xref: /linux/drivers/of/base.c (revision c895f6f703ad7dd2f99e751d9884b0aa5d0eea25)
1 /*
2  * Procedures for creating, accessing and interpreting the device tree.
3  *
4  * Paul Mackerras	August 1996.
5  * Copyright (C) 1996-2005 Paul Mackerras.
6  *
7  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8  *    {engebret|bergner}@us.ibm.com
9  *
10  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11  *
12  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13  *  Grant Likely.
14  *
15  *      This program is free software; you can redistribute it and/or
16  *      modify it under the terms of the GNU General Public License
17  *      as published by the Free Software Foundation; either version
18  *      2 of the License, or (at your option) any later version.
19  */
20 
21 #define pr_fmt(fmt)	"OF: " fmt
22 
23 #include <linux/console.h>
24 #include <linux/ctype.h>
25 #include <linux/cpu.h>
26 #include <linux/module.h>
27 #include <linux/of.h>
28 #include <linux/of_device.h>
29 #include <linux/of_graph.h>
30 #include <linux/spinlock.h>
31 #include <linux/slab.h>
32 #include <linux/string.h>
33 #include <linux/proc_fs.h>
34 
35 #include "of_private.h"
36 
37 LIST_HEAD(aliases_lookup);
38 
39 struct device_node *of_root;
40 EXPORT_SYMBOL(of_root);
41 struct device_node *of_chosen;
42 struct device_node *of_aliases;
43 struct device_node *of_stdout;
44 static const char *of_stdout_options;
45 
46 struct kset *of_kset;
47 
48 /*
49  * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
50  * This mutex must be held whenever modifications are being made to the
51  * device tree. The of_{attach,detach}_node() and
52  * of_{add,remove,update}_property() helpers make sure this happens.
53  */
54 DEFINE_MUTEX(of_mutex);
55 
56 /* use when traversing tree through the child, sibling,
57  * or parent members of struct device_node.
58  */
59 DEFINE_RAW_SPINLOCK(devtree_lock);
60 
61 int of_n_addr_cells(struct device_node *np)
62 {
63 	u32 cells;
64 
65 	do {
66 		if (np->parent)
67 			np = np->parent;
68 		if (!of_property_read_u32(np, "#address-cells", &cells))
69 			return cells;
70 	} while (np->parent);
71 	/* No #address-cells property for the root node */
72 	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
73 }
74 EXPORT_SYMBOL(of_n_addr_cells);
75 
76 int of_n_size_cells(struct device_node *np)
77 {
78 	u32 cells;
79 
80 	do {
81 		if (np->parent)
82 			np = np->parent;
83 		if (!of_property_read_u32(np, "#size-cells", &cells))
84 			return cells;
85 	} while (np->parent);
86 	/* No #size-cells property for the root node */
87 	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
88 }
89 EXPORT_SYMBOL(of_n_size_cells);
90 
91 #ifdef CONFIG_NUMA
92 int __weak of_node_to_nid(struct device_node *np)
93 {
94 	return NUMA_NO_NODE;
95 }
96 #endif
97 
98 void __init of_core_init(void)
99 {
100 	struct device_node *np;
101 
102 	/* Create the kset, and register existing nodes */
103 	mutex_lock(&of_mutex);
104 	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
105 	if (!of_kset) {
106 		mutex_unlock(&of_mutex);
107 		pr_err("failed to register existing nodes\n");
108 		return;
109 	}
110 	for_each_of_allnodes(np)
111 		__of_attach_node_sysfs(np);
112 	mutex_unlock(&of_mutex);
113 
114 	/* Symlink in /proc as required by userspace ABI */
115 	if (of_root)
116 		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
117 }
118 
119 static struct property *__of_find_property(const struct device_node *np,
120 					   const char *name, int *lenp)
121 {
122 	struct property *pp;
123 
124 	if (!np)
125 		return NULL;
126 
127 	for (pp = np->properties; pp; pp = pp->next) {
128 		if (of_prop_cmp(pp->name, name) == 0) {
129 			if (lenp)
130 				*lenp = pp->length;
131 			break;
132 		}
133 	}
134 
135 	return pp;
136 }
137 
138 struct property *of_find_property(const struct device_node *np,
139 				  const char *name,
140 				  int *lenp)
141 {
142 	struct property *pp;
143 	unsigned long flags;
144 
145 	raw_spin_lock_irqsave(&devtree_lock, flags);
146 	pp = __of_find_property(np, name, lenp);
147 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
148 
149 	return pp;
150 }
151 EXPORT_SYMBOL(of_find_property);
152 
153 struct device_node *__of_find_all_nodes(struct device_node *prev)
154 {
155 	struct device_node *np;
156 	if (!prev) {
157 		np = of_root;
158 	} else if (prev->child) {
159 		np = prev->child;
160 	} else {
161 		/* Walk back up looking for a sibling, or the end of the structure */
162 		np = prev;
163 		while (np->parent && !np->sibling)
164 			np = np->parent;
165 		np = np->sibling; /* Might be null at the end of the tree */
166 	}
167 	return np;
168 }
169 
170 /**
171  * of_find_all_nodes - Get next node in global list
172  * @prev:	Previous node or NULL to start iteration
173  *		of_node_put() will be called on it
174  *
175  * Returns a node pointer with refcount incremented, use
176  * of_node_put() on it when done.
177  */
178 struct device_node *of_find_all_nodes(struct device_node *prev)
179 {
180 	struct device_node *np;
181 	unsigned long flags;
182 
183 	raw_spin_lock_irqsave(&devtree_lock, flags);
184 	np = __of_find_all_nodes(prev);
185 	of_node_get(np);
186 	of_node_put(prev);
187 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
188 	return np;
189 }
190 EXPORT_SYMBOL(of_find_all_nodes);
191 
192 /*
193  * Find a property with a given name for a given node
194  * and return the value.
195  */
196 const void *__of_get_property(const struct device_node *np,
197 			      const char *name, int *lenp)
198 {
199 	struct property *pp = __of_find_property(np, name, lenp);
200 
201 	return pp ? pp->value : NULL;
202 }
203 
204 /*
205  * Find a property with a given name for a given node
206  * and return the value.
207  */
208 const void *of_get_property(const struct device_node *np, const char *name,
209 			    int *lenp)
210 {
211 	struct property *pp = of_find_property(np, name, lenp);
212 
213 	return pp ? pp->value : NULL;
214 }
215 EXPORT_SYMBOL(of_get_property);
216 
217 /*
218  * arch_match_cpu_phys_id - Match the given logical CPU and physical id
219  *
220  * @cpu: logical cpu index of a core/thread
221  * @phys_id: physical identifier of a core/thread
222  *
223  * CPU logical to physical index mapping is architecture specific.
224  * However this __weak function provides a default match of physical
225  * id to logical cpu index. phys_id provided here is usually values read
226  * from the device tree which must match the hardware internal registers.
227  *
228  * Returns true if the physical identifier and the logical cpu index
229  * correspond to the same core/thread, false otherwise.
230  */
231 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
232 {
233 	return (u32)phys_id == cpu;
234 }
235 
236 /**
237  * Checks if the given "prop_name" property holds the physical id of the
238  * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
239  * NULL, local thread number within the core is returned in it.
240  */
241 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
242 			const char *prop_name, int cpu, unsigned int *thread)
243 {
244 	const __be32 *cell;
245 	int ac, prop_len, tid;
246 	u64 hwid;
247 
248 	ac = of_n_addr_cells(cpun);
249 	cell = of_get_property(cpun, prop_name, &prop_len);
250 	if (!cell || !ac)
251 		return false;
252 	prop_len /= sizeof(*cell) * ac;
253 	for (tid = 0; tid < prop_len; tid++) {
254 		hwid = of_read_number(cell, ac);
255 		if (arch_match_cpu_phys_id(cpu, hwid)) {
256 			if (thread)
257 				*thread = tid;
258 			return true;
259 		}
260 		cell += ac;
261 	}
262 	return false;
263 }
264 
265 /*
266  * arch_find_n_match_cpu_physical_id - See if the given device node is
267  * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
268  * else false.  If 'thread' is non-NULL, the local thread number within the
269  * core is returned in it.
270  */
271 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
272 					      int cpu, unsigned int *thread)
273 {
274 	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
275 	 * for thread ids on PowerPC. If it doesn't exist fallback to
276 	 * standard "reg" property.
277 	 */
278 	if (IS_ENABLED(CONFIG_PPC) &&
279 	    __of_find_n_match_cpu_property(cpun,
280 					   "ibm,ppc-interrupt-server#s",
281 					   cpu, thread))
282 		return true;
283 
284 	return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
285 }
286 
287 /**
288  * of_get_cpu_node - Get device node associated with the given logical CPU
289  *
290  * @cpu: CPU number(logical index) for which device node is required
291  * @thread: if not NULL, local thread number within the physical core is
292  *          returned
293  *
294  * The main purpose of this function is to retrieve the device node for the
295  * given logical CPU index. It should be used to initialize the of_node in
296  * cpu device. Once of_node in cpu device is populated, all the further
297  * references can use that instead.
298  *
299  * CPU logical to physical index mapping is architecture specific and is built
300  * before booting secondary cores. This function uses arch_match_cpu_phys_id
301  * which can be overridden by architecture specific implementation.
302  *
303  * Returns a node pointer for the logical cpu with refcount incremented, use
304  * of_node_put() on it when done. Returns NULL if not found.
305  */
306 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
307 {
308 	struct device_node *cpun;
309 
310 	for_each_node_by_type(cpun, "cpu") {
311 		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
312 			return cpun;
313 	}
314 	return NULL;
315 }
316 EXPORT_SYMBOL(of_get_cpu_node);
317 
318 /**
319  * __of_device_is_compatible() - Check if the node matches given constraints
320  * @device: pointer to node
321  * @compat: required compatible string, NULL or "" for any match
322  * @type: required device_type value, NULL or "" for any match
323  * @name: required node name, NULL or "" for any match
324  *
325  * Checks if the given @compat, @type and @name strings match the
326  * properties of the given @device. A constraints can be skipped by
327  * passing NULL or an empty string as the constraint.
328  *
329  * Returns 0 for no match, and a positive integer on match. The return
330  * value is a relative score with larger values indicating better
331  * matches. The score is weighted for the most specific compatible value
332  * to get the highest score. Matching type is next, followed by matching
333  * name. Practically speaking, this results in the following priority
334  * order for matches:
335  *
336  * 1. specific compatible && type && name
337  * 2. specific compatible && type
338  * 3. specific compatible && name
339  * 4. specific compatible
340  * 5. general compatible && type && name
341  * 6. general compatible && type
342  * 7. general compatible && name
343  * 8. general compatible
344  * 9. type && name
345  * 10. type
346  * 11. name
347  */
348 static int __of_device_is_compatible(const struct device_node *device,
349 				     const char *compat, const char *type, const char *name)
350 {
351 	struct property *prop;
352 	const char *cp;
353 	int index = 0, score = 0;
354 
355 	/* Compatible match has highest priority */
356 	if (compat && compat[0]) {
357 		prop = __of_find_property(device, "compatible", NULL);
358 		for (cp = of_prop_next_string(prop, NULL); cp;
359 		     cp = of_prop_next_string(prop, cp), index++) {
360 			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
361 				score = INT_MAX/2 - (index << 2);
362 				break;
363 			}
364 		}
365 		if (!score)
366 			return 0;
367 	}
368 
369 	/* Matching type is better than matching name */
370 	if (type && type[0]) {
371 		if (!device->type || of_node_cmp(type, device->type))
372 			return 0;
373 		score += 2;
374 	}
375 
376 	/* Matching name is a bit better than not */
377 	if (name && name[0]) {
378 		if (!device->name || of_node_cmp(name, device->name))
379 			return 0;
380 		score++;
381 	}
382 
383 	return score;
384 }
385 
386 /** Checks if the given "compat" string matches one of the strings in
387  * the device's "compatible" property
388  */
389 int of_device_is_compatible(const struct device_node *device,
390 		const char *compat)
391 {
392 	unsigned long flags;
393 	int res;
394 
395 	raw_spin_lock_irqsave(&devtree_lock, flags);
396 	res = __of_device_is_compatible(device, compat, NULL, NULL);
397 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
398 	return res;
399 }
400 EXPORT_SYMBOL(of_device_is_compatible);
401 
402 /** Checks if the device is compatible with any of the entries in
403  *  a NULL terminated array of strings. Returns the best match
404  *  score or 0.
405  */
406 int of_device_compatible_match(struct device_node *device,
407 			       const char *const *compat)
408 {
409 	unsigned int tmp, score = 0;
410 
411 	if (!compat)
412 		return 0;
413 
414 	while (*compat) {
415 		tmp = of_device_is_compatible(device, *compat);
416 		if (tmp > score)
417 			score = tmp;
418 		compat++;
419 	}
420 
421 	return score;
422 }
423 
424 /**
425  * of_machine_is_compatible - Test root of device tree for a given compatible value
426  * @compat: compatible string to look for in root node's compatible property.
427  *
428  * Returns a positive integer if the root node has the given value in its
429  * compatible property.
430  */
431 int of_machine_is_compatible(const char *compat)
432 {
433 	struct device_node *root;
434 	int rc = 0;
435 
436 	root = of_find_node_by_path("/");
437 	if (root) {
438 		rc = of_device_is_compatible(root, compat);
439 		of_node_put(root);
440 	}
441 	return rc;
442 }
443 EXPORT_SYMBOL(of_machine_is_compatible);
444 
445 /**
446  *  __of_device_is_available - check if a device is available for use
447  *
448  *  @device: Node to check for availability, with locks already held
449  *
450  *  Returns true if the status property is absent or set to "okay" or "ok",
451  *  false otherwise
452  */
453 static bool __of_device_is_available(const struct device_node *device)
454 {
455 	const char *status;
456 	int statlen;
457 
458 	if (!device)
459 		return false;
460 
461 	status = __of_get_property(device, "status", &statlen);
462 	if (status == NULL)
463 		return true;
464 
465 	if (statlen > 0) {
466 		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
467 			return true;
468 	}
469 
470 	return false;
471 }
472 
473 /**
474  *  of_device_is_available - check if a device is available for use
475  *
476  *  @device: Node to check for availability
477  *
478  *  Returns true if the status property is absent or set to "okay" or "ok",
479  *  false otherwise
480  */
481 bool of_device_is_available(const struct device_node *device)
482 {
483 	unsigned long flags;
484 	bool res;
485 
486 	raw_spin_lock_irqsave(&devtree_lock, flags);
487 	res = __of_device_is_available(device);
488 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
489 	return res;
490 
491 }
492 EXPORT_SYMBOL(of_device_is_available);
493 
494 /**
495  *  of_device_is_big_endian - check if a device has BE registers
496  *
497  *  @device: Node to check for endianness
498  *
499  *  Returns true if the device has a "big-endian" property, or if the kernel
500  *  was compiled for BE *and* the device has a "native-endian" property.
501  *  Returns false otherwise.
502  *
503  *  Callers would nominally use ioread32be/iowrite32be if
504  *  of_device_is_big_endian() == true, or readl/writel otherwise.
505  */
506 bool of_device_is_big_endian(const struct device_node *device)
507 {
508 	if (of_property_read_bool(device, "big-endian"))
509 		return true;
510 	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
511 	    of_property_read_bool(device, "native-endian"))
512 		return true;
513 	return false;
514 }
515 EXPORT_SYMBOL(of_device_is_big_endian);
516 
517 /**
518  *	of_get_parent - Get a node's parent if any
519  *	@node:	Node to get parent
520  *
521  *	Returns a node pointer with refcount incremented, use
522  *	of_node_put() on it when done.
523  */
524 struct device_node *of_get_parent(const struct device_node *node)
525 {
526 	struct device_node *np;
527 	unsigned long flags;
528 
529 	if (!node)
530 		return NULL;
531 
532 	raw_spin_lock_irqsave(&devtree_lock, flags);
533 	np = of_node_get(node->parent);
534 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
535 	return np;
536 }
537 EXPORT_SYMBOL(of_get_parent);
538 
539 /**
540  *	of_get_next_parent - Iterate to a node's parent
541  *	@node:	Node to get parent of
542  *
543  *	This is like of_get_parent() except that it drops the
544  *	refcount on the passed node, making it suitable for iterating
545  *	through a node's parents.
546  *
547  *	Returns a node pointer with refcount incremented, use
548  *	of_node_put() on it when done.
549  */
550 struct device_node *of_get_next_parent(struct device_node *node)
551 {
552 	struct device_node *parent;
553 	unsigned long flags;
554 
555 	if (!node)
556 		return NULL;
557 
558 	raw_spin_lock_irqsave(&devtree_lock, flags);
559 	parent = of_node_get(node->parent);
560 	of_node_put(node);
561 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
562 	return parent;
563 }
564 EXPORT_SYMBOL(of_get_next_parent);
565 
566 static struct device_node *__of_get_next_child(const struct device_node *node,
567 						struct device_node *prev)
568 {
569 	struct device_node *next;
570 
571 	if (!node)
572 		return NULL;
573 
574 	next = prev ? prev->sibling : node->child;
575 	for (; next; next = next->sibling)
576 		if (of_node_get(next))
577 			break;
578 	of_node_put(prev);
579 	return next;
580 }
581 #define __for_each_child_of_node(parent, child) \
582 	for (child = __of_get_next_child(parent, NULL); child != NULL; \
583 	     child = __of_get_next_child(parent, child))
584 
585 /**
586  *	of_get_next_child - Iterate a node childs
587  *	@node:	parent node
588  *	@prev:	previous child of the parent node, or NULL to get first
589  *
590  *	Returns a node pointer with refcount incremented, use of_node_put() on
591  *	it when done. Returns NULL when prev is the last child. Decrements the
592  *	refcount of prev.
593  */
594 struct device_node *of_get_next_child(const struct device_node *node,
595 	struct device_node *prev)
596 {
597 	struct device_node *next;
598 	unsigned long flags;
599 
600 	raw_spin_lock_irqsave(&devtree_lock, flags);
601 	next = __of_get_next_child(node, prev);
602 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
603 	return next;
604 }
605 EXPORT_SYMBOL(of_get_next_child);
606 
607 /**
608  *	of_get_next_available_child - Find the next available child node
609  *	@node:	parent node
610  *	@prev:	previous child of the parent node, or NULL to get first
611  *
612  *      This function is like of_get_next_child(), except that it
613  *      automatically skips any disabled nodes (i.e. status = "disabled").
614  */
615 struct device_node *of_get_next_available_child(const struct device_node *node,
616 	struct device_node *prev)
617 {
618 	struct device_node *next;
619 	unsigned long flags;
620 
621 	if (!node)
622 		return NULL;
623 
624 	raw_spin_lock_irqsave(&devtree_lock, flags);
625 	next = prev ? prev->sibling : node->child;
626 	for (; next; next = next->sibling) {
627 		if (!__of_device_is_available(next))
628 			continue;
629 		if (of_node_get(next))
630 			break;
631 	}
632 	of_node_put(prev);
633 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
634 	return next;
635 }
636 EXPORT_SYMBOL(of_get_next_available_child);
637 
638 /**
639  *	of_get_child_by_name - Find the child node by name for a given parent
640  *	@node:	parent node
641  *	@name:	child name to look for.
642  *
643  *      This function looks for child node for given matching name
644  *
645  *	Returns a node pointer if found, with refcount incremented, use
646  *	of_node_put() on it when done.
647  *	Returns NULL if node is not found.
648  */
649 struct device_node *of_get_child_by_name(const struct device_node *node,
650 				const char *name)
651 {
652 	struct device_node *child;
653 
654 	for_each_child_of_node(node, child)
655 		if (child->name && (of_node_cmp(child->name, name) == 0))
656 			break;
657 	return child;
658 }
659 EXPORT_SYMBOL(of_get_child_by_name);
660 
661 struct device_node *__of_find_node_by_path(struct device_node *parent,
662 						const char *path)
663 {
664 	struct device_node *child;
665 	int len;
666 
667 	len = strcspn(path, "/:");
668 	if (!len)
669 		return NULL;
670 
671 	__for_each_child_of_node(parent, child) {
672 		const char *name = kbasename(child->full_name);
673 		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
674 			return child;
675 	}
676 	return NULL;
677 }
678 
679 struct device_node *__of_find_node_by_full_path(struct device_node *node,
680 						const char *path)
681 {
682 	const char *separator = strchr(path, ':');
683 
684 	while (node && *path == '/') {
685 		struct device_node *tmp = node;
686 
687 		path++; /* Increment past '/' delimiter */
688 		node = __of_find_node_by_path(node, path);
689 		of_node_put(tmp);
690 		path = strchrnul(path, '/');
691 		if (separator && separator < path)
692 			break;
693 	}
694 	return node;
695 }
696 
697 /**
698  *	of_find_node_opts_by_path - Find a node matching a full OF path
699  *	@path: Either the full path to match, or if the path does not
700  *	       start with '/', the name of a property of the /aliases
701  *	       node (an alias).  In the case of an alias, the node
702  *	       matching the alias' value will be returned.
703  *	@opts: Address of a pointer into which to store the start of
704  *	       an options string appended to the end of the path with
705  *	       a ':' separator.
706  *
707  *	Valid paths:
708  *		/foo/bar	Full path
709  *		foo		Valid alias
710  *		foo/bar		Valid alias + relative path
711  *
712  *	Returns a node pointer with refcount incremented, use
713  *	of_node_put() on it when done.
714  */
715 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
716 {
717 	struct device_node *np = NULL;
718 	struct property *pp;
719 	unsigned long flags;
720 	const char *separator = strchr(path, ':');
721 
722 	if (opts)
723 		*opts = separator ? separator + 1 : NULL;
724 
725 	if (strcmp(path, "/") == 0)
726 		return of_node_get(of_root);
727 
728 	/* The path could begin with an alias */
729 	if (*path != '/') {
730 		int len;
731 		const char *p = separator;
732 
733 		if (!p)
734 			p = strchrnul(path, '/');
735 		len = p - path;
736 
737 		/* of_aliases must not be NULL */
738 		if (!of_aliases)
739 			return NULL;
740 
741 		for_each_property_of_node(of_aliases, pp) {
742 			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
743 				np = of_find_node_by_path(pp->value);
744 				break;
745 			}
746 		}
747 		if (!np)
748 			return NULL;
749 		path = p;
750 	}
751 
752 	/* Step down the tree matching path components */
753 	raw_spin_lock_irqsave(&devtree_lock, flags);
754 	if (!np)
755 		np = of_node_get(of_root);
756 	np = __of_find_node_by_full_path(np, path);
757 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
758 	return np;
759 }
760 EXPORT_SYMBOL(of_find_node_opts_by_path);
761 
762 /**
763  *	of_find_node_by_name - Find a node by its "name" property
764  *	@from:	The node to start searching from or NULL; the node
765  *		you pass will not be searched, only the next one
766  *		will. Typically, you pass what the previous call
767  *		returned. of_node_put() will be called on @from.
768  *	@name:	The name string to match against
769  *
770  *	Returns a node pointer with refcount incremented, use
771  *	of_node_put() on it when done.
772  */
773 struct device_node *of_find_node_by_name(struct device_node *from,
774 	const char *name)
775 {
776 	struct device_node *np;
777 	unsigned long flags;
778 
779 	raw_spin_lock_irqsave(&devtree_lock, flags);
780 	for_each_of_allnodes_from(from, np)
781 		if (np->name && (of_node_cmp(np->name, name) == 0)
782 		    && of_node_get(np))
783 			break;
784 	of_node_put(from);
785 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
786 	return np;
787 }
788 EXPORT_SYMBOL(of_find_node_by_name);
789 
790 /**
791  *	of_find_node_by_type - Find a node by its "device_type" property
792  *	@from:	The node to start searching from, or NULL to start searching
793  *		the entire device tree. The node you pass will not be
794  *		searched, only the next one will; typically, you pass
795  *		what the previous call returned. of_node_put() will be
796  *		called on from for you.
797  *	@type:	The type string to match against
798  *
799  *	Returns a node pointer with refcount incremented, use
800  *	of_node_put() on it when done.
801  */
802 struct device_node *of_find_node_by_type(struct device_node *from,
803 	const char *type)
804 {
805 	struct device_node *np;
806 	unsigned long flags;
807 
808 	raw_spin_lock_irqsave(&devtree_lock, flags);
809 	for_each_of_allnodes_from(from, np)
810 		if (np->type && (of_node_cmp(np->type, type) == 0)
811 		    && of_node_get(np))
812 			break;
813 	of_node_put(from);
814 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
815 	return np;
816 }
817 EXPORT_SYMBOL(of_find_node_by_type);
818 
819 /**
820  *	of_find_compatible_node - Find a node based on type and one of the
821  *                                tokens in its "compatible" property
822  *	@from:		The node to start searching from or NULL, the node
823  *			you pass will not be searched, only the next one
824  *			will; typically, you pass what the previous call
825  *			returned. of_node_put() will be called on it
826  *	@type:		The type string to match "device_type" or NULL to ignore
827  *	@compatible:	The string to match to one of the tokens in the device
828  *			"compatible" list.
829  *
830  *	Returns a node pointer with refcount incremented, use
831  *	of_node_put() on it when done.
832  */
833 struct device_node *of_find_compatible_node(struct device_node *from,
834 	const char *type, const char *compatible)
835 {
836 	struct device_node *np;
837 	unsigned long flags;
838 
839 	raw_spin_lock_irqsave(&devtree_lock, flags);
840 	for_each_of_allnodes_from(from, np)
841 		if (__of_device_is_compatible(np, compatible, type, NULL) &&
842 		    of_node_get(np))
843 			break;
844 	of_node_put(from);
845 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
846 	return np;
847 }
848 EXPORT_SYMBOL(of_find_compatible_node);
849 
850 /**
851  *	of_find_node_with_property - Find a node which has a property with
852  *                                   the given name.
853  *	@from:		The node to start searching from or NULL, the node
854  *			you pass will not be searched, only the next one
855  *			will; typically, you pass what the previous call
856  *			returned. of_node_put() will be called on it
857  *	@prop_name:	The name of the property to look for.
858  *
859  *	Returns a node pointer with refcount incremented, use
860  *	of_node_put() on it when done.
861  */
862 struct device_node *of_find_node_with_property(struct device_node *from,
863 	const char *prop_name)
864 {
865 	struct device_node *np;
866 	struct property *pp;
867 	unsigned long flags;
868 
869 	raw_spin_lock_irqsave(&devtree_lock, flags);
870 	for_each_of_allnodes_from(from, np) {
871 		for (pp = np->properties; pp; pp = pp->next) {
872 			if (of_prop_cmp(pp->name, prop_name) == 0) {
873 				of_node_get(np);
874 				goto out;
875 			}
876 		}
877 	}
878 out:
879 	of_node_put(from);
880 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
881 	return np;
882 }
883 EXPORT_SYMBOL(of_find_node_with_property);
884 
885 static
886 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
887 					   const struct device_node *node)
888 {
889 	const struct of_device_id *best_match = NULL;
890 	int score, best_score = 0;
891 
892 	if (!matches)
893 		return NULL;
894 
895 	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
896 		score = __of_device_is_compatible(node, matches->compatible,
897 						  matches->type, matches->name);
898 		if (score > best_score) {
899 			best_match = matches;
900 			best_score = score;
901 		}
902 	}
903 
904 	return best_match;
905 }
906 
907 /**
908  * of_match_node - Tell if a device_node has a matching of_match structure
909  *	@matches:	array of of device match structures to search in
910  *	@node:		the of device structure to match against
911  *
912  *	Low level utility function used by device matching.
913  */
914 const struct of_device_id *of_match_node(const struct of_device_id *matches,
915 					 const struct device_node *node)
916 {
917 	const struct of_device_id *match;
918 	unsigned long flags;
919 
920 	raw_spin_lock_irqsave(&devtree_lock, flags);
921 	match = __of_match_node(matches, node);
922 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
923 	return match;
924 }
925 EXPORT_SYMBOL(of_match_node);
926 
927 /**
928  *	of_find_matching_node_and_match - Find a node based on an of_device_id
929  *					  match table.
930  *	@from:		The node to start searching from or NULL, the node
931  *			you pass will not be searched, only the next one
932  *			will; typically, you pass what the previous call
933  *			returned. of_node_put() will be called on it
934  *	@matches:	array of of device match structures to search in
935  *	@match		Updated to point at the matches entry which matched
936  *
937  *	Returns a node pointer with refcount incremented, use
938  *	of_node_put() on it when done.
939  */
940 struct device_node *of_find_matching_node_and_match(struct device_node *from,
941 					const struct of_device_id *matches,
942 					const struct of_device_id **match)
943 {
944 	struct device_node *np;
945 	const struct of_device_id *m;
946 	unsigned long flags;
947 
948 	if (match)
949 		*match = NULL;
950 
951 	raw_spin_lock_irqsave(&devtree_lock, flags);
952 	for_each_of_allnodes_from(from, np) {
953 		m = __of_match_node(matches, np);
954 		if (m && of_node_get(np)) {
955 			if (match)
956 				*match = m;
957 			break;
958 		}
959 	}
960 	of_node_put(from);
961 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
962 	return np;
963 }
964 EXPORT_SYMBOL(of_find_matching_node_and_match);
965 
966 /**
967  * of_modalias_node - Lookup appropriate modalias for a device node
968  * @node:	pointer to a device tree node
969  * @modalias:	Pointer to buffer that modalias value will be copied into
970  * @len:	Length of modalias value
971  *
972  * Based on the value of the compatible property, this routine will attempt
973  * to choose an appropriate modalias value for a particular device tree node.
974  * It does this by stripping the manufacturer prefix (as delimited by a ',')
975  * from the first entry in the compatible list property.
976  *
977  * This routine returns 0 on success, <0 on failure.
978  */
979 int of_modalias_node(struct device_node *node, char *modalias, int len)
980 {
981 	const char *compatible, *p;
982 	int cplen;
983 
984 	compatible = of_get_property(node, "compatible", &cplen);
985 	if (!compatible || strlen(compatible) > cplen)
986 		return -ENODEV;
987 	p = strchr(compatible, ',');
988 	strlcpy(modalias, p ? p + 1 : compatible, len);
989 	return 0;
990 }
991 EXPORT_SYMBOL_GPL(of_modalias_node);
992 
993 /**
994  * of_find_node_by_phandle - Find a node given a phandle
995  * @handle:	phandle of the node to find
996  *
997  * Returns a node pointer with refcount incremented, use
998  * of_node_put() on it when done.
999  */
1000 struct device_node *of_find_node_by_phandle(phandle handle)
1001 {
1002 	struct device_node *np;
1003 	unsigned long flags;
1004 
1005 	if (!handle)
1006 		return NULL;
1007 
1008 	raw_spin_lock_irqsave(&devtree_lock, flags);
1009 	for_each_of_allnodes(np)
1010 		if (np->phandle == handle)
1011 			break;
1012 	of_node_get(np);
1013 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1014 	return np;
1015 }
1016 EXPORT_SYMBOL(of_find_node_by_phandle);
1017 
1018 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1019 {
1020 	int i;
1021 	printk("%s %pOF", msg, args->np);
1022 	for (i = 0; i < args->args_count; i++) {
1023 		const char delim = i ? ',' : ':';
1024 
1025 		pr_cont("%c%08x", delim, args->args[i]);
1026 	}
1027 	pr_cont("\n");
1028 }
1029 
1030 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1031 		const struct device_node *np,
1032 		const char *list_name,
1033 		const char *cells_name,
1034 		int cell_count)
1035 {
1036 	const __be32 *list;
1037 	int size;
1038 
1039 	memset(it, 0, sizeof(*it));
1040 
1041 	list = of_get_property(np, list_name, &size);
1042 	if (!list)
1043 		return -ENOENT;
1044 
1045 	it->cells_name = cells_name;
1046 	it->cell_count = cell_count;
1047 	it->parent = np;
1048 	it->list_end = list + size / sizeof(*list);
1049 	it->phandle_end = list;
1050 	it->cur = list;
1051 
1052 	return 0;
1053 }
1054 EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1055 
1056 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1057 {
1058 	uint32_t count = 0;
1059 
1060 	if (it->node) {
1061 		of_node_put(it->node);
1062 		it->node = NULL;
1063 	}
1064 
1065 	if (!it->cur || it->phandle_end >= it->list_end)
1066 		return -ENOENT;
1067 
1068 	it->cur = it->phandle_end;
1069 
1070 	/* If phandle is 0, then it is an empty entry with no arguments. */
1071 	it->phandle = be32_to_cpup(it->cur++);
1072 
1073 	if (it->phandle) {
1074 
1075 		/*
1076 		 * Find the provider node and parse the #*-cells property to
1077 		 * determine the argument length.
1078 		 */
1079 		it->node = of_find_node_by_phandle(it->phandle);
1080 
1081 		if (it->cells_name) {
1082 			if (!it->node) {
1083 				pr_err("%pOF: could not find phandle\n",
1084 				       it->parent);
1085 				goto err;
1086 			}
1087 
1088 			if (of_property_read_u32(it->node, it->cells_name,
1089 						 &count)) {
1090 				pr_err("%pOF: could not get %s for %pOF\n",
1091 				       it->parent,
1092 				       it->cells_name,
1093 				       it->node);
1094 				goto err;
1095 			}
1096 		} else {
1097 			count = it->cell_count;
1098 		}
1099 
1100 		/*
1101 		 * Make sure that the arguments actually fit in the remaining
1102 		 * property data length
1103 		 */
1104 		if (it->cur + count > it->list_end) {
1105 			pr_err("%pOF: arguments longer than property\n",
1106 			       it->parent);
1107 			goto err;
1108 		}
1109 	}
1110 
1111 	it->phandle_end = it->cur + count;
1112 	it->cur_count = count;
1113 
1114 	return 0;
1115 
1116 err:
1117 	if (it->node) {
1118 		of_node_put(it->node);
1119 		it->node = NULL;
1120 	}
1121 
1122 	return -EINVAL;
1123 }
1124 EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1125 
1126 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1127 			     uint32_t *args,
1128 			     int size)
1129 {
1130 	int i, count;
1131 
1132 	count = it->cur_count;
1133 
1134 	if (WARN_ON(size < count))
1135 		count = size;
1136 
1137 	for (i = 0; i < count; i++)
1138 		args[i] = be32_to_cpup(it->cur++);
1139 
1140 	return count;
1141 }
1142 
1143 static int __of_parse_phandle_with_args(const struct device_node *np,
1144 					const char *list_name,
1145 					const char *cells_name,
1146 					int cell_count, int index,
1147 					struct of_phandle_args *out_args)
1148 {
1149 	struct of_phandle_iterator it;
1150 	int rc, cur_index = 0;
1151 
1152 	/* Loop over the phandles until all the requested entry is found */
1153 	of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1154 		/*
1155 		 * All of the error cases bail out of the loop, so at
1156 		 * this point, the parsing is successful. If the requested
1157 		 * index matches, then fill the out_args structure and return,
1158 		 * or return -ENOENT for an empty entry.
1159 		 */
1160 		rc = -ENOENT;
1161 		if (cur_index == index) {
1162 			if (!it.phandle)
1163 				goto err;
1164 
1165 			if (out_args) {
1166 				int c;
1167 
1168 				c = of_phandle_iterator_args(&it,
1169 							     out_args->args,
1170 							     MAX_PHANDLE_ARGS);
1171 				out_args->np = it.node;
1172 				out_args->args_count = c;
1173 			} else {
1174 				of_node_put(it.node);
1175 			}
1176 
1177 			/* Found it! return success */
1178 			return 0;
1179 		}
1180 
1181 		cur_index++;
1182 	}
1183 
1184 	/*
1185 	 * Unlock node before returning result; will be one of:
1186 	 * -ENOENT : index is for empty phandle
1187 	 * -EINVAL : parsing error on data
1188 	 */
1189 
1190  err:
1191 	of_node_put(it.node);
1192 	return rc;
1193 }
1194 
1195 /**
1196  * of_parse_phandle - Resolve a phandle property to a device_node pointer
1197  * @np: Pointer to device node holding phandle property
1198  * @phandle_name: Name of property holding a phandle value
1199  * @index: For properties holding a table of phandles, this is the index into
1200  *         the table
1201  *
1202  * Returns the device_node pointer with refcount incremented.  Use
1203  * of_node_put() on it when done.
1204  */
1205 struct device_node *of_parse_phandle(const struct device_node *np,
1206 				     const char *phandle_name, int index)
1207 {
1208 	struct of_phandle_args args;
1209 
1210 	if (index < 0)
1211 		return NULL;
1212 
1213 	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1214 					 index, &args))
1215 		return NULL;
1216 
1217 	return args.np;
1218 }
1219 EXPORT_SYMBOL(of_parse_phandle);
1220 
1221 /**
1222  * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1223  * @np:		pointer to a device tree node containing a list
1224  * @list_name:	property name that contains a list
1225  * @cells_name:	property name that specifies phandles' arguments count
1226  * @index:	index of a phandle to parse out
1227  * @out_args:	optional pointer to output arguments structure (will be filled)
1228  *
1229  * This function is useful to parse lists of phandles and their arguments.
1230  * Returns 0 on success and fills out_args, on error returns appropriate
1231  * errno value.
1232  *
1233  * Caller is responsible to call of_node_put() on the returned out_args->np
1234  * pointer.
1235  *
1236  * Example:
1237  *
1238  * phandle1: node1 {
1239  *	#list-cells = <2>;
1240  * }
1241  *
1242  * phandle2: node2 {
1243  *	#list-cells = <1>;
1244  * }
1245  *
1246  * node3 {
1247  *	list = <&phandle1 1 2 &phandle2 3>;
1248  * }
1249  *
1250  * To get a device_node of the `node2' node you may call this:
1251  * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1252  */
1253 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1254 				const char *cells_name, int index,
1255 				struct of_phandle_args *out_args)
1256 {
1257 	if (index < 0)
1258 		return -EINVAL;
1259 	return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1260 					    index, out_args);
1261 }
1262 EXPORT_SYMBOL(of_parse_phandle_with_args);
1263 
1264 /**
1265  * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1266  * @np:		pointer to a device tree node containing a list
1267  * @list_name:	property name that contains a list
1268  * @cell_count: number of argument cells following the phandle
1269  * @index:	index of a phandle to parse out
1270  * @out_args:	optional pointer to output arguments structure (will be filled)
1271  *
1272  * This function is useful to parse lists of phandles and their arguments.
1273  * Returns 0 on success and fills out_args, on error returns appropriate
1274  * errno value.
1275  *
1276  * Caller is responsible to call of_node_put() on the returned out_args->np
1277  * pointer.
1278  *
1279  * Example:
1280  *
1281  * phandle1: node1 {
1282  * }
1283  *
1284  * phandle2: node2 {
1285  * }
1286  *
1287  * node3 {
1288  *	list = <&phandle1 0 2 &phandle2 2 3>;
1289  * }
1290  *
1291  * To get a device_node of the `node2' node you may call this:
1292  * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1293  */
1294 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1295 				const char *list_name, int cell_count,
1296 				int index, struct of_phandle_args *out_args)
1297 {
1298 	if (index < 0)
1299 		return -EINVAL;
1300 	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1301 					   index, out_args);
1302 }
1303 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1304 
1305 /**
1306  * of_count_phandle_with_args() - Find the number of phandles references in a property
1307  * @np:		pointer to a device tree node containing a list
1308  * @list_name:	property name that contains a list
1309  * @cells_name:	property name that specifies phandles' arguments count
1310  *
1311  * Returns the number of phandle + argument tuples within a property. It
1312  * is a typical pattern to encode a list of phandle and variable
1313  * arguments into a single property. The number of arguments is encoded
1314  * by a property in the phandle-target node. For example, a gpios
1315  * property would contain a list of GPIO specifies consisting of a
1316  * phandle and 1 or more arguments. The number of arguments are
1317  * determined by the #gpio-cells property in the node pointed to by the
1318  * phandle.
1319  */
1320 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1321 				const char *cells_name)
1322 {
1323 	struct of_phandle_iterator it;
1324 	int rc, cur_index = 0;
1325 
1326 	rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0);
1327 	if (rc)
1328 		return rc;
1329 
1330 	while ((rc = of_phandle_iterator_next(&it)) == 0)
1331 		cur_index += 1;
1332 
1333 	if (rc != -ENOENT)
1334 		return rc;
1335 
1336 	return cur_index;
1337 }
1338 EXPORT_SYMBOL(of_count_phandle_with_args);
1339 
1340 /**
1341  * __of_add_property - Add a property to a node without lock operations
1342  */
1343 int __of_add_property(struct device_node *np, struct property *prop)
1344 {
1345 	struct property **next;
1346 
1347 	prop->next = NULL;
1348 	next = &np->properties;
1349 	while (*next) {
1350 		if (strcmp(prop->name, (*next)->name) == 0)
1351 			/* duplicate ! don't insert it */
1352 			return -EEXIST;
1353 
1354 		next = &(*next)->next;
1355 	}
1356 	*next = prop;
1357 
1358 	return 0;
1359 }
1360 
1361 /**
1362  * of_add_property - Add a property to a node
1363  */
1364 int of_add_property(struct device_node *np, struct property *prop)
1365 {
1366 	unsigned long flags;
1367 	int rc;
1368 
1369 	mutex_lock(&of_mutex);
1370 
1371 	raw_spin_lock_irqsave(&devtree_lock, flags);
1372 	rc = __of_add_property(np, prop);
1373 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1374 
1375 	if (!rc)
1376 		__of_add_property_sysfs(np, prop);
1377 
1378 	mutex_unlock(&of_mutex);
1379 
1380 	if (!rc)
1381 		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1382 
1383 	return rc;
1384 }
1385 
1386 int __of_remove_property(struct device_node *np, struct property *prop)
1387 {
1388 	struct property **next;
1389 
1390 	for (next = &np->properties; *next; next = &(*next)->next) {
1391 		if (*next == prop)
1392 			break;
1393 	}
1394 	if (*next == NULL)
1395 		return -ENODEV;
1396 
1397 	/* found the node */
1398 	*next = prop->next;
1399 	prop->next = np->deadprops;
1400 	np->deadprops = prop;
1401 
1402 	return 0;
1403 }
1404 
1405 /**
1406  * of_remove_property - Remove a property from a node.
1407  *
1408  * Note that we don't actually remove it, since we have given out
1409  * who-knows-how-many pointers to the data using get-property.
1410  * Instead we just move the property to the "dead properties"
1411  * list, so it won't be found any more.
1412  */
1413 int of_remove_property(struct device_node *np, struct property *prop)
1414 {
1415 	unsigned long flags;
1416 	int rc;
1417 
1418 	if (!prop)
1419 		return -ENODEV;
1420 
1421 	mutex_lock(&of_mutex);
1422 
1423 	raw_spin_lock_irqsave(&devtree_lock, flags);
1424 	rc = __of_remove_property(np, prop);
1425 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1426 
1427 	if (!rc)
1428 		__of_remove_property_sysfs(np, prop);
1429 
1430 	mutex_unlock(&of_mutex);
1431 
1432 	if (!rc)
1433 		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1434 
1435 	return rc;
1436 }
1437 
1438 int __of_update_property(struct device_node *np, struct property *newprop,
1439 		struct property **oldpropp)
1440 {
1441 	struct property **next, *oldprop;
1442 
1443 	for (next = &np->properties; *next; next = &(*next)->next) {
1444 		if (of_prop_cmp((*next)->name, newprop->name) == 0)
1445 			break;
1446 	}
1447 	*oldpropp = oldprop = *next;
1448 
1449 	if (oldprop) {
1450 		/* replace the node */
1451 		newprop->next = oldprop->next;
1452 		*next = newprop;
1453 		oldprop->next = np->deadprops;
1454 		np->deadprops = oldprop;
1455 	} else {
1456 		/* new node */
1457 		newprop->next = NULL;
1458 		*next = newprop;
1459 	}
1460 
1461 	return 0;
1462 }
1463 
1464 /*
1465  * of_update_property - Update a property in a node, if the property does
1466  * not exist, add it.
1467  *
1468  * Note that we don't actually remove it, since we have given out
1469  * who-knows-how-many pointers to the data using get-property.
1470  * Instead we just move the property to the "dead properties" list,
1471  * and add the new property to the property list
1472  */
1473 int of_update_property(struct device_node *np, struct property *newprop)
1474 {
1475 	struct property *oldprop;
1476 	unsigned long flags;
1477 	int rc;
1478 
1479 	if (!newprop->name)
1480 		return -EINVAL;
1481 
1482 	mutex_lock(&of_mutex);
1483 
1484 	raw_spin_lock_irqsave(&devtree_lock, flags);
1485 	rc = __of_update_property(np, newprop, &oldprop);
1486 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1487 
1488 	if (!rc)
1489 		__of_update_property_sysfs(np, newprop, oldprop);
1490 
1491 	mutex_unlock(&of_mutex);
1492 
1493 	if (!rc)
1494 		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1495 
1496 	return rc;
1497 }
1498 
1499 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1500 			 int id, const char *stem, int stem_len)
1501 {
1502 	ap->np = np;
1503 	ap->id = id;
1504 	strncpy(ap->stem, stem, stem_len);
1505 	ap->stem[stem_len] = 0;
1506 	list_add_tail(&ap->link, &aliases_lookup);
1507 	pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1508 		 ap->alias, ap->stem, ap->id, np);
1509 }
1510 
1511 /**
1512  * of_alias_scan - Scan all properties of the 'aliases' node
1513  *
1514  * The function scans all the properties of the 'aliases' node and populates
1515  * the global lookup table with the properties.  It returns the
1516  * number of alias properties found, or an error code in case of failure.
1517  *
1518  * @dt_alloc:	An allocator that provides a virtual address to memory
1519  *		for storing the resulting tree
1520  */
1521 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1522 {
1523 	struct property *pp;
1524 
1525 	of_aliases = of_find_node_by_path("/aliases");
1526 	of_chosen = of_find_node_by_path("/chosen");
1527 	if (of_chosen == NULL)
1528 		of_chosen = of_find_node_by_path("/chosen@0");
1529 
1530 	if (of_chosen) {
1531 		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1532 		const char *name = NULL;
1533 
1534 		if (of_property_read_string(of_chosen, "stdout-path", &name))
1535 			of_property_read_string(of_chosen, "linux,stdout-path",
1536 						&name);
1537 		if (IS_ENABLED(CONFIG_PPC) && !name)
1538 			of_property_read_string(of_aliases, "stdout", &name);
1539 		if (name)
1540 			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1541 	}
1542 
1543 	if (!of_aliases)
1544 		return;
1545 
1546 	for_each_property_of_node(of_aliases, pp) {
1547 		const char *start = pp->name;
1548 		const char *end = start + strlen(start);
1549 		struct device_node *np;
1550 		struct alias_prop *ap;
1551 		int id, len;
1552 
1553 		/* Skip those we do not want to proceed */
1554 		if (!strcmp(pp->name, "name") ||
1555 		    !strcmp(pp->name, "phandle") ||
1556 		    !strcmp(pp->name, "linux,phandle"))
1557 			continue;
1558 
1559 		np = of_find_node_by_path(pp->value);
1560 		if (!np)
1561 			continue;
1562 
1563 		/* walk the alias backwards to extract the id and work out
1564 		 * the 'stem' string */
1565 		while (isdigit(*(end-1)) && end > start)
1566 			end--;
1567 		len = end - start;
1568 
1569 		if (kstrtoint(end, 10, &id) < 0)
1570 			continue;
1571 
1572 		/* Allocate an alias_prop with enough space for the stem */
1573 		ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
1574 		if (!ap)
1575 			continue;
1576 		memset(ap, 0, sizeof(*ap) + len + 1);
1577 		ap->alias = start;
1578 		of_alias_add(ap, np, id, start, len);
1579 	}
1580 }
1581 
1582 /**
1583  * of_alias_get_id - Get alias id for the given device_node
1584  * @np:		Pointer to the given device_node
1585  * @stem:	Alias stem of the given device_node
1586  *
1587  * The function travels the lookup table to get the alias id for the given
1588  * device_node and alias stem.  It returns the alias id if found.
1589  */
1590 int of_alias_get_id(struct device_node *np, const char *stem)
1591 {
1592 	struct alias_prop *app;
1593 	int id = -ENODEV;
1594 
1595 	mutex_lock(&of_mutex);
1596 	list_for_each_entry(app, &aliases_lookup, link) {
1597 		if (strcmp(app->stem, stem) != 0)
1598 			continue;
1599 
1600 		if (np == app->np) {
1601 			id = app->id;
1602 			break;
1603 		}
1604 	}
1605 	mutex_unlock(&of_mutex);
1606 
1607 	return id;
1608 }
1609 EXPORT_SYMBOL_GPL(of_alias_get_id);
1610 
1611 /**
1612  * of_alias_get_highest_id - Get highest alias id for the given stem
1613  * @stem:	Alias stem to be examined
1614  *
1615  * The function travels the lookup table to get the highest alias id for the
1616  * given alias stem.  It returns the alias id if found.
1617  */
1618 int of_alias_get_highest_id(const char *stem)
1619 {
1620 	struct alias_prop *app;
1621 	int id = -ENODEV;
1622 
1623 	mutex_lock(&of_mutex);
1624 	list_for_each_entry(app, &aliases_lookup, link) {
1625 		if (strcmp(app->stem, stem) != 0)
1626 			continue;
1627 
1628 		if (app->id > id)
1629 			id = app->id;
1630 	}
1631 	mutex_unlock(&of_mutex);
1632 
1633 	return id;
1634 }
1635 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
1636 
1637 /**
1638  * of_console_check() - Test and setup console for DT setup
1639  * @dn - Pointer to device node
1640  * @name - Name to use for preferred console without index. ex. "ttyS"
1641  * @index - Index to use for preferred console.
1642  *
1643  * Check if the given device node matches the stdout-path property in the
1644  * /chosen node. If it does then register it as the preferred console and return
1645  * TRUE. Otherwise return FALSE.
1646  */
1647 bool of_console_check(struct device_node *dn, char *name, int index)
1648 {
1649 	if (!dn || dn != of_stdout || console_set_on_cmdline)
1650 		return false;
1651 
1652 	/*
1653 	 * XXX: cast `options' to char pointer to suppress complication
1654 	 * warnings: printk, UART and console drivers expect char pointer.
1655 	 */
1656 	return !add_preferred_console(name, index, (char *)of_stdout_options);
1657 }
1658 EXPORT_SYMBOL_GPL(of_console_check);
1659 
1660 /**
1661  *	of_find_next_cache_node - Find a node's subsidiary cache
1662  *	@np:	node of type "cpu" or "cache"
1663  *
1664  *	Returns a node pointer with refcount incremented, use
1665  *	of_node_put() on it when done.  Caller should hold a reference
1666  *	to np.
1667  */
1668 struct device_node *of_find_next_cache_node(const struct device_node *np)
1669 {
1670 	struct device_node *child, *cache_node;
1671 
1672 	cache_node = of_parse_phandle(np, "l2-cache", 0);
1673 	if (!cache_node)
1674 		cache_node = of_parse_phandle(np, "next-level-cache", 0);
1675 
1676 	if (cache_node)
1677 		return cache_node;
1678 
1679 	/* OF on pmac has nodes instead of properties named "l2-cache"
1680 	 * beneath CPU nodes.
1681 	 */
1682 	if (!strcmp(np->type, "cpu"))
1683 		for_each_child_of_node(np, child)
1684 			if (!strcmp(child->type, "cache"))
1685 				return child;
1686 
1687 	return NULL;
1688 }
1689 
1690 /**
1691  * of_find_last_cache_level - Find the level at which the last cache is
1692  * 		present for the given logical cpu
1693  *
1694  * @cpu: cpu number(logical index) for which the last cache level is needed
1695  *
1696  * Returns the the level at which the last cache is present. It is exactly
1697  * same as  the total number of cache levels for the given logical cpu.
1698  */
1699 int of_find_last_cache_level(unsigned int cpu)
1700 {
1701 	u32 cache_level = 0;
1702 	struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
1703 
1704 	while (np) {
1705 		prev = np;
1706 		of_node_put(np);
1707 		np = of_find_next_cache_node(np);
1708 	}
1709 
1710 	of_property_read_u32(prev, "cache-level", &cache_level);
1711 
1712 	return cache_level;
1713 }
1714