1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Procedures for creating, accessing and interpreting the device tree. 4 * 5 * Paul Mackerras August 1996. 6 * Copyright (C) 1996-2005 Paul Mackerras. 7 * 8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 9 * {engebret|bergner}@us.ibm.com 10 * 11 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 12 * 13 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 14 * Grant Likely. 15 */ 16 17 #define pr_fmt(fmt) "OF: " fmt 18 19 #include <linux/bitmap.h> 20 #include <linux/console.h> 21 #include <linux/ctype.h> 22 #include <linux/cpu.h> 23 #include <linux/module.h> 24 #include <linux/of.h> 25 #include <linux/of_device.h> 26 #include <linux/of_graph.h> 27 #include <linux/spinlock.h> 28 #include <linux/slab.h> 29 #include <linux/string.h> 30 #include <linux/proc_fs.h> 31 32 #include "of_private.h" 33 34 LIST_HEAD(aliases_lookup); 35 36 struct device_node *of_root; 37 EXPORT_SYMBOL(of_root); 38 struct device_node *of_chosen; 39 struct device_node *of_aliases; 40 struct device_node *of_stdout; 41 static const char *of_stdout_options; 42 43 struct kset *of_kset; 44 45 /* 46 * Used to protect the of_aliases, to hold off addition of nodes to sysfs. 47 * This mutex must be held whenever modifications are being made to the 48 * device tree. The of_{attach,detach}_node() and 49 * of_{add,remove,update}_property() helpers make sure this happens. 50 */ 51 DEFINE_MUTEX(of_mutex); 52 53 /* use when traversing tree through the child, sibling, 54 * or parent members of struct device_node. 55 */ 56 DEFINE_RAW_SPINLOCK(devtree_lock); 57 58 bool of_node_name_eq(const struct device_node *np, const char *name) 59 { 60 const char *node_name; 61 size_t len; 62 63 if (!np) 64 return false; 65 66 node_name = kbasename(np->full_name); 67 len = strchrnul(node_name, '@') - node_name; 68 69 return (strlen(name) == len) && (strncmp(node_name, name, len) == 0); 70 } 71 EXPORT_SYMBOL(of_node_name_eq); 72 73 bool of_node_name_prefix(const struct device_node *np, const char *prefix) 74 { 75 if (!np) 76 return false; 77 78 return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0; 79 } 80 EXPORT_SYMBOL(of_node_name_prefix); 81 82 static bool __of_node_is_type(const struct device_node *np, const char *type) 83 { 84 const char *match = __of_get_property(np, "device_type", NULL); 85 86 return np && match && type && !strcmp(match, type); 87 } 88 89 int of_bus_n_addr_cells(struct device_node *np) 90 { 91 u32 cells; 92 93 for (; np; np = np->parent) 94 if (!of_property_read_u32(np, "#address-cells", &cells)) 95 return cells; 96 97 /* No #address-cells property for the root node */ 98 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 99 } 100 101 int of_n_addr_cells(struct device_node *np) 102 { 103 if (np->parent) 104 np = np->parent; 105 106 return of_bus_n_addr_cells(np); 107 } 108 EXPORT_SYMBOL(of_n_addr_cells); 109 110 int of_bus_n_size_cells(struct device_node *np) 111 { 112 u32 cells; 113 114 for (; np; np = np->parent) 115 if (!of_property_read_u32(np, "#size-cells", &cells)) 116 return cells; 117 118 /* No #size-cells property for the root node */ 119 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 120 } 121 122 int of_n_size_cells(struct device_node *np) 123 { 124 if (np->parent) 125 np = np->parent; 126 127 return of_bus_n_size_cells(np); 128 } 129 EXPORT_SYMBOL(of_n_size_cells); 130 131 #ifdef CONFIG_NUMA 132 int __weak of_node_to_nid(struct device_node *np) 133 { 134 return NUMA_NO_NODE; 135 } 136 #endif 137 138 #define OF_PHANDLE_CACHE_BITS 7 139 #define OF_PHANDLE_CACHE_SZ BIT(OF_PHANDLE_CACHE_BITS) 140 141 static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ]; 142 143 static u32 of_phandle_cache_hash(phandle handle) 144 { 145 return hash_32(handle, OF_PHANDLE_CACHE_BITS); 146 } 147 148 /* 149 * Caller must hold devtree_lock. 150 */ 151 void __of_phandle_cache_inv_entry(phandle handle) 152 { 153 u32 handle_hash; 154 struct device_node *np; 155 156 if (!handle) 157 return; 158 159 handle_hash = of_phandle_cache_hash(handle); 160 161 np = phandle_cache[handle_hash]; 162 if (np && handle == np->phandle) 163 phandle_cache[handle_hash] = NULL; 164 } 165 166 void __init of_core_init(void) 167 { 168 struct device_node *np; 169 170 171 /* Create the kset, and register existing nodes */ 172 mutex_lock(&of_mutex); 173 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj); 174 if (!of_kset) { 175 mutex_unlock(&of_mutex); 176 pr_err("failed to register existing nodes\n"); 177 return; 178 } 179 for_each_of_allnodes(np) { 180 __of_attach_node_sysfs(np); 181 if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)]) 182 phandle_cache[of_phandle_cache_hash(np->phandle)] = np; 183 } 184 mutex_unlock(&of_mutex); 185 186 /* Symlink in /proc as required by userspace ABI */ 187 if (of_root) 188 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base"); 189 } 190 191 static struct property *__of_find_property(const struct device_node *np, 192 const char *name, int *lenp) 193 { 194 struct property *pp; 195 196 if (!np) 197 return NULL; 198 199 for (pp = np->properties; pp; pp = pp->next) { 200 if (of_prop_cmp(pp->name, name) == 0) { 201 if (lenp) 202 *lenp = pp->length; 203 break; 204 } 205 } 206 207 return pp; 208 } 209 210 struct property *of_find_property(const struct device_node *np, 211 const char *name, 212 int *lenp) 213 { 214 struct property *pp; 215 unsigned long flags; 216 217 raw_spin_lock_irqsave(&devtree_lock, flags); 218 pp = __of_find_property(np, name, lenp); 219 raw_spin_unlock_irqrestore(&devtree_lock, flags); 220 221 return pp; 222 } 223 EXPORT_SYMBOL(of_find_property); 224 225 struct device_node *__of_find_all_nodes(struct device_node *prev) 226 { 227 struct device_node *np; 228 if (!prev) { 229 np = of_root; 230 } else if (prev->child) { 231 np = prev->child; 232 } else { 233 /* Walk back up looking for a sibling, or the end of the structure */ 234 np = prev; 235 while (np->parent && !np->sibling) 236 np = np->parent; 237 np = np->sibling; /* Might be null at the end of the tree */ 238 } 239 return np; 240 } 241 242 /** 243 * of_find_all_nodes - Get next node in global list 244 * @prev: Previous node or NULL to start iteration 245 * of_node_put() will be called on it 246 * 247 * Returns a node pointer with refcount incremented, use 248 * of_node_put() on it when done. 249 */ 250 struct device_node *of_find_all_nodes(struct device_node *prev) 251 { 252 struct device_node *np; 253 unsigned long flags; 254 255 raw_spin_lock_irqsave(&devtree_lock, flags); 256 np = __of_find_all_nodes(prev); 257 of_node_get(np); 258 of_node_put(prev); 259 raw_spin_unlock_irqrestore(&devtree_lock, flags); 260 return np; 261 } 262 EXPORT_SYMBOL(of_find_all_nodes); 263 264 /* 265 * Find a property with a given name for a given node 266 * and return the value. 267 */ 268 const void *__of_get_property(const struct device_node *np, 269 const char *name, int *lenp) 270 { 271 struct property *pp = __of_find_property(np, name, lenp); 272 273 return pp ? pp->value : NULL; 274 } 275 276 /* 277 * Find a property with a given name for a given node 278 * and return the value. 279 */ 280 const void *of_get_property(const struct device_node *np, const char *name, 281 int *lenp) 282 { 283 struct property *pp = of_find_property(np, name, lenp); 284 285 return pp ? pp->value : NULL; 286 } 287 EXPORT_SYMBOL(of_get_property); 288 289 /* 290 * arch_match_cpu_phys_id - Match the given logical CPU and physical id 291 * 292 * @cpu: logical cpu index of a core/thread 293 * @phys_id: physical identifier of a core/thread 294 * 295 * CPU logical to physical index mapping is architecture specific. 296 * However this __weak function provides a default match of physical 297 * id to logical cpu index. phys_id provided here is usually values read 298 * from the device tree which must match the hardware internal registers. 299 * 300 * Returns true if the physical identifier and the logical cpu index 301 * correspond to the same core/thread, false otherwise. 302 */ 303 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id) 304 { 305 return (u32)phys_id == cpu; 306 } 307 308 /** 309 * Checks if the given "prop_name" property holds the physical id of the 310 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not 311 * NULL, local thread number within the core is returned in it. 312 */ 313 static bool __of_find_n_match_cpu_property(struct device_node *cpun, 314 const char *prop_name, int cpu, unsigned int *thread) 315 { 316 const __be32 *cell; 317 int ac, prop_len, tid; 318 u64 hwid; 319 320 ac = of_n_addr_cells(cpun); 321 cell = of_get_property(cpun, prop_name, &prop_len); 322 if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0)) 323 return true; 324 if (!cell || !ac) 325 return false; 326 prop_len /= sizeof(*cell) * ac; 327 for (tid = 0; tid < prop_len; tid++) { 328 hwid = of_read_number(cell, ac); 329 if (arch_match_cpu_phys_id(cpu, hwid)) { 330 if (thread) 331 *thread = tid; 332 return true; 333 } 334 cell += ac; 335 } 336 return false; 337 } 338 339 /* 340 * arch_find_n_match_cpu_physical_id - See if the given device node is 341 * for the cpu corresponding to logical cpu 'cpu'. Return true if so, 342 * else false. If 'thread' is non-NULL, the local thread number within the 343 * core is returned in it. 344 */ 345 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun, 346 int cpu, unsigned int *thread) 347 { 348 /* Check for non-standard "ibm,ppc-interrupt-server#s" property 349 * for thread ids on PowerPC. If it doesn't exist fallback to 350 * standard "reg" property. 351 */ 352 if (IS_ENABLED(CONFIG_PPC) && 353 __of_find_n_match_cpu_property(cpun, 354 "ibm,ppc-interrupt-server#s", 355 cpu, thread)) 356 return true; 357 358 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread); 359 } 360 361 /** 362 * of_get_cpu_node - Get device node associated with the given logical CPU 363 * 364 * @cpu: CPU number(logical index) for which device node is required 365 * @thread: if not NULL, local thread number within the physical core is 366 * returned 367 * 368 * The main purpose of this function is to retrieve the device node for the 369 * given logical CPU index. It should be used to initialize the of_node in 370 * cpu device. Once of_node in cpu device is populated, all the further 371 * references can use that instead. 372 * 373 * CPU logical to physical index mapping is architecture specific and is built 374 * before booting secondary cores. This function uses arch_match_cpu_phys_id 375 * which can be overridden by architecture specific implementation. 376 * 377 * Returns a node pointer for the logical cpu with refcount incremented, use 378 * of_node_put() on it when done. Returns NULL if not found. 379 */ 380 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread) 381 { 382 struct device_node *cpun; 383 384 for_each_of_cpu_node(cpun) { 385 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread)) 386 return cpun; 387 } 388 return NULL; 389 } 390 EXPORT_SYMBOL(of_get_cpu_node); 391 392 /** 393 * of_cpu_node_to_id: Get the logical CPU number for a given device_node 394 * 395 * @cpu_node: Pointer to the device_node for CPU. 396 * 397 * Returns the logical CPU number of the given CPU device_node. 398 * Returns -ENODEV if the CPU is not found. 399 */ 400 int of_cpu_node_to_id(struct device_node *cpu_node) 401 { 402 int cpu; 403 bool found = false; 404 struct device_node *np; 405 406 for_each_possible_cpu(cpu) { 407 np = of_cpu_device_node_get(cpu); 408 found = (cpu_node == np); 409 of_node_put(np); 410 if (found) 411 return cpu; 412 } 413 414 return -ENODEV; 415 } 416 EXPORT_SYMBOL(of_cpu_node_to_id); 417 418 /** 419 * __of_device_is_compatible() - Check if the node matches given constraints 420 * @device: pointer to node 421 * @compat: required compatible string, NULL or "" for any match 422 * @type: required device_type value, NULL or "" for any match 423 * @name: required node name, NULL or "" for any match 424 * 425 * Checks if the given @compat, @type and @name strings match the 426 * properties of the given @device. A constraints can be skipped by 427 * passing NULL or an empty string as the constraint. 428 * 429 * Returns 0 for no match, and a positive integer on match. The return 430 * value is a relative score with larger values indicating better 431 * matches. The score is weighted for the most specific compatible value 432 * to get the highest score. Matching type is next, followed by matching 433 * name. Practically speaking, this results in the following priority 434 * order for matches: 435 * 436 * 1. specific compatible && type && name 437 * 2. specific compatible && type 438 * 3. specific compatible && name 439 * 4. specific compatible 440 * 5. general compatible && type && name 441 * 6. general compatible && type 442 * 7. general compatible && name 443 * 8. general compatible 444 * 9. type && name 445 * 10. type 446 * 11. name 447 */ 448 static int __of_device_is_compatible(const struct device_node *device, 449 const char *compat, const char *type, const char *name) 450 { 451 struct property *prop; 452 const char *cp; 453 int index = 0, score = 0; 454 455 /* Compatible match has highest priority */ 456 if (compat && compat[0]) { 457 prop = __of_find_property(device, "compatible", NULL); 458 for (cp = of_prop_next_string(prop, NULL); cp; 459 cp = of_prop_next_string(prop, cp), index++) { 460 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) { 461 score = INT_MAX/2 - (index << 2); 462 break; 463 } 464 } 465 if (!score) 466 return 0; 467 } 468 469 /* Matching type is better than matching name */ 470 if (type && type[0]) { 471 if (!__of_node_is_type(device, type)) 472 return 0; 473 score += 2; 474 } 475 476 /* Matching name is a bit better than not */ 477 if (name && name[0]) { 478 if (!of_node_name_eq(device, name)) 479 return 0; 480 score++; 481 } 482 483 return score; 484 } 485 486 /** Checks if the given "compat" string matches one of the strings in 487 * the device's "compatible" property 488 */ 489 int of_device_is_compatible(const struct device_node *device, 490 const char *compat) 491 { 492 unsigned long flags; 493 int res; 494 495 raw_spin_lock_irqsave(&devtree_lock, flags); 496 res = __of_device_is_compatible(device, compat, NULL, NULL); 497 raw_spin_unlock_irqrestore(&devtree_lock, flags); 498 return res; 499 } 500 EXPORT_SYMBOL(of_device_is_compatible); 501 502 /** Checks if the device is compatible with any of the entries in 503 * a NULL terminated array of strings. Returns the best match 504 * score or 0. 505 */ 506 int of_device_compatible_match(struct device_node *device, 507 const char *const *compat) 508 { 509 unsigned int tmp, score = 0; 510 511 if (!compat) 512 return 0; 513 514 while (*compat) { 515 tmp = of_device_is_compatible(device, *compat); 516 if (tmp > score) 517 score = tmp; 518 compat++; 519 } 520 521 return score; 522 } 523 524 /** 525 * of_machine_is_compatible - Test root of device tree for a given compatible value 526 * @compat: compatible string to look for in root node's compatible property. 527 * 528 * Returns a positive integer if the root node has the given value in its 529 * compatible property. 530 */ 531 int of_machine_is_compatible(const char *compat) 532 { 533 struct device_node *root; 534 int rc = 0; 535 536 root = of_find_node_by_path("/"); 537 if (root) { 538 rc = of_device_is_compatible(root, compat); 539 of_node_put(root); 540 } 541 return rc; 542 } 543 EXPORT_SYMBOL(of_machine_is_compatible); 544 545 /** 546 * __of_device_is_available - check if a device is available for use 547 * 548 * @device: Node to check for availability, with locks already held 549 * 550 * Returns true if the status property is absent or set to "okay" or "ok", 551 * false otherwise 552 */ 553 static bool __of_device_is_available(const struct device_node *device) 554 { 555 const char *status; 556 int statlen; 557 558 if (!device) 559 return false; 560 561 status = __of_get_property(device, "status", &statlen); 562 if (status == NULL) 563 return true; 564 565 if (statlen > 0) { 566 if (!strcmp(status, "okay") || !strcmp(status, "ok")) 567 return true; 568 } 569 570 return false; 571 } 572 573 /** 574 * of_device_is_available - check if a device is available for use 575 * 576 * @device: Node to check for availability 577 * 578 * Returns true if the status property is absent or set to "okay" or "ok", 579 * false otherwise 580 */ 581 bool of_device_is_available(const struct device_node *device) 582 { 583 unsigned long flags; 584 bool res; 585 586 raw_spin_lock_irqsave(&devtree_lock, flags); 587 res = __of_device_is_available(device); 588 raw_spin_unlock_irqrestore(&devtree_lock, flags); 589 return res; 590 591 } 592 EXPORT_SYMBOL(of_device_is_available); 593 594 /** 595 * of_device_is_big_endian - check if a device has BE registers 596 * 597 * @device: Node to check for endianness 598 * 599 * Returns true if the device has a "big-endian" property, or if the kernel 600 * was compiled for BE *and* the device has a "native-endian" property. 601 * Returns false otherwise. 602 * 603 * Callers would nominally use ioread32be/iowrite32be if 604 * of_device_is_big_endian() == true, or readl/writel otherwise. 605 */ 606 bool of_device_is_big_endian(const struct device_node *device) 607 { 608 if (of_property_read_bool(device, "big-endian")) 609 return true; 610 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) && 611 of_property_read_bool(device, "native-endian")) 612 return true; 613 return false; 614 } 615 EXPORT_SYMBOL(of_device_is_big_endian); 616 617 /** 618 * of_get_parent - Get a node's parent if any 619 * @node: Node to get parent 620 * 621 * Returns a node pointer with refcount incremented, use 622 * of_node_put() on it when done. 623 */ 624 struct device_node *of_get_parent(const struct device_node *node) 625 { 626 struct device_node *np; 627 unsigned long flags; 628 629 if (!node) 630 return NULL; 631 632 raw_spin_lock_irqsave(&devtree_lock, flags); 633 np = of_node_get(node->parent); 634 raw_spin_unlock_irqrestore(&devtree_lock, flags); 635 return np; 636 } 637 EXPORT_SYMBOL(of_get_parent); 638 639 /** 640 * of_get_next_parent - Iterate to a node's parent 641 * @node: Node to get parent of 642 * 643 * This is like of_get_parent() except that it drops the 644 * refcount on the passed node, making it suitable for iterating 645 * through a node's parents. 646 * 647 * Returns a node pointer with refcount incremented, use 648 * of_node_put() on it when done. 649 */ 650 struct device_node *of_get_next_parent(struct device_node *node) 651 { 652 struct device_node *parent; 653 unsigned long flags; 654 655 if (!node) 656 return NULL; 657 658 raw_spin_lock_irqsave(&devtree_lock, flags); 659 parent = of_node_get(node->parent); 660 of_node_put(node); 661 raw_spin_unlock_irqrestore(&devtree_lock, flags); 662 return parent; 663 } 664 EXPORT_SYMBOL(of_get_next_parent); 665 666 static struct device_node *__of_get_next_child(const struct device_node *node, 667 struct device_node *prev) 668 { 669 struct device_node *next; 670 671 if (!node) 672 return NULL; 673 674 next = prev ? prev->sibling : node->child; 675 for (; next; next = next->sibling) 676 if (of_node_get(next)) 677 break; 678 of_node_put(prev); 679 return next; 680 } 681 #define __for_each_child_of_node(parent, child) \ 682 for (child = __of_get_next_child(parent, NULL); child != NULL; \ 683 child = __of_get_next_child(parent, child)) 684 685 /** 686 * of_get_next_child - Iterate a node childs 687 * @node: parent node 688 * @prev: previous child of the parent node, or NULL to get first 689 * 690 * Returns a node pointer with refcount incremented, use of_node_put() on 691 * it when done. Returns NULL when prev is the last child. Decrements the 692 * refcount of prev. 693 */ 694 struct device_node *of_get_next_child(const struct device_node *node, 695 struct device_node *prev) 696 { 697 struct device_node *next; 698 unsigned long flags; 699 700 raw_spin_lock_irqsave(&devtree_lock, flags); 701 next = __of_get_next_child(node, prev); 702 raw_spin_unlock_irqrestore(&devtree_lock, flags); 703 return next; 704 } 705 EXPORT_SYMBOL(of_get_next_child); 706 707 /** 708 * of_get_next_available_child - Find the next available child node 709 * @node: parent node 710 * @prev: previous child of the parent node, or NULL to get first 711 * 712 * This function is like of_get_next_child(), except that it 713 * automatically skips any disabled nodes (i.e. status = "disabled"). 714 */ 715 struct device_node *of_get_next_available_child(const struct device_node *node, 716 struct device_node *prev) 717 { 718 struct device_node *next; 719 unsigned long flags; 720 721 if (!node) 722 return NULL; 723 724 raw_spin_lock_irqsave(&devtree_lock, flags); 725 next = prev ? prev->sibling : node->child; 726 for (; next; next = next->sibling) { 727 if (!__of_device_is_available(next)) 728 continue; 729 if (of_node_get(next)) 730 break; 731 } 732 of_node_put(prev); 733 raw_spin_unlock_irqrestore(&devtree_lock, flags); 734 return next; 735 } 736 EXPORT_SYMBOL(of_get_next_available_child); 737 738 /** 739 * of_get_next_cpu_node - Iterate on cpu nodes 740 * @prev: previous child of the /cpus node, or NULL to get first 741 * 742 * Returns a cpu node pointer with refcount incremented, use of_node_put() 743 * on it when done. Returns NULL when prev is the last child. Decrements 744 * the refcount of prev. 745 */ 746 struct device_node *of_get_next_cpu_node(struct device_node *prev) 747 { 748 struct device_node *next = NULL; 749 unsigned long flags; 750 struct device_node *node; 751 752 if (!prev) 753 node = of_find_node_by_path("/cpus"); 754 755 raw_spin_lock_irqsave(&devtree_lock, flags); 756 if (prev) 757 next = prev->sibling; 758 else if (node) { 759 next = node->child; 760 of_node_put(node); 761 } 762 for (; next; next = next->sibling) { 763 if (!(of_node_name_eq(next, "cpu") || 764 __of_node_is_type(next, "cpu"))) 765 continue; 766 if (of_node_get(next)) 767 break; 768 } 769 of_node_put(prev); 770 raw_spin_unlock_irqrestore(&devtree_lock, flags); 771 return next; 772 } 773 EXPORT_SYMBOL(of_get_next_cpu_node); 774 775 /** 776 * of_get_compatible_child - Find compatible child node 777 * @parent: parent node 778 * @compatible: compatible string 779 * 780 * Lookup child node whose compatible property contains the given compatible 781 * string. 782 * 783 * Returns a node pointer with refcount incremented, use of_node_put() on it 784 * when done; or NULL if not found. 785 */ 786 struct device_node *of_get_compatible_child(const struct device_node *parent, 787 const char *compatible) 788 { 789 struct device_node *child; 790 791 for_each_child_of_node(parent, child) { 792 if (of_device_is_compatible(child, compatible)) 793 break; 794 } 795 796 return child; 797 } 798 EXPORT_SYMBOL(of_get_compatible_child); 799 800 /** 801 * of_get_child_by_name - Find the child node by name for a given parent 802 * @node: parent node 803 * @name: child name to look for. 804 * 805 * This function looks for child node for given matching name 806 * 807 * Returns a node pointer if found, with refcount incremented, use 808 * of_node_put() on it when done. 809 * Returns NULL if node is not found. 810 */ 811 struct device_node *of_get_child_by_name(const struct device_node *node, 812 const char *name) 813 { 814 struct device_node *child; 815 816 for_each_child_of_node(node, child) 817 if (of_node_name_eq(child, name)) 818 break; 819 return child; 820 } 821 EXPORT_SYMBOL(of_get_child_by_name); 822 823 struct device_node *__of_find_node_by_path(struct device_node *parent, 824 const char *path) 825 { 826 struct device_node *child; 827 int len; 828 829 len = strcspn(path, "/:"); 830 if (!len) 831 return NULL; 832 833 __for_each_child_of_node(parent, child) { 834 const char *name = kbasename(child->full_name); 835 if (strncmp(path, name, len) == 0 && (strlen(name) == len)) 836 return child; 837 } 838 return NULL; 839 } 840 841 struct device_node *__of_find_node_by_full_path(struct device_node *node, 842 const char *path) 843 { 844 const char *separator = strchr(path, ':'); 845 846 while (node && *path == '/') { 847 struct device_node *tmp = node; 848 849 path++; /* Increment past '/' delimiter */ 850 node = __of_find_node_by_path(node, path); 851 of_node_put(tmp); 852 path = strchrnul(path, '/'); 853 if (separator && separator < path) 854 break; 855 } 856 return node; 857 } 858 859 /** 860 * of_find_node_opts_by_path - Find a node matching a full OF path 861 * @path: Either the full path to match, or if the path does not 862 * start with '/', the name of a property of the /aliases 863 * node (an alias). In the case of an alias, the node 864 * matching the alias' value will be returned. 865 * @opts: Address of a pointer into which to store the start of 866 * an options string appended to the end of the path with 867 * a ':' separator. 868 * 869 * Valid paths: 870 * /foo/bar Full path 871 * foo Valid alias 872 * foo/bar Valid alias + relative path 873 * 874 * Returns a node pointer with refcount incremented, use 875 * of_node_put() on it when done. 876 */ 877 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts) 878 { 879 struct device_node *np = NULL; 880 struct property *pp; 881 unsigned long flags; 882 const char *separator = strchr(path, ':'); 883 884 if (opts) 885 *opts = separator ? separator + 1 : NULL; 886 887 if (strcmp(path, "/") == 0) 888 return of_node_get(of_root); 889 890 /* The path could begin with an alias */ 891 if (*path != '/') { 892 int len; 893 const char *p = separator; 894 895 if (!p) 896 p = strchrnul(path, '/'); 897 len = p - path; 898 899 /* of_aliases must not be NULL */ 900 if (!of_aliases) 901 return NULL; 902 903 for_each_property_of_node(of_aliases, pp) { 904 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) { 905 np = of_find_node_by_path(pp->value); 906 break; 907 } 908 } 909 if (!np) 910 return NULL; 911 path = p; 912 } 913 914 /* Step down the tree matching path components */ 915 raw_spin_lock_irqsave(&devtree_lock, flags); 916 if (!np) 917 np = of_node_get(of_root); 918 np = __of_find_node_by_full_path(np, path); 919 raw_spin_unlock_irqrestore(&devtree_lock, flags); 920 return np; 921 } 922 EXPORT_SYMBOL(of_find_node_opts_by_path); 923 924 /** 925 * of_find_node_by_name - Find a node by its "name" property 926 * @from: The node to start searching from or NULL; the node 927 * you pass will not be searched, only the next one 928 * will. Typically, you pass what the previous call 929 * returned. of_node_put() will be called on @from. 930 * @name: The name string to match against 931 * 932 * Returns a node pointer with refcount incremented, use 933 * of_node_put() on it when done. 934 */ 935 struct device_node *of_find_node_by_name(struct device_node *from, 936 const char *name) 937 { 938 struct device_node *np; 939 unsigned long flags; 940 941 raw_spin_lock_irqsave(&devtree_lock, flags); 942 for_each_of_allnodes_from(from, np) 943 if (of_node_name_eq(np, name) && of_node_get(np)) 944 break; 945 of_node_put(from); 946 raw_spin_unlock_irqrestore(&devtree_lock, flags); 947 return np; 948 } 949 EXPORT_SYMBOL(of_find_node_by_name); 950 951 /** 952 * of_find_node_by_type - Find a node by its "device_type" property 953 * @from: The node to start searching from, or NULL to start searching 954 * the entire device tree. The node you pass will not be 955 * searched, only the next one will; typically, you pass 956 * what the previous call returned. of_node_put() will be 957 * called on from for you. 958 * @type: The type string to match against 959 * 960 * Returns a node pointer with refcount incremented, use 961 * of_node_put() on it when done. 962 */ 963 struct device_node *of_find_node_by_type(struct device_node *from, 964 const char *type) 965 { 966 struct device_node *np; 967 unsigned long flags; 968 969 raw_spin_lock_irqsave(&devtree_lock, flags); 970 for_each_of_allnodes_from(from, np) 971 if (__of_node_is_type(np, type) && of_node_get(np)) 972 break; 973 of_node_put(from); 974 raw_spin_unlock_irqrestore(&devtree_lock, flags); 975 return np; 976 } 977 EXPORT_SYMBOL(of_find_node_by_type); 978 979 /** 980 * of_find_compatible_node - Find a node based on type and one of the 981 * tokens in its "compatible" property 982 * @from: The node to start searching from or NULL, the node 983 * you pass will not be searched, only the next one 984 * will; typically, you pass what the previous call 985 * returned. of_node_put() will be called on it 986 * @type: The type string to match "device_type" or NULL to ignore 987 * @compatible: The string to match to one of the tokens in the device 988 * "compatible" list. 989 * 990 * Returns a node pointer with refcount incremented, use 991 * of_node_put() on it when done. 992 */ 993 struct device_node *of_find_compatible_node(struct device_node *from, 994 const char *type, const char *compatible) 995 { 996 struct device_node *np; 997 unsigned long flags; 998 999 raw_spin_lock_irqsave(&devtree_lock, flags); 1000 for_each_of_allnodes_from(from, np) 1001 if (__of_device_is_compatible(np, compatible, type, NULL) && 1002 of_node_get(np)) 1003 break; 1004 of_node_put(from); 1005 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1006 return np; 1007 } 1008 EXPORT_SYMBOL(of_find_compatible_node); 1009 1010 /** 1011 * of_find_node_with_property - Find a node which has a property with 1012 * the given name. 1013 * @from: The node to start searching from or NULL, the node 1014 * you pass will not be searched, only the next one 1015 * will; typically, you pass what the previous call 1016 * returned. of_node_put() will be called on it 1017 * @prop_name: The name of the property to look for. 1018 * 1019 * Returns a node pointer with refcount incremented, use 1020 * of_node_put() on it when done. 1021 */ 1022 struct device_node *of_find_node_with_property(struct device_node *from, 1023 const char *prop_name) 1024 { 1025 struct device_node *np; 1026 struct property *pp; 1027 unsigned long flags; 1028 1029 raw_spin_lock_irqsave(&devtree_lock, flags); 1030 for_each_of_allnodes_from(from, np) { 1031 for (pp = np->properties; pp; pp = pp->next) { 1032 if (of_prop_cmp(pp->name, prop_name) == 0) { 1033 of_node_get(np); 1034 goto out; 1035 } 1036 } 1037 } 1038 out: 1039 of_node_put(from); 1040 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1041 return np; 1042 } 1043 EXPORT_SYMBOL(of_find_node_with_property); 1044 1045 static 1046 const struct of_device_id *__of_match_node(const struct of_device_id *matches, 1047 const struct device_node *node) 1048 { 1049 const struct of_device_id *best_match = NULL; 1050 int score, best_score = 0; 1051 1052 if (!matches) 1053 return NULL; 1054 1055 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) { 1056 score = __of_device_is_compatible(node, matches->compatible, 1057 matches->type, matches->name); 1058 if (score > best_score) { 1059 best_match = matches; 1060 best_score = score; 1061 } 1062 } 1063 1064 return best_match; 1065 } 1066 1067 /** 1068 * of_match_node - Tell if a device_node has a matching of_match structure 1069 * @matches: array of of device match structures to search in 1070 * @node: the of device structure to match against 1071 * 1072 * Low level utility function used by device matching. 1073 */ 1074 const struct of_device_id *of_match_node(const struct of_device_id *matches, 1075 const struct device_node *node) 1076 { 1077 const struct of_device_id *match; 1078 unsigned long flags; 1079 1080 raw_spin_lock_irqsave(&devtree_lock, flags); 1081 match = __of_match_node(matches, node); 1082 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1083 return match; 1084 } 1085 EXPORT_SYMBOL(of_match_node); 1086 1087 /** 1088 * of_find_matching_node_and_match - Find a node based on an of_device_id 1089 * match table. 1090 * @from: The node to start searching from or NULL, the node 1091 * you pass will not be searched, only the next one 1092 * will; typically, you pass what the previous call 1093 * returned. of_node_put() will be called on it 1094 * @matches: array of of device match structures to search in 1095 * @match Updated to point at the matches entry which matched 1096 * 1097 * Returns a node pointer with refcount incremented, use 1098 * of_node_put() on it when done. 1099 */ 1100 struct device_node *of_find_matching_node_and_match(struct device_node *from, 1101 const struct of_device_id *matches, 1102 const struct of_device_id **match) 1103 { 1104 struct device_node *np; 1105 const struct of_device_id *m; 1106 unsigned long flags; 1107 1108 if (match) 1109 *match = NULL; 1110 1111 raw_spin_lock_irqsave(&devtree_lock, flags); 1112 for_each_of_allnodes_from(from, np) { 1113 m = __of_match_node(matches, np); 1114 if (m && of_node_get(np)) { 1115 if (match) 1116 *match = m; 1117 break; 1118 } 1119 } 1120 of_node_put(from); 1121 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1122 return np; 1123 } 1124 EXPORT_SYMBOL(of_find_matching_node_and_match); 1125 1126 /** 1127 * of_modalias_node - Lookup appropriate modalias for a device node 1128 * @node: pointer to a device tree node 1129 * @modalias: Pointer to buffer that modalias value will be copied into 1130 * @len: Length of modalias value 1131 * 1132 * Based on the value of the compatible property, this routine will attempt 1133 * to choose an appropriate modalias value for a particular device tree node. 1134 * It does this by stripping the manufacturer prefix (as delimited by a ',') 1135 * from the first entry in the compatible list property. 1136 * 1137 * This routine returns 0 on success, <0 on failure. 1138 */ 1139 int of_modalias_node(struct device_node *node, char *modalias, int len) 1140 { 1141 const char *compatible, *p; 1142 int cplen; 1143 1144 compatible = of_get_property(node, "compatible", &cplen); 1145 if (!compatible || strlen(compatible) > cplen) 1146 return -ENODEV; 1147 p = strchr(compatible, ','); 1148 strlcpy(modalias, p ? p + 1 : compatible, len); 1149 return 0; 1150 } 1151 EXPORT_SYMBOL_GPL(of_modalias_node); 1152 1153 /** 1154 * of_find_node_by_phandle - Find a node given a phandle 1155 * @handle: phandle of the node to find 1156 * 1157 * Returns a node pointer with refcount incremented, use 1158 * of_node_put() on it when done. 1159 */ 1160 struct device_node *of_find_node_by_phandle(phandle handle) 1161 { 1162 struct device_node *np = NULL; 1163 unsigned long flags; 1164 u32 handle_hash; 1165 1166 if (!handle) 1167 return NULL; 1168 1169 handle_hash = of_phandle_cache_hash(handle); 1170 1171 raw_spin_lock_irqsave(&devtree_lock, flags); 1172 1173 if (phandle_cache[handle_hash] && 1174 handle == phandle_cache[handle_hash]->phandle) 1175 np = phandle_cache[handle_hash]; 1176 1177 if (!np) { 1178 for_each_of_allnodes(np) 1179 if (np->phandle == handle && 1180 !of_node_check_flag(np, OF_DETACHED)) { 1181 phandle_cache[handle_hash] = np; 1182 break; 1183 } 1184 } 1185 1186 of_node_get(np); 1187 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1188 return np; 1189 } 1190 EXPORT_SYMBOL(of_find_node_by_phandle); 1191 1192 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args) 1193 { 1194 int i; 1195 printk("%s %pOF", msg, args->np); 1196 for (i = 0; i < args->args_count; i++) { 1197 const char delim = i ? ',' : ':'; 1198 1199 pr_cont("%c%08x", delim, args->args[i]); 1200 } 1201 pr_cont("\n"); 1202 } 1203 1204 int of_phandle_iterator_init(struct of_phandle_iterator *it, 1205 const struct device_node *np, 1206 const char *list_name, 1207 const char *cells_name, 1208 int cell_count) 1209 { 1210 const __be32 *list; 1211 int size; 1212 1213 memset(it, 0, sizeof(*it)); 1214 1215 /* 1216 * one of cell_count or cells_name must be provided to determine the 1217 * argument length. 1218 */ 1219 if (cell_count < 0 && !cells_name) 1220 return -EINVAL; 1221 1222 list = of_get_property(np, list_name, &size); 1223 if (!list) 1224 return -ENOENT; 1225 1226 it->cells_name = cells_name; 1227 it->cell_count = cell_count; 1228 it->parent = np; 1229 it->list_end = list + size / sizeof(*list); 1230 it->phandle_end = list; 1231 it->cur = list; 1232 1233 return 0; 1234 } 1235 EXPORT_SYMBOL_GPL(of_phandle_iterator_init); 1236 1237 int of_phandle_iterator_next(struct of_phandle_iterator *it) 1238 { 1239 uint32_t count = 0; 1240 1241 if (it->node) { 1242 of_node_put(it->node); 1243 it->node = NULL; 1244 } 1245 1246 if (!it->cur || it->phandle_end >= it->list_end) 1247 return -ENOENT; 1248 1249 it->cur = it->phandle_end; 1250 1251 /* If phandle is 0, then it is an empty entry with no arguments. */ 1252 it->phandle = be32_to_cpup(it->cur++); 1253 1254 if (it->phandle) { 1255 1256 /* 1257 * Find the provider node and parse the #*-cells property to 1258 * determine the argument length. 1259 */ 1260 it->node = of_find_node_by_phandle(it->phandle); 1261 1262 if (it->cells_name) { 1263 if (!it->node) { 1264 pr_err("%pOF: could not find phandle\n", 1265 it->parent); 1266 goto err; 1267 } 1268 1269 if (of_property_read_u32(it->node, it->cells_name, 1270 &count)) { 1271 /* 1272 * If both cell_count and cells_name is given, 1273 * fall back to cell_count in absence 1274 * of the cells_name property 1275 */ 1276 if (it->cell_count >= 0) { 1277 count = it->cell_count; 1278 } else { 1279 pr_err("%pOF: could not get %s for %pOF\n", 1280 it->parent, 1281 it->cells_name, 1282 it->node); 1283 goto err; 1284 } 1285 } 1286 } else { 1287 count = it->cell_count; 1288 } 1289 1290 /* 1291 * Make sure that the arguments actually fit in the remaining 1292 * property data length 1293 */ 1294 if (it->cur + count > it->list_end) { 1295 pr_err("%pOF: %s = %d found %d\n", 1296 it->parent, it->cells_name, 1297 count, it->cell_count); 1298 goto err; 1299 } 1300 } 1301 1302 it->phandle_end = it->cur + count; 1303 it->cur_count = count; 1304 1305 return 0; 1306 1307 err: 1308 if (it->node) { 1309 of_node_put(it->node); 1310 it->node = NULL; 1311 } 1312 1313 return -EINVAL; 1314 } 1315 EXPORT_SYMBOL_GPL(of_phandle_iterator_next); 1316 1317 int of_phandle_iterator_args(struct of_phandle_iterator *it, 1318 uint32_t *args, 1319 int size) 1320 { 1321 int i, count; 1322 1323 count = it->cur_count; 1324 1325 if (WARN_ON(size < count)) 1326 count = size; 1327 1328 for (i = 0; i < count; i++) 1329 args[i] = be32_to_cpup(it->cur++); 1330 1331 return count; 1332 } 1333 1334 static int __of_parse_phandle_with_args(const struct device_node *np, 1335 const char *list_name, 1336 const char *cells_name, 1337 int cell_count, int index, 1338 struct of_phandle_args *out_args) 1339 { 1340 struct of_phandle_iterator it; 1341 int rc, cur_index = 0; 1342 1343 /* Loop over the phandles until all the requested entry is found */ 1344 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) { 1345 /* 1346 * All of the error cases bail out of the loop, so at 1347 * this point, the parsing is successful. If the requested 1348 * index matches, then fill the out_args structure and return, 1349 * or return -ENOENT for an empty entry. 1350 */ 1351 rc = -ENOENT; 1352 if (cur_index == index) { 1353 if (!it.phandle) 1354 goto err; 1355 1356 if (out_args) { 1357 int c; 1358 1359 c = of_phandle_iterator_args(&it, 1360 out_args->args, 1361 MAX_PHANDLE_ARGS); 1362 out_args->np = it.node; 1363 out_args->args_count = c; 1364 } else { 1365 of_node_put(it.node); 1366 } 1367 1368 /* Found it! return success */ 1369 return 0; 1370 } 1371 1372 cur_index++; 1373 } 1374 1375 /* 1376 * Unlock node before returning result; will be one of: 1377 * -ENOENT : index is for empty phandle 1378 * -EINVAL : parsing error on data 1379 */ 1380 1381 err: 1382 of_node_put(it.node); 1383 return rc; 1384 } 1385 1386 /** 1387 * of_parse_phandle - Resolve a phandle property to a device_node pointer 1388 * @np: Pointer to device node holding phandle property 1389 * @phandle_name: Name of property holding a phandle value 1390 * @index: For properties holding a table of phandles, this is the index into 1391 * the table 1392 * 1393 * Returns the device_node pointer with refcount incremented. Use 1394 * of_node_put() on it when done. 1395 */ 1396 struct device_node *of_parse_phandle(const struct device_node *np, 1397 const char *phandle_name, int index) 1398 { 1399 struct of_phandle_args args; 1400 1401 if (index < 0) 1402 return NULL; 1403 1404 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0, 1405 index, &args)) 1406 return NULL; 1407 1408 return args.np; 1409 } 1410 EXPORT_SYMBOL(of_parse_phandle); 1411 1412 /** 1413 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list 1414 * @np: pointer to a device tree node containing a list 1415 * @list_name: property name that contains a list 1416 * @cells_name: property name that specifies phandles' arguments count 1417 * @index: index of a phandle to parse out 1418 * @out_args: optional pointer to output arguments structure (will be filled) 1419 * 1420 * This function is useful to parse lists of phandles and their arguments. 1421 * Returns 0 on success and fills out_args, on error returns appropriate 1422 * errno value. 1423 * 1424 * Caller is responsible to call of_node_put() on the returned out_args->np 1425 * pointer. 1426 * 1427 * Example: 1428 * 1429 * phandle1: node1 { 1430 * #list-cells = <2>; 1431 * } 1432 * 1433 * phandle2: node2 { 1434 * #list-cells = <1>; 1435 * } 1436 * 1437 * node3 { 1438 * list = <&phandle1 1 2 &phandle2 3>; 1439 * } 1440 * 1441 * To get a device_node of the `node2' node you may call this: 1442 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args); 1443 */ 1444 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name, 1445 const char *cells_name, int index, 1446 struct of_phandle_args *out_args) 1447 { 1448 int cell_count = -1; 1449 1450 if (index < 0) 1451 return -EINVAL; 1452 1453 /* If cells_name is NULL we assume a cell count of 0 */ 1454 if (!cells_name) 1455 cell_count = 0; 1456 1457 return __of_parse_phandle_with_args(np, list_name, cells_name, 1458 cell_count, index, out_args); 1459 } 1460 EXPORT_SYMBOL(of_parse_phandle_with_args); 1461 1462 /** 1463 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it 1464 * @np: pointer to a device tree node containing a list 1465 * @list_name: property name that contains a list 1466 * @stem_name: stem of property names that specify phandles' arguments count 1467 * @index: index of a phandle to parse out 1468 * @out_args: optional pointer to output arguments structure (will be filled) 1469 * 1470 * This function is useful to parse lists of phandles and their arguments. 1471 * Returns 0 on success and fills out_args, on error returns appropriate errno 1472 * value. The difference between this function and of_parse_phandle_with_args() 1473 * is that this API remaps a phandle if the node the phandle points to has 1474 * a <@stem_name>-map property. 1475 * 1476 * Caller is responsible to call of_node_put() on the returned out_args->np 1477 * pointer. 1478 * 1479 * Example: 1480 * 1481 * phandle1: node1 { 1482 * #list-cells = <2>; 1483 * } 1484 * 1485 * phandle2: node2 { 1486 * #list-cells = <1>; 1487 * } 1488 * 1489 * phandle3: node3 { 1490 * #list-cells = <1>; 1491 * list-map = <0 &phandle2 3>, 1492 * <1 &phandle2 2>, 1493 * <2 &phandle1 5 1>; 1494 * list-map-mask = <0x3>; 1495 * }; 1496 * 1497 * node4 { 1498 * list = <&phandle1 1 2 &phandle3 0>; 1499 * } 1500 * 1501 * To get a device_node of the `node2' node you may call this: 1502 * of_parse_phandle_with_args(node4, "list", "list", 1, &args); 1503 */ 1504 int of_parse_phandle_with_args_map(const struct device_node *np, 1505 const char *list_name, 1506 const char *stem_name, 1507 int index, struct of_phandle_args *out_args) 1508 { 1509 char *cells_name, *map_name = NULL, *mask_name = NULL; 1510 char *pass_name = NULL; 1511 struct device_node *cur, *new = NULL; 1512 const __be32 *map, *mask, *pass; 1513 static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 }; 1514 static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 }; 1515 __be32 initial_match_array[MAX_PHANDLE_ARGS]; 1516 const __be32 *match_array = initial_match_array; 1517 int i, ret, map_len, match; 1518 u32 list_size, new_size; 1519 1520 if (index < 0) 1521 return -EINVAL; 1522 1523 cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name); 1524 if (!cells_name) 1525 return -ENOMEM; 1526 1527 ret = -ENOMEM; 1528 map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name); 1529 if (!map_name) 1530 goto free; 1531 1532 mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name); 1533 if (!mask_name) 1534 goto free; 1535 1536 pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name); 1537 if (!pass_name) 1538 goto free; 1539 1540 ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index, 1541 out_args); 1542 if (ret) 1543 goto free; 1544 1545 /* Get the #<list>-cells property */ 1546 cur = out_args->np; 1547 ret = of_property_read_u32(cur, cells_name, &list_size); 1548 if (ret < 0) 1549 goto put; 1550 1551 /* Precalculate the match array - this simplifies match loop */ 1552 for (i = 0; i < list_size; i++) 1553 initial_match_array[i] = cpu_to_be32(out_args->args[i]); 1554 1555 ret = -EINVAL; 1556 while (cur) { 1557 /* Get the <list>-map property */ 1558 map = of_get_property(cur, map_name, &map_len); 1559 if (!map) { 1560 ret = 0; 1561 goto free; 1562 } 1563 map_len /= sizeof(u32); 1564 1565 /* Get the <list>-map-mask property (optional) */ 1566 mask = of_get_property(cur, mask_name, NULL); 1567 if (!mask) 1568 mask = dummy_mask; 1569 /* Iterate through <list>-map property */ 1570 match = 0; 1571 while (map_len > (list_size + 1) && !match) { 1572 /* Compare specifiers */ 1573 match = 1; 1574 for (i = 0; i < list_size; i++, map_len--) 1575 match &= !((match_array[i] ^ *map++) & mask[i]); 1576 1577 of_node_put(new); 1578 new = of_find_node_by_phandle(be32_to_cpup(map)); 1579 map++; 1580 map_len--; 1581 1582 /* Check if not found */ 1583 if (!new) 1584 goto put; 1585 1586 if (!of_device_is_available(new)) 1587 match = 0; 1588 1589 ret = of_property_read_u32(new, cells_name, &new_size); 1590 if (ret) 1591 goto put; 1592 1593 /* Check for malformed properties */ 1594 if (WARN_ON(new_size > MAX_PHANDLE_ARGS)) 1595 goto put; 1596 if (map_len < new_size) 1597 goto put; 1598 1599 /* Move forward by new node's #<list>-cells amount */ 1600 map += new_size; 1601 map_len -= new_size; 1602 } 1603 if (!match) 1604 goto put; 1605 1606 /* Get the <list>-map-pass-thru property (optional) */ 1607 pass = of_get_property(cur, pass_name, NULL); 1608 if (!pass) 1609 pass = dummy_pass; 1610 1611 /* 1612 * Successfully parsed a <list>-map translation; copy new 1613 * specifier into the out_args structure, keeping the 1614 * bits specified in <list>-map-pass-thru. 1615 */ 1616 match_array = map - new_size; 1617 for (i = 0; i < new_size; i++) { 1618 __be32 val = *(map - new_size + i); 1619 1620 if (i < list_size) { 1621 val &= ~pass[i]; 1622 val |= cpu_to_be32(out_args->args[i]) & pass[i]; 1623 } 1624 1625 out_args->args[i] = be32_to_cpu(val); 1626 } 1627 out_args->args_count = list_size = new_size; 1628 /* Iterate again with new provider */ 1629 out_args->np = new; 1630 of_node_put(cur); 1631 cur = new; 1632 } 1633 put: 1634 of_node_put(cur); 1635 of_node_put(new); 1636 free: 1637 kfree(mask_name); 1638 kfree(map_name); 1639 kfree(cells_name); 1640 kfree(pass_name); 1641 1642 return ret; 1643 } 1644 EXPORT_SYMBOL(of_parse_phandle_with_args_map); 1645 1646 /** 1647 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list 1648 * @np: pointer to a device tree node containing a list 1649 * @list_name: property name that contains a list 1650 * @cell_count: number of argument cells following the phandle 1651 * @index: index of a phandle to parse out 1652 * @out_args: optional pointer to output arguments structure (will be filled) 1653 * 1654 * This function is useful to parse lists of phandles and their arguments. 1655 * Returns 0 on success and fills out_args, on error returns appropriate 1656 * errno value. 1657 * 1658 * Caller is responsible to call of_node_put() on the returned out_args->np 1659 * pointer. 1660 * 1661 * Example: 1662 * 1663 * phandle1: node1 { 1664 * } 1665 * 1666 * phandle2: node2 { 1667 * } 1668 * 1669 * node3 { 1670 * list = <&phandle1 0 2 &phandle2 2 3>; 1671 * } 1672 * 1673 * To get a device_node of the `node2' node you may call this: 1674 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args); 1675 */ 1676 int of_parse_phandle_with_fixed_args(const struct device_node *np, 1677 const char *list_name, int cell_count, 1678 int index, struct of_phandle_args *out_args) 1679 { 1680 if (index < 0) 1681 return -EINVAL; 1682 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count, 1683 index, out_args); 1684 } 1685 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args); 1686 1687 /** 1688 * of_count_phandle_with_args() - Find the number of phandles references in a property 1689 * @np: pointer to a device tree node containing a list 1690 * @list_name: property name that contains a list 1691 * @cells_name: property name that specifies phandles' arguments count 1692 * 1693 * Returns the number of phandle + argument tuples within a property. It 1694 * is a typical pattern to encode a list of phandle and variable 1695 * arguments into a single property. The number of arguments is encoded 1696 * by a property in the phandle-target node. For example, a gpios 1697 * property would contain a list of GPIO specifies consisting of a 1698 * phandle and 1 or more arguments. The number of arguments are 1699 * determined by the #gpio-cells property in the node pointed to by the 1700 * phandle. 1701 */ 1702 int of_count_phandle_with_args(const struct device_node *np, const char *list_name, 1703 const char *cells_name) 1704 { 1705 struct of_phandle_iterator it; 1706 int rc, cur_index = 0; 1707 1708 /* 1709 * If cells_name is NULL we assume a cell count of 0. This makes 1710 * counting the phandles trivial as each 32bit word in the list is a 1711 * phandle and no arguments are to consider. So we don't iterate through 1712 * the list but just use the length to determine the phandle count. 1713 */ 1714 if (!cells_name) { 1715 const __be32 *list; 1716 int size; 1717 1718 list = of_get_property(np, list_name, &size); 1719 if (!list) 1720 return -ENOENT; 1721 1722 return size / sizeof(*list); 1723 } 1724 1725 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1); 1726 if (rc) 1727 return rc; 1728 1729 while ((rc = of_phandle_iterator_next(&it)) == 0) 1730 cur_index += 1; 1731 1732 if (rc != -ENOENT) 1733 return rc; 1734 1735 return cur_index; 1736 } 1737 EXPORT_SYMBOL(of_count_phandle_with_args); 1738 1739 /** 1740 * __of_add_property - Add a property to a node without lock operations 1741 */ 1742 int __of_add_property(struct device_node *np, struct property *prop) 1743 { 1744 struct property **next; 1745 1746 prop->next = NULL; 1747 next = &np->properties; 1748 while (*next) { 1749 if (strcmp(prop->name, (*next)->name) == 0) 1750 /* duplicate ! don't insert it */ 1751 return -EEXIST; 1752 1753 next = &(*next)->next; 1754 } 1755 *next = prop; 1756 1757 return 0; 1758 } 1759 1760 /** 1761 * of_add_property - Add a property to a node 1762 */ 1763 int of_add_property(struct device_node *np, struct property *prop) 1764 { 1765 unsigned long flags; 1766 int rc; 1767 1768 mutex_lock(&of_mutex); 1769 1770 raw_spin_lock_irqsave(&devtree_lock, flags); 1771 rc = __of_add_property(np, prop); 1772 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1773 1774 if (!rc) 1775 __of_add_property_sysfs(np, prop); 1776 1777 mutex_unlock(&of_mutex); 1778 1779 if (!rc) 1780 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL); 1781 1782 return rc; 1783 } 1784 1785 int __of_remove_property(struct device_node *np, struct property *prop) 1786 { 1787 struct property **next; 1788 1789 for (next = &np->properties; *next; next = &(*next)->next) { 1790 if (*next == prop) 1791 break; 1792 } 1793 if (*next == NULL) 1794 return -ENODEV; 1795 1796 /* found the node */ 1797 *next = prop->next; 1798 prop->next = np->deadprops; 1799 np->deadprops = prop; 1800 1801 return 0; 1802 } 1803 1804 /** 1805 * of_remove_property - Remove a property from a node. 1806 * 1807 * Note that we don't actually remove it, since we have given out 1808 * who-knows-how-many pointers to the data using get-property. 1809 * Instead we just move the property to the "dead properties" 1810 * list, so it won't be found any more. 1811 */ 1812 int of_remove_property(struct device_node *np, struct property *prop) 1813 { 1814 unsigned long flags; 1815 int rc; 1816 1817 if (!prop) 1818 return -ENODEV; 1819 1820 mutex_lock(&of_mutex); 1821 1822 raw_spin_lock_irqsave(&devtree_lock, flags); 1823 rc = __of_remove_property(np, prop); 1824 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1825 1826 if (!rc) 1827 __of_remove_property_sysfs(np, prop); 1828 1829 mutex_unlock(&of_mutex); 1830 1831 if (!rc) 1832 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL); 1833 1834 return rc; 1835 } 1836 1837 int __of_update_property(struct device_node *np, struct property *newprop, 1838 struct property **oldpropp) 1839 { 1840 struct property **next, *oldprop; 1841 1842 for (next = &np->properties; *next; next = &(*next)->next) { 1843 if (of_prop_cmp((*next)->name, newprop->name) == 0) 1844 break; 1845 } 1846 *oldpropp = oldprop = *next; 1847 1848 if (oldprop) { 1849 /* replace the node */ 1850 newprop->next = oldprop->next; 1851 *next = newprop; 1852 oldprop->next = np->deadprops; 1853 np->deadprops = oldprop; 1854 } else { 1855 /* new node */ 1856 newprop->next = NULL; 1857 *next = newprop; 1858 } 1859 1860 return 0; 1861 } 1862 1863 /* 1864 * of_update_property - Update a property in a node, if the property does 1865 * not exist, add it. 1866 * 1867 * Note that we don't actually remove it, since we have given out 1868 * who-knows-how-many pointers to the data using get-property. 1869 * Instead we just move the property to the "dead properties" list, 1870 * and add the new property to the property list 1871 */ 1872 int of_update_property(struct device_node *np, struct property *newprop) 1873 { 1874 struct property *oldprop; 1875 unsigned long flags; 1876 int rc; 1877 1878 if (!newprop->name) 1879 return -EINVAL; 1880 1881 mutex_lock(&of_mutex); 1882 1883 raw_spin_lock_irqsave(&devtree_lock, flags); 1884 rc = __of_update_property(np, newprop, &oldprop); 1885 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1886 1887 if (!rc) 1888 __of_update_property_sysfs(np, newprop, oldprop); 1889 1890 mutex_unlock(&of_mutex); 1891 1892 if (!rc) 1893 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop); 1894 1895 return rc; 1896 } 1897 1898 static void of_alias_add(struct alias_prop *ap, struct device_node *np, 1899 int id, const char *stem, int stem_len) 1900 { 1901 ap->np = np; 1902 ap->id = id; 1903 strncpy(ap->stem, stem, stem_len); 1904 ap->stem[stem_len] = 0; 1905 list_add_tail(&ap->link, &aliases_lookup); 1906 pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n", 1907 ap->alias, ap->stem, ap->id, np); 1908 } 1909 1910 /** 1911 * of_alias_scan - Scan all properties of the 'aliases' node 1912 * 1913 * The function scans all the properties of the 'aliases' node and populates 1914 * the global lookup table with the properties. It returns the 1915 * number of alias properties found, or an error code in case of failure. 1916 * 1917 * @dt_alloc: An allocator that provides a virtual address to memory 1918 * for storing the resulting tree 1919 */ 1920 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align)) 1921 { 1922 struct property *pp; 1923 1924 of_aliases = of_find_node_by_path("/aliases"); 1925 of_chosen = of_find_node_by_path("/chosen"); 1926 if (of_chosen == NULL) 1927 of_chosen = of_find_node_by_path("/chosen@0"); 1928 1929 if (of_chosen) { 1930 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */ 1931 const char *name = NULL; 1932 1933 if (of_property_read_string(of_chosen, "stdout-path", &name)) 1934 of_property_read_string(of_chosen, "linux,stdout-path", 1935 &name); 1936 if (IS_ENABLED(CONFIG_PPC) && !name) 1937 of_property_read_string(of_aliases, "stdout", &name); 1938 if (name) 1939 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options); 1940 } 1941 1942 if (!of_aliases) 1943 return; 1944 1945 for_each_property_of_node(of_aliases, pp) { 1946 const char *start = pp->name; 1947 const char *end = start + strlen(start); 1948 struct device_node *np; 1949 struct alias_prop *ap; 1950 int id, len; 1951 1952 /* Skip those we do not want to proceed */ 1953 if (!strcmp(pp->name, "name") || 1954 !strcmp(pp->name, "phandle") || 1955 !strcmp(pp->name, "linux,phandle")) 1956 continue; 1957 1958 np = of_find_node_by_path(pp->value); 1959 if (!np) 1960 continue; 1961 1962 /* walk the alias backwards to extract the id and work out 1963 * the 'stem' string */ 1964 while (isdigit(*(end-1)) && end > start) 1965 end--; 1966 len = end - start; 1967 1968 if (kstrtoint(end, 10, &id) < 0) 1969 continue; 1970 1971 /* Allocate an alias_prop with enough space for the stem */ 1972 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap)); 1973 if (!ap) 1974 continue; 1975 memset(ap, 0, sizeof(*ap) + len + 1); 1976 ap->alias = start; 1977 of_alias_add(ap, np, id, start, len); 1978 } 1979 } 1980 1981 /** 1982 * of_alias_get_id - Get alias id for the given device_node 1983 * @np: Pointer to the given device_node 1984 * @stem: Alias stem of the given device_node 1985 * 1986 * The function travels the lookup table to get the alias id for the given 1987 * device_node and alias stem. It returns the alias id if found. 1988 */ 1989 int of_alias_get_id(struct device_node *np, const char *stem) 1990 { 1991 struct alias_prop *app; 1992 int id = -ENODEV; 1993 1994 mutex_lock(&of_mutex); 1995 list_for_each_entry(app, &aliases_lookup, link) { 1996 if (strcmp(app->stem, stem) != 0) 1997 continue; 1998 1999 if (np == app->np) { 2000 id = app->id; 2001 break; 2002 } 2003 } 2004 mutex_unlock(&of_mutex); 2005 2006 return id; 2007 } 2008 EXPORT_SYMBOL_GPL(of_alias_get_id); 2009 2010 /** 2011 * of_alias_get_alias_list - Get alias list for the given device driver 2012 * @matches: Array of OF device match structures to search in 2013 * @stem: Alias stem of the given device_node 2014 * @bitmap: Bitmap field pointer 2015 * @nbits: Maximum number of alias IDs which can be recorded in bitmap 2016 * 2017 * The function travels the lookup table to record alias ids for the given 2018 * device match structures and alias stem. 2019 * 2020 * Return: 0 or -ENOSYS when !CONFIG_OF or 2021 * -EOVERFLOW if alias ID is greater then allocated nbits 2022 */ 2023 int of_alias_get_alias_list(const struct of_device_id *matches, 2024 const char *stem, unsigned long *bitmap, 2025 unsigned int nbits) 2026 { 2027 struct alias_prop *app; 2028 int ret = 0; 2029 2030 /* Zero bitmap field to make sure that all the time it is clean */ 2031 bitmap_zero(bitmap, nbits); 2032 2033 mutex_lock(&of_mutex); 2034 pr_debug("%s: Looking for stem: %s\n", __func__, stem); 2035 list_for_each_entry(app, &aliases_lookup, link) { 2036 pr_debug("%s: stem: %s, id: %d\n", 2037 __func__, app->stem, app->id); 2038 2039 if (strcmp(app->stem, stem) != 0) { 2040 pr_debug("%s: stem comparison didn't pass %s\n", 2041 __func__, app->stem); 2042 continue; 2043 } 2044 2045 if (of_match_node(matches, app->np)) { 2046 pr_debug("%s: Allocated ID %d\n", __func__, app->id); 2047 2048 if (app->id >= nbits) { 2049 pr_warn("%s: ID %d >= than bitmap field %d\n", 2050 __func__, app->id, nbits); 2051 ret = -EOVERFLOW; 2052 } else { 2053 set_bit(app->id, bitmap); 2054 } 2055 } 2056 } 2057 mutex_unlock(&of_mutex); 2058 2059 return ret; 2060 } 2061 EXPORT_SYMBOL_GPL(of_alias_get_alias_list); 2062 2063 /** 2064 * of_alias_get_highest_id - Get highest alias id for the given stem 2065 * @stem: Alias stem to be examined 2066 * 2067 * The function travels the lookup table to get the highest alias id for the 2068 * given alias stem. It returns the alias id if found. 2069 */ 2070 int of_alias_get_highest_id(const char *stem) 2071 { 2072 struct alias_prop *app; 2073 int id = -ENODEV; 2074 2075 mutex_lock(&of_mutex); 2076 list_for_each_entry(app, &aliases_lookup, link) { 2077 if (strcmp(app->stem, stem) != 0) 2078 continue; 2079 2080 if (app->id > id) 2081 id = app->id; 2082 } 2083 mutex_unlock(&of_mutex); 2084 2085 return id; 2086 } 2087 EXPORT_SYMBOL_GPL(of_alias_get_highest_id); 2088 2089 /** 2090 * of_console_check() - Test and setup console for DT setup 2091 * @dn - Pointer to device node 2092 * @name - Name to use for preferred console without index. ex. "ttyS" 2093 * @index - Index to use for preferred console. 2094 * 2095 * Check if the given device node matches the stdout-path property in the 2096 * /chosen node. If it does then register it as the preferred console and return 2097 * TRUE. Otherwise return FALSE. 2098 */ 2099 bool of_console_check(struct device_node *dn, char *name, int index) 2100 { 2101 if (!dn || dn != of_stdout || console_set_on_cmdline) 2102 return false; 2103 2104 /* 2105 * XXX: cast `options' to char pointer to suppress complication 2106 * warnings: printk, UART and console drivers expect char pointer. 2107 */ 2108 return !add_preferred_console(name, index, (char *)of_stdout_options); 2109 } 2110 EXPORT_SYMBOL_GPL(of_console_check); 2111 2112 /** 2113 * of_find_next_cache_node - Find a node's subsidiary cache 2114 * @np: node of type "cpu" or "cache" 2115 * 2116 * Returns a node pointer with refcount incremented, use 2117 * of_node_put() on it when done. Caller should hold a reference 2118 * to np. 2119 */ 2120 struct device_node *of_find_next_cache_node(const struct device_node *np) 2121 { 2122 struct device_node *child, *cache_node; 2123 2124 cache_node = of_parse_phandle(np, "l2-cache", 0); 2125 if (!cache_node) 2126 cache_node = of_parse_phandle(np, "next-level-cache", 0); 2127 2128 if (cache_node) 2129 return cache_node; 2130 2131 /* OF on pmac has nodes instead of properties named "l2-cache" 2132 * beneath CPU nodes. 2133 */ 2134 if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu")) 2135 for_each_child_of_node(np, child) 2136 if (of_node_is_type(child, "cache")) 2137 return child; 2138 2139 return NULL; 2140 } 2141 2142 /** 2143 * of_find_last_cache_level - Find the level at which the last cache is 2144 * present for the given logical cpu 2145 * 2146 * @cpu: cpu number(logical index) for which the last cache level is needed 2147 * 2148 * Returns the the level at which the last cache is present. It is exactly 2149 * same as the total number of cache levels for the given logical cpu. 2150 */ 2151 int of_find_last_cache_level(unsigned int cpu) 2152 { 2153 u32 cache_level = 0; 2154 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu); 2155 2156 while (np) { 2157 prev = np; 2158 of_node_put(np); 2159 np = of_find_next_cache_node(np); 2160 } 2161 2162 of_property_read_u32(prev, "cache-level", &cache_level); 2163 2164 return cache_level; 2165 } 2166 2167 /** 2168 * of_map_rid - Translate a requester ID through a downstream mapping. 2169 * @np: root complex device node. 2170 * @rid: device requester ID to map. 2171 * @map_name: property name of the map to use. 2172 * @map_mask_name: optional property name of the mask to use. 2173 * @target: optional pointer to a target device node. 2174 * @id_out: optional pointer to receive the translated ID. 2175 * 2176 * Given a device requester ID, look up the appropriate implementation-defined 2177 * platform ID and/or the target device which receives transactions on that 2178 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or 2179 * @id_out may be NULL if only the other is required. If @target points to 2180 * a non-NULL device node pointer, only entries targeting that node will be 2181 * matched; if it points to a NULL value, it will receive the device node of 2182 * the first matching target phandle, with a reference held. 2183 * 2184 * Return: 0 on success or a standard error code on failure. 2185 */ 2186 int of_map_rid(struct device_node *np, u32 rid, 2187 const char *map_name, const char *map_mask_name, 2188 struct device_node **target, u32 *id_out) 2189 { 2190 u32 map_mask, masked_rid; 2191 int map_len; 2192 const __be32 *map = NULL; 2193 2194 if (!np || !map_name || (!target && !id_out)) 2195 return -EINVAL; 2196 2197 map = of_get_property(np, map_name, &map_len); 2198 if (!map) { 2199 if (target) 2200 return -ENODEV; 2201 /* Otherwise, no map implies no translation */ 2202 *id_out = rid; 2203 return 0; 2204 } 2205 2206 if (!map_len || map_len % (4 * sizeof(*map))) { 2207 pr_err("%pOF: Error: Bad %s length: %d\n", np, 2208 map_name, map_len); 2209 return -EINVAL; 2210 } 2211 2212 /* The default is to select all bits. */ 2213 map_mask = 0xffffffff; 2214 2215 /* 2216 * Can be overridden by "{iommu,msi}-map-mask" property. 2217 * If of_property_read_u32() fails, the default is used. 2218 */ 2219 if (map_mask_name) 2220 of_property_read_u32(np, map_mask_name, &map_mask); 2221 2222 masked_rid = map_mask & rid; 2223 for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) { 2224 struct device_node *phandle_node; 2225 u32 rid_base = be32_to_cpup(map + 0); 2226 u32 phandle = be32_to_cpup(map + 1); 2227 u32 out_base = be32_to_cpup(map + 2); 2228 u32 rid_len = be32_to_cpup(map + 3); 2229 2230 if (rid_base & ~map_mask) { 2231 pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores rid-base (0x%x)\n", 2232 np, map_name, map_name, 2233 map_mask, rid_base); 2234 return -EFAULT; 2235 } 2236 2237 if (masked_rid < rid_base || masked_rid >= rid_base + rid_len) 2238 continue; 2239 2240 phandle_node = of_find_node_by_phandle(phandle); 2241 if (!phandle_node) 2242 return -ENODEV; 2243 2244 if (target) { 2245 if (*target) 2246 of_node_put(phandle_node); 2247 else 2248 *target = phandle_node; 2249 2250 if (*target != phandle_node) 2251 continue; 2252 } 2253 2254 if (id_out) 2255 *id_out = masked_rid - rid_base + out_base; 2256 2257 pr_debug("%pOF: %s, using mask %08x, rid-base: %08x, out-base: %08x, length: %08x, rid: %08x -> %08x\n", 2258 np, map_name, map_mask, rid_base, out_base, 2259 rid_len, rid, masked_rid - rid_base + out_base); 2260 return 0; 2261 } 2262 2263 pr_info("%pOF: no %s translation for rid 0x%x on %pOF\n", np, map_name, 2264 rid, target && *target ? *target : NULL); 2265 2266 /* Bypasses translation */ 2267 if (id_out) 2268 *id_out = rid; 2269 return 0; 2270 } 2271 EXPORT_SYMBOL_GPL(of_map_rid); 2272