xref: /linux/drivers/of/base.c (revision c5951e7c8ee5cb04b8b41c32bf567b90117a2124)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Procedures for creating, accessing and interpreting the device tree.
4  *
5  * Paul Mackerras	August 1996.
6  * Copyright (C) 1996-2005 Paul Mackerras.
7  *
8  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9  *    {engebret|bergner}@us.ibm.com
10  *
11  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12  *
13  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
14  *  Grant Likely.
15  */
16 
17 #define pr_fmt(fmt)	"OF: " fmt
18 
19 #include <linux/bitmap.h>
20 #include <linux/console.h>
21 #include <linux/ctype.h>
22 #include <linux/cpu.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/of_graph.h>
27 #include <linux/spinlock.h>
28 #include <linux/slab.h>
29 #include <linux/string.h>
30 #include <linux/proc_fs.h>
31 
32 #include "of_private.h"
33 
34 LIST_HEAD(aliases_lookup);
35 
36 struct device_node *of_root;
37 EXPORT_SYMBOL(of_root);
38 struct device_node *of_chosen;
39 struct device_node *of_aliases;
40 struct device_node *of_stdout;
41 static const char *of_stdout_options;
42 
43 struct kset *of_kset;
44 
45 /*
46  * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
47  * This mutex must be held whenever modifications are being made to the
48  * device tree. The of_{attach,detach}_node() and
49  * of_{add,remove,update}_property() helpers make sure this happens.
50  */
51 DEFINE_MUTEX(of_mutex);
52 
53 /* use when traversing tree through the child, sibling,
54  * or parent members of struct device_node.
55  */
56 DEFINE_RAW_SPINLOCK(devtree_lock);
57 
58 bool of_node_name_eq(const struct device_node *np, const char *name)
59 {
60 	const char *node_name;
61 	size_t len;
62 
63 	if (!np)
64 		return false;
65 
66 	node_name = kbasename(np->full_name);
67 	len = strchrnul(node_name, '@') - node_name;
68 
69 	return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
70 }
71 EXPORT_SYMBOL(of_node_name_eq);
72 
73 bool of_node_name_prefix(const struct device_node *np, const char *prefix)
74 {
75 	if (!np)
76 		return false;
77 
78 	return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
79 }
80 EXPORT_SYMBOL(of_node_name_prefix);
81 
82 static bool __of_node_is_type(const struct device_node *np, const char *type)
83 {
84 	const char *match = __of_get_property(np, "device_type", NULL);
85 
86 	return np && match && type && !strcmp(match, type);
87 }
88 
89 int of_bus_n_addr_cells(struct device_node *np)
90 {
91 	u32 cells;
92 
93 	for (; np; np = np->parent)
94 		if (!of_property_read_u32(np, "#address-cells", &cells))
95 			return cells;
96 
97 	/* No #address-cells property for the root node */
98 	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
99 }
100 
101 int of_n_addr_cells(struct device_node *np)
102 {
103 	if (np->parent)
104 		np = np->parent;
105 
106 	return of_bus_n_addr_cells(np);
107 }
108 EXPORT_SYMBOL(of_n_addr_cells);
109 
110 int of_bus_n_size_cells(struct device_node *np)
111 {
112 	u32 cells;
113 
114 	for (; np; np = np->parent)
115 		if (!of_property_read_u32(np, "#size-cells", &cells))
116 			return cells;
117 
118 	/* No #size-cells property for the root node */
119 	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
120 }
121 
122 int of_n_size_cells(struct device_node *np)
123 {
124 	if (np->parent)
125 		np = np->parent;
126 
127 	return of_bus_n_size_cells(np);
128 }
129 EXPORT_SYMBOL(of_n_size_cells);
130 
131 #ifdef CONFIG_NUMA
132 int __weak of_node_to_nid(struct device_node *np)
133 {
134 	return NUMA_NO_NODE;
135 }
136 #endif
137 
138 #define OF_PHANDLE_CACHE_BITS	7
139 #define OF_PHANDLE_CACHE_SZ	BIT(OF_PHANDLE_CACHE_BITS)
140 
141 static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ];
142 
143 static u32 of_phandle_cache_hash(phandle handle)
144 {
145 	return hash_32(handle, OF_PHANDLE_CACHE_BITS);
146 }
147 
148 /*
149  * Caller must hold devtree_lock.
150  */
151 void __of_phandle_cache_inv_entry(phandle handle)
152 {
153 	u32 handle_hash;
154 	struct device_node *np;
155 
156 	if (!handle)
157 		return;
158 
159 	handle_hash = of_phandle_cache_hash(handle);
160 
161 	np = phandle_cache[handle_hash];
162 	if (np && handle == np->phandle)
163 		phandle_cache[handle_hash] = NULL;
164 }
165 
166 void __init of_core_init(void)
167 {
168 	struct device_node *np;
169 
170 
171 	/* Create the kset, and register existing nodes */
172 	mutex_lock(&of_mutex);
173 	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
174 	if (!of_kset) {
175 		mutex_unlock(&of_mutex);
176 		pr_err("failed to register existing nodes\n");
177 		return;
178 	}
179 	for_each_of_allnodes(np) {
180 		__of_attach_node_sysfs(np);
181 		if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)])
182 			phandle_cache[of_phandle_cache_hash(np->phandle)] = np;
183 	}
184 	mutex_unlock(&of_mutex);
185 
186 	/* Symlink in /proc as required by userspace ABI */
187 	if (of_root)
188 		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
189 }
190 
191 static struct property *__of_find_property(const struct device_node *np,
192 					   const char *name, int *lenp)
193 {
194 	struct property *pp;
195 
196 	if (!np)
197 		return NULL;
198 
199 	for (pp = np->properties; pp; pp = pp->next) {
200 		if (of_prop_cmp(pp->name, name) == 0) {
201 			if (lenp)
202 				*lenp = pp->length;
203 			break;
204 		}
205 	}
206 
207 	return pp;
208 }
209 
210 struct property *of_find_property(const struct device_node *np,
211 				  const char *name,
212 				  int *lenp)
213 {
214 	struct property *pp;
215 	unsigned long flags;
216 
217 	raw_spin_lock_irqsave(&devtree_lock, flags);
218 	pp = __of_find_property(np, name, lenp);
219 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
220 
221 	return pp;
222 }
223 EXPORT_SYMBOL(of_find_property);
224 
225 struct device_node *__of_find_all_nodes(struct device_node *prev)
226 {
227 	struct device_node *np;
228 	if (!prev) {
229 		np = of_root;
230 	} else if (prev->child) {
231 		np = prev->child;
232 	} else {
233 		/* Walk back up looking for a sibling, or the end of the structure */
234 		np = prev;
235 		while (np->parent && !np->sibling)
236 			np = np->parent;
237 		np = np->sibling; /* Might be null at the end of the tree */
238 	}
239 	return np;
240 }
241 
242 /**
243  * of_find_all_nodes - Get next node in global list
244  * @prev:	Previous node or NULL to start iteration
245  *		of_node_put() will be called on it
246  *
247  * Returns a node pointer with refcount incremented, use
248  * of_node_put() on it when done.
249  */
250 struct device_node *of_find_all_nodes(struct device_node *prev)
251 {
252 	struct device_node *np;
253 	unsigned long flags;
254 
255 	raw_spin_lock_irqsave(&devtree_lock, flags);
256 	np = __of_find_all_nodes(prev);
257 	of_node_get(np);
258 	of_node_put(prev);
259 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
260 	return np;
261 }
262 EXPORT_SYMBOL(of_find_all_nodes);
263 
264 /*
265  * Find a property with a given name for a given node
266  * and return the value.
267  */
268 const void *__of_get_property(const struct device_node *np,
269 			      const char *name, int *lenp)
270 {
271 	struct property *pp = __of_find_property(np, name, lenp);
272 
273 	return pp ? pp->value : NULL;
274 }
275 
276 /*
277  * Find a property with a given name for a given node
278  * and return the value.
279  */
280 const void *of_get_property(const struct device_node *np, const char *name,
281 			    int *lenp)
282 {
283 	struct property *pp = of_find_property(np, name, lenp);
284 
285 	return pp ? pp->value : NULL;
286 }
287 EXPORT_SYMBOL(of_get_property);
288 
289 /*
290  * arch_match_cpu_phys_id - Match the given logical CPU and physical id
291  *
292  * @cpu: logical cpu index of a core/thread
293  * @phys_id: physical identifier of a core/thread
294  *
295  * CPU logical to physical index mapping is architecture specific.
296  * However this __weak function provides a default match of physical
297  * id to logical cpu index. phys_id provided here is usually values read
298  * from the device tree which must match the hardware internal registers.
299  *
300  * Returns true if the physical identifier and the logical cpu index
301  * correspond to the same core/thread, false otherwise.
302  */
303 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
304 {
305 	return (u32)phys_id == cpu;
306 }
307 
308 /**
309  * Checks if the given "prop_name" property holds the physical id of the
310  * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
311  * NULL, local thread number within the core is returned in it.
312  */
313 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
314 			const char *prop_name, int cpu, unsigned int *thread)
315 {
316 	const __be32 *cell;
317 	int ac, prop_len, tid;
318 	u64 hwid;
319 
320 	ac = of_n_addr_cells(cpun);
321 	cell = of_get_property(cpun, prop_name, &prop_len);
322 	if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0))
323 		return true;
324 	if (!cell || !ac)
325 		return false;
326 	prop_len /= sizeof(*cell) * ac;
327 	for (tid = 0; tid < prop_len; tid++) {
328 		hwid = of_read_number(cell, ac);
329 		if (arch_match_cpu_phys_id(cpu, hwid)) {
330 			if (thread)
331 				*thread = tid;
332 			return true;
333 		}
334 		cell += ac;
335 	}
336 	return false;
337 }
338 
339 /*
340  * arch_find_n_match_cpu_physical_id - See if the given device node is
341  * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
342  * else false.  If 'thread' is non-NULL, the local thread number within the
343  * core is returned in it.
344  */
345 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
346 					      int cpu, unsigned int *thread)
347 {
348 	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
349 	 * for thread ids on PowerPC. If it doesn't exist fallback to
350 	 * standard "reg" property.
351 	 */
352 	if (IS_ENABLED(CONFIG_PPC) &&
353 	    __of_find_n_match_cpu_property(cpun,
354 					   "ibm,ppc-interrupt-server#s",
355 					   cpu, thread))
356 		return true;
357 
358 	return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
359 }
360 
361 /**
362  * of_get_cpu_node - Get device node associated with the given logical CPU
363  *
364  * @cpu: CPU number(logical index) for which device node is required
365  * @thread: if not NULL, local thread number within the physical core is
366  *          returned
367  *
368  * The main purpose of this function is to retrieve the device node for the
369  * given logical CPU index. It should be used to initialize the of_node in
370  * cpu device. Once of_node in cpu device is populated, all the further
371  * references can use that instead.
372  *
373  * CPU logical to physical index mapping is architecture specific and is built
374  * before booting secondary cores. This function uses arch_match_cpu_phys_id
375  * which can be overridden by architecture specific implementation.
376  *
377  * Returns a node pointer for the logical cpu with refcount incremented, use
378  * of_node_put() on it when done. Returns NULL if not found.
379  */
380 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
381 {
382 	struct device_node *cpun;
383 
384 	for_each_of_cpu_node(cpun) {
385 		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
386 			return cpun;
387 	}
388 	return NULL;
389 }
390 EXPORT_SYMBOL(of_get_cpu_node);
391 
392 /**
393  * of_cpu_node_to_id: Get the logical CPU number for a given device_node
394  *
395  * @cpu_node: Pointer to the device_node for CPU.
396  *
397  * Returns the logical CPU number of the given CPU device_node.
398  * Returns -ENODEV if the CPU is not found.
399  */
400 int of_cpu_node_to_id(struct device_node *cpu_node)
401 {
402 	int cpu;
403 	bool found = false;
404 	struct device_node *np;
405 
406 	for_each_possible_cpu(cpu) {
407 		np = of_cpu_device_node_get(cpu);
408 		found = (cpu_node == np);
409 		of_node_put(np);
410 		if (found)
411 			return cpu;
412 	}
413 
414 	return -ENODEV;
415 }
416 EXPORT_SYMBOL(of_cpu_node_to_id);
417 
418 /**
419  * __of_device_is_compatible() - Check if the node matches given constraints
420  * @device: pointer to node
421  * @compat: required compatible string, NULL or "" for any match
422  * @type: required device_type value, NULL or "" for any match
423  * @name: required node name, NULL or "" for any match
424  *
425  * Checks if the given @compat, @type and @name strings match the
426  * properties of the given @device. A constraints can be skipped by
427  * passing NULL or an empty string as the constraint.
428  *
429  * Returns 0 for no match, and a positive integer on match. The return
430  * value is a relative score with larger values indicating better
431  * matches. The score is weighted for the most specific compatible value
432  * to get the highest score. Matching type is next, followed by matching
433  * name. Practically speaking, this results in the following priority
434  * order for matches:
435  *
436  * 1. specific compatible && type && name
437  * 2. specific compatible && type
438  * 3. specific compatible && name
439  * 4. specific compatible
440  * 5. general compatible && type && name
441  * 6. general compatible && type
442  * 7. general compatible && name
443  * 8. general compatible
444  * 9. type && name
445  * 10. type
446  * 11. name
447  */
448 static int __of_device_is_compatible(const struct device_node *device,
449 				     const char *compat, const char *type, const char *name)
450 {
451 	struct property *prop;
452 	const char *cp;
453 	int index = 0, score = 0;
454 
455 	/* Compatible match has highest priority */
456 	if (compat && compat[0]) {
457 		prop = __of_find_property(device, "compatible", NULL);
458 		for (cp = of_prop_next_string(prop, NULL); cp;
459 		     cp = of_prop_next_string(prop, cp), index++) {
460 			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
461 				score = INT_MAX/2 - (index << 2);
462 				break;
463 			}
464 		}
465 		if (!score)
466 			return 0;
467 	}
468 
469 	/* Matching type is better than matching name */
470 	if (type && type[0]) {
471 		if (!__of_node_is_type(device, type))
472 			return 0;
473 		score += 2;
474 	}
475 
476 	/* Matching name is a bit better than not */
477 	if (name && name[0]) {
478 		if (!of_node_name_eq(device, name))
479 			return 0;
480 		score++;
481 	}
482 
483 	return score;
484 }
485 
486 /** Checks if the given "compat" string matches one of the strings in
487  * the device's "compatible" property
488  */
489 int of_device_is_compatible(const struct device_node *device,
490 		const char *compat)
491 {
492 	unsigned long flags;
493 	int res;
494 
495 	raw_spin_lock_irqsave(&devtree_lock, flags);
496 	res = __of_device_is_compatible(device, compat, NULL, NULL);
497 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
498 	return res;
499 }
500 EXPORT_SYMBOL(of_device_is_compatible);
501 
502 /** Checks if the device is compatible with any of the entries in
503  *  a NULL terminated array of strings. Returns the best match
504  *  score or 0.
505  */
506 int of_device_compatible_match(struct device_node *device,
507 			       const char *const *compat)
508 {
509 	unsigned int tmp, score = 0;
510 
511 	if (!compat)
512 		return 0;
513 
514 	while (*compat) {
515 		tmp = of_device_is_compatible(device, *compat);
516 		if (tmp > score)
517 			score = tmp;
518 		compat++;
519 	}
520 
521 	return score;
522 }
523 
524 /**
525  * of_machine_is_compatible - Test root of device tree for a given compatible value
526  * @compat: compatible string to look for in root node's compatible property.
527  *
528  * Returns a positive integer if the root node has the given value in its
529  * compatible property.
530  */
531 int of_machine_is_compatible(const char *compat)
532 {
533 	struct device_node *root;
534 	int rc = 0;
535 
536 	root = of_find_node_by_path("/");
537 	if (root) {
538 		rc = of_device_is_compatible(root, compat);
539 		of_node_put(root);
540 	}
541 	return rc;
542 }
543 EXPORT_SYMBOL(of_machine_is_compatible);
544 
545 /**
546  *  __of_device_is_available - check if a device is available for use
547  *
548  *  @device: Node to check for availability, with locks already held
549  *
550  *  Returns true if the status property is absent or set to "okay" or "ok",
551  *  false otherwise
552  */
553 static bool __of_device_is_available(const struct device_node *device)
554 {
555 	const char *status;
556 	int statlen;
557 
558 	if (!device)
559 		return false;
560 
561 	status = __of_get_property(device, "status", &statlen);
562 	if (status == NULL)
563 		return true;
564 
565 	if (statlen > 0) {
566 		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
567 			return true;
568 	}
569 
570 	return false;
571 }
572 
573 /**
574  *  of_device_is_available - check if a device is available for use
575  *
576  *  @device: Node to check for availability
577  *
578  *  Returns true if the status property is absent or set to "okay" or "ok",
579  *  false otherwise
580  */
581 bool of_device_is_available(const struct device_node *device)
582 {
583 	unsigned long flags;
584 	bool res;
585 
586 	raw_spin_lock_irqsave(&devtree_lock, flags);
587 	res = __of_device_is_available(device);
588 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
589 	return res;
590 
591 }
592 EXPORT_SYMBOL(of_device_is_available);
593 
594 /**
595  *  of_device_is_big_endian - check if a device has BE registers
596  *
597  *  @device: Node to check for endianness
598  *
599  *  Returns true if the device has a "big-endian" property, or if the kernel
600  *  was compiled for BE *and* the device has a "native-endian" property.
601  *  Returns false otherwise.
602  *
603  *  Callers would nominally use ioread32be/iowrite32be if
604  *  of_device_is_big_endian() == true, or readl/writel otherwise.
605  */
606 bool of_device_is_big_endian(const struct device_node *device)
607 {
608 	if (of_property_read_bool(device, "big-endian"))
609 		return true;
610 	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
611 	    of_property_read_bool(device, "native-endian"))
612 		return true;
613 	return false;
614 }
615 EXPORT_SYMBOL(of_device_is_big_endian);
616 
617 /**
618  *	of_get_parent - Get a node's parent if any
619  *	@node:	Node to get parent
620  *
621  *	Returns a node pointer with refcount incremented, use
622  *	of_node_put() on it when done.
623  */
624 struct device_node *of_get_parent(const struct device_node *node)
625 {
626 	struct device_node *np;
627 	unsigned long flags;
628 
629 	if (!node)
630 		return NULL;
631 
632 	raw_spin_lock_irqsave(&devtree_lock, flags);
633 	np = of_node_get(node->parent);
634 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
635 	return np;
636 }
637 EXPORT_SYMBOL(of_get_parent);
638 
639 /**
640  *	of_get_next_parent - Iterate to a node's parent
641  *	@node:	Node to get parent of
642  *
643  *	This is like of_get_parent() except that it drops the
644  *	refcount on the passed node, making it suitable for iterating
645  *	through a node's parents.
646  *
647  *	Returns a node pointer with refcount incremented, use
648  *	of_node_put() on it when done.
649  */
650 struct device_node *of_get_next_parent(struct device_node *node)
651 {
652 	struct device_node *parent;
653 	unsigned long flags;
654 
655 	if (!node)
656 		return NULL;
657 
658 	raw_spin_lock_irqsave(&devtree_lock, flags);
659 	parent = of_node_get(node->parent);
660 	of_node_put(node);
661 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
662 	return parent;
663 }
664 EXPORT_SYMBOL(of_get_next_parent);
665 
666 static struct device_node *__of_get_next_child(const struct device_node *node,
667 						struct device_node *prev)
668 {
669 	struct device_node *next;
670 
671 	if (!node)
672 		return NULL;
673 
674 	next = prev ? prev->sibling : node->child;
675 	for (; next; next = next->sibling)
676 		if (of_node_get(next))
677 			break;
678 	of_node_put(prev);
679 	return next;
680 }
681 #define __for_each_child_of_node(parent, child) \
682 	for (child = __of_get_next_child(parent, NULL); child != NULL; \
683 	     child = __of_get_next_child(parent, child))
684 
685 /**
686  *	of_get_next_child - Iterate a node childs
687  *	@node:	parent node
688  *	@prev:	previous child of the parent node, or NULL to get first
689  *
690  *	Returns a node pointer with refcount incremented, use of_node_put() on
691  *	it when done. Returns NULL when prev is the last child. Decrements the
692  *	refcount of prev.
693  */
694 struct device_node *of_get_next_child(const struct device_node *node,
695 	struct device_node *prev)
696 {
697 	struct device_node *next;
698 	unsigned long flags;
699 
700 	raw_spin_lock_irqsave(&devtree_lock, flags);
701 	next = __of_get_next_child(node, prev);
702 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
703 	return next;
704 }
705 EXPORT_SYMBOL(of_get_next_child);
706 
707 /**
708  *	of_get_next_available_child - Find the next available child node
709  *	@node:	parent node
710  *	@prev:	previous child of the parent node, or NULL to get first
711  *
712  *      This function is like of_get_next_child(), except that it
713  *      automatically skips any disabled nodes (i.e. status = "disabled").
714  */
715 struct device_node *of_get_next_available_child(const struct device_node *node,
716 	struct device_node *prev)
717 {
718 	struct device_node *next;
719 	unsigned long flags;
720 
721 	if (!node)
722 		return NULL;
723 
724 	raw_spin_lock_irqsave(&devtree_lock, flags);
725 	next = prev ? prev->sibling : node->child;
726 	for (; next; next = next->sibling) {
727 		if (!__of_device_is_available(next))
728 			continue;
729 		if (of_node_get(next))
730 			break;
731 	}
732 	of_node_put(prev);
733 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
734 	return next;
735 }
736 EXPORT_SYMBOL(of_get_next_available_child);
737 
738 /**
739  *	of_get_next_cpu_node - Iterate on cpu nodes
740  *	@prev:	previous child of the /cpus node, or NULL to get first
741  *
742  *	Returns a cpu node pointer with refcount incremented, use of_node_put()
743  *	on it when done. Returns NULL when prev is the last child. Decrements
744  *	the refcount of prev.
745  */
746 struct device_node *of_get_next_cpu_node(struct device_node *prev)
747 {
748 	struct device_node *next = NULL;
749 	unsigned long flags;
750 	struct device_node *node;
751 
752 	if (!prev)
753 		node = of_find_node_by_path("/cpus");
754 
755 	raw_spin_lock_irqsave(&devtree_lock, flags);
756 	if (prev)
757 		next = prev->sibling;
758 	else if (node) {
759 		next = node->child;
760 		of_node_put(node);
761 	}
762 	for (; next; next = next->sibling) {
763 		if (!(of_node_name_eq(next, "cpu") ||
764 		      __of_node_is_type(next, "cpu")))
765 			continue;
766 		if (of_node_get(next))
767 			break;
768 	}
769 	of_node_put(prev);
770 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
771 	return next;
772 }
773 EXPORT_SYMBOL(of_get_next_cpu_node);
774 
775 /**
776  * of_get_compatible_child - Find compatible child node
777  * @parent:	parent node
778  * @compatible:	compatible string
779  *
780  * Lookup child node whose compatible property contains the given compatible
781  * string.
782  *
783  * Returns a node pointer with refcount incremented, use of_node_put() on it
784  * when done; or NULL if not found.
785  */
786 struct device_node *of_get_compatible_child(const struct device_node *parent,
787 				const char *compatible)
788 {
789 	struct device_node *child;
790 
791 	for_each_child_of_node(parent, child) {
792 		if (of_device_is_compatible(child, compatible))
793 			break;
794 	}
795 
796 	return child;
797 }
798 EXPORT_SYMBOL(of_get_compatible_child);
799 
800 /**
801  *	of_get_child_by_name - Find the child node by name for a given parent
802  *	@node:	parent node
803  *	@name:	child name to look for.
804  *
805  *      This function looks for child node for given matching name
806  *
807  *	Returns a node pointer if found, with refcount incremented, use
808  *	of_node_put() on it when done.
809  *	Returns NULL if node is not found.
810  */
811 struct device_node *of_get_child_by_name(const struct device_node *node,
812 				const char *name)
813 {
814 	struct device_node *child;
815 
816 	for_each_child_of_node(node, child)
817 		if (of_node_name_eq(child, name))
818 			break;
819 	return child;
820 }
821 EXPORT_SYMBOL(of_get_child_by_name);
822 
823 struct device_node *__of_find_node_by_path(struct device_node *parent,
824 						const char *path)
825 {
826 	struct device_node *child;
827 	int len;
828 
829 	len = strcspn(path, "/:");
830 	if (!len)
831 		return NULL;
832 
833 	__for_each_child_of_node(parent, child) {
834 		const char *name = kbasename(child->full_name);
835 		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
836 			return child;
837 	}
838 	return NULL;
839 }
840 
841 struct device_node *__of_find_node_by_full_path(struct device_node *node,
842 						const char *path)
843 {
844 	const char *separator = strchr(path, ':');
845 
846 	while (node && *path == '/') {
847 		struct device_node *tmp = node;
848 
849 		path++; /* Increment past '/' delimiter */
850 		node = __of_find_node_by_path(node, path);
851 		of_node_put(tmp);
852 		path = strchrnul(path, '/');
853 		if (separator && separator < path)
854 			break;
855 	}
856 	return node;
857 }
858 
859 /**
860  *	of_find_node_opts_by_path - Find a node matching a full OF path
861  *	@path: Either the full path to match, or if the path does not
862  *	       start with '/', the name of a property of the /aliases
863  *	       node (an alias).  In the case of an alias, the node
864  *	       matching the alias' value will be returned.
865  *	@opts: Address of a pointer into which to store the start of
866  *	       an options string appended to the end of the path with
867  *	       a ':' separator.
868  *
869  *	Valid paths:
870  *		/foo/bar	Full path
871  *		foo		Valid alias
872  *		foo/bar		Valid alias + relative path
873  *
874  *	Returns a node pointer with refcount incremented, use
875  *	of_node_put() on it when done.
876  */
877 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
878 {
879 	struct device_node *np = NULL;
880 	struct property *pp;
881 	unsigned long flags;
882 	const char *separator = strchr(path, ':');
883 
884 	if (opts)
885 		*opts = separator ? separator + 1 : NULL;
886 
887 	if (strcmp(path, "/") == 0)
888 		return of_node_get(of_root);
889 
890 	/* The path could begin with an alias */
891 	if (*path != '/') {
892 		int len;
893 		const char *p = separator;
894 
895 		if (!p)
896 			p = strchrnul(path, '/');
897 		len = p - path;
898 
899 		/* of_aliases must not be NULL */
900 		if (!of_aliases)
901 			return NULL;
902 
903 		for_each_property_of_node(of_aliases, pp) {
904 			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
905 				np = of_find_node_by_path(pp->value);
906 				break;
907 			}
908 		}
909 		if (!np)
910 			return NULL;
911 		path = p;
912 	}
913 
914 	/* Step down the tree matching path components */
915 	raw_spin_lock_irqsave(&devtree_lock, flags);
916 	if (!np)
917 		np = of_node_get(of_root);
918 	np = __of_find_node_by_full_path(np, path);
919 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
920 	return np;
921 }
922 EXPORT_SYMBOL(of_find_node_opts_by_path);
923 
924 /**
925  *	of_find_node_by_name - Find a node by its "name" property
926  *	@from:	The node to start searching from or NULL; the node
927  *		you pass will not be searched, only the next one
928  *		will. Typically, you pass what the previous call
929  *		returned. of_node_put() will be called on @from.
930  *	@name:	The name string to match against
931  *
932  *	Returns a node pointer with refcount incremented, use
933  *	of_node_put() on it when done.
934  */
935 struct device_node *of_find_node_by_name(struct device_node *from,
936 	const char *name)
937 {
938 	struct device_node *np;
939 	unsigned long flags;
940 
941 	raw_spin_lock_irqsave(&devtree_lock, flags);
942 	for_each_of_allnodes_from(from, np)
943 		if (of_node_name_eq(np, name) && of_node_get(np))
944 			break;
945 	of_node_put(from);
946 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
947 	return np;
948 }
949 EXPORT_SYMBOL(of_find_node_by_name);
950 
951 /**
952  *	of_find_node_by_type - Find a node by its "device_type" property
953  *	@from:	The node to start searching from, or NULL to start searching
954  *		the entire device tree. The node you pass will not be
955  *		searched, only the next one will; typically, you pass
956  *		what the previous call returned. of_node_put() will be
957  *		called on from for you.
958  *	@type:	The type string to match against
959  *
960  *	Returns a node pointer with refcount incremented, use
961  *	of_node_put() on it when done.
962  */
963 struct device_node *of_find_node_by_type(struct device_node *from,
964 	const char *type)
965 {
966 	struct device_node *np;
967 	unsigned long flags;
968 
969 	raw_spin_lock_irqsave(&devtree_lock, flags);
970 	for_each_of_allnodes_from(from, np)
971 		if (__of_node_is_type(np, type) && of_node_get(np))
972 			break;
973 	of_node_put(from);
974 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
975 	return np;
976 }
977 EXPORT_SYMBOL(of_find_node_by_type);
978 
979 /**
980  *	of_find_compatible_node - Find a node based on type and one of the
981  *                                tokens in its "compatible" property
982  *	@from:		The node to start searching from or NULL, the node
983  *			you pass will not be searched, only the next one
984  *			will; typically, you pass what the previous call
985  *			returned. of_node_put() will be called on it
986  *	@type:		The type string to match "device_type" or NULL to ignore
987  *	@compatible:	The string to match to one of the tokens in the device
988  *			"compatible" list.
989  *
990  *	Returns a node pointer with refcount incremented, use
991  *	of_node_put() on it when done.
992  */
993 struct device_node *of_find_compatible_node(struct device_node *from,
994 	const char *type, const char *compatible)
995 {
996 	struct device_node *np;
997 	unsigned long flags;
998 
999 	raw_spin_lock_irqsave(&devtree_lock, flags);
1000 	for_each_of_allnodes_from(from, np)
1001 		if (__of_device_is_compatible(np, compatible, type, NULL) &&
1002 		    of_node_get(np))
1003 			break;
1004 	of_node_put(from);
1005 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1006 	return np;
1007 }
1008 EXPORT_SYMBOL(of_find_compatible_node);
1009 
1010 /**
1011  *	of_find_node_with_property - Find a node which has a property with
1012  *                                   the given name.
1013  *	@from:		The node to start searching from or NULL, the node
1014  *			you pass will not be searched, only the next one
1015  *			will; typically, you pass what the previous call
1016  *			returned. of_node_put() will be called on it
1017  *	@prop_name:	The name of the property to look for.
1018  *
1019  *	Returns a node pointer with refcount incremented, use
1020  *	of_node_put() on it when done.
1021  */
1022 struct device_node *of_find_node_with_property(struct device_node *from,
1023 	const char *prop_name)
1024 {
1025 	struct device_node *np;
1026 	struct property *pp;
1027 	unsigned long flags;
1028 
1029 	raw_spin_lock_irqsave(&devtree_lock, flags);
1030 	for_each_of_allnodes_from(from, np) {
1031 		for (pp = np->properties; pp; pp = pp->next) {
1032 			if (of_prop_cmp(pp->name, prop_name) == 0) {
1033 				of_node_get(np);
1034 				goto out;
1035 			}
1036 		}
1037 	}
1038 out:
1039 	of_node_put(from);
1040 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1041 	return np;
1042 }
1043 EXPORT_SYMBOL(of_find_node_with_property);
1044 
1045 static
1046 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
1047 					   const struct device_node *node)
1048 {
1049 	const struct of_device_id *best_match = NULL;
1050 	int score, best_score = 0;
1051 
1052 	if (!matches)
1053 		return NULL;
1054 
1055 	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1056 		score = __of_device_is_compatible(node, matches->compatible,
1057 						  matches->type, matches->name);
1058 		if (score > best_score) {
1059 			best_match = matches;
1060 			best_score = score;
1061 		}
1062 	}
1063 
1064 	return best_match;
1065 }
1066 
1067 /**
1068  * of_match_node - Tell if a device_node has a matching of_match structure
1069  *	@matches:	array of of device match structures to search in
1070  *	@node:		the of device structure to match against
1071  *
1072  *	Low level utility function used by device matching.
1073  */
1074 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1075 					 const struct device_node *node)
1076 {
1077 	const struct of_device_id *match;
1078 	unsigned long flags;
1079 
1080 	raw_spin_lock_irqsave(&devtree_lock, flags);
1081 	match = __of_match_node(matches, node);
1082 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1083 	return match;
1084 }
1085 EXPORT_SYMBOL(of_match_node);
1086 
1087 /**
1088  *	of_find_matching_node_and_match - Find a node based on an of_device_id
1089  *					  match table.
1090  *	@from:		The node to start searching from or NULL, the node
1091  *			you pass will not be searched, only the next one
1092  *			will; typically, you pass what the previous call
1093  *			returned. of_node_put() will be called on it
1094  *	@matches:	array of of device match structures to search in
1095  *	@match		Updated to point at the matches entry which matched
1096  *
1097  *	Returns a node pointer with refcount incremented, use
1098  *	of_node_put() on it when done.
1099  */
1100 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1101 					const struct of_device_id *matches,
1102 					const struct of_device_id **match)
1103 {
1104 	struct device_node *np;
1105 	const struct of_device_id *m;
1106 	unsigned long flags;
1107 
1108 	if (match)
1109 		*match = NULL;
1110 
1111 	raw_spin_lock_irqsave(&devtree_lock, flags);
1112 	for_each_of_allnodes_from(from, np) {
1113 		m = __of_match_node(matches, np);
1114 		if (m && of_node_get(np)) {
1115 			if (match)
1116 				*match = m;
1117 			break;
1118 		}
1119 	}
1120 	of_node_put(from);
1121 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1122 	return np;
1123 }
1124 EXPORT_SYMBOL(of_find_matching_node_and_match);
1125 
1126 /**
1127  * of_modalias_node - Lookup appropriate modalias for a device node
1128  * @node:	pointer to a device tree node
1129  * @modalias:	Pointer to buffer that modalias value will be copied into
1130  * @len:	Length of modalias value
1131  *
1132  * Based on the value of the compatible property, this routine will attempt
1133  * to choose an appropriate modalias value for a particular device tree node.
1134  * It does this by stripping the manufacturer prefix (as delimited by a ',')
1135  * from the first entry in the compatible list property.
1136  *
1137  * This routine returns 0 on success, <0 on failure.
1138  */
1139 int of_modalias_node(struct device_node *node, char *modalias, int len)
1140 {
1141 	const char *compatible, *p;
1142 	int cplen;
1143 
1144 	compatible = of_get_property(node, "compatible", &cplen);
1145 	if (!compatible || strlen(compatible) > cplen)
1146 		return -ENODEV;
1147 	p = strchr(compatible, ',');
1148 	strlcpy(modalias, p ? p + 1 : compatible, len);
1149 	return 0;
1150 }
1151 EXPORT_SYMBOL_GPL(of_modalias_node);
1152 
1153 /**
1154  * of_find_node_by_phandle - Find a node given a phandle
1155  * @handle:	phandle of the node to find
1156  *
1157  * Returns a node pointer with refcount incremented, use
1158  * of_node_put() on it when done.
1159  */
1160 struct device_node *of_find_node_by_phandle(phandle handle)
1161 {
1162 	struct device_node *np = NULL;
1163 	unsigned long flags;
1164 	u32 handle_hash;
1165 
1166 	if (!handle)
1167 		return NULL;
1168 
1169 	handle_hash = of_phandle_cache_hash(handle);
1170 
1171 	raw_spin_lock_irqsave(&devtree_lock, flags);
1172 
1173 	if (phandle_cache[handle_hash] &&
1174 	    handle == phandle_cache[handle_hash]->phandle)
1175 		np = phandle_cache[handle_hash];
1176 
1177 	if (!np) {
1178 		for_each_of_allnodes(np)
1179 			if (np->phandle == handle &&
1180 			    !of_node_check_flag(np, OF_DETACHED)) {
1181 				phandle_cache[handle_hash] = np;
1182 				break;
1183 			}
1184 	}
1185 
1186 	of_node_get(np);
1187 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1188 	return np;
1189 }
1190 EXPORT_SYMBOL(of_find_node_by_phandle);
1191 
1192 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1193 {
1194 	int i;
1195 	printk("%s %pOF", msg, args->np);
1196 	for (i = 0; i < args->args_count; i++) {
1197 		const char delim = i ? ',' : ':';
1198 
1199 		pr_cont("%c%08x", delim, args->args[i]);
1200 	}
1201 	pr_cont("\n");
1202 }
1203 
1204 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1205 		const struct device_node *np,
1206 		const char *list_name,
1207 		const char *cells_name,
1208 		int cell_count)
1209 {
1210 	const __be32 *list;
1211 	int size;
1212 
1213 	memset(it, 0, sizeof(*it));
1214 
1215 	/*
1216 	 * one of cell_count or cells_name must be provided to determine the
1217 	 * argument length.
1218 	 */
1219 	if (cell_count < 0 && !cells_name)
1220 		return -EINVAL;
1221 
1222 	list = of_get_property(np, list_name, &size);
1223 	if (!list)
1224 		return -ENOENT;
1225 
1226 	it->cells_name = cells_name;
1227 	it->cell_count = cell_count;
1228 	it->parent = np;
1229 	it->list_end = list + size / sizeof(*list);
1230 	it->phandle_end = list;
1231 	it->cur = list;
1232 
1233 	return 0;
1234 }
1235 EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1236 
1237 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1238 {
1239 	uint32_t count = 0;
1240 
1241 	if (it->node) {
1242 		of_node_put(it->node);
1243 		it->node = NULL;
1244 	}
1245 
1246 	if (!it->cur || it->phandle_end >= it->list_end)
1247 		return -ENOENT;
1248 
1249 	it->cur = it->phandle_end;
1250 
1251 	/* If phandle is 0, then it is an empty entry with no arguments. */
1252 	it->phandle = be32_to_cpup(it->cur++);
1253 
1254 	if (it->phandle) {
1255 
1256 		/*
1257 		 * Find the provider node and parse the #*-cells property to
1258 		 * determine the argument length.
1259 		 */
1260 		it->node = of_find_node_by_phandle(it->phandle);
1261 
1262 		if (it->cells_name) {
1263 			if (!it->node) {
1264 				pr_err("%pOF: could not find phandle\n",
1265 				       it->parent);
1266 				goto err;
1267 			}
1268 
1269 			if (of_property_read_u32(it->node, it->cells_name,
1270 						 &count)) {
1271 				/*
1272 				 * If both cell_count and cells_name is given,
1273 				 * fall back to cell_count in absence
1274 				 * of the cells_name property
1275 				 */
1276 				if (it->cell_count >= 0) {
1277 					count = it->cell_count;
1278 				} else {
1279 					pr_err("%pOF: could not get %s for %pOF\n",
1280 					       it->parent,
1281 					       it->cells_name,
1282 					       it->node);
1283 					goto err;
1284 				}
1285 			}
1286 		} else {
1287 			count = it->cell_count;
1288 		}
1289 
1290 		/*
1291 		 * Make sure that the arguments actually fit in the remaining
1292 		 * property data length
1293 		 */
1294 		if (it->cur + count > it->list_end) {
1295 			pr_err("%pOF: %s = %d found %d\n",
1296 			       it->parent, it->cells_name,
1297 			       count, it->cell_count);
1298 			goto err;
1299 		}
1300 	}
1301 
1302 	it->phandle_end = it->cur + count;
1303 	it->cur_count = count;
1304 
1305 	return 0;
1306 
1307 err:
1308 	if (it->node) {
1309 		of_node_put(it->node);
1310 		it->node = NULL;
1311 	}
1312 
1313 	return -EINVAL;
1314 }
1315 EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1316 
1317 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1318 			     uint32_t *args,
1319 			     int size)
1320 {
1321 	int i, count;
1322 
1323 	count = it->cur_count;
1324 
1325 	if (WARN_ON(size < count))
1326 		count = size;
1327 
1328 	for (i = 0; i < count; i++)
1329 		args[i] = be32_to_cpup(it->cur++);
1330 
1331 	return count;
1332 }
1333 
1334 static int __of_parse_phandle_with_args(const struct device_node *np,
1335 					const char *list_name,
1336 					const char *cells_name,
1337 					int cell_count, int index,
1338 					struct of_phandle_args *out_args)
1339 {
1340 	struct of_phandle_iterator it;
1341 	int rc, cur_index = 0;
1342 
1343 	/* Loop over the phandles until all the requested entry is found */
1344 	of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1345 		/*
1346 		 * All of the error cases bail out of the loop, so at
1347 		 * this point, the parsing is successful. If the requested
1348 		 * index matches, then fill the out_args structure and return,
1349 		 * or return -ENOENT for an empty entry.
1350 		 */
1351 		rc = -ENOENT;
1352 		if (cur_index == index) {
1353 			if (!it.phandle)
1354 				goto err;
1355 
1356 			if (out_args) {
1357 				int c;
1358 
1359 				c = of_phandle_iterator_args(&it,
1360 							     out_args->args,
1361 							     MAX_PHANDLE_ARGS);
1362 				out_args->np = it.node;
1363 				out_args->args_count = c;
1364 			} else {
1365 				of_node_put(it.node);
1366 			}
1367 
1368 			/* Found it! return success */
1369 			return 0;
1370 		}
1371 
1372 		cur_index++;
1373 	}
1374 
1375 	/*
1376 	 * Unlock node before returning result; will be one of:
1377 	 * -ENOENT : index is for empty phandle
1378 	 * -EINVAL : parsing error on data
1379 	 */
1380 
1381  err:
1382 	of_node_put(it.node);
1383 	return rc;
1384 }
1385 
1386 /**
1387  * of_parse_phandle - Resolve a phandle property to a device_node pointer
1388  * @np: Pointer to device node holding phandle property
1389  * @phandle_name: Name of property holding a phandle value
1390  * @index: For properties holding a table of phandles, this is the index into
1391  *         the table
1392  *
1393  * Returns the device_node pointer with refcount incremented.  Use
1394  * of_node_put() on it when done.
1395  */
1396 struct device_node *of_parse_phandle(const struct device_node *np,
1397 				     const char *phandle_name, int index)
1398 {
1399 	struct of_phandle_args args;
1400 
1401 	if (index < 0)
1402 		return NULL;
1403 
1404 	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1405 					 index, &args))
1406 		return NULL;
1407 
1408 	return args.np;
1409 }
1410 EXPORT_SYMBOL(of_parse_phandle);
1411 
1412 /**
1413  * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1414  * @np:		pointer to a device tree node containing a list
1415  * @list_name:	property name that contains a list
1416  * @cells_name:	property name that specifies phandles' arguments count
1417  * @index:	index of a phandle to parse out
1418  * @out_args:	optional pointer to output arguments structure (will be filled)
1419  *
1420  * This function is useful to parse lists of phandles and their arguments.
1421  * Returns 0 on success and fills out_args, on error returns appropriate
1422  * errno value.
1423  *
1424  * Caller is responsible to call of_node_put() on the returned out_args->np
1425  * pointer.
1426  *
1427  * Example:
1428  *
1429  * phandle1: node1 {
1430  *	#list-cells = <2>;
1431  * }
1432  *
1433  * phandle2: node2 {
1434  *	#list-cells = <1>;
1435  * }
1436  *
1437  * node3 {
1438  *	list = <&phandle1 1 2 &phandle2 3>;
1439  * }
1440  *
1441  * To get a device_node of the `node2' node you may call this:
1442  * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1443  */
1444 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1445 				const char *cells_name, int index,
1446 				struct of_phandle_args *out_args)
1447 {
1448 	int cell_count = -1;
1449 
1450 	if (index < 0)
1451 		return -EINVAL;
1452 
1453 	/* If cells_name is NULL we assume a cell count of 0 */
1454 	if (!cells_name)
1455 		cell_count = 0;
1456 
1457 	return __of_parse_phandle_with_args(np, list_name, cells_name,
1458 					    cell_count, index, out_args);
1459 }
1460 EXPORT_SYMBOL(of_parse_phandle_with_args);
1461 
1462 /**
1463  * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1464  * @np:		pointer to a device tree node containing a list
1465  * @list_name:	property name that contains a list
1466  * @stem_name:	stem of property names that specify phandles' arguments count
1467  * @index:	index of a phandle to parse out
1468  * @out_args:	optional pointer to output arguments structure (will be filled)
1469  *
1470  * This function is useful to parse lists of phandles and their arguments.
1471  * Returns 0 on success and fills out_args, on error returns appropriate errno
1472  * value. The difference between this function and of_parse_phandle_with_args()
1473  * is that this API remaps a phandle if the node the phandle points to has
1474  * a <@stem_name>-map property.
1475  *
1476  * Caller is responsible to call of_node_put() on the returned out_args->np
1477  * pointer.
1478  *
1479  * Example:
1480  *
1481  * phandle1: node1 {
1482  *	#list-cells = <2>;
1483  * }
1484  *
1485  * phandle2: node2 {
1486  *	#list-cells = <1>;
1487  * }
1488  *
1489  * phandle3: node3 {
1490  * 	#list-cells = <1>;
1491  * 	list-map = <0 &phandle2 3>,
1492  * 		   <1 &phandle2 2>,
1493  * 		   <2 &phandle1 5 1>;
1494  *	list-map-mask = <0x3>;
1495  * };
1496  *
1497  * node4 {
1498  *	list = <&phandle1 1 2 &phandle3 0>;
1499  * }
1500  *
1501  * To get a device_node of the `node2' node you may call this:
1502  * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1503  */
1504 int of_parse_phandle_with_args_map(const struct device_node *np,
1505 				   const char *list_name,
1506 				   const char *stem_name,
1507 				   int index, struct of_phandle_args *out_args)
1508 {
1509 	char *cells_name, *map_name = NULL, *mask_name = NULL;
1510 	char *pass_name = NULL;
1511 	struct device_node *cur, *new = NULL;
1512 	const __be32 *map, *mask, *pass;
1513 	static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
1514 	static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
1515 	__be32 initial_match_array[MAX_PHANDLE_ARGS];
1516 	const __be32 *match_array = initial_match_array;
1517 	int i, ret, map_len, match;
1518 	u32 list_size, new_size;
1519 
1520 	if (index < 0)
1521 		return -EINVAL;
1522 
1523 	cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1524 	if (!cells_name)
1525 		return -ENOMEM;
1526 
1527 	ret = -ENOMEM;
1528 	map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1529 	if (!map_name)
1530 		goto free;
1531 
1532 	mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1533 	if (!mask_name)
1534 		goto free;
1535 
1536 	pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1537 	if (!pass_name)
1538 		goto free;
1539 
1540 	ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index,
1541 					   out_args);
1542 	if (ret)
1543 		goto free;
1544 
1545 	/* Get the #<list>-cells property */
1546 	cur = out_args->np;
1547 	ret = of_property_read_u32(cur, cells_name, &list_size);
1548 	if (ret < 0)
1549 		goto put;
1550 
1551 	/* Precalculate the match array - this simplifies match loop */
1552 	for (i = 0; i < list_size; i++)
1553 		initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1554 
1555 	ret = -EINVAL;
1556 	while (cur) {
1557 		/* Get the <list>-map property */
1558 		map = of_get_property(cur, map_name, &map_len);
1559 		if (!map) {
1560 			ret = 0;
1561 			goto free;
1562 		}
1563 		map_len /= sizeof(u32);
1564 
1565 		/* Get the <list>-map-mask property (optional) */
1566 		mask = of_get_property(cur, mask_name, NULL);
1567 		if (!mask)
1568 			mask = dummy_mask;
1569 		/* Iterate through <list>-map property */
1570 		match = 0;
1571 		while (map_len > (list_size + 1) && !match) {
1572 			/* Compare specifiers */
1573 			match = 1;
1574 			for (i = 0; i < list_size; i++, map_len--)
1575 				match &= !((match_array[i] ^ *map++) & mask[i]);
1576 
1577 			of_node_put(new);
1578 			new = of_find_node_by_phandle(be32_to_cpup(map));
1579 			map++;
1580 			map_len--;
1581 
1582 			/* Check if not found */
1583 			if (!new)
1584 				goto put;
1585 
1586 			if (!of_device_is_available(new))
1587 				match = 0;
1588 
1589 			ret = of_property_read_u32(new, cells_name, &new_size);
1590 			if (ret)
1591 				goto put;
1592 
1593 			/* Check for malformed properties */
1594 			if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1595 				goto put;
1596 			if (map_len < new_size)
1597 				goto put;
1598 
1599 			/* Move forward by new node's #<list>-cells amount */
1600 			map += new_size;
1601 			map_len -= new_size;
1602 		}
1603 		if (!match)
1604 			goto put;
1605 
1606 		/* Get the <list>-map-pass-thru property (optional) */
1607 		pass = of_get_property(cur, pass_name, NULL);
1608 		if (!pass)
1609 			pass = dummy_pass;
1610 
1611 		/*
1612 		 * Successfully parsed a <list>-map translation; copy new
1613 		 * specifier into the out_args structure, keeping the
1614 		 * bits specified in <list>-map-pass-thru.
1615 		 */
1616 		match_array = map - new_size;
1617 		for (i = 0; i < new_size; i++) {
1618 			__be32 val = *(map - new_size + i);
1619 
1620 			if (i < list_size) {
1621 				val &= ~pass[i];
1622 				val |= cpu_to_be32(out_args->args[i]) & pass[i];
1623 			}
1624 
1625 			out_args->args[i] = be32_to_cpu(val);
1626 		}
1627 		out_args->args_count = list_size = new_size;
1628 		/* Iterate again with new provider */
1629 		out_args->np = new;
1630 		of_node_put(cur);
1631 		cur = new;
1632 	}
1633 put:
1634 	of_node_put(cur);
1635 	of_node_put(new);
1636 free:
1637 	kfree(mask_name);
1638 	kfree(map_name);
1639 	kfree(cells_name);
1640 	kfree(pass_name);
1641 
1642 	return ret;
1643 }
1644 EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1645 
1646 /**
1647  * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1648  * @np:		pointer to a device tree node containing a list
1649  * @list_name:	property name that contains a list
1650  * @cell_count: number of argument cells following the phandle
1651  * @index:	index of a phandle to parse out
1652  * @out_args:	optional pointer to output arguments structure (will be filled)
1653  *
1654  * This function is useful to parse lists of phandles and their arguments.
1655  * Returns 0 on success and fills out_args, on error returns appropriate
1656  * errno value.
1657  *
1658  * Caller is responsible to call of_node_put() on the returned out_args->np
1659  * pointer.
1660  *
1661  * Example:
1662  *
1663  * phandle1: node1 {
1664  * }
1665  *
1666  * phandle2: node2 {
1667  * }
1668  *
1669  * node3 {
1670  *	list = <&phandle1 0 2 &phandle2 2 3>;
1671  * }
1672  *
1673  * To get a device_node of the `node2' node you may call this:
1674  * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1675  */
1676 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1677 				const char *list_name, int cell_count,
1678 				int index, struct of_phandle_args *out_args)
1679 {
1680 	if (index < 0)
1681 		return -EINVAL;
1682 	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1683 					   index, out_args);
1684 }
1685 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1686 
1687 /**
1688  * of_count_phandle_with_args() - Find the number of phandles references in a property
1689  * @np:		pointer to a device tree node containing a list
1690  * @list_name:	property name that contains a list
1691  * @cells_name:	property name that specifies phandles' arguments count
1692  *
1693  * Returns the number of phandle + argument tuples within a property. It
1694  * is a typical pattern to encode a list of phandle and variable
1695  * arguments into a single property. The number of arguments is encoded
1696  * by a property in the phandle-target node. For example, a gpios
1697  * property would contain a list of GPIO specifies consisting of a
1698  * phandle and 1 or more arguments. The number of arguments are
1699  * determined by the #gpio-cells property in the node pointed to by the
1700  * phandle.
1701  */
1702 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1703 				const char *cells_name)
1704 {
1705 	struct of_phandle_iterator it;
1706 	int rc, cur_index = 0;
1707 
1708 	/*
1709 	 * If cells_name is NULL we assume a cell count of 0. This makes
1710 	 * counting the phandles trivial as each 32bit word in the list is a
1711 	 * phandle and no arguments are to consider. So we don't iterate through
1712 	 * the list but just use the length to determine the phandle count.
1713 	 */
1714 	if (!cells_name) {
1715 		const __be32 *list;
1716 		int size;
1717 
1718 		list = of_get_property(np, list_name, &size);
1719 		if (!list)
1720 			return -ENOENT;
1721 
1722 		return size / sizeof(*list);
1723 	}
1724 
1725 	rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1);
1726 	if (rc)
1727 		return rc;
1728 
1729 	while ((rc = of_phandle_iterator_next(&it)) == 0)
1730 		cur_index += 1;
1731 
1732 	if (rc != -ENOENT)
1733 		return rc;
1734 
1735 	return cur_index;
1736 }
1737 EXPORT_SYMBOL(of_count_phandle_with_args);
1738 
1739 /**
1740  * __of_add_property - Add a property to a node without lock operations
1741  */
1742 int __of_add_property(struct device_node *np, struct property *prop)
1743 {
1744 	struct property **next;
1745 
1746 	prop->next = NULL;
1747 	next = &np->properties;
1748 	while (*next) {
1749 		if (strcmp(prop->name, (*next)->name) == 0)
1750 			/* duplicate ! don't insert it */
1751 			return -EEXIST;
1752 
1753 		next = &(*next)->next;
1754 	}
1755 	*next = prop;
1756 
1757 	return 0;
1758 }
1759 
1760 /**
1761  * of_add_property - Add a property to a node
1762  */
1763 int of_add_property(struct device_node *np, struct property *prop)
1764 {
1765 	unsigned long flags;
1766 	int rc;
1767 
1768 	mutex_lock(&of_mutex);
1769 
1770 	raw_spin_lock_irqsave(&devtree_lock, flags);
1771 	rc = __of_add_property(np, prop);
1772 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1773 
1774 	if (!rc)
1775 		__of_add_property_sysfs(np, prop);
1776 
1777 	mutex_unlock(&of_mutex);
1778 
1779 	if (!rc)
1780 		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1781 
1782 	return rc;
1783 }
1784 
1785 int __of_remove_property(struct device_node *np, struct property *prop)
1786 {
1787 	struct property **next;
1788 
1789 	for (next = &np->properties; *next; next = &(*next)->next) {
1790 		if (*next == prop)
1791 			break;
1792 	}
1793 	if (*next == NULL)
1794 		return -ENODEV;
1795 
1796 	/* found the node */
1797 	*next = prop->next;
1798 	prop->next = np->deadprops;
1799 	np->deadprops = prop;
1800 
1801 	return 0;
1802 }
1803 
1804 /**
1805  * of_remove_property - Remove a property from a node.
1806  *
1807  * Note that we don't actually remove it, since we have given out
1808  * who-knows-how-many pointers to the data using get-property.
1809  * Instead we just move the property to the "dead properties"
1810  * list, so it won't be found any more.
1811  */
1812 int of_remove_property(struct device_node *np, struct property *prop)
1813 {
1814 	unsigned long flags;
1815 	int rc;
1816 
1817 	if (!prop)
1818 		return -ENODEV;
1819 
1820 	mutex_lock(&of_mutex);
1821 
1822 	raw_spin_lock_irqsave(&devtree_lock, flags);
1823 	rc = __of_remove_property(np, prop);
1824 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1825 
1826 	if (!rc)
1827 		__of_remove_property_sysfs(np, prop);
1828 
1829 	mutex_unlock(&of_mutex);
1830 
1831 	if (!rc)
1832 		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1833 
1834 	return rc;
1835 }
1836 
1837 int __of_update_property(struct device_node *np, struct property *newprop,
1838 		struct property **oldpropp)
1839 {
1840 	struct property **next, *oldprop;
1841 
1842 	for (next = &np->properties; *next; next = &(*next)->next) {
1843 		if (of_prop_cmp((*next)->name, newprop->name) == 0)
1844 			break;
1845 	}
1846 	*oldpropp = oldprop = *next;
1847 
1848 	if (oldprop) {
1849 		/* replace the node */
1850 		newprop->next = oldprop->next;
1851 		*next = newprop;
1852 		oldprop->next = np->deadprops;
1853 		np->deadprops = oldprop;
1854 	} else {
1855 		/* new node */
1856 		newprop->next = NULL;
1857 		*next = newprop;
1858 	}
1859 
1860 	return 0;
1861 }
1862 
1863 /*
1864  * of_update_property - Update a property in a node, if the property does
1865  * not exist, add it.
1866  *
1867  * Note that we don't actually remove it, since we have given out
1868  * who-knows-how-many pointers to the data using get-property.
1869  * Instead we just move the property to the "dead properties" list,
1870  * and add the new property to the property list
1871  */
1872 int of_update_property(struct device_node *np, struct property *newprop)
1873 {
1874 	struct property *oldprop;
1875 	unsigned long flags;
1876 	int rc;
1877 
1878 	if (!newprop->name)
1879 		return -EINVAL;
1880 
1881 	mutex_lock(&of_mutex);
1882 
1883 	raw_spin_lock_irqsave(&devtree_lock, flags);
1884 	rc = __of_update_property(np, newprop, &oldprop);
1885 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1886 
1887 	if (!rc)
1888 		__of_update_property_sysfs(np, newprop, oldprop);
1889 
1890 	mutex_unlock(&of_mutex);
1891 
1892 	if (!rc)
1893 		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1894 
1895 	return rc;
1896 }
1897 
1898 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1899 			 int id, const char *stem, int stem_len)
1900 {
1901 	ap->np = np;
1902 	ap->id = id;
1903 	strncpy(ap->stem, stem, stem_len);
1904 	ap->stem[stem_len] = 0;
1905 	list_add_tail(&ap->link, &aliases_lookup);
1906 	pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1907 		 ap->alias, ap->stem, ap->id, np);
1908 }
1909 
1910 /**
1911  * of_alias_scan - Scan all properties of the 'aliases' node
1912  *
1913  * The function scans all the properties of the 'aliases' node and populates
1914  * the global lookup table with the properties.  It returns the
1915  * number of alias properties found, or an error code in case of failure.
1916  *
1917  * @dt_alloc:	An allocator that provides a virtual address to memory
1918  *		for storing the resulting tree
1919  */
1920 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1921 {
1922 	struct property *pp;
1923 
1924 	of_aliases = of_find_node_by_path("/aliases");
1925 	of_chosen = of_find_node_by_path("/chosen");
1926 	if (of_chosen == NULL)
1927 		of_chosen = of_find_node_by_path("/chosen@0");
1928 
1929 	if (of_chosen) {
1930 		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1931 		const char *name = NULL;
1932 
1933 		if (of_property_read_string(of_chosen, "stdout-path", &name))
1934 			of_property_read_string(of_chosen, "linux,stdout-path",
1935 						&name);
1936 		if (IS_ENABLED(CONFIG_PPC) && !name)
1937 			of_property_read_string(of_aliases, "stdout", &name);
1938 		if (name)
1939 			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1940 	}
1941 
1942 	if (!of_aliases)
1943 		return;
1944 
1945 	for_each_property_of_node(of_aliases, pp) {
1946 		const char *start = pp->name;
1947 		const char *end = start + strlen(start);
1948 		struct device_node *np;
1949 		struct alias_prop *ap;
1950 		int id, len;
1951 
1952 		/* Skip those we do not want to proceed */
1953 		if (!strcmp(pp->name, "name") ||
1954 		    !strcmp(pp->name, "phandle") ||
1955 		    !strcmp(pp->name, "linux,phandle"))
1956 			continue;
1957 
1958 		np = of_find_node_by_path(pp->value);
1959 		if (!np)
1960 			continue;
1961 
1962 		/* walk the alias backwards to extract the id and work out
1963 		 * the 'stem' string */
1964 		while (isdigit(*(end-1)) && end > start)
1965 			end--;
1966 		len = end - start;
1967 
1968 		if (kstrtoint(end, 10, &id) < 0)
1969 			continue;
1970 
1971 		/* Allocate an alias_prop with enough space for the stem */
1972 		ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
1973 		if (!ap)
1974 			continue;
1975 		memset(ap, 0, sizeof(*ap) + len + 1);
1976 		ap->alias = start;
1977 		of_alias_add(ap, np, id, start, len);
1978 	}
1979 }
1980 
1981 /**
1982  * of_alias_get_id - Get alias id for the given device_node
1983  * @np:		Pointer to the given device_node
1984  * @stem:	Alias stem of the given device_node
1985  *
1986  * The function travels the lookup table to get the alias id for the given
1987  * device_node and alias stem.  It returns the alias id if found.
1988  */
1989 int of_alias_get_id(struct device_node *np, const char *stem)
1990 {
1991 	struct alias_prop *app;
1992 	int id = -ENODEV;
1993 
1994 	mutex_lock(&of_mutex);
1995 	list_for_each_entry(app, &aliases_lookup, link) {
1996 		if (strcmp(app->stem, stem) != 0)
1997 			continue;
1998 
1999 		if (np == app->np) {
2000 			id = app->id;
2001 			break;
2002 		}
2003 	}
2004 	mutex_unlock(&of_mutex);
2005 
2006 	return id;
2007 }
2008 EXPORT_SYMBOL_GPL(of_alias_get_id);
2009 
2010 /**
2011  * of_alias_get_alias_list - Get alias list for the given device driver
2012  * @matches:	Array of OF device match structures to search in
2013  * @stem:	Alias stem of the given device_node
2014  * @bitmap:	Bitmap field pointer
2015  * @nbits:	Maximum number of alias IDs which can be recorded in bitmap
2016  *
2017  * The function travels the lookup table to record alias ids for the given
2018  * device match structures and alias stem.
2019  *
2020  * Return:	0 or -ENOSYS when !CONFIG_OF or
2021  *		-EOVERFLOW if alias ID is greater then allocated nbits
2022  */
2023 int of_alias_get_alias_list(const struct of_device_id *matches,
2024 			     const char *stem, unsigned long *bitmap,
2025 			     unsigned int nbits)
2026 {
2027 	struct alias_prop *app;
2028 	int ret = 0;
2029 
2030 	/* Zero bitmap field to make sure that all the time it is clean */
2031 	bitmap_zero(bitmap, nbits);
2032 
2033 	mutex_lock(&of_mutex);
2034 	pr_debug("%s: Looking for stem: %s\n", __func__, stem);
2035 	list_for_each_entry(app, &aliases_lookup, link) {
2036 		pr_debug("%s: stem: %s, id: %d\n",
2037 			 __func__, app->stem, app->id);
2038 
2039 		if (strcmp(app->stem, stem) != 0) {
2040 			pr_debug("%s: stem comparison didn't pass %s\n",
2041 				 __func__, app->stem);
2042 			continue;
2043 		}
2044 
2045 		if (of_match_node(matches, app->np)) {
2046 			pr_debug("%s: Allocated ID %d\n", __func__, app->id);
2047 
2048 			if (app->id >= nbits) {
2049 				pr_warn("%s: ID %d >= than bitmap field %d\n",
2050 					__func__, app->id, nbits);
2051 				ret = -EOVERFLOW;
2052 			} else {
2053 				set_bit(app->id, bitmap);
2054 			}
2055 		}
2056 	}
2057 	mutex_unlock(&of_mutex);
2058 
2059 	return ret;
2060 }
2061 EXPORT_SYMBOL_GPL(of_alias_get_alias_list);
2062 
2063 /**
2064  * of_alias_get_highest_id - Get highest alias id for the given stem
2065  * @stem:	Alias stem to be examined
2066  *
2067  * The function travels the lookup table to get the highest alias id for the
2068  * given alias stem.  It returns the alias id if found.
2069  */
2070 int of_alias_get_highest_id(const char *stem)
2071 {
2072 	struct alias_prop *app;
2073 	int id = -ENODEV;
2074 
2075 	mutex_lock(&of_mutex);
2076 	list_for_each_entry(app, &aliases_lookup, link) {
2077 		if (strcmp(app->stem, stem) != 0)
2078 			continue;
2079 
2080 		if (app->id > id)
2081 			id = app->id;
2082 	}
2083 	mutex_unlock(&of_mutex);
2084 
2085 	return id;
2086 }
2087 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2088 
2089 /**
2090  * of_console_check() - Test and setup console for DT setup
2091  * @dn - Pointer to device node
2092  * @name - Name to use for preferred console without index. ex. "ttyS"
2093  * @index - Index to use for preferred console.
2094  *
2095  * Check if the given device node matches the stdout-path property in the
2096  * /chosen node. If it does then register it as the preferred console and return
2097  * TRUE. Otherwise return FALSE.
2098  */
2099 bool of_console_check(struct device_node *dn, char *name, int index)
2100 {
2101 	if (!dn || dn != of_stdout || console_set_on_cmdline)
2102 		return false;
2103 
2104 	/*
2105 	 * XXX: cast `options' to char pointer to suppress complication
2106 	 * warnings: printk, UART and console drivers expect char pointer.
2107 	 */
2108 	return !add_preferred_console(name, index, (char *)of_stdout_options);
2109 }
2110 EXPORT_SYMBOL_GPL(of_console_check);
2111 
2112 /**
2113  *	of_find_next_cache_node - Find a node's subsidiary cache
2114  *	@np:	node of type "cpu" or "cache"
2115  *
2116  *	Returns a node pointer with refcount incremented, use
2117  *	of_node_put() on it when done.  Caller should hold a reference
2118  *	to np.
2119  */
2120 struct device_node *of_find_next_cache_node(const struct device_node *np)
2121 {
2122 	struct device_node *child, *cache_node;
2123 
2124 	cache_node = of_parse_phandle(np, "l2-cache", 0);
2125 	if (!cache_node)
2126 		cache_node = of_parse_phandle(np, "next-level-cache", 0);
2127 
2128 	if (cache_node)
2129 		return cache_node;
2130 
2131 	/* OF on pmac has nodes instead of properties named "l2-cache"
2132 	 * beneath CPU nodes.
2133 	 */
2134 	if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
2135 		for_each_child_of_node(np, child)
2136 			if (of_node_is_type(child, "cache"))
2137 				return child;
2138 
2139 	return NULL;
2140 }
2141 
2142 /**
2143  * of_find_last_cache_level - Find the level at which the last cache is
2144  * 		present for the given logical cpu
2145  *
2146  * @cpu: cpu number(logical index) for which the last cache level is needed
2147  *
2148  * Returns the the level at which the last cache is present. It is exactly
2149  * same as  the total number of cache levels for the given logical cpu.
2150  */
2151 int of_find_last_cache_level(unsigned int cpu)
2152 {
2153 	u32 cache_level = 0;
2154 	struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
2155 
2156 	while (np) {
2157 		prev = np;
2158 		of_node_put(np);
2159 		np = of_find_next_cache_node(np);
2160 	}
2161 
2162 	of_property_read_u32(prev, "cache-level", &cache_level);
2163 
2164 	return cache_level;
2165 }
2166 
2167 /**
2168  * of_map_rid - Translate a requester ID through a downstream mapping.
2169  * @np: root complex device node.
2170  * @rid: device requester ID to map.
2171  * @map_name: property name of the map to use.
2172  * @map_mask_name: optional property name of the mask to use.
2173  * @target: optional pointer to a target device node.
2174  * @id_out: optional pointer to receive the translated ID.
2175  *
2176  * Given a device requester ID, look up the appropriate implementation-defined
2177  * platform ID and/or the target device which receives transactions on that
2178  * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
2179  * @id_out may be NULL if only the other is required. If @target points to
2180  * a non-NULL device node pointer, only entries targeting that node will be
2181  * matched; if it points to a NULL value, it will receive the device node of
2182  * the first matching target phandle, with a reference held.
2183  *
2184  * Return: 0 on success or a standard error code on failure.
2185  */
2186 int of_map_rid(struct device_node *np, u32 rid,
2187 	       const char *map_name, const char *map_mask_name,
2188 	       struct device_node **target, u32 *id_out)
2189 {
2190 	u32 map_mask, masked_rid;
2191 	int map_len;
2192 	const __be32 *map = NULL;
2193 
2194 	if (!np || !map_name || (!target && !id_out))
2195 		return -EINVAL;
2196 
2197 	map = of_get_property(np, map_name, &map_len);
2198 	if (!map) {
2199 		if (target)
2200 			return -ENODEV;
2201 		/* Otherwise, no map implies no translation */
2202 		*id_out = rid;
2203 		return 0;
2204 	}
2205 
2206 	if (!map_len || map_len % (4 * sizeof(*map))) {
2207 		pr_err("%pOF: Error: Bad %s length: %d\n", np,
2208 			map_name, map_len);
2209 		return -EINVAL;
2210 	}
2211 
2212 	/* The default is to select all bits. */
2213 	map_mask = 0xffffffff;
2214 
2215 	/*
2216 	 * Can be overridden by "{iommu,msi}-map-mask" property.
2217 	 * If of_property_read_u32() fails, the default is used.
2218 	 */
2219 	if (map_mask_name)
2220 		of_property_read_u32(np, map_mask_name, &map_mask);
2221 
2222 	masked_rid = map_mask & rid;
2223 	for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
2224 		struct device_node *phandle_node;
2225 		u32 rid_base = be32_to_cpup(map + 0);
2226 		u32 phandle = be32_to_cpup(map + 1);
2227 		u32 out_base = be32_to_cpup(map + 2);
2228 		u32 rid_len = be32_to_cpup(map + 3);
2229 
2230 		if (rid_base & ~map_mask) {
2231 			pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores rid-base (0x%x)\n",
2232 				np, map_name, map_name,
2233 				map_mask, rid_base);
2234 			return -EFAULT;
2235 		}
2236 
2237 		if (masked_rid < rid_base || masked_rid >= rid_base + rid_len)
2238 			continue;
2239 
2240 		phandle_node = of_find_node_by_phandle(phandle);
2241 		if (!phandle_node)
2242 			return -ENODEV;
2243 
2244 		if (target) {
2245 			if (*target)
2246 				of_node_put(phandle_node);
2247 			else
2248 				*target = phandle_node;
2249 
2250 			if (*target != phandle_node)
2251 				continue;
2252 		}
2253 
2254 		if (id_out)
2255 			*id_out = masked_rid - rid_base + out_base;
2256 
2257 		pr_debug("%pOF: %s, using mask %08x, rid-base: %08x, out-base: %08x, length: %08x, rid: %08x -> %08x\n",
2258 			np, map_name, map_mask, rid_base, out_base,
2259 			rid_len, rid, masked_rid - rid_base + out_base);
2260 		return 0;
2261 	}
2262 
2263 	pr_info("%pOF: no %s translation for rid 0x%x on %pOF\n", np, map_name,
2264 		rid, target && *target ? *target : NULL);
2265 
2266 	/* Bypasses translation */
2267 	if (id_out)
2268 		*id_out = rid;
2269 	return 0;
2270 }
2271 EXPORT_SYMBOL_GPL(of_map_rid);
2272