xref: /linux/drivers/of/base.c (revision c4c14c3bd177ea769fee938674f73a8ec0cdd47a)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Procedures for creating, accessing and interpreting the device tree.
4  *
5  * Paul Mackerras	August 1996.
6  * Copyright (C) 1996-2005 Paul Mackerras.
7  *
8  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9  *    {engebret|bergner}@us.ibm.com
10  *
11  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12  *
13  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
14  *  Grant Likely.
15  */
16 
17 #define pr_fmt(fmt)	"OF: " fmt
18 
19 #include <linux/console.h>
20 #include <linux/ctype.h>
21 #include <linux/cpu.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/of_graph.h>
26 #include <linux/spinlock.h>
27 #include <linux/slab.h>
28 #include <linux/string.h>
29 #include <linux/proc_fs.h>
30 
31 #include "of_private.h"
32 
33 LIST_HEAD(aliases_lookup);
34 
35 struct device_node *of_root;
36 EXPORT_SYMBOL(of_root);
37 struct device_node *of_chosen;
38 struct device_node *of_aliases;
39 struct device_node *of_stdout;
40 static const char *of_stdout_options;
41 
42 struct kset *of_kset;
43 
44 /*
45  * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
46  * This mutex must be held whenever modifications are being made to the
47  * device tree. The of_{attach,detach}_node() and
48  * of_{add,remove,update}_property() helpers make sure this happens.
49  */
50 DEFINE_MUTEX(of_mutex);
51 
52 /* use when traversing tree through the child, sibling,
53  * or parent members of struct device_node.
54  */
55 DEFINE_RAW_SPINLOCK(devtree_lock);
56 
57 bool of_node_name_eq(const struct device_node *np, const char *name)
58 {
59 	const char *node_name;
60 	size_t len;
61 
62 	if (!np)
63 		return false;
64 
65 	node_name = kbasename(np->full_name);
66 	len = strchrnul(node_name, '@') - node_name;
67 
68 	return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
69 }
70 EXPORT_SYMBOL(of_node_name_eq);
71 
72 bool of_node_name_prefix(const struct device_node *np, const char *prefix)
73 {
74 	if (!np)
75 		return false;
76 
77 	return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
78 }
79 EXPORT_SYMBOL(of_node_name_prefix);
80 
81 int of_n_addr_cells(struct device_node *np)
82 {
83 	u32 cells;
84 
85 	do {
86 		if (np->parent)
87 			np = np->parent;
88 		if (!of_property_read_u32(np, "#address-cells", &cells))
89 			return cells;
90 	} while (np->parent);
91 	/* No #address-cells property for the root node */
92 	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
93 }
94 EXPORT_SYMBOL(of_n_addr_cells);
95 
96 int of_n_size_cells(struct device_node *np)
97 {
98 	u32 cells;
99 
100 	do {
101 		if (np->parent)
102 			np = np->parent;
103 		if (!of_property_read_u32(np, "#size-cells", &cells))
104 			return cells;
105 	} while (np->parent);
106 	/* No #size-cells property for the root node */
107 	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
108 }
109 EXPORT_SYMBOL(of_n_size_cells);
110 
111 #ifdef CONFIG_NUMA
112 int __weak of_node_to_nid(struct device_node *np)
113 {
114 	return NUMA_NO_NODE;
115 }
116 #endif
117 
118 static struct device_node **phandle_cache;
119 static u32 phandle_cache_mask;
120 
121 /*
122  * Assumptions behind phandle_cache implementation:
123  *   - phandle property values are in a contiguous range of 1..n
124  *
125  * If the assumptions do not hold, then
126  *   - the phandle lookup overhead reduction provided by the cache
127  *     will likely be less
128  */
129 void of_populate_phandle_cache(void)
130 {
131 	unsigned long flags;
132 	u32 cache_entries;
133 	struct device_node *np;
134 	u32 phandles = 0;
135 
136 	raw_spin_lock_irqsave(&devtree_lock, flags);
137 
138 	kfree(phandle_cache);
139 	phandle_cache = NULL;
140 
141 	for_each_of_allnodes(np)
142 		if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL)
143 			phandles++;
144 
145 	if (!phandles)
146 		goto out;
147 
148 	cache_entries = roundup_pow_of_two(phandles);
149 	phandle_cache_mask = cache_entries - 1;
150 
151 	phandle_cache = kcalloc(cache_entries, sizeof(*phandle_cache),
152 				GFP_ATOMIC);
153 	if (!phandle_cache)
154 		goto out;
155 
156 	for_each_of_allnodes(np)
157 		if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL)
158 			phandle_cache[np->phandle & phandle_cache_mask] = np;
159 
160 out:
161 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
162 }
163 
164 int of_free_phandle_cache(void)
165 {
166 	unsigned long flags;
167 
168 	raw_spin_lock_irqsave(&devtree_lock, flags);
169 
170 	kfree(phandle_cache);
171 	phandle_cache = NULL;
172 
173 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
174 
175 	return 0;
176 }
177 #if !defined(CONFIG_MODULES)
178 late_initcall_sync(of_free_phandle_cache);
179 #endif
180 
181 void __init of_core_init(void)
182 {
183 	struct device_node *np;
184 
185 	of_populate_phandle_cache();
186 
187 	/* Create the kset, and register existing nodes */
188 	mutex_lock(&of_mutex);
189 	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
190 	if (!of_kset) {
191 		mutex_unlock(&of_mutex);
192 		pr_err("failed to register existing nodes\n");
193 		return;
194 	}
195 	for_each_of_allnodes(np)
196 		__of_attach_node_sysfs(np);
197 	mutex_unlock(&of_mutex);
198 
199 	/* Symlink in /proc as required by userspace ABI */
200 	if (of_root)
201 		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
202 }
203 
204 static struct property *__of_find_property(const struct device_node *np,
205 					   const char *name, int *lenp)
206 {
207 	struct property *pp;
208 
209 	if (!np)
210 		return NULL;
211 
212 	for (pp = np->properties; pp; pp = pp->next) {
213 		if (of_prop_cmp(pp->name, name) == 0) {
214 			if (lenp)
215 				*lenp = pp->length;
216 			break;
217 		}
218 	}
219 
220 	return pp;
221 }
222 
223 struct property *of_find_property(const struct device_node *np,
224 				  const char *name,
225 				  int *lenp)
226 {
227 	struct property *pp;
228 	unsigned long flags;
229 
230 	raw_spin_lock_irqsave(&devtree_lock, flags);
231 	pp = __of_find_property(np, name, lenp);
232 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
233 
234 	return pp;
235 }
236 EXPORT_SYMBOL(of_find_property);
237 
238 struct device_node *__of_find_all_nodes(struct device_node *prev)
239 {
240 	struct device_node *np;
241 	if (!prev) {
242 		np = of_root;
243 	} else if (prev->child) {
244 		np = prev->child;
245 	} else {
246 		/* Walk back up looking for a sibling, or the end of the structure */
247 		np = prev;
248 		while (np->parent && !np->sibling)
249 			np = np->parent;
250 		np = np->sibling; /* Might be null at the end of the tree */
251 	}
252 	return np;
253 }
254 
255 /**
256  * of_find_all_nodes - Get next node in global list
257  * @prev:	Previous node or NULL to start iteration
258  *		of_node_put() will be called on it
259  *
260  * Returns a node pointer with refcount incremented, use
261  * of_node_put() on it when done.
262  */
263 struct device_node *of_find_all_nodes(struct device_node *prev)
264 {
265 	struct device_node *np;
266 	unsigned long flags;
267 
268 	raw_spin_lock_irqsave(&devtree_lock, flags);
269 	np = __of_find_all_nodes(prev);
270 	of_node_get(np);
271 	of_node_put(prev);
272 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
273 	return np;
274 }
275 EXPORT_SYMBOL(of_find_all_nodes);
276 
277 /*
278  * Find a property with a given name for a given node
279  * and return the value.
280  */
281 const void *__of_get_property(const struct device_node *np,
282 			      const char *name, int *lenp)
283 {
284 	struct property *pp = __of_find_property(np, name, lenp);
285 
286 	return pp ? pp->value : NULL;
287 }
288 
289 /*
290  * Find a property with a given name for a given node
291  * and return the value.
292  */
293 const void *of_get_property(const struct device_node *np, const char *name,
294 			    int *lenp)
295 {
296 	struct property *pp = of_find_property(np, name, lenp);
297 
298 	return pp ? pp->value : NULL;
299 }
300 EXPORT_SYMBOL(of_get_property);
301 
302 /*
303  * arch_match_cpu_phys_id - Match the given logical CPU and physical id
304  *
305  * @cpu: logical cpu index of a core/thread
306  * @phys_id: physical identifier of a core/thread
307  *
308  * CPU logical to physical index mapping is architecture specific.
309  * However this __weak function provides a default match of physical
310  * id to logical cpu index. phys_id provided here is usually values read
311  * from the device tree which must match the hardware internal registers.
312  *
313  * Returns true if the physical identifier and the logical cpu index
314  * correspond to the same core/thread, false otherwise.
315  */
316 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
317 {
318 	return (u32)phys_id == cpu;
319 }
320 
321 /**
322  * Checks if the given "prop_name" property holds the physical id of the
323  * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
324  * NULL, local thread number within the core is returned in it.
325  */
326 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
327 			const char *prop_name, int cpu, unsigned int *thread)
328 {
329 	const __be32 *cell;
330 	int ac, prop_len, tid;
331 	u64 hwid;
332 
333 	ac = of_n_addr_cells(cpun);
334 	cell = of_get_property(cpun, prop_name, &prop_len);
335 	if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0))
336 		return true;
337 	if (!cell || !ac)
338 		return false;
339 	prop_len /= sizeof(*cell) * ac;
340 	for (tid = 0; tid < prop_len; tid++) {
341 		hwid = of_read_number(cell, ac);
342 		if (arch_match_cpu_phys_id(cpu, hwid)) {
343 			if (thread)
344 				*thread = tid;
345 			return true;
346 		}
347 		cell += ac;
348 	}
349 	return false;
350 }
351 
352 /*
353  * arch_find_n_match_cpu_physical_id - See if the given device node is
354  * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
355  * else false.  If 'thread' is non-NULL, the local thread number within the
356  * core is returned in it.
357  */
358 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
359 					      int cpu, unsigned int *thread)
360 {
361 	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
362 	 * for thread ids on PowerPC. If it doesn't exist fallback to
363 	 * standard "reg" property.
364 	 */
365 	if (IS_ENABLED(CONFIG_PPC) &&
366 	    __of_find_n_match_cpu_property(cpun,
367 					   "ibm,ppc-interrupt-server#s",
368 					   cpu, thread))
369 		return true;
370 
371 	return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
372 }
373 
374 /**
375  * of_get_cpu_node - Get device node associated with the given logical CPU
376  *
377  * @cpu: CPU number(logical index) for which device node is required
378  * @thread: if not NULL, local thread number within the physical core is
379  *          returned
380  *
381  * The main purpose of this function is to retrieve the device node for the
382  * given logical CPU index. It should be used to initialize the of_node in
383  * cpu device. Once of_node in cpu device is populated, all the further
384  * references can use that instead.
385  *
386  * CPU logical to physical index mapping is architecture specific and is built
387  * before booting secondary cores. This function uses arch_match_cpu_phys_id
388  * which can be overridden by architecture specific implementation.
389  *
390  * Returns a node pointer for the logical cpu with refcount incremented, use
391  * of_node_put() on it when done. Returns NULL if not found.
392  */
393 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
394 {
395 	struct device_node *cpun;
396 
397 	for_each_of_cpu_node(cpun) {
398 		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
399 			return cpun;
400 	}
401 	return NULL;
402 }
403 EXPORT_SYMBOL(of_get_cpu_node);
404 
405 /**
406  * of_cpu_node_to_id: Get the logical CPU number for a given device_node
407  *
408  * @cpu_node: Pointer to the device_node for CPU.
409  *
410  * Returns the logical CPU number of the given CPU device_node.
411  * Returns -ENODEV if the CPU is not found.
412  */
413 int of_cpu_node_to_id(struct device_node *cpu_node)
414 {
415 	int cpu;
416 	bool found = false;
417 	struct device_node *np;
418 
419 	for_each_possible_cpu(cpu) {
420 		np = of_cpu_device_node_get(cpu);
421 		found = (cpu_node == np);
422 		of_node_put(np);
423 		if (found)
424 			return cpu;
425 	}
426 
427 	return -ENODEV;
428 }
429 EXPORT_SYMBOL(of_cpu_node_to_id);
430 
431 /**
432  * __of_device_is_compatible() - Check if the node matches given constraints
433  * @device: pointer to node
434  * @compat: required compatible string, NULL or "" for any match
435  * @type: required device_type value, NULL or "" for any match
436  * @name: required node name, NULL or "" for any match
437  *
438  * Checks if the given @compat, @type and @name strings match the
439  * properties of the given @device. A constraints can be skipped by
440  * passing NULL or an empty string as the constraint.
441  *
442  * Returns 0 for no match, and a positive integer on match. The return
443  * value is a relative score with larger values indicating better
444  * matches. The score is weighted for the most specific compatible value
445  * to get the highest score. Matching type is next, followed by matching
446  * name. Practically speaking, this results in the following priority
447  * order for matches:
448  *
449  * 1. specific compatible && type && name
450  * 2. specific compatible && type
451  * 3. specific compatible && name
452  * 4. specific compatible
453  * 5. general compatible && type && name
454  * 6. general compatible && type
455  * 7. general compatible && name
456  * 8. general compatible
457  * 9. type && name
458  * 10. type
459  * 11. name
460  */
461 static int __of_device_is_compatible(const struct device_node *device,
462 				     const char *compat, const char *type, const char *name)
463 {
464 	struct property *prop;
465 	const char *cp;
466 	int index = 0, score = 0;
467 
468 	/* Compatible match has highest priority */
469 	if (compat && compat[0]) {
470 		prop = __of_find_property(device, "compatible", NULL);
471 		for (cp = of_prop_next_string(prop, NULL); cp;
472 		     cp = of_prop_next_string(prop, cp), index++) {
473 			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
474 				score = INT_MAX/2 - (index << 2);
475 				break;
476 			}
477 		}
478 		if (!score)
479 			return 0;
480 	}
481 
482 	/* Matching type is better than matching name */
483 	if (type && type[0]) {
484 		if (!device->type || of_node_cmp(type, device->type))
485 			return 0;
486 		score += 2;
487 	}
488 
489 	/* Matching name is a bit better than not */
490 	if (name && name[0]) {
491 		if (!device->name || of_node_cmp(name, device->name))
492 			return 0;
493 		score++;
494 	}
495 
496 	return score;
497 }
498 
499 /** Checks if the given "compat" string matches one of the strings in
500  * the device's "compatible" property
501  */
502 int of_device_is_compatible(const struct device_node *device,
503 		const char *compat)
504 {
505 	unsigned long flags;
506 	int res;
507 
508 	raw_spin_lock_irqsave(&devtree_lock, flags);
509 	res = __of_device_is_compatible(device, compat, NULL, NULL);
510 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
511 	return res;
512 }
513 EXPORT_SYMBOL(of_device_is_compatible);
514 
515 /** Checks if the device is compatible with any of the entries in
516  *  a NULL terminated array of strings. Returns the best match
517  *  score or 0.
518  */
519 int of_device_compatible_match(struct device_node *device,
520 			       const char *const *compat)
521 {
522 	unsigned int tmp, score = 0;
523 
524 	if (!compat)
525 		return 0;
526 
527 	while (*compat) {
528 		tmp = of_device_is_compatible(device, *compat);
529 		if (tmp > score)
530 			score = tmp;
531 		compat++;
532 	}
533 
534 	return score;
535 }
536 
537 /**
538  * of_machine_is_compatible - Test root of device tree for a given compatible value
539  * @compat: compatible string to look for in root node's compatible property.
540  *
541  * Returns a positive integer if the root node has the given value in its
542  * compatible property.
543  */
544 int of_machine_is_compatible(const char *compat)
545 {
546 	struct device_node *root;
547 	int rc = 0;
548 
549 	root = of_find_node_by_path("/");
550 	if (root) {
551 		rc = of_device_is_compatible(root, compat);
552 		of_node_put(root);
553 	}
554 	return rc;
555 }
556 EXPORT_SYMBOL(of_machine_is_compatible);
557 
558 /**
559  *  __of_device_is_available - check if a device is available for use
560  *
561  *  @device: Node to check for availability, with locks already held
562  *
563  *  Returns true if the status property is absent or set to "okay" or "ok",
564  *  false otherwise
565  */
566 static bool __of_device_is_available(const struct device_node *device)
567 {
568 	const char *status;
569 	int statlen;
570 
571 	if (!device)
572 		return false;
573 
574 	status = __of_get_property(device, "status", &statlen);
575 	if (status == NULL)
576 		return true;
577 
578 	if (statlen > 0) {
579 		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
580 			return true;
581 	}
582 
583 	return false;
584 }
585 
586 /**
587  *  of_device_is_available - check if a device is available for use
588  *
589  *  @device: Node to check for availability
590  *
591  *  Returns true if the status property is absent or set to "okay" or "ok",
592  *  false otherwise
593  */
594 bool of_device_is_available(const struct device_node *device)
595 {
596 	unsigned long flags;
597 	bool res;
598 
599 	raw_spin_lock_irqsave(&devtree_lock, flags);
600 	res = __of_device_is_available(device);
601 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
602 	return res;
603 
604 }
605 EXPORT_SYMBOL(of_device_is_available);
606 
607 /**
608  *  of_device_is_big_endian - check if a device has BE registers
609  *
610  *  @device: Node to check for endianness
611  *
612  *  Returns true if the device has a "big-endian" property, or if the kernel
613  *  was compiled for BE *and* the device has a "native-endian" property.
614  *  Returns false otherwise.
615  *
616  *  Callers would nominally use ioread32be/iowrite32be if
617  *  of_device_is_big_endian() == true, or readl/writel otherwise.
618  */
619 bool of_device_is_big_endian(const struct device_node *device)
620 {
621 	if (of_property_read_bool(device, "big-endian"))
622 		return true;
623 	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
624 	    of_property_read_bool(device, "native-endian"))
625 		return true;
626 	return false;
627 }
628 EXPORT_SYMBOL(of_device_is_big_endian);
629 
630 /**
631  *	of_get_parent - Get a node's parent if any
632  *	@node:	Node to get parent
633  *
634  *	Returns a node pointer with refcount incremented, use
635  *	of_node_put() on it when done.
636  */
637 struct device_node *of_get_parent(const struct device_node *node)
638 {
639 	struct device_node *np;
640 	unsigned long flags;
641 
642 	if (!node)
643 		return NULL;
644 
645 	raw_spin_lock_irqsave(&devtree_lock, flags);
646 	np = of_node_get(node->parent);
647 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
648 	return np;
649 }
650 EXPORT_SYMBOL(of_get_parent);
651 
652 /**
653  *	of_get_next_parent - Iterate to a node's parent
654  *	@node:	Node to get parent of
655  *
656  *	This is like of_get_parent() except that it drops the
657  *	refcount on the passed node, making it suitable for iterating
658  *	through a node's parents.
659  *
660  *	Returns a node pointer with refcount incremented, use
661  *	of_node_put() on it when done.
662  */
663 struct device_node *of_get_next_parent(struct device_node *node)
664 {
665 	struct device_node *parent;
666 	unsigned long flags;
667 
668 	if (!node)
669 		return NULL;
670 
671 	raw_spin_lock_irqsave(&devtree_lock, flags);
672 	parent = of_node_get(node->parent);
673 	of_node_put(node);
674 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
675 	return parent;
676 }
677 EXPORT_SYMBOL(of_get_next_parent);
678 
679 static struct device_node *__of_get_next_child(const struct device_node *node,
680 						struct device_node *prev)
681 {
682 	struct device_node *next;
683 
684 	if (!node)
685 		return NULL;
686 
687 	next = prev ? prev->sibling : node->child;
688 	for (; next; next = next->sibling)
689 		if (of_node_get(next))
690 			break;
691 	of_node_put(prev);
692 	return next;
693 }
694 #define __for_each_child_of_node(parent, child) \
695 	for (child = __of_get_next_child(parent, NULL); child != NULL; \
696 	     child = __of_get_next_child(parent, child))
697 
698 /**
699  *	of_get_next_child - Iterate a node childs
700  *	@node:	parent node
701  *	@prev:	previous child of the parent node, or NULL to get first
702  *
703  *	Returns a node pointer with refcount incremented, use of_node_put() on
704  *	it when done. Returns NULL when prev is the last child. Decrements the
705  *	refcount of prev.
706  */
707 struct device_node *of_get_next_child(const struct device_node *node,
708 	struct device_node *prev)
709 {
710 	struct device_node *next;
711 	unsigned long flags;
712 
713 	raw_spin_lock_irqsave(&devtree_lock, flags);
714 	next = __of_get_next_child(node, prev);
715 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
716 	return next;
717 }
718 EXPORT_SYMBOL(of_get_next_child);
719 
720 /**
721  *	of_get_next_available_child - Find the next available child node
722  *	@node:	parent node
723  *	@prev:	previous child of the parent node, or NULL to get first
724  *
725  *      This function is like of_get_next_child(), except that it
726  *      automatically skips any disabled nodes (i.e. status = "disabled").
727  */
728 struct device_node *of_get_next_available_child(const struct device_node *node,
729 	struct device_node *prev)
730 {
731 	struct device_node *next;
732 	unsigned long flags;
733 
734 	if (!node)
735 		return NULL;
736 
737 	raw_spin_lock_irqsave(&devtree_lock, flags);
738 	next = prev ? prev->sibling : node->child;
739 	for (; next; next = next->sibling) {
740 		if (!__of_device_is_available(next))
741 			continue;
742 		if (of_node_get(next))
743 			break;
744 	}
745 	of_node_put(prev);
746 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
747 	return next;
748 }
749 EXPORT_SYMBOL(of_get_next_available_child);
750 
751 /**
752  *	of_get_next_cpu_node - Iterate on cpu nodes
753  *	@prev:	previous child of the /cpus node, or NULL to get first
754  *
755  *	Returns a cpu node pointer with refcount incremented, use of_node_put()
756  *	on it when done. Returns NULL when prev is the last child. Decrements
757  *	the refcount of prev.
758  */
759 struct device_node *of_get_next_cpu_node(struct device_node *prev)
760 {
761 	struct device_node *next = NULL;
762 	unsigned long flags;
763 	struct device_node *node;
764 
765 	if (!prev)
766 		node = of_find_node_by_path("/cpus");
767 
768 	raw_spin_lock_irqsave(&devtree_lock, flags);
769 	if (prev)
770 		next = prev->sibling;
771 	else if (node) {
772 		next = node->child;
773 		of_node_put(node);
774 	}
775 	for (; next; next = next->sibling) {
776 		if (!(of_node_name_eq(next, "cpu") ||
777 		      (next->type && !of_node_cmp(next->type, "cpu"))))
778 			continue;
779 		if (!__of_device_is_available(next))
780 			continue;
781 		if (of_node_get(next))
782 			break;
783 	}
784 	of_node_put(prev);
785 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
786 	return next;
787 }
788 EXPORT_SYMBOL(of_get_next_cpu_node);
789 
790 /**
791  * of_get_compatible_child - Find compatible child node
792  * @parent:	parent node
793  * @compatible:	compatible string
794  *
795  * Lookup child node whose compatible property contains the given compatible
796  * string.
797  *
798  * Returns a node pointer with refcount incremented, use of_node_put() on it
799  * when done; or NULL if not found.
800  */
801 struct device_node *of_get_compatible_child(const struct device_node *parent,
802 				const char *compatible)
803 {
804 	struct device_node *child;
805 
806 	for_each_child_of_node(parent, child) {
807 		if (of_device_is_compatible(child, compatible))
808 			break;
809 	}
810 
811 	return child;
812 }
813 EXPORT_SYMBOL(of_get_compatible_child);
814 
815 /**
816  *	of_get_child_by_name - Find the child node by name for a given parent
817  *	@node:	parent node
818  *	@name:	child name to look for.
819  *
820  *      This function looks for child node for given matching name
821  *
822  *	Returns a node pointer if found, with refcount incremented, use
823  *	of_node_put() on it when done.
824  *	Returns NULL if node is not found.
825  */
826 struct device_node *of_get_child_by_name(const struct device_node *node,
827 				const char *name)
828 {
829 	struct device_node *child;
830 
831 	for_each_child_of_node(node, child)
832 		if (child->name && (of_node_cmp(child->name, name) == 0))
833 			break;
834 	return child;
835 }
836 EXPORT_SYMBOL(of_get_child_by_name);
837 
838 struct device_node *__of_find_node_by_path(struct device_node *parent,
839 						const char *path)
840 {
841 	struct device_node *child;
842 	int len;
843 
844 	len = strcspn(path, "/:");
845 	if (!len)
846 		return NULL;
847 
848 	__for_each_child_of_node(parent, child) {
849 		const char *name = kbasename(child->full_name);
850 		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
851 			return child;
852 	}
853 	return NULL;
854 }
855 
856 struct device_node *__of_find_node_by_full_path(struct device_node *node,
857 						const char *path)
858 {
859 	const char *separator = strchr(path, ':');
860 
861 	while (node && *path == '/') {
862 		struct device_node *tmp = node;
863 
864 		path++; /* Increment past '/' delimiter */
865 		node = __of_find_node_by_path(node, path);
866 		of_node_put(tmp);
867 		path = strchrnul(path, '/');
868 		if (separator && separator < path)
869 			break;
870 	}
871 	return node;
872 }
873 
874 /**
875  *	of_find_node_opts_by_path - Find a node matching a full OF path
876  *	@path: Either the full path to match, or if the path does not
877  *	       start with '/', the name of a property of the /aliases
878  *	       node (an alias).  In the case of an alias, the node
879  *	       matching the alias' value will be returned.
880  *	@opts: Address of a pointer into which to store the start of
881  *	       an options string appended to the end of the path with
882  *	       a ':' separator.
883  *
884  *	Valid paths:
885  *		/foo/bar	Full path
886  *		foo		Valid alias
887  *		foo/bar		Valid alias + relative path
888  *
889  *	Returns a node pointer with refcount incremented, use
890  *	of_node_put() on it when done.
891  */
892 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
893 {
894 	struct device_node *np = NULL;
895 	struct property *pp;
896 	unsigned long flags;
897 	const char *separator = strchr(path, ':');
898 
899 	if (opts)
900 		*opts = separator ? separator + 1 : NULL;
901 
902 	if (strcmp(path, "/") == 0)
903 		return of_node_get(of_root);
904 
905 	/* The path could begin with an alias */
906 	if (*path != '/') {
907 		int len;
908 		const char *p = separator;
909 
910 		if (!p)
911 			p = strchrnul(path, '/');
912 		len = p - path;
913 
914 		/* of_aliases must not be NULL */
915 		if (!of_aliases)
916 			return NULL;
917 
918 		for_each_property_of_node(of_aliases, pp) {
919 			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
920 				np = of_find_node_by_path(pp->value);
921 				break;
922 			}
923 		}
924 		if (!np)
925 			return NULL;
926 		path = p;
927 	}
928 
929 	/* Step down the tree matching path components */
930 	raw_spin_lock_irqsave(&devtree_lock, flags);
931 	if (!np)
932 		np = of_node_get(of_root);
933 	np = __of_find_node_by_full_path(np, path);
934 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
935 	return np;
936 }
937 EXPORT_SYMBOL(of_find_node_opts_by_path);
938 
939 /**
940  *	of_find_node_by_name - Find a node by its "name" property
941  *	@from:	The node to start searching from or NULL; the node
942  *		you pass will not be searched, only the next one
943  *		will. Typically, you pass what the previous call
944  *		returned. of_node_put() will be called on @from.
945  *	@name:	The name string to match against
946  *
947  *	Returns a node pointer with refcount incremented, use
948  *	of_node_put() on it when done.
949  */
950 struct device_node *of_find_node_by_name(struct device_node *from,
951 	const char *name)
952 {
953 	struct device_node *np;
954 	unsigned long flags;
955 
956 	raw_spin_lock_irqsave(&devtree_lock, flags);
957 	for_each_of_allnodes_from(from, np)
958 		if (np->name && (of_node_cmp(np->name, name) == 0)
959 		    && of_node_get(np))
960 			break;
961 	of_node_put(from);
962 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
963 	return np;
964 }
965 EXPORT_SYMBOL(of_find_node_by_name);
966 
967 /**
968  *	of_find_node_by_type - Find a node by its "device_type" property
969  *	@from:	The node to start searching from, or NULL to start searching
970  *		the entire device tree. The node you pass will not be
971  *		searched, only the next one will; typically, you pass
972  *		what the previous call returned. of_node_put() will be
973  *		called on from for you.
974  *	@type:	The type string to match against
975  *
976  *	Returns a node pointer with refcount incremented, use
977  *	of_node_put() on it when done.
978  */
979 struct device_node *of_find_node_by_type(struct device_node *from,
980 	const char *type)
981 {
982 	struct device_node *np;
983 	unsigned long flags;
984 
985 	raw_spin_lock_irqsave(&devtree_lock, flags);
986 	for_each_of_allnodes_from(from, np)
987 		if (np->type && (of_node_cmp(np->type, type) == 0)
988 		    && of_node_get(np))
989 			break;
990 	of_node_put(from);
991 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
992 	return np;
993 }
994 EXPORT_SYMBOL(of_find_node_by_type);
995 
996 /**
997  *	of_find_compatible_node - Find a node based on type and one of the
998  *                                tokens in its "compatible" property
999  *	@from:		The node to start searching from or NULL, the node
1000  *			you pass will not be searched, only the next one
1001  *			will; typically, you pass what the previous call
1002  *			returned. of_node_put() will be called on it
1003  *	@type:		The type string to match "device_type" or NULL to ignore
1004  *	@compatible:	The string to match to one of the tokens in the device
1005  *			"compatible" list.
1006  *
1007  *	Returns a node pointer with refcount incremented, use
1008  *	of_node_put() on it when done.
1009  */
1010 struct device_node *of_find_compatible_node(struct device_node *from,
1011 	const char *type, const char *compatible)
1012 {
1013 	struct device_node *np;
1014 	unsigned long flags;
1015 
1016 	raw_spin_lock_irqsave(&devtree_lock, flags);
1017 	for_each_of_allnodes_from(from, np)
1018 		if (__of_device_is_compatible(np, compatible, type, NULL) &&
1019 		    of_node_get(np))
1020 			break;
1021 	of_node_put(from);
1022 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1023 	return np;
1024 }
1025 EXPORT_SYMBOL(of_find_compatible_node);
1026 
1027 /**
1028  *	of_find_node_with_property - Find a node which has a property with
1029  *                                   the given name.
1030  *	@from:		The node to start searching from or NULL, the node
1031  *			you pass will not be searched, only the next one
1032  *			will; typically, you pass what the previous call
1033  *			returned. of_node_put() will be called on it
1034  *	@prop_name:	The name of the property to look for.
1035  *
1036  *	Returns a node pointer with refcount incremented, use
1037  *	of_node_put() on it when done.
1038  */
1039 struct device_node *of_find_node_with_property(struct device_node *from,
1040 	const char *prop_name)
1041 {
1042 	struct device_node *np;
1043 	struct property *pp;
1044 	unsigned long flags;
1045 
1046 	raw_spin_lock_irqsave(&devtree_lock, flags);
1047 	for_each_of_allnodes_from(from, np) {
1048 		for (pp = np->properties; pp; pp = pp->next) {
1049 			if (of_prop_cmp(pp->name, prop_name) == 0) {
1050 				of_node_get(np);
1051 				goto out;
1052 			}
1053 		}
1054 	}
1055 out:
1056 	of_node_put(from);
1057 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1058 	return np;
1059 }
1060 EXPORT_SYMBOL(of_find_node_with_property);
1061 
1062 static
1063 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
1064 					   const struct device_node *node)
1065 {
1066 	const struct of_device_id *best_match = NULL;
1067 	int score, best_score = 0;
1068 
1069 	if (!matches)
1070 		return NULL;
1071 
1072 	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1073 		score = __of_device_is_compatible(node, matches->compatible,
1074 						  matches->type, matches->name);
1075 		if (score > best_score) {
1076 			best_match = matches;
1077 			best_score = score;
1078 		}
1079 	}
1080 
1081 	return best_match;
1082 }
1083 
1084 /**
1085  * of_match_node - Tell if a device_node has a matching of_match structure
1086  *	@matches:	array of of device match structures to search in
1087  *	@node:		the of device structure to match against
1088  *
1089  *	Low level utility function used by device matching.
1090  */
1091 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1092 					 const struct device_node *node)
1093 {
1094 	const struct of_device_id *match;
1095 	unsigned long flags;
1096 
1097 	raw_spin_lock_irqsave(&devtree_lock, flags);
1098 	match = __of_match_node(matches, node);
1099 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1100 	return match;
1101 }
1102 EXPORT_SYMBOL(of_match_node);
1103 
1104 /**
1105  *	of_find_matching_node_and_match - Find a node based on an of_device_id
1106  *					  match table.
1107  *	@from:		The node to start searching from or NULL, the node
1108  *			you pass will not be searched, only the next one
1109  *			will; typically, you pass what the previous call
1110  *			returned. of_node_put() will be called on it
1111  *	@matches:	array of of device match structures to search in
1112  *	@match		Updated to point at the matches entry which matched
1113  *
1114  *	Returns a node pointer with refcount incremented, use
1115  *	of_node_put() on it when done.
1116  */
1117 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1118 					const struct of_device_id *matches,
1119 					const struct of_device_id **match)
1120 {
1121 	struct device_node *np;
1122 	const struct of_device_id *m;
1123 	unsigned long flags;
1124 
1125 	if (match)
1126 		*match = NULL;
1127 
1128 	raw_spin_lock_irqsave(&devtree_lock, flags);
1129 	for_each_of_allnodes_from(from, np) {
1130 		m = __of_match_node(matches, np);
1131 		if (m && of_node_get(np)) {
1132 			if (match)
1133 				*match = m;
1134 			break;
1135 		}
1136 	}
1137 	of_node_put(from);
1138 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1139 	return np;
1140 }
1141 EXPORT_SYMBOL(of_find_matching_node_and_match);
1142 
1143 /**
1144  * of_modalias_node - Lookup appropriate modalias for a device node
1145  * @node:	pointer to a device tree node
1146  * @modalias:	Pointer to buffer that modalias value will be copied into
1147  * @len:	Length of modalias value
1148  *
1149  * Based on the value of the compatible property, this routine will attempt
1150  * to choose an appropriate modalias value for a particular device tree node.
1151  * It does this by stripping the manufacturer prefix (as delimited by a ',')
1152  * from the first entry in the compatible list property.
1153  *
1154  * This routine returns 0 on success, <0 on failure.
1155  */
1156 int of_modalias_node(struct device_node *node, char *modalias, int len)
1157 {
1158 	const char *compatible, *p;
1159 	int cplen;
1160 
1161 	compatible = of_get_property(node, "compatible", &cplen);
1162 	if (!compatible || strlen(compatible) > cplen)
1163 		return -ENODEV;
1164 	p = strchr(compatible, ',');
1165 	strlcpy(modalias, p ? p + 1 : compatible, len);
1166 	return 0;
1167 }
1168 EXPORT_SYMBOL_GPL(of_modalias_node);
1169 
1170 /**
1171  * of_find_node_by_phandle - Find a node given a phandle
1172  * @handle:	phandle of the node to find
1173  *
1174  * Returns a node pointer with refcount incremented, use
1175  * of_node_put() on it when done.
1176  */
1177 struct device_node *of_find_node_by_phandle(phandle handle)
1178 {
1179 	struct device_node *np = NULL;
1180 	unsigned long flags;
1181 	phandle masked_handle;
1182 
1183 	if (!handle)
1184 		return NULL;
1185 
1186 	raw_spin_lock_irqsave(&devtree_lock, flags);
1187 
1188 	masked_handle = handle & phandle_cache_mask;
1189 
1190 	if (phandle_cache) {
1191 		if (phandle_cache[masked_handle] &&
1192 		    handle == phandle_cache[masked_handle]->phandle)
1193 			np = phandle_cache[masked_handle];
1194 	}
1195 
1196 	if (!np) {
1197 		for_each_of_allnodes(np)
1198 			if (np->phandle == handle) {
1199 				if (phandle_cache)
1200 					phandle_cache[masked_handle] = np;
1201 				break;
1202 			}
1203 	}
1204 
1205 	of_node_get(np);
1206 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1207 	return np;
1208 }
1209 EXPORT_SYMBOL(of_find_node_by_phandle);
1210 
1211 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1212 {
1213 	int i;
1214 	printk("%s %pOF", msg, args->np);
1215 	for (i = 0; i < args->args_count; i++) {
1216 		const char delim = i ? ',' : ':';
1217 
1218 		pr_cont("%c%08x", delim, args->args[i]);
1219 	}
1220 	pr_cont("\n");
1221 }
1222 
1223 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1224 		const struct device_node *np,
1225 		const char *list_name,
1226 		const char *cells_name,
1227 		int cell_count)
1228 {
1229 	const __be32 *list;
1230 	int size;
1231 
1232 	memset(it, 0, sizeof(*it));
1233 
1234 	list = of_get_property(np, list_name, &size);
1235 	if (!list)
1236 		return -ENOENT;
1237 
1238 	it->cells_name = cells_name;
1239 	it->cell_count = cell_count;
1240 	it->parent = np;
1241 	it->list_end = list + size / sizeof(*list);
1242 	it->phandle_end = list;
1243 	it->cur = list;
1244 
1245 	return 0;
1246 }
1247 EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1248 
1249 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1250 {
1251 	uint32_t count = 0;
1252 
1253 	if (it->node) {
1254 		of_node_put(it->node);
1255 		it->node = NULL;
1256 	}
1257 
1258 	if (!it->cur || it->phandle_end >= it->list_end)
1259 		return -ENOENT;
1260 
1261 	it->cur = it->phandle_end;
1262 
1263 	/* If phandle is 0, then it is an empty entry with no arguments. */
1264 	it->phandle = be32_to_cpup(it->cur++);
1265 
1266 	if (it->phandle) {
1267 
1268 		/*
1269 		 * Find the provider node and parse the #*-cells property to
1270 		 * determine the argument length.
1271 		 */
1272 		it->node = of_find_node_by_phandle(it->phandle);
1273 
1274 		if (it->cells_name) {
1275 			if (!it->node) {
1276 				pr_err("%pOF: could not find phandle\n",
1277 				       it->parent);
1278 				goto err;
1279 			}
1280 
1281 			if (of_property_read_u32(it->node, it->cells_name,
1282 						 &count)) {
1283 				pr_err("%pOF: could not get %s for %pOF\n",
1284 				       it->parent,
1285 				       it->cells_name,
1286 				       it->node);
1287 				goto err;
1288 			}
1289 		} else {
1290 			count = it->cell_count;
1291 		}
1292 
1293 		/*
1294 		 * Make sure that the arguments actually fit in the remaining
1295 		 * property data length
1296 		 */
1297 		if (it->cur + count > it->list_end) {
1298 			pr_err("%pOF: arguments longer than property\n",
1299 			       it->parent);
1300 			goto err;
1301 		}
1302 	}
1303 
1304 	it->phandle_end = it->cur + count;
1305 	it->cur_count = count;
1306 
1307 	return 0;
1308 
1309 err:
1310 	if (it->node) {
1311 		of_node_put(it->node);
1312 		it->node = NULL;
1313 	}
1314 
1315 	return -EINVAL;
1316 }
1317 EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1318 
1319 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1320 			     uint32_t *args,
1321 			     int size)
1322 {
1323 	int i, count;
1324 
1325 	count = it->cur_count;
1326 
1327 	if (WARN_ON(size < count))
1328 		count = size;
1329 
1330 	for (i = 0; i < count; i++)
1331 		args[i] = be32_to_cpup(it->cur++);
1332 
1333 	return count;
1334 }
1335 
1336 static int __of_parse_phandle_with_args(const struct device_node *np,
1337 					const char *list_name,
1338 					const char *cells_name,
1339 					int cell_count, int index,
1340 					struct of_phandle_args *out_args)
1341 {
1342 	struct of_phandle_iterator it;
1343 	int rc, cur_index = 0;
1344 
1345 	/* Loop over the phandles until all the requested entry is found */
1346 	of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1347 		/*
1348 		 * All of the error cases bail out of the loop, so at
1349 		 * this point, the parsing is successful. If the requested
1350 		 * index matches, then fill the out_args structure and return,
1351 		 * or return -ENOENT for an empty entry.
1352 		 */
1353 		rc = -ENOENT;
1354 		if (cur_index == index) {
1355 			if (!it.phandle)
1356 				goto err;
1357 
1358 			if (out_args) {
1359 				int c;
1360 
1361 				c = of_phandle_iterator_args(&it,
1362 							     out_args->args,
1363 							     MAX_PHANDLE_ARGS);
1364 				out_args->np = it.node;
1365 				out_args->args_count = c;
1366 			} else {
1367 				of_node_put(it.node);
1368 			}
1369 
1370 			/* Found it! return success */
1371 			return 0;
1372 		}
1373 
1374 		cur_index++;
1375 	}
1376 
1377 	/*
1378 	 * Unlock node before returning result; will be one of:
1379 	 * -ENOENT : index is for empty phandle
1380 	 * -EINVAL : parsing error on data
1381 	 */
1382 
1383  err:
1384 	of_node_put(it.node);
1385 	return rc;
1386 }
1387 
1388 /**
1389  * of_parse_phandle - Resolve a phandle property to a device_node pointer
1390  * @np: Pointer to device node holding phandle property
1391  * @phandle_name: Name of property holding a phandle value
1392  * @index: For properties holding a table of phandles, this is the index into
1393  *         the table
1394  *
1395  * Returns the device_node pointer with refcount incremented.  Use
1396  * of_node_put() on it when done.
1397  */
1398 struct device_node *of_parse_phandle(const struct device_node *np,
1399 				     const char *phandle_name, int index)
1400 {
1401 	struct of_phandle_args args;
1402 
1403 	if (index < 0)
1404 		return NULL;
1405 
1406 	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1407 					 index, &args))
1408 		return NULL;
1409 
1410 	return args.np;
1411 }
1412 EXPORT_SYMBOL(of_parse_phandle);
1413 
1414 /**
1415  * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1416  * @np:		pointer to a device tree node containing a list
1417  * @list_name:	property name that contains a list
1418  * @cells_name:	property name that specifies phandles' arguments count
1419  * @index:	index of a phandle to parse out
1420  * @out_args:	optional pointer to output arguments structure (will be filled)
1421  *
1422  * This function is useful to parse lists of phandles and their arguments.
1423  * Returns 0 on success and fills out_args, on error returns appropriate
1424  * errno value.
1425  *
1426  * Caller is responsible to call of_node_put() on the returned out_args->np
1427  * pointer.
1428  *
1429  * Example:
1430  *
1431  * phandle1: node1 {
1432  *	#list-cells = <2>;
1433  * }
1434  *
1435  * phandle2: node2 {
1436  *	#list-cells = <1>;
1437  * }
1438  *
1439  * node3 {
1440  *	list = <&phandle1 1 2 &phandle2 3>;
1441  * }
1442  *
1443  * To get a device_node of the `node2' node you may call this:
1444  * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1445  */
1446 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1447 				const char *cells_name, int index,
1448 				struct of_phandle_args *out_args)
1449 {
1450 	if (index < 0)
1451 		return -EINVAL;
1452 	return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1453 					    index, out_args);
1454 }
1455 EXPORT_SYMBOL(of_parse_phandle_with_args);
1456 
1457 /**
1458  * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1459  * @np:		pointer to a device tree node containing a list
1460  * @list_name:	property name that contains a list
1461  * @stem_name:	stem of property names that specify phandles' arguments count
1462  * @index:	index of a phandle to parse out
1463  * @out_args:	optional pointer to output arguments structure (will be filled)
1464  *
1465  * This function is useful to parse lists of phandles and their arguments.
1466  * Returns 0 on success and fills out_args, on error returns appropriate errno
1467  * value. The difference between this function and of_parse_phandle_with_args()
1468  * is that this API remaps a phandle if the node the phandle points to has
1469  * a <@stem_name>-map property.
1470  *
1471  * Caller is responsible to call of_node_put() on the returned out_args->np
1472  * pointer.
1473  *
1474  * Example:
1475  *
1476  * phandle1: node1 {
1477  *	#list-cells = <2>;
1478  * }
1479  *
1480  * phandle2: node2 {
1481  *	#list-cells = <1>;
1482  * }
1483  *
1484  * phandle3: node3 {
1485  * 	#list-cells = <1>;
1486  * 	list-map = <0 &phandle2 3>,
1487  * 		   <1 &phandle2 2>,
1488  * 		   <2 &phandle1 5 1>;
1489  *	list-map-mask = <0x3>;
1490  * };
1491  *
1492  * node4 {
1493  *	list = <&phandle1 1 2 &phandle3 0>;
1494  * }
1495  *
1496  * To get a device_node of the `node2' node you may call this:
1497  * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1498  */
1499 int of_parse_phandle_with_args_map(const struct device_node *np,
1500 				   const char *list_name,
1501 				   const char *stem_name,
1502 				   int index, struct of_phandle_args *out_args)
1503 {
1504 	char *cells_name, *map_name = NULL, *mask_name = NULL;
1505 	char *pass_name = NULL;
1506 	struct device_node *cur, *new = NULL;
1507 	const __be32 *map, *mask, *pass;
1508 	static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
1509 	static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
1510 	__be32 initial_match_array[MAX_PHANDLE_ARGS];
1511 	const __be32 *match_array = initial_match_array;
1512 	int i, ret, map_len, match;
1513 	u32 list_size, new_size;
1514 
1515 	if (index < 0)
1516 		return -EINVAL;
1517 
1518 	cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1519 	if (!cells_name)
1520 		return -ENOMEM;
1521 
1522 	ret = -ENOMEM;
1523 	map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1524 	if (!map_name)
1525 		goto free;
1526 
1527 	mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1528 	if (!mask_name)
1529 		goto free;
1530 
1531 	pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1532 	if (!pass_name)
1533 		goto free;
1534 
1535 	ret = __of_parse_phandle_with_args(np, list_name, cells_name, 0, index,
1536 					   out_args);
1537 	if (ret)
1538 		goto free;
1539 
1540 	/* Get the #<list>-cells property */
1541 	cur = out_args->np;
1542 	ret = of_property_read_u32(cur, cells_name, &list_size);
1543 	if (ret < 0)
1544 		goto put;
1545 
1546 	/* Precalculate the match array - this simplifies match loop */
1547 	for (i = 0; i < list_size; i++)
1548 		initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1549 
1550 	ret = -EINVAL;
1551 	while (cur) {
1552 		/* Get the <list>-map property */
1553 		map = of_get_property(cur, map_name, &map_len);
1554 		if (!map) {
1555 			ret = 0;
1556 			goto free;
1557 		}
1558 		map_len /= sizeof(u32);
1559 
1560 		/* Get the <list>-map-mask property (optional) */
1561 		mask = of_get_property(cur, mask_name, NULL);
1562 		if (!mask)
1563 			mask = dummy_mask;
1564 		/* Iterate through <list>-map property */
1565 		match = 0;
1566 		while (map_len > (list_size + 1) && !match) {
1567 			/* Compare specifiers */
1568 			match = 1;
1569 			for (i = 0; i < list_size; i++, map_len--)
1570 				match &= !((match_array[i] ^ *map++) & mask[i]);
1571 
1572 			of_node_put(new);
1573 			new = of_find_node_by_phandle(be32_to_cpup(map));
1574 			map++;
1575 			map_len--;
1576 
1577 			/* Check if not found */
1578 			if (!new)
1579 				goto put;
1580 
1581 			if (!of_device_is_available(new))
1582 				match = 0;
1583 
1584 			ret = of_property_read_u32(new, cells_name, &new_size);
1585 			if (ret)
1586 				goto put;
1587 
1588 			/* Check for malformed properties */
1589 			if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1590 				goto put;
1591 			if (map_len < new_size)
1592 				goto put;
1593 
1594 			/* Move forward by new node's #<list>-cells amount */
1595 			map += new_size;
1596 			map_len -= new_size;
1597 		}
1598 		if (!match)
1599 			goto put;
1600 
1601 		/* Get the <list>-map-pass-thru property (optional) */
1602 		pass = of_get_property(cur, pass_name, NULL);
1603 		if (!pass)
1604 			pass = dummy_pass;
1605 
1606 		/*
1607 		 * Successfully parsed a <list>-map translation; copy new
1608 		 * specifier into the out_args structure, keeping the
1609 		 * bits specified in <list>-map-pass-thru.
1610 		 */
1611 		match_array = map - new_size;
1612 		for (i = 0; i < new_size; i++) {
1613 			__be32 val = *(map - new_size + i);
1614 
1615 			if (i < list_size) {
1616 				val &= ~pass[i];
1617 				val |= cpu_to_be32(out_args->args[i]) & pass[i];
1618 			}
1619 
1620 			out_args->args[i] = be32_to_cpu(val);
1621 		}
1622 		out_args->args_count = list_size = new_size;
1623 		/* Iterate again with new provider */
1624 		out_args->np = new;
1625 		of_node_put(cur);
1626 		cur = new;
1627 	}
1628 put:
1629 	of_node_put(cur);
1630 	of_node_put(new);
1631 free:
1632 	kfree(mask_name);
1633 	kfree(map_name);
1634 	kfree(cells_name);
1635 	kfree(pass_name);
1636 
1637 	return ret;
1638 }
1639 EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1640 
1641 /**
1642  * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1643  * @np:		pointer to a device tree node containing a list
1644  * @list_name:	property name that contains a list
1645  * @cell_count: number of argument cells following the phandle
1646  * @index:	index of a phandle to parse out
1647  * @out_args:	optional pointer to output arguments structure (will be filled)
1648  *
1649  * This function is useful to parse lists of phandles and their arguments.
1650  * Returns 0 on success and fills out_args, on error returns appropriate
1651  * errno value.
1652  *
1653  * Caller is responsible to call of_node_put() on the returned out_args->np
1654  * pointer.
1655  *
1656  * Example:
1657  *
1658  * phandle1: node1 {
1659  * }
1660  *
1661  * phandle2: node2 {
1662  * }
1663  *
1664  * node3 {
1665  *	list = <&phandle1 0 2 &phandle2 2 3>;
1666  * }
1667  *
1668  * To get a device_node of the `node2' node you may call this:
1669  * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1670  */
1671 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1672 				const char *list_name, int cell_count,
1673 				int index, struct of_phandle_args *out_args)
1674 {
1675 	if (index < 0)
1676 		return -EINVAL;
1677 	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1678 					   index, out_args);
1679 }
1680 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1681 
1682 /**
1683  * of_count_phandle_with_args() - Find the number of phandles references in a property
1684  * @np:		pointer to a device tree node containing a list
1685  * @list_name:	property name that contains a list
1686  * @cells_name:	property name that specifies phandles' arguments count
1687  *
1688  * Returns the number of phandle + argument tuples within a property. It
1689  * is a typical pattern to encode a list of phandle and variable
1690  * arguments into a single property. The number of arguments is encoded
1691  * by a property in the phandle-target node. For example, a gpios
1692  * property would contain a list of GPIO specifies consisting of a
1693  * phandle and 1 or more arguments. The number of arguments are
1694  * determined by the #gpio-cells property in the node pointed to by the
1695  * phandle.
1696  */
1697 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1698 				const char *cells_name)
1699 {
1700 	struct of_phandle_iterator it;
1701 	int rc, cur_index = 0;
1702 
1703 	rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0);
1704 	if (rc)
1705 		return rc;
1706 
1707 	while ((rc = of_phandle_iterator_next(&it)) == 0)
1708 		cur_index += 1;
1709 
1710 	if (rc != -ENOENT)
1711 		return rc;
1712 
1713 	return cur_index;
1714 }
1715 EXPORT_SYMBOL(of_count_phandle_with_args);
1716 
1717 /**
1718  * __of_add_property - Add a property to a node without lock operations
1719  */
1720 int __of_add_property(struct device_node *np, struct property *prop)
1721 {
1722 	struct property **next;
1723 
1724 	prop->next = NULL;
1725 	next = &np->properties;
1726 	while (*next) {
1727 		if (strcmp(prop->name, (*next)->name) == 0)
1728 			/* duplicate ! don't insert it */
1729 			return -EEXIST;
1730 
1731 		next = &(*next)->next;
1732 	}
1733 	*next = prop;
1734 
1735 	return 0;
1736 }
1737 
1738 /**
1739  * of_add_property - Add a property to a node
1740  */
1741 int of_add_property(struct device_node *np, struct property *prop)
1742 {
1743 	unsigned long flags;
1744 	int rc;
1745 
1746 	mutex_lock(&of_mutex);
1747 
1748 	raw_spin_lock_irqsave(&devtree_lock, flags);
1749 	rc = __of_add_property(np, prop);
1750 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1751 
1752 	if (!rc)
1753 		__of_add_property_sysfs(np, prop);
1754 
1755 	mutex_unlock(&of_mutex);
1756 
1757 	if (!rc)
1758 		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1759 
1760 	return rc;
1761 }
1762 
1763 int __of_remove_property(struct device_node *np, struct property *prop)
1764 {
1765 	struct property **next;
1766 
1767 	for (next = &np->properties; *next; next = &(*next)->next) {
1768 		if (*next == prop)
1769 			break;
1770 	}
1771 	if (*next == NULL)
1772 		return -ENODEV;
1773 
1774 	/* found the node */
1775 	*next = prop->next;
1776 	prop->next = np->deadprops;
1777 	np->deadprops = prop;
1778 
1779 	return 0;
1780 }
1781 
1782 /**
1783  * of_remove_property - Remove a property from a node.
1784  *
1785  * Note that we don't actually remove it, since we have given out
1786  * who-knows-how-many pointers to the data using get-property.
1787  * Instead we just move the property to the "dead properties"
1788  * list, so it won't be found any more.
1789  */
1790 int of_remove_property(struct device_node *np, struct property *prop)
1791 {
1792 	unsigned long flags;
1793 	int rc;
1794 
1795 	if (!prop)
1796 		return -ENODEV;
1797 
1798 	mutex_lock(&of_mutex);
1799 
1800 	raw_spin_lock_irqsave(&devtree_lock, flags);
1801 	rc = __of_remove_property(np, prop);
1802 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1803 
1804 	if (!rc)
1805 		__of_remove_property_sysfs(np, prop);
1806 
1807 	mutex_unlock(&of_mutex);
1808 
1809 	if (!rc)
1810 		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1811 
1812 	return rc;
1813 }
1814 
1815 int __of_update_property(struct device_node *np, struct property *newprop,
1816 		struct property **oldpropp)
1817 {
1818 	struct property **next, *oldprop;
1819 
1820 	for (next = &np->properties; *next; next = &(*next)->next) {
1821 		if (of_prop_cmp((*next)->name, newprop->name) == 0)
1822 			break;
1823 	}
1824 	*oldpropp = oldprop = *next;
1825 
1826 	if (oldprop) {
1827 		/* replace the node */
1828 		newprop->next = oldprop->next;
1829 		*next = newprop;
1830 		oldprop->next = np->deadprops;
1831 		np->deadprops = oldprop;
1832 	} else {
1833 		/* new node */
1834 		newprop->next = NULL;
1835 		*next = newprop;
1836 	}
1837 
1838 	return 0;
1839 }
1840 
1841 /*
1842  * of_update_property - Update a property in a node, if the property does
1843  * not exist, add it.
1844  *
1845  * Note that we don't actually remove it, since we have given out
1846  * who-knows-how-many pointers to the data using get-property.
1847  * Instead we just move the property to the "dead properties" list,
1848  * and add the new property to the property list
1849  */
1850 int of_update_property(struct device_node *np, struct property *newprop)
1851 {
1852 	struct property *oldprop;
1853 	unsigned long flags;
1854 	int rc;
1855 
1856 	if (!newprop->name)
1857 		return -EINVAL;
1858 
1859 	mutex_lock(&of_mutex);
1860 
1861 	raw_spin_lock_irqsave(&devtree_lock, flags);
1862 	rc = __of_update_property(np, newprop, &oldprop);
1863 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1864 
1865 	if (!rc)
1866 		__of_update_property_sysfs(np, newprop, oldprop);
1867 
1868 	mutex_unlock(&of_mutex);
1869 
1870 	if (!rc)
1871 		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1872 
1873 	return rc;
1874 }
1875 
1876 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1877 			 int id, const char *stem, int stem_len)
1878 {
1879 	ap->np = np;
1880 	ap->id = id;
1881 	strncpy(ap->stem, stem, stem_len);
1882 	ap->stem[stem_len] = 0;
1883 	list_add_tail(&ap->link, &aliases_lookup);
1884 	pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1885 		 ap->alias, ap->stem, ap->id, np);
1886 }
1887 
1888 /**
1889  * of_alias_scan - Scan all properties of the 'aliases' node
1890  *
1891  * The function scans all the properties of the 'aliases' node and populates
1892  * the global lookup table with the properties.  It returns the
1893  * number of alias properties found, or an error code in case of failure.
1894  *
1895  * @dt_alloc:	An allocator that provides a virtual address to memory
1896  *		for storing the resulting tree
1897  */
1898 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1899 {
1900 	struct property *pp;
1901 
1902 	of_aliases = of_find_node_by_path("/aliases");
1903 	of_chosen = of_find_node_by_path("/chosen");
1904 	if (of_chosen == NULL)
1905 		of_chosen = of_find_node_by_path("/chosen@0");
1906 
1907 	if (of_chosen) {
1908 		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1909 		const char *name = NULL;
1910 
1911 		if (of_property_read_string(of_chosen, "stdout-path", &name))
1912 			of_property_read_string(of_chosen, "linux,stdout-path",
1913 						&name);
1914 		if (IS_ENABLED(CONFIG_PPC) && !name)
1915 			of_property_read_string(of_aliases, "stdout", &name);
1916 		if (name)
1917 			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1918 	}
1919 
1920 	if (!of_aliases)
1921 		return;
1922 
1923 	for_each_property_of_node(of_aliases, pp) {
1924 		const char *start = pp->name;
1925 		const char *end = start + strlen(start);
1926 		struct device_node *np;
1927 		struct alias_prop *ap;
1928 		int id, len;
1929 
1930 		/* Skip those we do not want to proceed */
1931 		if (!strcmp(pp->name, "name") ||
1932 		    !strcmp(pp->name, "phandle") ||
1933 		    !strcmp(pp->name, "linux,phandle"))
1934 			continue;
1935 
1936 		np = of_find_node_by_path(pp->value);
1937 		if (!np)
1938 			continue;
1939 
1940 		/* walk the alias backwards to extract the id and work out
1941 		 * the 'stem' string */
1942 		while (isdigit(*(end-1)) && end > start)
1943 			end--;
1944 		len = end - start;
1945 
1946 		if (kstrtoint(end, 10, &id) < 0)
1947 			continue;
1948 
1949 		/* Allocate an alias_prop with enough space for the stem */
1950 		ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
1951 		if (!ap)
1952 			continue;
1953 		memset(ap, 0, sizeof(*ap) + len + 1);
1954 		ap->alias = start;
1955 		of_alias_add(ap, np, id, start, len);
1956 	}
1957 }
1958 
1959 /**
1960  * of_alias_get_id - Get alias id for the given device_node
1961  * @np:		Pointer to the given device_node
1962  * @stem:	Alias stem of the given device_node
1963  *
1964  * The function travels the lookup table to get the alias id for the given
1965  * device_node and alias stem.  It returns the alias id if found.
1966  */
1967 int of_alias_get_id(struct device_node *np, const char *stem)
1968 {
1969 	struct alias_prop *app;
1970 	int id = -ENODEV;
1971 
1972 	mutex_lock(&of_mutex);
1973 	list_for_each_entry(app, &aliases_lookup, link) {
1974 		if (strcmp(app->stem, stem) != 0)
1975 			continue;
1976 
1977 		if (np == app->np) {
1978 			id = app->id;
1979 			break;
1980 		}
1981 	}
1982 	mutex_unlock(&of_mutex);
1983 
1984 	return id;
1985 }
1986 EXPORT_SYMBOL_GPL(of_alias_get_id);
1987 
1988 /**
1989  * of_alias_get_highest_id - Get highest alias id for the given stem
1990  * @stem:	Alias stem to be examined
1991  *
1992  * The function travels the lookup table to get the highest alias id for the
1993  * given alias stem.  It returns the alias id if found.
1994  */
1995 int of_alias_get_highest_id(const char *stem)
1996 {
1997 	struct alias_prop *app;
1998 	int id = -ENODEV;
1999 
2000 	mutex_lock(&of_mutex);
2001 	list_for_each_entry(app, &aliases_lookup, link) {
2002 		if (strcmp(app->stem, stem) != 0)
2003 			continue;
2004 
2005 		if (app->id > id)
2006 			id = app->id;
2007 	}
2008 	mutex_unlock(&of_mutex);
2009 
2010 	return id;
2011 }
2012 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2013 
2014 /**
2015  * of_console_check() - Test and setup console for DT setup
2016  * @dn - Pointer to device node
2017  * @name - Name to use for preferred console without index. ex. "ttyS"
2018  * @index - Index to use for preferred console.
2019  *
2020  * Check if the given device node matches the stdout-path property in the
2021  * /chosen node. If it does then register it as the preferred console and return
2022  * TRUE. Otherwise return FALSE.
2023  */
2024 bool of_console_check(struct device_node *dn, char *name, int index)
2025 {
2026 	if (!dn || dn != of_stdout || console_set_on_cmdline)
2027 		return false;
2028 
2029 	/*
2030 	 * XXX: cast `options' to char pointer to suppress complication
2031 	 * warnings: printk, UART and console drivers expect char pointer.
2032 	 */
2033 	return !add_preferred_console(name, index, (char *)of_stdout_options);
2034 }
2035 EXPORT_SYMBOL_GPL(of_console_check);
2036 
2037 /**
2038  *	of_find_next_cache_node - Find a node's subsidiary cache
2039  *	@np:	node of type "cpu" or "cache"
2040  *
2041  *	Returns a node pointer with refcount incremented, use
2042  *	of_node_put() on it when done.  Caller should hold a reference
2043  *	to np.
2044  */
2045 struct device_node *of_find_next_cache_node(const struct device_node *np)
2046 {
2047 	struct device_node *child, *cache_node;
2048 
2049 	cache_node = of_parse_phandle(np, "l2-cache", 0);
2050 	if (!cache_node)
2051 		cache_node = of_parse_phandle(np, "next-level-cache", 0);
2052 
2053 	if (cache_node)
2054 		return cache_node;
2055 
2056 	/* OF on pmac has nodes instead of properties named "l2-cache"
2057 	 * beneath CPU nodes.
2058 	 */
2059 	if (IS_ENABLED(CONFIG_PPC_PMAC) && !strcmp(np->type, "cpu"))
2060 		for_each_child_of_node(np, child)
2061 			if (!strcmp(child->type, "cache"))
2062 				return child;
2063 
2064 	return NULL;
2065 }
2066 
2067 /**
2068  * of_find_last_cache_level - Find the level at which the last cache is
2069  * 		present for the given logical cpu
2070  *
2071  * @cpu: cpu number(logical index) for which the last cache level is needed
2072  *
2073  * Returns the the level at which the last cache is present. It is exactly
2074  * same as  the total number of cache levels for the given logical cpu.
2075  */
2076 int of_find_last_cache_level(unsigned int cpu)
2077 {
2078 	u32 cache_level = 0;
2079 	struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
2080 
2081 	while (np) {
2082 		prev = np;
2083 		of_node_put(np);
2084 		np = of_find_next_cache_node(np);
2085 	}
2086 
2087 	of_property_read_u32(prev, "cache-level", &cache_level);
2088 
2089 	return cache_level;
2090 }
2091 
2092 /**
2093  * of_map_rid - Translate a requester ID through a downstream mapping.
2094  * @np: root complex device node.
2095  * @rid: device requester ID to map.
2096  * @map_name: property name of the map to use.
2097  * @map_mask_name: optional property name of the mask to use.
2098  * @target: optional pointer to a target device node.
2099  * @id_out: optional pointer to receive the translated ID.
2100  *
2101  * Given a device requester ID, look up the appropriate implementation-defined
2102  * platform ID and/or the target device which receives transactions on that
2103  * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
2104  * @id_out may be NULL if only the other is required. If @target points to
2105  * a non-NULL device node pointer, only entries targeting that node will be
2106  * matched; if it points to a NULL value, it will receive the device node of
2107  * the first matching target phandle, with a reference held.
2108  *
2109  * Return: 0 on success or a standard error code on failure.
2110  */
2111 int of_map_rid(struct device_node *np, u32 rid,
2112 	       const char *map_name, const char *map_mask_name,
2113 	       struct device_node **target, u32 *id_out)
2114 {
2115 	u32 map_mask, masked_rid;
2116 	int map_len;
2117 	const __be32 *map = NULL;
2118 
2119 	if (!np || !map_name || (!target && !id_out))
2120 		return -EINVAL;
2121 
2122 	map = of_get_property(np, map_name, &map_len);
2123 	if (!map) {
2124 		if (target)
2125 			return -ENODEV;
2126 		/* Otherwise, no map implies no translation */
2127 		*id_out = rid;
2128 		return 0;
2129 	}
2130 
2131 	if (!map_len || map_len % (4 * sizeof(*map))) {
2132 		pr_err("%pOF: Error: Bad %s length: %d\n", np,
2133 			map_name, map_len);
2134 		return -EINVAL;
2135 	}
2136 
2137 	/* The default is to select all bits. */
2138 	map_mask = 0xffffffff;
2139 
2140 	/*
2141 	 * Can be overridden by "{iommu,msi}-map-mask" property.
2142 	 * If of_property_read_u32() fails, the default is used.
2143 	 */
2144 	if (map_mask_name)
2145 		of_property_read_u32(np, map_mask_name, &map_mask);
2146 
2147 	masked_rid = map_mask & rid;
2148 	for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
2149 		struct device_node *phandle_node;
2150 		u32 rid_base = be32_to_cpup(map + 0);
2151 		u32 phandle = be32_to_cpup(map + 1);
2152 		u32 out_base = be32_to_cpup(map + 2);
2153 		u32 rid_len = be32_to_cpup(map + 3);
2154 
2155 		if (rid_base & ~map_mask) {
2156 			pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores rid-base (0x%x)\n",
2157 				np, map_name, map_name,
2158 				map_mask, rid_base);
2159 			return -EFAULT;
2160 		}
2161 
2162 		if (masked_rid < rid_base || masked_rid >= rid_base + rid_len)
2163 			continue;
2164 
2165 		phandle_node = of_find_node_by_phandle(phandle);
2166 		if (!phandle_node)
2167 			return -ENODEV;
2168 
2169 		if (target) {
2170 			if (*target)
2171 				of_node_put(phandle_node);
2172 			else
2173 				*target = phandle_node;
2174 
2175 			if (*target != phandle_node)
2176 				continue;
2177 		}
2178 
2179 		if (id_out)
2180 			*id_out = masked_rid - rid_base + out_base;
2181 
2182 		pr_debug("%pOF: %s, using mask %08x, rid-base: %08x, out-base: %08x, length: %08x, rid: %08x -> %08x\n",
2183 			np, map_name, map_mask, rid_base, out_base,
2184 			rid_len, rid, masked_rid - rid_base + out_base);
2185 		return 0;
2186 	}
2187 
2188 	pr_err("%pOF: Invalid %s translation - no match for rid 0x%x on %pOF\n",
2189 		np, map_name, rid, target && *target ? *target : NULL);
2190 	return -EFAULT;
2191 }
2192 EXPORT_SYMBOL_GPL(of_map_rid);
2193