struct device_node *node, 740 const char *path) 741 { 742 const char *separator = strchr(path, ':'); 743 744 while (node && *path == '/') { 745 struct device_node *tmp = node; 746 747 path++; /* Increment past '/' delimiter */ 748 node = __of_find_node_by_path(node, path); 749 of_node_put(tmp); 750 path = strchrnul(path, '/'); 751 if (separator && separator < path) 752 break; 753 } 754 return node; 755 } 756 757 /** 758 * of_find_node_opts_by_path - Find a node matching a full OF path 759 * @path: Either the full path to match, or if the path does not 760 * start with '/', the name of a property of the /aliases 761 * node (an alias). In the case of an alias, the node 762 * matching the alias' value will be returned. 763 * @opts: Address of a pointer into which to store the start of 764 * an options string appended to the end of the path with 765 * a ':' separator. 766 * 767 * Valid paths: 768 * * /foo/bar Full path 769 * * foo Valid alias 770 * * foo/bar Valid alias + relative path 771 * 772 * Return: A node pointer with refcount incremented, use 773 * of_node_put() on it when done. 774 */ 775 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts) 776 { 777 struct device_node *np = NULL; 778 struct property *pp; 779 unsigned long flags; 780 const char *separator = strchr(path, ':'); 781 782 if (opts) 783 *opts = separator ? separator + 1 : NULL; 784 785 if (strcmp(path, "/") == 0) 786 return of_node_get(of_root); 787 788 /* The path could begin with an alias */ 789 if (*path != '/') { 790 int len; 791 const char *p = separator; 792 793 if (!p) 794 p = strchrnul(path, '/'); 795 len = p - path; 796 797 /* of_aliases must not be NULL */ 798 if (!of_aliases) 799 return NULL; 800 801 for_each_property_of_node(of_aliases, pp) { 802 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) { 803 np = of_find_node_by_path(pp->value); 804 break; 805 } 806 } 807 if (!np) 808 return NULL; 809 path = p; 810 } 811 812 /* Step down the tree matching path components */ 813 raw_spin_lock_irqsave(&devtree_lock, flags); 814 if (!np) 815 np = of_node_get(of_root); 816 np = __of_find_node_by_full_path(np, path); 817 raw_spin_unlock_irqrestore(&devtree_lock, flags); 818 return np; 819 } 820 EXPORT_SYMBOL(of_find_node_opts_by_path); 821 822 /** 823 * of_find_node_by_name - Find a node by its "name" property 824 * @from: The node to start searching from or NULL; the node 825 * you pass will not be searched, only the next one 826 * will. Typically, you pass what the previous call 827 * returned. of_node_put() will be called on @from. 828 * @name: The name string to match against 829 * 830 * Return: A node pointer with refcount incremented, use 831 * of_node_put() on it when done. 832 */ 833 struct device_node *of_find_node_by_name(struct device_node *from, 834 const char *name) 835 { 836 struct device_node *np; 837 unsigned long flags; 838 839 raw_spin_lock_irqsave(&devtree_lock, flags); 840 for_each_of_allnodes_from(from, np) 841 if (of_node_name_eq(np, name) && of_node_get(np)) 842 break; 843 of_node_put(from); 844 raw_spin_unlock_irqrestore(&devtree_lock, flags); 845 return np; 846 } 847 EXPORT_SYMBOL(of_find_node_by_name); 848 849 /** 850 * of_find_node_by_type - Find a node by its "device_type" property 851 * @from: The node to start searching from, or NULL to start searching 852 * the entire device tree. The node you pass will not be 853 * searched, only the next one will; typically, you pass 854 * what the previous call returned. of_node_put() will be 855 * called on from for you. 856 * @type: The type string to match against 857 * 858 * Return: A node pointer with refcount incremented, use 859 * of_node_put() on it when done. 860 */ 861 struct device_node *of_find_node_by_type(struct device_node *from, 862 const char *type) 863 { 864 struct device_node *np; 865 unsigned long flags; 866 867 raw_spin_lock_irqsave(&devtree_lock, flags); 868 for_each_of_allnodes_from(from, np) 869 if (__of_node_is_type(np, type) && of_node_get(np)) 870 break; 871 of_node_put(from); 872 raw_spin_unlock_irqrestore(&devtree_lock, flags); 873 return np; 874 } 875 EXPORT_SYMBOL(of_find_node_by_type); 876 877 /** 878 * of_find_compatible_node - Find a node based on type and one of the 879 * tokens in its "compatible" property 880 * @from: The node to start searching from or NULL, the node 881 * you pass will not be searched, only the next one 882 * will; typically, you pass what the previous call 883 * returned. of_node_put() will be called on it 884 * @type: The type string to match "device_type" or NULL to ignore 885 * @compatible: The string to match to one of the tokens in the device 886 * "compatible" list. 887 * 888 * Return: A node pointer with refcount incremented, use 889 * of_node_put() on it when done. 890 */ 891 struct device_node *of_find_compatible_node(struct device_node *from, 892 const char *type, const char *compatible) 893 { 894 struct device_node *np; 895 unsigned long flags; 896 897 raw_spin_lock_irqsave(&devtree_lock, flags); 898 for_each_of_allnodes_from(from, np) 899 if (__of_device_is_compatible(np, compatible, type, NULL) && 900 of_node_get(np)) 901 break; 902 of_node_put(from); 903 raw_spin_unlock_irqrestore(&devtree_lock, flags); 904 return np; 905 } 906 EXPORT_SYMBOL(of_find_compatible_node); 907 908 /** 909 * of_find_node_with_property - Find a node which has a property with 910 * the given name. 911 * @from: The node to start searching from or NULL, the node 912 * you pass will not be searched, only the next one 913 * will; typically, you pass what the previous call 914 * returned. of_node_put() will be called on it 915 * @prop_name: The name of the property to look for. 916 * 917 * Return: A node pointer with refcount incremented, use 918 * of_node_put() on it when done. 919 */ 920 struct device_node *of_find_node_with_property(struct device_node *from, 921 const char *prop_name) 922 { 923 struct device_node *np; 924 struct property *pp; 925 unsigned long flags; 926 927 raw_spin_lock_irqsave(&devtree_lock, flags); 928 for_each_of_allnodes_from(from, np) { 929 for (pp = np->properties; pp; pp = pp->next) { 930 if (of_prop_cmp(pp->name, prop_name) == 0) { 931 of_node_get(np); 932 goto out; 933 } 934 } 935 } 936 out: 937 of_node_put(from); 938 raw_spin_unlock_irqrestore(&devtree_lock, flags); 939 return np; 940 } 941 EXPORT_SYMBOL(of_find_node_with_property); 942 943 static 944 const struct of_device_id *__of_match_node(const struct of_device_id *matches, 945 const struct device_node *node) 946 { 947 const struct of_device_id *best_match = NULL; 948 int score, best_score = 0; 949 950 if (!matches) 951 return NULL; 952 953 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) { 954 score = __of_device_is_compatible(node, matches->compatible, 955 matches->type, matches->name); 956 if (score > best_score) { 957 best_match = matches; 958 best_score = score; 959 } 960 } 961 962 return best_match; 963 } 964 965 /** 966 * of_match_node - Tell if a device_node has a matching of_match structure 967 * @matches: array of of device match structures to search in 968 * @node: the of device structure to match against 969 * 970 * Low level utility function used by device matching. 971 */ 972 const struct of_device_id *of_match_node(const struct of_device_id *matches, 973 const struct device_node *node) 974 { 975 const struct of_device_id *match; 976 unsigned long flags; 977 978 raw_spin_lock_irqsave(&devtree_lock, flags); 979 match = __of_match_node(matches, node); 980 raw_spin_unlock_irqrestore(&devtree_lock, flags); 981 return match; 982 } 983 EXPORT_SYMBOL(of_match_node); 984 985 /** 986 * of_find_matching_node_and_match - Find a node based on an of_device_id 987 * match table. 988 * @from: The node to start searching from or NULL, the node 989 * you pass will not be searched, only the next one 990 * will; typically, you pass what the previous call 991 * returned. of_node_put() will be called on it 992 * @matches: array of of device match structures to search in 993 * @match: Updated to point at the matches entry which matched 994 * 995 * Return: A node pointer with refcount incremented, use 996 * of_node_put() on it when done. 997 */ 998 struct device_node *of_find_matching_node_and_match(struct device_node *from, 999 const struct of_device_id *matches, 1000 const struct of_device_id **match) 1001 { 1002 struct device_node *np; 1003 const struct of_device_id *m; 1004 unsigned long flags; 1005 1006 if (match) 1007 *match = NULL; 1008 1009 raw_spin_lock_irqsave(&devtree_lock, flags); 1010 for_each_of_allnodes_from(from, np) { 1011 m = __of_match_node(matches, np); 1012 if (m && of_node_get(np)) { 1013 if (match) 1014 *match = m; 1015 break; 1016 } 1017 } 1018 of_node_put(from); 1019 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1020 return np; 1021 } 1022 EXPORT_SYMBOL(of_find_matching_node_and_match); 1023 1024 /** 1025 * of_alias_from_compatible - Lookup appropriate alias for a device node 1026 * depending on compatible 1027 * @node: pointer to a device tree node 1028 * @alias: Pointer to buffer that alias value will be copied into 1029 * @len: Length of alias value 1030 * 1031 * Based on the value of the compatible property, this routine will attempt 1032 * to choose an appropriate alias value for a particular device tree node. 1033 * It does this by stripping the manufacturer prefix (as delimited by a ',') 1034 * from the first entry in the compatible list property. 1035 * 1036 * Note: The matching on just the "product" side of the compatible is a relic 1037 * from I2C and SPI. Please do not add any new user. 1038 * 1039 * Return: This routine returns 0 on success, <0 on failure. 1040 */ 1041 int of_alias_from_compatible(const struct device_node *node, char *alias, int len) 1042 { 1043 const char *compatible, *p; 1044 int cplen; 1045 1046 compatible = of_get_property(node, "compatible", &cplen); 1047 if (!compatible || strlen(compatible) > cplen) 1048 return -ENODEV; 1049 p = strchr(compatible, ','); 1050 strscpy(alias, p ? p + 1 : compatible, len); 1051 return 0; 1052 } 1053 EXPORT_SYMBOL_GPL(of_alias_from_compatible); 1054 1055 /** 1056 * of_find_node_by_phandle - Find a node given a phandle 1057 * @handle: phandle of the node to find 1058 * 1059 * Return: A node pointer with refcount incremented, use 1060 * of_node_put() on it when done. 1061 */ 1062 struct device_node *of_find_node_by_phandle(phandle handle) 1063 { 1064 struct device_node *np = NULL; 1065 unsigned long flags; 1066 u32 handle_hash; 1067 1068 if (!handle) 1069 return NULL; 1070 1071 handle_hash = of_phandle_cache_hash(handle); 1072 1073 raw_spin_lock_irqsave(&devtree_lock, flags); 1074 1075 if (phandle_cache[handle_hash] && 1076 handle == phandle_cache[handle_hash]->phandle) 1077 np = phandle_cache[handle_hash]; 1078 1079 if (!np) { 1080 for_each_of_allnodes(np) 1081 if (np->phandle == handle && 1082 !of_node_check_flag(np, OF_DETACHED)) { 1083 phandle_cache[handle_hash] = np; 1084 break; 1085 } 1086 } 1087 1088 of_node_get(np); 1089 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1090 return np; 1091 } 1092 EXPORT_SYMBOL(of_find_node_by_phandle); 1093 1094 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args) 1095 { 1096 int i; 1097 printk("%s %pOF", msg, args->np); 1098 for (i = 0; i < args->args_count; i++) { 1099 const char delim = i ? ',' : ':'; 1100 1101 pr_cont("%c%08x", delim, args->args[i]); 1102 } 1103 pr_cont("\n"); 1104 } 1105 1106 int of_phandle_iterator_init(struct of_phandle_iterator *it, 1107 const struct device_node *np, 1108 const char *list_name, 1109 const char *cells_name, 1110 int cell_count) 1111 { 1112 const __be32 *list; 1113 int size; 1114 1115 memset(it, 0, sizeof(*it)); 1116 1117 /* 1118 * one of cell_count or cells_name must be provided to determine the 1119 * argument length. 1120 */ 1121 if (cell_count < 0 && !cells_name) 1122 return -EINVAL; 1123 1124 list = of_get_property(np, list_name, &size); 1125 if (!list) 1126 return -ENOENT; 1127 1128 it->cells_name = cells_name; 1129 it->cell_count = cell_count; 1130 it->parent = np; 1131 it->list_end = list + size / sizeof(*list); 1132 it->phandle_end = list; 1133 it->cur = list; 1134 1135 return 0; 1136 } 1137 EXPORT_SYMBOL_GPL(of_phandle_iterator_init); 1138 1139 int of_phandle_iterator_next(struct of_phandle_iterator *it) 1140 { 1141 uint32_t count = 0; 1142 1143 if (it->node) { 1144 of_node_put(it->node); 1145 it->node = NULL; 1146 } 1147 1148 if (!it->cur || it->phandle_end >= it->list_end) 1149 return -ENOENT; 1150 1151 it->cur = it->phandle_end; 1152 1153 /* If phandle is 0, then it is an empty entry with no arguments. */ 1154 it->phandle = be32_to_cpup(it->cur++); 1155 1156 if (it->phandle) { 1157 1158 /* 1159 * Find the provider node and parse the #*-cells property to 1160 * determine the argument length. 1161 */ 1162 it->node = of_find_node_by_phandle(it->phandle); 1163 1164 if (it->cells_name) { 1165 if (!it->node) { 1166 pr_err("%pOF: could not find phandle %d\n", 1167 it->parent, it->phandle); 1168 goto err; 1169 } 1170 1171 if (of_property_read_u32(it->node, it->cells_name, 1172 &count)) { 1173 /* 1174 * If both cell_count and cells_name is given, 1175 * fall back to cell_count in absence 1176 * of the cells_name property 1177 */ 1178 if (it->cell_count >= 0) { 1179 count = it->cell_count; 1180 } else { 1181 pr_err("%pOF: could not get %s for %pOF\n", 1182 it->parent, 1183 it->cells_name, 1184 it->node); 1185 goto err; 1186 } 1187 } 1188 } else { 1189 count = it->cell_count; 1190 } 1191 1192 /* 1193 * Make sure that the arguments actually fit in the remaining 1194 * property data length 1195 */ 1196 if (it->cur + count > it->list_end) { 1197 if (it->cells_name) 1198 pr_err("%pOF: %s = %d found %td\n", 1199 it->parent, it->cells_name, 1200 count, it->list_end - it->cur); 1201 else 1202 pr_err("%pOF: phandle %s needs %d, found %td\n", 1203 it->parent, of_node_full_name(it->node), 1204 count, it->list_end - it->cur); 1205 goto err; 1206 } 1207 } 1208 1209 it->phandle_end = it->cur + count; 1210 it->cur_count = count; 1211 1212 return 0; 1213 1214 err: 1215 if (it->node) { 1216 of_node_put(it->node); 1217 it->node = NULL; 1218 } 1219 1220 return -EINVAL; 1221 } 1222 EXPORT_SYMBOL_GPL(of_phandle_iterator_next); 1223 1224 int of_phandle_iterator_args(struct of_phandle_iterator *it, 1225 uint32_t *args, 1226 int size) 1227 { 1228 int i, count; 1229 1230 count = it->cur_count; 1231 1232 if (WARN_ON(size < count)) 1233 count = size; 1234 1235 for (i = 0; i < count; i++) 1236 args[i] = be32_to_cpup(it->cur++); 1237 1238 return count; 1239 } 1240 1241 int __of_parse_phandle_with_args(const struct device_node *np, 1242 const char *list_name, 1243 const char *cells_name, 1244 int cell_count, int index, 1245 struct of_phandle_args *out_args) 1246 { 1247 struct of_phandle_iterator it; 1248 int rc, cur_index = 0; 1249 1250 if (index < 0) 1251 return -EINVAL; 1252 1253 /* Loop over the phandles until all the requested entry is found */ 1254 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) { 1255 /* 1256 * All of the error cases bail out of the loop, so at 1257 * this point, the parsing is successful. If the requested 1258 * index matches, then fill the out_args structure and return, 1259 * or return -ENOENT for an empty entry. 1260 */ 1261 rc = -ENOENT; 1262 if (cur_index == index) { 1263 if (!it.phandle) 1264 goto err; 1265 1266 if (out_args) { 1267 int c; 1268 1269 c = of_phandle_iterator_args(&it, 1270 out_args->args, 1271 MAX_PHANDLE_ARGS); 1272 out_args->np = it.node; 1273 out_args->args_count = c; 1274 } else { 1275 of_node_put(it.node); 1276 } 1277 1278 /* Found it! return success */ 1279 return 0; 1280 } 1281 1282 cur_index++; 1283 } 1284 1285 /* 1286 * Unlock node before returning result; will be one of: 1287 * -ENOENT : index is for empty phandle 1288 * -EINVAL : parsing error on data 1289 */ 1290 1291 err: 1292 of_node_put(it.node); 1293 return rc; 1294 } 1295 EXPORT_SYMBOL(__of_parse_phandle_with_args); 1296 1297 /** 1298 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it 1299 * @np: pointer to a device tree node containing a list 1300 * @list_name: property name that contains a list 1301 * @stem_name: stem of property names that specify phandles' arguments count 1302 * @index: index of a phandle to parse out 1303 * @out_args: optional pointer to output arguments structure (will be filled) 1304 * 1305 * This function is useful to parse lists of phandles and their arguments. 1306 * Returns 0 on success and fills out_args, on error returns appropriate errno 1307 * value. The difference between this function and of_parse_phandle_with_args() 1308 * is that this API remaps a phandle if the node the phandle points to has 1309 * a <@stem_name>-map property. 1310 * 1311 * Caller is responsible to call of_node_put() on the returned out_args->np 1312 * pointer. 1313 * 1314 * Example:: 1315 * 1316 * phandle1: node1 { 1317 * #list-cells = <2>; 1318 * }; 1319 * 1320 * phandle2: node2 { 1321 * #list-cells = <1>; 1322 * }; 1323 * 1324 * phandle3: node3 { 1325 * #list-cells = <1>; 1326 * list-map = <0 &phandle2 3>, 1327 * <1 &phandle2 2>, 1328 * <2 &phandle1 5 1>; 1329 * list-map-mask = <0x3>; 1330 * }; 1331 * 1332 * node4 { 1333 * list = <&phandle1 1 2 &phandle3 0>; 1334 * }; 1335 * 1336 * To get a device_node of the ``node2`` node you may call this: 1337 * of_parse_phandle_with_args(node4, "list", "list", 1, &args); 1338 */ 1339 int of_parse_phandle_with_args_map(const struct device_node *np, 1340 const char *list_name, 1341 const char *stem_name, 1342 int index, struct of_phandle_args *out_args) 1343 { 1344 char *cells_name, *map_name = NULL, *mask_name = NULL; 1345 char *pass_name = NULL; 1346 struct device_node *cur, *new = NULL; 1347 const __be32 *map, *mask, *pass; 1348 static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 }; 1349 static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 }; 1350 __be32 initial_match_array[MAX_PHANDLE_ARGS]; 1351 const __be32 *match_array = initial_match_array; 1352 int i, ret, map_len, match; 1353 u32 list_size, new_size; 1354 1355 if (index < 0) 1356 return -EINVAL; 1357 1358 cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name); 1359 if (!cells_name) 1360 return -ENOMEM; 1361 1362 ret = -ENOMEM; 1363 map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name); 1364 if (!map_name) 1365 goto free; 1366 1367 mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name); 1368 if (!mask_name) 1369 goto free; 1370 1371 pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name); 1372 if (!pass_name) 1373 goto free; 1374 1375 ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index, 1376 out_args); 1377 if (ret) 1378 goto free; 1379 1380 /* Get the #<list>-cells property */ 1381 cur = out_args->np; 1382 ret = of_property_read_u32(cur, cells_name, &list_size); 1383 if (ret < 0) 1384 goto put; 1385 1386 /* Precalculate the match array - this simplifies match loop */ 1387 for (i = 0; i < list_size; i++) 1388 initial_match_array[i] = cpu_to_be32(out_args->args[i]); 1389 1390 ret = -EINVAL; 1391 while (cur) { 1392 /* Get the <list>-map property */ 1393 map = of_get_property(cur, map_name, &map_len); 1394 if (!map) { 1395 ret = 0; 1396 goto free; 1397 } 1398 map_len /= sizeof(u32); 1399 1400 /* Get the <list>-map-mask property (optional) */ 1401 mask = of_get_property(cur, mask_name, NULL); 1402 if (!mask) 1403 mask = dummy_mask; 1404 /* Iterate through <list>-map property */ 1405 match = 0; 1406 while (map_len > (list_size + 1) && !match) { 1407 /* Compare specifiers */ 1408 match = 1; 1409 for (i = 0; i < list_size; i++, map_len--) 1410 match &= !((match_array[i] ^ *map++) & mask[i]); 1411 1412 of_node_put(new); 1413 new = of_find_node_by_phandle(be32_to_cpup(map)); 1414 map++; 1415 map_len--; 1416 1417 /* Check if not found */ 1418 if (!new) 1419 goto put; 1420 1421 if (!of_device_is_available(new)) 1422 match = 0; 1423 1424 ret = of_property_read_u32(new, cells_name, &new_size); 1425 if (ret) 1426 goto put; 1427 1428 /* Check for malformed properties */ 1429 if (WARN_ON(new_size > MAX_PHANDLE_ARGS)) 1430 goto put; 1431 if (map_len < new_size) 1432 goto put; 1433 1434 /* Move forward by new node's #<list>-cells amount */ 1435 map += new_size; 1436 map_len -= new_size; 1437 } 1438 if (!match) 1439 goto put; 1440 1441 /* Get the <list>-map-pass-thru property (optional) */ 1442 pass = of_get_property(cur, pass_name, NULL); 1443 if (!pass) 1444 pass = dummy_pass; 1445 1446 /* 1447 * Successfully parsed a <list>-map translation; copy new 1448 * specifier into the out_args structure, keeping the 1449 * bits specified in <list>-map-pass-thru. 1450 */ 1451 match_array = map - new_size; 1452 for (i = 0; i < new_size; i++) { 1453 __be32 val = *(map - new_size + i); 1454 1455 if (i < list_size) { 1456 val &= ~pass[i]; 1457 val |= cpu_to_be32(out_args->args[i]) & pass[i]; 1458 } 1459 1460 out_args->args[i] = be32_to_cpu(val); 1461 } 1462 out_args->args_count = list_size = new_size; 1463 /* Iterate again with new provider */ 1464 out_args->np = new; 1465 of_node_put(cur); 1466 cur = new; 1467 } 1468 put: 1469 of_node_put(cur); 1470 of_node_put(new); 1471 free: 1472 kfree(mask_name); 1473 kfree(map_name); 1474 kfree(cells_name); 1475 kfree(pass_name); 1476 1477 return ret; 1478 } 1479 EXPORT_SYMBOL(of_parse_phandle_with_args_map); 1480 1481 /** 1482 * of_count_phandle_with_args() - Find the number of phandles references in a property 1483 * @np: pointer to a device tree node containing a list 1484 * @list_name: property name that contains a list 1485 * @cells_name: property name that specifies phandles' arguments count 1486 * 1487 * Return: The number of phandle + argument tuples within a property. It 1488 * is a typical pattern to encode a list of phandle and variable 1489 * arguments into a single property. The number of arguments is encoded 1490 * by a property in the phandle-target node. For example, a gpios 1491 * property would contain a list of GPIO specifies consisting of a 1492 * phandle and 1 or more arguments. The number of arguments are 1493 * determined by the #gpio-cells property in the node pointed to by the 1494 * phandle. 1495 */ 1496 int of_count_phandle_with_args(const struct device_node *np, const char *list_name, 1497 const char *cells_name) 1498 { 1499 struct of_phandle_iterator it; 1500 int rc, cur_index = 0; 1501 1502 /* 1503 * If cells_name is NULL we assume a cell count of 0. This makes 1504 * counting the phandles trivial as each 32bit word in the list is a 1505 * phandle and no arguments are to consider. So we don't iterate through 1506 * the list but just use the length to determine the phandle count. 1507 */ 1508 if (!cells_name) { 1509 const __be32 *list; 1510 int size; 1511 1512 list = of_get_property(np, list_name, &size); 1513 if (!list) 1514 return -ENOENT; 1515 1516 return size / sizeof(*list); 1517 } 1518 1519 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1); 1520 if (rc) 1521 return rc; 1522 1523 while ((rc = of_phandle_iterator_next(&it)) == 0) 1524 cur_index += 1; 1525 1526 if (rc != -ENOENT) 1527 return rc; 1528 1529 return cur_index; 1530 } 1531 EXPORT_SYMBOL(of_count_phandle_with_args); 1532 1533 static struct property *__of_remove_property_from_list(struct property **list, struct property *prop) 1534 { 1535 struct property **next; 1536 1537 for (next = list; *next; next = &(*next)->next) { 1538 if (*next == prop) { 1539 *next = prop->next; 1540 prop->next = NULL; 1541 return prop; 1542 } 1543 } 1544 return NULL; 1545 } 1546 1547 /** 1548 * __of_add_property - Add a property to a node without lock operations 1549 * @np: Caller's Device Node 1550 * @prop: Property to add 1551 */ 1552 int __of_add_property(struct device_node *np, struct property *prop) 1553 { 1554 int rc = 0; 1555 unsigned long flags; 1556 struct property **next; 1557 1558 raw_spin_lock_irqsave(&devtree_lock, flags); 1559 1560 __of_remove_property_from_list(&np->deadprops, prop); 1561 1562 prop->next = NULL; 1563 next = &np->properties; 1564 while (*next) { 1565 if (strcmp(prop->name, (*next)->name) == 0) { 1566 /* duplicate ! don't insert it */ 1567 rc = -EEXIST; 1568 goto out_unlock; 1569 } 1570 next = &(*next)->next; 1571 } 1572 *next = prop; 1573 1574 out_unlock: 1575 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1576 if (rc) 1577 return rc; 1578 1579 __of_add_property_sysfs(np, prop); 1580 return 0; 1581 } 1582 1583 /** 1584 * of_add_property - Add a property to a node 1585 * @np: Caller's Device Node 1586 * @prop: Property to add 1587 */ 1588 int of_add_property(struct device_node *np, struct property *prop) 1589 { 1590 int rc; 1591 1592 mutex_lock(&of_mutex); 1593 rc = __of_add_property(np, prop); 1594 mutex_unlock(&of_mutex); 1595 1596 if (!rc) 1597 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL); 1598 1599 return rc; 1600 } 1601 EXPORT_SYMBOL_GPL(of_add_property); 1602 1603 int __of_remove_property(struct device_node *np, struct property *prop) 1604 { 1605 unsigned long flags; 1606 int rc = -ENODEV; 1607 1608 raw_spin_lock_irqsave(&devtree_lock, flags); 1609 1610 if (__of_remove_property_from_list(&np->properties, prop)) { 1611 /* Found the property, add it to deadprops list */ 1612 prop->next = np->deadprops; 1613 np->deadprops = prop; 1614 rc = 0; 1615 } 1616 1617 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1618 if (rc) 1619 return rc; 1620 1621 __of_remove_property_sysfs(np, prop); 1622 return 0; 1623 } 1624 1625 /** 1626 * of_remove_property - Remove a property from a node. 1627 * @np: Caller's Device Node 1628 * @prop: Property to remove 1629 * 1630 * Note that we don't actually remove it, since we have given out 1631 * who-knows-how-many pointers to the data using get-property. 1632 * Instead we just move the property to the "dead properties" 1633 * list, so it won't be found any more. 1634 */ 1635 int of_remove_property(struct device_node *np, struct property *prop) 1636 { 1637 int rc; 1638 1639 if (!prop) 1640 return -ENODEV; 1641 1642 mutex_lock(&of_mutex); 1643 rc = __of_remove_property(np, prop); 1644 mutex_unlock(&of_mutex); 1645 1646 if (!rc) 1647 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL); 1648 1649 return rc; 1650 } 1651 EXPORT_SYMBOL_GPL(of_remove_property); 1652 1653 int __of_update_property(struct device_node *np, struct property *newprop, 1654 struct property **oldpropp) 1655 { 1656 struct property **next, *oldprop; 1657 unsigned long flags; 1658 1659 raw_spin_lock_irqsave(&devtree_lock, flags); 1660 1661 __of_remove_property_from_list(&np->deadprops, newprop); 1662 1663 for (next = &np->properties; *next; next = &(*next)->next) { 1664 if (of_prop_cmp((*next)->name, newprop->name) == 0) 1665 break; 1666 } 1667 *oldpropp = oldprop = *next; 1668 1669 if (oldprop) { 1670 /* replace the node */ 1671 newprop->next = oldprop->next; 1672 *next = newprop; 1673 oldprop->next = np->deadprops; 1674 np->deadprops = oldprop; 1675 } else { 1676 /* new node */ 1677 newprop->next = NULL; 1678 *next = newprop; 1679 } 1680 1681 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1682 1683 __of_update_property_sysfs(np, newprop, oldprop); 1684 1685 return 0; 1686 } 1687 1688 /* 1689 * of_update_property - Update a property in a node, if the property does 1690 * not exist, add it. 1691 * 1692 * Note that we don't actually remove it, since we have given out 1693 * who-knows-how-many pointers to the data using get-property. 1694 * Instead we just move the property to the "dead properties" list, 1695 * and add the new property to the property list 1696 */ 1697 int of_update_property(struct device_node *np, struct property *newprop) 1698 { 1699 struct property *oldprop; 1700 int rc; 1701 1702 if (!newprop->name) 1703 return -EINVAL; 1704 1705 mutex_lock(&of_mutex); 1706 rc = __of_update_property(np, newprop, &oldprop); 1707 mutex_unlock(&of_mutex); 1708 1709 if (!rc) 1710 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop); 1711 1712 return rc; 1713 } 1714 1715 static void of_alias_add(struct alias_prop *ap, struct device_node *np, 1716 int id, const char *stem, int stem_len) 1717 { 1718 ap->np = np; 1719 ap->id = id; 1720 strscpy(ap->stem, stem, stem_len + 1); 1721 list_add_tail(&ap->link, &aliases_lookup); 1722 pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n", 1723 ap->alias, ap->stem, ap->id, np); 1724 } 1725 1726 /** 1727 * of_alias_scan - Scan all properties of the 'aliases' node 1728 * @dt_alloc: An allocator that provides a virtual address to memory 1729 * for storing the resulting tree 1730 * 1731 * The function scans all the properties of the 'aliases' node and populates 1732 * the global lookup table with the properties. It returns the 1733 * number of alias properties found, or an error code in case of failure. 1734 */ 1735 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align)) 1736 { 1737 struct property *pp; 1738 1739 of_aliases = of_find_node_by_path("/aliases"); 1740 of_chosen = of_find_node_by_path("/chosen"); 1741 if (of_chosen == NULL) 1742 of_chosen = of_find_node_by_path("/chosen@0"); 1743 1744 if (of_chosen) { 1745 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */ 1746 const char *name = NULL; 1747 1748 if (of_property_read_string(of_chosen, "stdout-path", &name)) 1749 of_property_read_string(of_chosen, "linux,stdout-path", 1750 &name); 1751 if (IS_ENABLED(CONFIG_PPC) && !name) 1752 of_property_read_string(of_aliases, "stdout", &name); 1753 if (name) 1754 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options); 1755 if (of_stdout) 1756 of_stdout->fwnode.flags |= FWNODE_FLAG_BEST_EFFORT; 1757 } 1758 1759 if (!of_aliases) 1760 return; 1761 1762 for_each_property_of_node(of_aliases, pp) { 1763 const char *start = pp->name; 1764 const char *end = start + strlen(start); 1765 struct device_node *np; 1766 struct alias_prop *ap; 1767 int id, len; 1768 1769 /* Skip those we do not want to proceed */ 1770 if (!strcmp(pp->name, "name") || 1771 !strcmp(pp->name, "phandle") || 1772 !strcmp(pp->name, "linux,phandle")) 1773 continue; 1774 1775 np = of_find_node_by_path(pp->value); 1776 if (!np) 1777 continue; 1778 1779 /* walk the alias backwards to extract the id and work out 1780 * the 'stem' string */ 1781 while (isdigit(*(end-1)) && end > start) 1782 end--; 1783 len = end - start; 1784 1785 if (kstrtoint(end, 10, &id) < 0) 1786 continue; 1787 1788 /* Allocate an alias_prop with enough space for the stem */ 1789 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap)); 1790 if (!ap) 1791 continue; 1792 memset(ap, 0, sizeof(*ap) + len + 1); 1793 ap->alias = start; 1794 of_alias_add(ap, np, id, start, len); 1795 } 1796 } 1797 1798 /** 1799 * of_alias_get_id - Get alias id for the given device_node 1800 * @np: Pointer to the given device_node 1801 * @stem: Alias stem of the given device_node 1802 * 1803 * The function travels the lookup table to get the alias id for the given 1804 * device_node and alias stem. 1805 * 1806 * Return: The alias id if found. 1807 */ 1808 int of_alias_get_id(struct device_node *np, const char *stem) 1809 { 1810 struct alias_prop *app; 1811 int id = -ENODEV; 1812 1813 mutex_lock(&of_mutex); 1814 list_for_each_entry(app, &aliases_lookup, link) { 1815 if (strcmp(app->stem, stem) != 0) 1816 continue; 1817 1818 if (np == app->np) { 1819 id = app->id; 1820 break; 1821 } 1822 } 1823 mutex_unlock(&of_mutex); 1824 1825 return id; 1826 } 1827 EXPORT_SYMBOL_GPL(of_alias_get_id); 1828 1829 /** 1830 * of_alias_get_highest_id - Get highest alias id for the given stem 1831 * @stem: Alias stem to be examined 1832 * 1833 * The function travels the lookup table to get the highest alias id for the 1834 * given alias stem. It returns the alias id if found. 1835 */ 1836 int of_alias_get_highest_id(const char *stem) 1837 { 1838 struct alias_prop *app; 1839 int id = -ENODEV; 1840 1841 mutex_lock(&of_mutex); 1842 list_for_each_entry(app, &aliases_lookup, link) { 1843 if (strcmp(app->stem, stem) != 0) 1844 continue; 1845 1846 if (app->id > id) 1847 id = app->id; 1848 } 1849 mutex_unlock(&of_mutex); 1850 1851 return id; 1852 } 1853 EXPORT_SYMBOL_GPL(of_alias_get_highest_id); 1854 1855 /** 1856 * of_console_check() - Test and setup console for DT setup 1857 * @dn: Pointer to device node 1858 * @name: Name to use for preferred console without index. ex. "ttyS" 1859 * @index: Index to use for preferred console. 1860 * 1861 * Check if the given device node matches the stdout-path property in the 1862 * /chosen node. If it does then register it as the preferred console. 1863 * 1864 * Return: TRUE if console successfully setup. Otherwise return FALSE. 1865 */ 1866 bool of_console_check(struct device_node *dn, char *name, int index) 1867 { 1868 if (!dn || dn != of_stdout || console_set_on_cmdline) 1869 return false; 1870 1871 /* 1872 * XXX: cast `options' to char pointer to suppress complication 1873 * warnings: printk, UART and console drivers expect char pointer. 1874 */ 1875 return !add_preferred_console(name, index, (char *)of_stdout_options); 1876 } 1877 EXPORT_SYMBOL_GPL(of_console_check); 1878 1879 /** 1880 * of_find_next_cache_node - Find a node's subsidiary cache 1881 * @np: node of type "cpu" or "cache" 1882 * 1883 * Return: A node pointer with refcount incremented, use 1884 * of_node_put() on it when done. Caller should hold a reference 1885 * to np. 1886 */ 1887 struct device_node *of_find_next_cache_node(const struct device_node *np) 1888 { 1889 struct device_node *child, *cache_node; 1890 1891 cache_node = of_parse_phandle(np, "l2-cache", 0); 1892 if (!cache_node) 1893 cache_node = of_parse_phandle(np, "next-level-cache", 0); 1894 1895 if (cache_node) 1896 return cache_node; 1897 1898 /* OF on pmac has nodes instead of properties named "l2-cache" 1899 * beneath CPU nodes. 1900 */ 1901 if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu")) 1902 for_each_child_of_node(np, child) 1903 if (of_node_is_type(child, "cache")) 1904 return child; 1905 1906 return NULL; 1907 } 1908 1909 /** 1910 * of_find_last_cache_level - Find the level at which the last cache is 1911 * present for the given logical cpu 1912 * 1913 * @cpu: cpu number(logical index) for which the last cache level is needed 1914 * 1915 * Return: The level at which the last cache is present. It is exactly 1916 * same as the total number of cache levels for the given logical cpu. 1917 */ 1918 int of_find_last_cache_level(unsigned int cpu) 1919 { 1920 u32 cache_level = 0; 1921 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu); 1922 1923 while (np) { 1924 of_node_put(prev); 1925 prev = np; 1926 np = of_find_next_cache_node(np); 1927 } 1928 1929 of_property_read_u32(prev, "cache-level", &cache_level); 1930 of_node_put(prev); 1931 1932 return cache_level; 1933 } 1934 1935 /** 1936 * of_map_id - Translate an ID through a downstream mapping. 1937 * @np: root complex device node. 1938 * @id: device ID to map. 1939 * @map_name: property name of the map to use. 1940 * @map_mask_name: optional property name of the mask to use. 1941 * @target: optional pointer to a target device node. 1942 * @id_out: optional pointer to receive the translated ID. 1943 * 1944 * Given a device ID, look up the appropriate implementation-defined 1945 * platform ID and/or the target device which receives transactions on that 1946 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or 1947 * @id_out may be NULL if only the other is required. If @target points to 1948 * a non-NULL device node pointer, only entries targeting that node will be 1949 * matched; if it points to a NULL value, it will receive the device node of 1950 * the first matching target phandle, with a reference held. 1951 * 1952 * Return: 0 on success or a standard error code on failure. 1953 */ 1954 int of_map_id(struct device_node *np, u32 id, 1955 const char *map_name, const char *map_mask_name, 1956 struct device_node **target, u32 *id_out) 1957 { 1958 u32 map_mask, masked_id; 1959 int map_len; 1960 const __be32 *map = NULL; 1961 1962 if (!np || !map_name || (!target && !id_out)) 1963 return -EINVAL; 1964 1965 map = of_get_property(np, map_name, &map_len); 1966 if (!map) { 1967 if (target) 1968 return -ENODEV; 1969 /* Otherwise, no map implies no translation */ 1970 *id_out = id; 1971 return 0; 1972 } 1973 1974 if (!map_len || map_len % (4 * sizeof(*map))) { 1975 pr_err("%pOF: Error: Bad %s length: %d\n", np, 1976 map_name, map_len); 1977 return -EINVAL; 1978 } 1979 1980 /* The default is to select all bits. */ 1981 map_mask = 0xffffffff; 1982 1983 /* 1984 * Can be overridden by "{iommu,msi}-map-mask" property. 1985 * If of_property_read_u32() fails, the default is used. 1986 */ 1987 if (map_mask_name) 1988 of_property_read_u32(np, map_mask_name, &map_mask); 1989 1990 masked_id = map_mask & id; 1991 for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) { 1992 struct device_node *phandle_node; 1993 u32 id_base = be32_to_cpup(map + 0); 1994 u32 phandle = be32_to_cpup(map + 1); 1995 u32 out_base = be32_to_cpup(map + 2); 1996 u32 id_len = be32_to_cpup(map + 3); 1997 1998 if (id_base & ~map_mask) { 1999 pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n", 2000 np, map_name, map_name, 2001 map_mask, id_base); 2002 return -EFAULT; 2003 } 2004 2005 if (masked_id < id_base || masked_id >= id_base + id_len) 2006 continue; 2007 2008 phandle_node = of_find_node_by_phandle(phandle); 2009 if (!phandle_node) 2010 return -ENODEV; 2011 2012 if (target) { 2013 if (*target) 2014 of_node_put(phandle_node); 2015 else 2016 *target = phandle_node; 2017 2018 if (*target != phandle_node) 2019 continue; 2020 } 2021 2022 if (id_out) 2023 *id_out = masked_id - id_base + out_base; 2024 2025 pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n", 2026 np, map_name, map_mask, id_base, out_base, 2027 id_len, id, masked_id - id_base + out_base); 2028 return 0; 2029 } 2030 2031 pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name, 2032 id, target && *target ? *target : NULL); 2033 2034 /* Bypasses translation */ 2035 if (id_out) 2036 *id_out = id; 2037 return 0; 2038 } 2039 EXPORT_SYMBOL_GPL(of_map_id); 2040