1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Procedures for creating, accessing and interpreting the device tree. 4 * 5 * Paul Mackerras August 1996. 6 * Copyright (C) 1996-2005 Paul Mackerras. 7 * 8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 9 * {engebret|bergner}@us.ibm.com 10 * 11 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 12 * 13 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 14 * Grant Likely. 15 */ 16 17 #define pr_fmt(fmt) "OF: " fmt 18 19 #include <linux/console.h> 20 #include <linux/ctype.h> 21 #include <linux/cpu.h> 22 #include <linux/module.h> 23 #include <linux/of.h> 24 #include <linux/of_device.h> 25 #include <linux/of_graph.h> 26 #include <linux/spinlock.h> 27 #include <linux/slab.h> 28 #include <linux/string.h> 29 #include <linux/proc_fs.h> 30 31 #include "of_private.h" 32 33 LIST_HEAD(aliases_lookup); 34 35 struct device_node *of_root; 36 EXPORT_SYMBOL(of_root); 37 struct device_node *of_chosen; 38 struct device_node *of_aliases; 39 struct device_node *of_stdout; 40 static const char *of_stdout_options; 41 42 struct kset *of_kset; 43 44 /* 45 * Used to protect the of_aliases, to hold off addition of nodes to sysfs. 46 * This mutex must be held whenever modifications are being made to the 47 * device tree. The of_{attach,detach}_node() and 48 * of_{add,remove,update}_property() helpers make sure this happens. 49 */ 50 DEFINE_MUTEX(of_mutex); 51 52 /* use when traversing tree through the child, sibling, 53 * or parent members of struct device_node. 54 */ 55 DEFINE_RAW_SPINLOCK(devtree_lock); 56 57 bool of_node_name_eq(const struct device_node *np, const char *name) 58 { 59 const char *node_name; 60 size_t len; 61 62 if (!np) 63 return false; 64 65 node_name = kbasename(np->full_name); 66 len = strchrnul(node_name, '@') - node_name; 67 68 return (strlen(name) == len) && (strncmp(node_name, name, len) == 0); 69 } 70 EXPORT_SYMBOL(of_node_name_eq); 71 72 bool of_node_name_prefix(const struct device_node *np, const char *prefix) 73 { 74 if (!np) 75 return false; 76 77 return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0; 78 } 79 EXPORT_SYMBOL(of_node_name_prefix); 80 81 int of_n_addr_cells(struct device_node *np) 82 { 83 u32 cells; 84 85 do { 86 if (np->parent) 87 np = np->parent; 88 if (!of_property_read_u32(np, "#address-cells", &cells)) 89 return cells; 90 } while (np->parent); 91 /* No #address-cells property for the root node */ 92 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 93 } 94 EXPORT_SYMBOL(of_n_addr_cells); 95 96 int of_n_size_cells(struct device_node *np) 97 { 98 u32 cells; 99 100 do { 101 if (np->parent) 102 np = np->parent; 103 if (!of_property_read_u32(np, "#size-cells", &cells)) 104 return cells; 105 } while (np->parent); 106 /* No #size-cells property for the root node */ 107 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 108 } 109 EXPORT_SYMBOL(of_n_size_cells); 110 111 #ifdef CONFIG_NUMA 112 int __weak of_node_to_nid(struct device_node *np) 113 { 114 return NUMA_NO_NODE; 115 } 116 #endif 117 118 static struct device_node **phandle_cache; 119 static u32 phandle_cache_mask; 120 121 /* 122 * Assumptions behind phandle_cache implementation: 123 * - phandle property values are in a contiguous range of 1..n 124 * 125 * If the assumptions do not hold, then 126 * - the phandle lookup overhead reduction provided by the cache 127 * will likely be less 128 */ 129 void of_populate_phandle_cache(void) 130 { 131 unsigned long flags; 132 u32 cache_entries; 133 struct device_node *np; 134 u32 phandles = 0; 135 136 raw_spin_lock_irqsave(&devtree_lock, flags); 137 138 kfree(phandle_cache); 139 phandle_cache = NULL; 140 141 for_each_of_allnodes(np) 142 if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL) 143 phandles++; 144 145 if (!phandles) 146 goto out; 147 148 cache_entries = roundup_pow_of_two(phandles); 149 phandle_cache_mask = cache_entries - 1; 150 151 phandle_cache = kcalloc(cache_entries, sizeof(*phandle_cache), 152 GFP_ATOMIC); 153 if (!phandle_cache) 154 goto out; 155 156 for_each_of_allnodes(np) 157 if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL) 158 phandle_cache[np->phandle & phandle_cache_mask] = np; 159 160 out: 161 raw_spin_unlock_irqrestore(&devtree_lock, flags); 162 } 163 164 int of_free_phandle_cache(void) 165 { 166 unsigned long flags; 167 168 raw_spin_lock_irqsave(&devtree_lock, flags); 169 170 kfree(phandle_cache); 171 phandle_cache = NULL; 172 173 raw_spin_unlock_irqrestore(&devtree_lock, flags); 174 175 return 0; 176 } 177 #if !defined(CONFIG_MODULES) 178 late_initcall_sync(of_free_phandle_cache); 179 #endif 180 181 void __init of_core_init(void) 182 { 183 struct device_node *np; 184 185 of_populate_phandle_cache(); 186 187 /* Create the kset, and register existing nodes */ 188 mutex_lock(&of_mutex); 189 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj); 190 if (!of_kset) { 191 mutex_unlock(&of_mutex); 192 pr_err("failed to register existing nodes\n"); 193 return; 194 } 195 for_each_of_allnodes(np) 196 __of_attach_node_sysfs(np); 197 mutex_unlock(&of_mutex); 198 199 /* Symlink in /proc as required by userspace ABI */ 200 if (of_root) 201 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base"); 202 } 203 204 static struct property *__of_find_property(const struct device_node *np, 205 const char *name, int *lenp) 206 { 207 struct property *pp; 208 209 if (!np) 210 return NULL; 211 212 for (pp = np->properties; pp; pp = pp->next) { 213 if (of_prop_cmp(pp->name, name) == 0) { 214 if (lenp) 215 *lenp = pp->length; 216 break; 217 } 218 } 219 220 return pp; 221 } 222 223 struct property *of_find_property(const struct device_node *np, 224 const char *name, 225 int *lenp) 226 { 227 struct property *pp; 228 unsigned long flags; 229 230 raw_spin_lock_irqsave(&devtree_lock, flags); 231 pp = __of_find_property(np, name, lenp); 232 raw_spin_unlock_irqrestore(&devtree_lock, flags); 233 234 return pp; 235 } 236 EXPORT_SYMBOL(of_find_property); 237 238 struct device_node *__of_find_all_nodes(struct device_node *prev) 239 { 240 struct device_node *np; 241 if (!prev) { 242 np = of_root; 243 } else if (prev->child) { 244 np = prev->child; 245 } else { 246 /* Walk back up looking for a sibling, or the end of the structure */ 247 np = prev; 248 while (np->parent && !np->sibling) 249 np = np->parent; 250 np = np->sibling; /* Might be null at the end of the tree */ 251 } 252 return np; 253 } 254 255 /** 256 * of_find_all_nodes - Get next node in global list 257 * @prev: Previous node or NULL to start iteration 258 * of_node_put() will be called on it 259 * 260 * Returns a node pointer with refcount incremented, use 261 * of_node_put() on it when done. 262 */ 263 struct device_node *of_find_all_nodes(struct device_node *prev) 264 { 265 struct device_node *np; 266 unsigned long flags; 267 268 raw_spin_lock_irqsave(&devtree_lock, flags); 269 np = __of_find_all_nodes(prev); 270 of_node_get(np); 271 of_node_put(prev); 272 raw_spin_unlock_irqrestore(&devtree_lock, flags); 273 return np; 274 } 275 EXPORT_SYMBOL(of_find_all_nodes); 276 277 /* 278 * Find a property with a given name for a given node 279 * and return the value. 280 */ 281 const void *__of_get_property(const struct device_node *np, 282 const char *name, int *lenp) 283 { 284 struct property *pp = __of_find_property(np, name, lenp); 285 286 return pp ? pp->value : NULL; 287 } 288 289 /* 290 * Find a property with a given name for a given node 291 * and return the value. 292 */ 293 const void *of_get_property(const struct device_node *np, const char *name, 294 int *lenp) 295 { 296 struct property *pp = of_find_property(np, name, lenp); 297 298 return pp ? pp->value : NULL; 299 } 300 EXPORT_SYMBOL(of_get_property); 301 302 /* 303 * arch_match_cpu_phys_id - Match the given logical CPU and physical id 304 * 305 * @cpu: logical cpu index of a core/thread 306 * @phys_id: physical identifier of a core/thread 307 * 308 * CPU logical to physical index mapping is architecture specific. 309 * However this __weak function provides a default match of physical 310 * id to logical cpu index. phys_id provided here is usually values read 311 * from the device tree which must match the hardware internal registers. 312 * 313 * Returns true if the physical identifier and the logical cpu index 314 * correspond to the same core/thread, false otherwise. 315 */ 316 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id) 317 { 318 return (u32)phys_id == cpu; 319 } 320 321 /** 322 * Checks if the given "prop_name" property holds the physical id of the 323 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not 324 * NULL, local thread number within the core is returned in it. 325 */ 326 static bool __of_find_n_match_cpu_property(struct device_node *cpun, 327 const char *prop_name, int cpu, unsigned int *thread) 328 { 329 const __be32 *cell; 330 int ac, prop_len, tid; 331 u64 hwid; 332 333 ac = of_n_addr_cells(cpun); 334 cell = of_get_property(cpun, prop_name, &prop_len); 335 if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0)) 336 return true; 337 if (!cell || !ac) 338 return false; 339 prop_len /= sizeof(*cell) * ac; 340 for (tid = 0; tid < prop_len; tid++) { 341 hwid = of_read_number(cell, ac); 342 if (arch_match_cpu_phys_id(cpu, hwid)) { 343 if (thread) 344 *thread = tid; 345 return true; 346 } 347 cell += ac; 348 } 349 return false; 350 } 351 352 /* 353 * arch_find_n_match_cpu_physical_id - See if the given device node is 354 * for the cpu corresponding to logical cpu 'cpu'. Return true if so, 355 * else false. If 'thread' is non-NULL, the local thread number within the 356 * core is returned in it. 357 */ 358 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun, 359 int cpu, unsigned int *thread) 360 { 361 /* Check for non-standard "ibm,ppc-interrupt-server#s" property 362 * for thread ids on PowerPC. If it doesn't exist fallback to 363 * standard "reg" property. 364 */ 365 if (IS_ENABLED(CONFIG_PPC) && 366 __of_find_n_match_cpu_property(cpun, 367 "ibm,ppc-interrupt-server#s", 368 cpu, thread)) 369 return true; 370 371 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread); 372 } 373 374 /** 375 * of_get_cpu_node - Get device node associated with the given logical CPU 376 * 377 * @cpu: CPU number(logical index) for which device node is required 378 * @thread: if not NULL, local thread number within the physical core is 379 * returned 380 * 381 * The main purpose of this function is to retrieve the device node for the 382 * given logical CPU index. It should be used to initialize the of_node in 383 * cpu device. Once of_node in cpu device is populated, all the further 384 * references can use that instead. 385 * 386 * CPU logical to physical index mapping is architecture specific and is built 387 * before booting secondary cores. This function uses arch_match_cpu_phys_id 388 * which can be overridden by architecture specific implementation. 389 * 390 * Returns a node pointer for the logical cpu with refcount incremented, use 391 * of_node_put() on it when done. Returns NULL if not found. 392 */ 393 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread) 394 { 395 struct device_node *cpun; 396 397 for_each_of_cpu_node(cpun) { 398 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread)) 399 return cpun; 400 } 401 return NULL; 402 } 403 EXPORT_SYMBOL(of_get_cpu_node); 404 405 /** 406 * of_cpu_node_to_id: Get the logical CPU number for a given device_node 407 * 408 * @cpu_node: Pointer to the device_node for CPU. 409 * 410 * Returns the logical CPU number of the given CPU device_node. 411 * Returns -ENODEV if the CPU is not found. 412 */ 413 int of_cpu_node_to_id(struct device_node *cpu_node) 414 { 415 int cpu; 416 bool found = false; 417 struct device_node *np; 418 419 for_each_possible_cpu(cpu) { 420 np = of_cpu_device_node_get(cpu); 421 found = (cpu_node == np); 422 of_node_put(np); 423 if (found) 424 return cpu; 425 } 426 427 return -ENODEV; 428 } 429 EXPORT_SYMBOL(of_cpu_node_to_id); 430 431 /** 432 * __of_device_is_compatible() - Check if the node matches given constraints 433 * @device: pointer to node 434 * @compat: required compatible string, NULL or "" for any match 435 * @type: required device_type value, NULL or "" for any match 436 * @name: required node name, NULL or "" for any match 437 * 438 * Checks if the given @compat, @type and @name strings match the 439 * properties of the given @device. A constraints can be skipped by 440 * passing NULL or an empty string as the constraint. 441 * 442 * Returns 0 for no match, and a positive integer on match. The return 443 * value is a relative score with larger values indicating better 444 * matches. The score is weighted for the most specific compatible value 445 * to get the highest score. Matching type is next, followed by matching 446 * name. Practically speaking, this results in the following priority 447 * order for matches: 448 * 449 * 1. specific compatible && type && name 450 * 2. specific compatible && type 451 * 3. specific compatible && name 452 * 4. specific compatible 453 * 5. general compatible && type && name 454 * 6. general compatible && type 455 * 7. general compatible && name 456 * 8. general compatible 457 * 9. type && name 458 * 10. type 459 * 11. name 460 */ 461 static int __of_device_is_compatible(const struct device_node *device, 462 const char *compat, const char *type, const char *name) 463 { 464 struct property *prop; 465 const char *cp; 466 int index = 0, score = 0; 467 468 /* Compatible match has highest priority */ 469 if (compat && compat[0]) { 470 prop = __of_find_property(device, "compatible", NULL); 471 for (cp = of_prop_next_string(prop, NULL); cp; 472 cp = of_prop_next_string(prop, cp), index++) { 473 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) { 474 score = INT_MAX/2 - (index << 2); 475 break; 476 } 477 } 478 if (!score) 479 return 0; 480 } 481 482 /* Matching type is better than matching name */ 483 if (type && type[0]) { 484 if (!device->type || of_node_cmp(type, device->type)) 485 return 0; 486 score += 2; 487 } 488 489 /* Matching name is a bit better than not */ 490 if (name && name[0]) { 491 if (!device->name || of_node_cmp(name, device->name)) 492 return 0; 493 score++; 494 } 495 496 return score; 497 } 498 499 /** Checks if the given "compat" string matches one of the strings in 500 * the device's "compatible" property 501 */ 502 int of_device_is_compatible(const struct device_node *device, 503 const char *compat) 504 { 505 unsigned long flags; 506 int res; 507 508 raw_spin_lock_irqsave(&devtree_lock, flags); 509 res = __of_device_is_compatible(device, compat, NULL, NULL); 510 raw_spin_unlock_irqrestore(&devtree_lock, flags); 511 return res; 512 } 513 EXPORT_SYMBOL(of_device_is_compatible); 514 515 /** Checks if the device is compatible with any of the entries in 516 * a NULL terminated array of strings. Returns the best match 517 * score or 0. 518 */ 519 int of_device_compatible_match(struct device_node *device, 520 const char *const *compat) 521 { 522 unsigned int tmp, score = 0; 523 524 if (!compat) 525 return 0; 526 527 while (*compat) { 528 tmp = of_device_is_compatible(device, *compat); 529 if (tmp > score) 530 score = tmp; 531 compat++; 532 } 533 534 return score; 535 } 536 537 /** 538 * of_machine_is_compatible - Test root of device tree for a given compatible value 539 * @compat: compatible string to look for in root node's compatible property. 540 * 541 * Returns a positive integer if the root node has the given value in its 542 * compatible property. 543 */ 544 int of_machine_is_compatible(const char *compat) 545 { 546 struct device_node *root; 547 int rc = 0; 548 549 root = of_find_node_by_path("/"); 550 if (root) { 551 rc = of_device_is_compatible(root, compat); 552 of_node_put(root); 553 } 554 return rc; 555 } 556 EXPORT_SYMBOL(of_machine_is_compatible); 557 558 /** 559 * __of_device_is_available - check if a device is available for use 560 * 561 * @device: Node to check for availability, with locks already held 562 * 563 * Returns true if the status property is absent or set to "okay" or "ok", 564 * false otherwise 565 */ 566 static bool __of_device_is_available(const struct device_node *device) 567 { 568 const char *status; 569 int statlen; 570 571 if (!device) 572 return false; 573 574 status = __of_get_property(device, "status", &statlen); 575 if (status == NULL) 576 return true; 577 578 if (statlen > 0) { 579 if (!strcmp(status, "okay") || !strcmp(status, "ok")) 580 return true; 581 } 582 583 return false; 584 } 585 586 /** 587 * of_device_is_available - check if a device is available for use 588 * 589 * @device: Node to check for availability 590 * 591 * Returns true if the status property is absent or set to "okay" or "ok", 592 * false otherwise 593 */ 594 bool of_device_is_available(const struct device_node *device) 595 { 596 unsigned long flags; 597 bool res; 598 599 raw_spin_lock_irqsave(&devtree_lock, flags); 600 res = __of_device_is_available(device); 601 raw_spin_unlock_irqrestore(&devtree_lock, flags); 602 return res; 603 604 } 605 EXPORT_SYMBOL(of_device_is_available); 606 607 /** 608 * of_device_is_big_endian - check if a device has BE registers 609 * 610 * @device: Node to check for endianness 611 * 612 * Returns true if the device has a "big-endian" property, or if the kernel 613 * was compiled for BE *and* the device has a "native-endian" property. 614 * Returns false otherwise. 615 * 616 * Callers would nominally use ioread32be/iowrite32be if 617 * of_device_is_big_endian() == true, or readl/writel otherwise. 618 */ 619 bool of_device_is_big_endian(const struct device_node *device) 620 { 621 if (of_property_read_bool(device, "big-endian")) 622 return true; 623 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) && 624 of_property_read_bool(device, "native-endian")) 625 return true; 626 return false; 627 } 628 EXPORT_SYMBOL(of_device_is_big_endian); 629 630 /** 631 * of_get_parent - Get a node's parent if any 632 * @node: Node to get parent 633 * 634 * Returns a node pointer with refcount incremented, use 635 * of_node_put() on it when done. 636 */ 637 struct device_node *of_get_parent(const struct device_node *node) 638 { 639 struct device_node *np; 640 unsigned long flags; 641 642 if (!node) 643 return NULL; 644 645 raw_spin_lock_irqsave(&devtree_lock, flags); 646 np = of_node_get(node->parent); 647 raw_spin_unlock_irqrestore(&devtree_lock, flags); 648 return np; 649 } 650 EXPORT_SYMBOL(of_get_parent); 651 652 /** 653 * of_get_next_parent - Iterate to a node's parent 654 * @node: Node to get parent of 655 * 656 * This is like of_get_parent() except that it drops the 657 * refcount on the passed node, making it suitable for iterating 658 * through a node's parents. 659 * 660 * Returns a node pointer with refcount incremented, use 661 * of_node_put() on it when done. 662 */ 663 struct device_node *of_get_next_parent(struct device_node *node) 664 { 665 struct device_node *parent; 666 unsigned long flags; 667 668 if (!node) 669 return NULL; 670 671 raw_spin_lock_irqsave(&devtree_lock, flags); 672 parent = of_node_get(node->parent); 673 of_node_put(node); 674 raw_spin_unlock_irqrestore(&devtree_lock, flags); 675 return parent; 676 } 677 EXPORT_SYMBOL(of_get_next_parent); 678 679 static struct device_node *__of_get_next_child(const struct device_node *node, 680 struct device_node *prev) 681 { 682 struct device_node *next; 683 684 if (!node) 685 return NULL; 686 687 next = prev ? prev->sibling : node->child; 688 for (; next; next = next->sibling) 689 if (of_node_get(next)) 690 break; 691 of_node_put(prev); 692 return next; 693 } 694 #define __for_each_child_of_node(parent, child) \ 695 for (child = __of_get_next_child(parent, NULL); child != NULL; \ 696 child = __of_get_next_child(parent, child)) 697 698 /** 699 * of_get_next_child - Iterate a node childs 700 * @node: parent node 701 * @prev: previous child of the parent node, or NULL to get first 702 * 703 * Returns a node pointer with refcount incremented, use of_node_put() on 704 * it when done. Returns NULL when prev is the last child. Decrements the 705 * refcount of prev. 706 */ 707 struct device_node *of_get_next_child(const struct device_node *node, 708 struct device_node *prev) 709 { 710 struct device_node *next; 711 unsigned long flags; 712 713 raw_spin_lock_irqsave(&devtree_lock, flags); 714 next = __of_get_next_child(node, prev); 715 raw_spin_unlock_irqrestore(&devtree_lock, flags); 716 return next; 717 } 718 EXPORT_SYMBOL(of_get_next_child); 719 720 /** 721 * of_get_next_available_child - Find the next available child node 722 * @node: parent node 723 * @prev: previous child of the parent node, or NULL to get first 724 * 725 * This function is like of_get_next_child(), except that it 726 * automatically skips any disabled nodes (i.e. status = "disabled"). 727 */ 728 struct device_node *of_get_next_available_child(const struct device_node *node, 729 struct device_node *prev) 730 { 731 struct device_node *next; 732 unsigned long flags; 733 734 if (!node) 735 return NULL; 736 737 raw_spin_lock_irqsave(&devtree_lock, flags); 738 next = prev ? prev->sibling : node->child; 739 for (; next; next = next->sibling) { 740 if (!__of_device_is_available(next)) 741 continue; 742 if (of_node_get(next)) 743 break; 744 } 745 of_node_put(prev); 746 raw_spin_unlock_irqrestore(&devtree_lock, flags); 747 return next; 748 } 749 EXPORT_SYMBOL(of_get_next_available_child); 750 751 /** 752 * of_get_next_cpu_node - Iterate on cpu nodes 753 * @prev: previous child of the /cpus node, or NULL to get first 754 * 755 * Returns a cpu node pointer with refcount incremented, use of_node_put() 756 * on it when done. Returns NULL when prev is the last child. Decrements 757 * the refcount of prev. 758 */ 759 struct device_node *of_get_next_cpu_node(struct device_node *prev) 760 { 761 struct device_node *next = NULL; 762 unsigned long flags; 763 struct device_node *node; 764 765 if (!prev) 766 node = of_find_node_by_path("/cpus"); 767 768 raw_spin_lock_irqsave(&devtree_lock, flags); 769 if (prev) 770 next = prev->sibling; 771 else if (node) { 772 next = node->child; 773 of_node_put(node); 774 } 775 for (; next; next = next->sibling) { 776 if (!(of_node_name_eq(next, "cpu") || 777 (next->type && !of_node_cmp(next->type, "cpu")))) 778 continue; 779 if (!__of_device_is_available(next)) 780 continue; 781 if (of_node_get(next)) 782 break; 783 } 784 of_node_put(prev); 785 raw_spin_unlock_irqrestore(&devtree_lock, flags); 786 return next; 787 } 788 EXPORT_SYMBOL(of_get_next_cpu_node); 789 790 /** 791 * of_get_compatible_child - Find compatible child node 792 * @parent: parent node 793 * @compatible: compatible string 794 * 795 * Lookup child node whose compatible property contains the given compatible 796 * string. 797 * 798 * Returns a node pointer with refcount incremented, use of_node_put() on it 799 * when done; or NULL if not found. 800 */ 801 struct device_node *of_get_compatible_child(const struct device_node *parent, 802 const char *compatible) 803 { 804 struct device_node *child; 805 806 for_each_child_of_node(parent, child) { 807 if (of_device_is_compatible(child, compatible)) 808 break; 809 } 810 811 return child; 812 } 813 EXPORT_SYMBOL(of_get_compatible_child); 814 815 /** 816 * of_get_child_by_name - Find the child node by name for a given parent 817 * @node: parent node 818 * @name: child name to look for. 819 * 820 * This function looks for child node for given matching name 821 * 822 * Returns a node pointer if found, with refcount incremented, use 823 * of_node_put() on it when done. 824 * Returns NULL if node is not found. 825 */ 826 struct device_node *of_get_child_by_name(const struct device_node *node, 827 const char *name) 828 { 829 struct device_node *child; 830 831 for_each_child_of_node(node, child) 832 if (child->name && (of_node_cmp(child->name, name) == 0)) 833 break; 834 return child; 835 } 836 EXPORT_SYMBOL(of_get_child_by_name); 837 838 struct device_node *__of_find_node_by_path(struct device_node *parent, 839 const char *path) 840 { 841 struct device_node *child; 842 int len; 843 844 len = strcspn(path, "/:"); 845 if (!len) 846 return NULL; 847 848 __for_each_child_of_node(parent, child) { 849 const char *name = kbasename(child->full_name); 850 if (strncmp(path, name, len) == 0 && (strlen(name) == len)) 851 return child; 852 } 853 return NULL; 854 } 855 856 struct device_node *__of_find_node_by_full_path(struct device_node *node, 857 const char *path) 858 { 859 const char *separator = strchr(path, ':'); 860 861 while (node && *path == '/') { 862 struct device_node *tmp = node; 863 864 path++; /* Increment past '/' delimiter */ 865 node = __of_find_node_by_path(node, path); 866 of_node_put(tmp); 867 path = strchrnul(path, '/'); 868 if (separator && separator < path) 869 break; 870 } 871 return node; 872 } 873 874 /** 875 * of_find_node_opts_by_path - Find a node matching a full OF path 876 * @path: Either the full path to match, or if the path does not 877 * start with '/', the name of a property of the /aliases 878 * node (an alias). In the case of an alias, the node 879 * matching the alias' value will be returned. 880 * @opts: Address of a pointer into which to store the start of 881 * an options string appended to the end of the path with 882 * a ':' separator. 883 * 884 * Valid paths: 885 * /foo/bar Full path 886 * foo Valid alias 887 * foo/bar Valid alias + relative path 888 * 889 * Returns a node pointer with refcount incremented, use 890 * of_node_put() on it when done. 891 */ 892 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts) 893 { 894 struct device_node *np = NULL; 895 struct property *pp; 896 unsigned long flags; 897 const char *separator = strchr(path, ':'); 898 899 if (opts) 900 *opts = separator ? separator + 1 : NULL; 901 902 if (strcmp(path, "/") == 0) 903 return of_node_get(of_root); 904 905 /* The path could begin with an alias */ 906 if (*path != '/') { 907 int len; 908 const char *p = separator; 909 910 if (!p) 911 p = strchrnul(path, '/'); 912 len = p - path; 913 914 /* of_aliases must not be NULL */ 915 if (!of_aliases) 916 return NULL; 917 918 for_each_property_of_node(of_aliases, pp) { 919 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) { 920 np = of_find_node_by_path(pp->value); 921 break; 922 } 923 } 924 if (!np) 925 return NULL; 926 path = p; 927 } 928 929 /* Step down the tree matching path components */ 930 raw_spin_lock_irqsave(&devtree_lock, flags); 931 if (!np) 932 np = of_node_get(of_root); 933 np = __of_find_node_by_full_path(np, path); 934 raw_spin_unlock_irqrestore(&devtree_lock, flags); 935 return np; 936 } 937 EXPORT_SYMBOL(of_find_node_opts_by_path); 938 939 /** 940 * of_find_node_by_name - Find a node by its "name" property 941 * @from: The node to start searching from or NULL; the node 942 * you pass will not be searched, only the next one 943 * will. Typically, you pass what the previous call 944 * returned. of_node_put() will be called on @from. 945 * @name: The name string to match against 946 * 947 * Returns a node pointer with refcount incremented, use 948 * of_node_put() on it when done. 949 */ 950 struct device_node *of_find_node_by_name(struct device_node *from, 951 const char *name) 952 { 953 struct device_node *np; 954 unsigned long flags; 955 956 raw_spin_lock_irqsave(&devtree_lock, flags); 957 for_each_of_allnodes_from(from, np) 958 if (np->name && (of_node_cmp(np->name, name) == 0) 959 && of_node_get(np)) 960 break; 961 of_node_put(from); 962 raw_spin_unlock_irqrestore(&devtree_lock, flags); 963 return np; 964 } 965 EXPORT_SYMBOL(of_find_node_by_name); 966 967 /** 968 * of_find_node_by_type - Find a node by its "device_type" property 969 * @from: The node to start searching from, or NULL to start searching 970 * the entire device tree. The node you pass will not be 971 * searched, only the next one will; typically, you pass 972 * what the previous call returned. of_node_put() will be 973 * called on from for you. 974 * @type: The type string to match against 975 * 976 * Returns a node pointer with refcount incremented, use 977 * of_node_put() on it when done. 978 */ 979 struct device_node *of_find_node_by_type(struct device_node *from, 980 const char *type) 981 { 982 struct device_node *np; 983 unsigned long flags; 984 985 raw_spin_lock_irqsave(&devtree_lock, flags); 986 for_each_of_allnodes_from(from, np) 987 if (np->type && (of_node_cmp(np->type, type) == 0) 988 && of_node_get(np)) 989 break; 990 of_node_put(from); 991 raw_spin_unlock_irqrestore(&devtree_lock, flags); 992 return np; 993 } 994 EXPORT_SYMBOL(of_find_node_by_type); 995 996 /** 997 * of_find_compatible_node - Find a node based on type and one of the 998 * tokens in its "compatible" property 999 * @from: The node to start searching from or NULL, the node 1000 * you pass will not be searched, only the next one 1001 * will; typically, you pass what the previous call 1002 * returned. of_node_put() will be called on it 1003 * @type: The type string to match "device_type" or NULL to ignore 1004 * @compatible: The string to match to one of the tokens in the device 1005 * "compatible" list. 1006 * 1007 * Returns a node pointer with refcount incremented, use 1008 * of_node_put() on it when done. 1009 */ 1010 struct device_node *of_find_compatible_node(struct device_node *from, 1011 const char *type, const char *compatible) 1012 { 1013 struct device_node *np; 1014 unsigned long flags; 1015 1016 raw_spin_lock_irqsave(&devtree_lock, flags); 1017 for_each_of_allnodes_from(from, np) 1018 if (__of_device_is_compatible(np, compatible, type, NULL) && 1019 of_node_get(np)) 1020 break; 1021 of_node_put(from); 1022 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1023 return np; 1024 } 1025 EXPORT_SYMBOL(of_find_compatible_node); 1026 1027 /** 1028 * of_find_node_with_property - Find a node which has a property with 1029 * the given name. 1030 * @from: The node to start searching from or NULL, the node 1031 * you pass will not be searched, only the next one 1032 * will; typically, you pass what the previous call 1033 * returned. of_node_put() will be called on it 1034 * @prop_name: The name of the property to look for. 1035 * 1036 * Returns a node pointer with refcount incremented, use 1037 * of_node_put() on it when done. 1038 */ 1039 struct device_node *of_find_node_with_property(struct device_node *from, 1040 const char *prop_name) 1041 { 1042 struct device_node *np; 1043 struct property *pp; 1044 unsigned long flags; 1045 1046 raw_spin_lock_irqsave(&devtree_lock, flags); 1047 for_each_of_allnodes_from(from, np) { 1048 for (pp = np->properties; pp; pp = pp->next) { 1049 if (of_prop_cmp(pp->name, prop_name) == 0) { 1050 of_node_get(np); 1051 goto out; 1052 } 1053 } 1054 } 1055 out: 1056 of_node_put(from); 1057 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1058 return np; 1059 } 1060 EXPORT_SYMBOL(of_find_node_with_property); 1061 1062 static 1063 const struct of_device_id *__of_match_node(const struct of_device_id *matches, 1064 const struct device_node *node) 1065 { 1066 const struct of_device_id *best_match = NULL; 1067 int score, best_score = 0; 1068 1069 if (!matches) 1070 return NULL; 1071 1072 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) { 1073 score = __of_device_is_compatible(node, matches->compatible, 1074 matches->type, matches->name); 1075 if (score > best_score) { 1076 best_match = matches; 1077 best_score = score; 1078 } 1079 } 1080 1081 return best_match; 1082 } 1083 1084 /** 1085 * of_match_node - Tell if a device_node has a matching of_match structure 1086 * @matches: array of of device match structures to search in 1087 * @node: the of device structure to match against 1088 * 1089 * Low level utility function used by device matching. 1090 */ 1091 const struct of_device_id *of_match_node(const struct of_device_id *matches, 1092 const struct device_node *node) 1093 { 1094 const struct of_device_id *match; 1095 unsigned long flags; 1096 1097 raw_spin_lock_irqsave(&devtree_lock, flags); 1098 match = __of_match_node(matches, node); 1099 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1100 return match; 1101 } 1102 EXPORT_SYMBOL(of_match_node); 1103 1104 /** 1105 * of_find_matching_node_and_match - Find a node based on an of_device_id 1106 * match table. 1107 * @from: The node to start searching from or NULL, the node 1108 * you pass will not be searched, only the next one 1109 * will; typically, you pass what the previous call 1110 * returned. of_node_put() will be called on it 1111 * @matches: array of of device match structures to search in 1112 * @match Updated to point at the matches entry which matched 1113 * 1114 * Returns a node pointer with refcount incremented, use 1115 * of_node_put() on it when done. 1116 */ 1117 struct device_node *of_find_matching_node_and_match(struct device_node *from, 1118 const struct of_device_id *matches, 1119 const struct of_device_id **match) 1120 { 1121 struct device_node *np; 1122 const struct of_device_id *m; 1123 unsigned long flags; 1124 1125 if (match) 1126 *match = NULL; 1127 1128 raw_spin_lock_irqsave(&devtree_lock, flags); 1129 for_each_of_allnodes_from(from, np) { 1130 m = __of_match_node(matches, np); 1131 if (m && of_node_get(np)) { 1132 if (match) 1133 *match = m; 1134 break; 1135 } 1136 } 1137 of_node_put(from); 1138 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1139 return np; 1140 } 1141 EXPORT_SYMBOL(of_find_matching_node_and_match); 1142 1143 /** 1144 * of_modalias_node - Lookup appropriate modalias for a device node 1145 * @node: pointer to a device tree node 1146 * @modalias: Pointer to buffer that modalias value will be copied into 1147 * @len: Length of modalias value 1148 * 1149 * Based on the value of the compatible property, this routine will attempt 1150 * to choose an appropriate modalias value for a particular device tree node. 1151 * It does this by stripping the manufacturer prefix (as delimited by a ',') 1152 * from the first entry in the compatible list property. 1153 * 1154 * This routine returns 0 on success, <0 on failure. 1155 */ 1156 int of_modalias_node(struct device_node *node, char *modalias, int len) 1157 { 1158 const char *compatible, *p; 1159 int cplen; 1160 1161 compatible = of_get_property(node, "compatible", &cplen); 1162 if (!compatible || strlen(compatible) > cplen) 1163 return -ENODEV; 1164 p = strchr(compatible, ','); 1165 strlcpy(modalias, p ? p + 1 : compatible, len); 1166 return 0; 1167 } 1168 EXPORT_SYMBOL_GPL(of_modalias_node); 1169 1170 /** 1171 * of_find_node_by_phandle - Find a node given a phandle 1172 * @handle: phandle of the node to find 1173 * 1174 * Returns a node pointer with refcount incremented, use 1175 * of_node_put() on it when done. 1176 */ 1177 struct device_node *of_find_node_by_phandle(phandle handle) 1178 { 1179 struct device_node *np = NULL; 1180 unsigned long flags; 1181 phandle masked_handle; 1182 1183 if (!handle) 1184 return NULL; 1185 1186 raw_spin_lock_irqsave(&devtree_lock, flags); 1187 1188 masked_handle = handle & phandle_cache_mask; 1189 1190 if (phandle_cache) { 1191 if (phandle_cache[masked_handle] && 1192 handle == phandle_cache[masked_handle]->phandle) 1193 np = phandle_cache[masked_handle]; 1194 } 1195 1196 if (!np) { 1197 for_each_of_allnodes(np) 1198 if (np->phandle == handle) { 1199 if (phandle_cache) 1200 phandle_cache[masked_handle] = np; 1201 break; 1202 } 1203 } 1204 1205 of_node_get(np); 1206 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1207 return np; 1208 } 1209 EXPORT_SYMBOL(of_find_node_by_phandle); 1210 1211 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args) 1212 { 1213 int i; 1214 printk("%s %pOF", msg, args->np); 1215 for (i = 0; i < args->args_count; i++) { 1216 const char delim = i ? ',' : ':'; 1217 1218 pr_cont("%c%08x", delim, args->args[i]); 1219 } 1220 pr_cont("\n"); 1221 } 1222 1223 int of_phandle_iterator_init(struct of_phandle_iterator *it, 1224 const struct device_node *np, 1225 const char *list_name, 1226 const char *cells_name, 1227 int cell_count) 1228 { 1229 const __be32 *list; 1230 int size; 1231 1232 memset(it, 0, sizeof(*it)); 1233 1234 list = of_get_property(np, list_name, &size); 1235 if (!list) 1236 return -ENOENT; 1237 1238 it->cells_name = cells_name; 1239 it->cell_count = cell_count; 1240 it->parent = np; 1241 it->list_end = list + size / sizeof(*list); 1242 it->phandle_end = list; 1243 it->cur = list; 1244 1245 return 0; 1246 } 1247 EXPORT_SYMBOL_GPL(of_phandle_iterator_init); 1248 1249 int of_phandle_iterator_next(struct of_phandle_iterator *it) 1250 { 1251 uint32_t count = 0; 1252 1253 if (it->node) { 1254 of_node_put(it->node); 1255 it->node = NULL; 1256 } 1257 1258 if (!it->cur || it->phandle_end >= it->list_end) 1259 return -ENOENT; 1260 1261 it->cur = it->phandle_end; 1262 1263 /* If phandle is 0, then it is an empty entry with no arguments. */ 1264 it->phandle = be32_to_cpup(it->cur++); 1265 1266 if (it->phandle) { 1267 1268 /* 1269 * Find the provider node and parse the #*-cells property to 1270 * determine the argument length. 1271 */ 1272 it->node = of_find_node_by_phandle(it->phandle); 1273 1274 if (it->cells_name) { 1275 if (!it->node) { 1276 pr_err("%pOF: could not find phandle\n", 1277 it->parent); 1278 goto err; 1279 } 1280 1281 if (of_property_read_u32(it->node, it->cells_name, 1282 &count)) { 1283 pr_err("%pOF: could not get %s for %pOF\n", 1284 it->parent, 1285 it->cells_name, 1286 it->node); 1287 goto err; 1288 } 1289 } else { 1290 count = it->cell_count; 1291 } 1292 1293 /* 1294 * Make sure that the arguments actually fit in the remaining 1295 * property data length 1296 */ 1297 if (it->cur + count > it->list_end) { 1298 pr_err("%pOF: arguments longer than property\n", 1299 it->parent); 1300 goto err; 1301 } 1302 } 1303 1304 it->phandle_end = it->cur + count; 1305 it->cur_count = count; 1306 1307 return 0; 1308 1309 err: 1310 if (it->node) { 1311 of_node_put(it->node); 1312 it->node = NULL; 1313 } 1314 1315 return -EINVAL; 1316 } 1317 EXPORT_SYMBOL_GPL(of_phandle_iterator_next); 1318 1319 int of_phandle_iterator_args(struct of_phandle_iterator *it, 1320 uint32_t *args, 1321 int size) 1322 { 1323 int i, count; 1324 1325 count = it->cur_count; 1326 1327 if (WARN_ON(size < count)) 1328 count = size; 1329 1330 for (i = 0; i < count; i++) 1331 args[i] = be32_to_cpup(it->cur++); 1332 1333 return count; 1334 } 1335 1336 static int __of_parse_phandle_with_args(const struct device_node *np, 1337 const char *list_name, 1338 const char *cells_name, 1339 int cell_count, int index, 1340 struct of_phandle_args *out_args) 1341 { 1342 struct of_phandle_iterator it; 1343 int rc, cur_index = 0; 1344 1345 /* Loop over the phandles until all the requested entry is found */ 1346 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) { 1347 /* 1348 * All of the error cases bail out of the loop, so at 1349 * this point, the parsing is successful. If the requested 1350 * index matches, then fill the out_args structure and return, 1351 * or return -ENOENT for an empty entry. 1352 */ 1353 rc = -ENOENT; 1354 if (cur_index == index) { 1355 if (!it.phandle) 1356 goto err; 1357 1358 if (out_args) { 1359 int c; 1360 1361 c = of_phandle_iterator_args(&it, 1362 out_args->args, 1363 MAX_PHANDLE_ARGS); 1364 out_args->np = it.node; 1365 out_args->args_count = c; 1366 } else { 1367 of_node_put(it.node); 1368 } 1369 1370 /* Found it! return success */ 1371 return 0; 1372 } 1373 1374 cur_index++; 1375 } 1376 1377 /* 1378 * Unlock node before returning result; will be one of: 1379 * -ENOENT : index is for empty phandle 1380 * -EINVAL : parsing error on data 1381 */ 1382 1383 err: 1384 of_node_put(it.node); 1385 return rc; 1386 } 1387 1388 /** 1389 * of_parse_phandle - Resolve a phandle property to a device_node pointer 1390 * @np: Pointer to device node holding phandle property 1391 * @phandle_name: Name of property holding a phandle value 1392 * @index: For properties holding a table of phandles, this is the index into 1393 * the table 1394 * 1395 * Returns the device_node pointer with refcount incremented. Use 1396 * of_node_put() on it when done. 1397 */ 1398 struct device_node *of_parse_phandle(const struct device_node *np, 1399 const char *phandle_name, int index) 1400 { 1401 struct of_phandle_args args; 1402 1403 if (index < 0) 1404 return NULL; 1405 1406 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0, 1407 index, &args)) 1408 return NULL; 1409 1410 return args.np; 1411 } 1412 EXPORT_SYMBOL(of_parse_phandle); 1413 1414 /** 1415 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list 1416 * @np: pointer to a device tree node containing a list 1417 * @list_name: property name that contains a list 1418 * @cells_name: property name that specifies phandles' arguments count 1419 * @index: index of a phandle to parse out 1420 * @out_args: optional pointer to output arguments structure (will be filled) 1421 * 1422 * This function is useful to parse lists of phandles and their arguments. 1423 * Returns 0 on success and fills out_args, on error returns appropriate 1424 * errno value. 1425 * 1426 * Caller is responsible to call of_node_put() on the returned out_args->np 1427 * pointer. 1428 * 1429 * Example: 1430 * 1431 * phandle1: node1 { 1432 * #list-cells = <2>; 1433 * } 1434 * 1435 * phandle2: node2 { 1436 * #list-cells = <1>; 1437 * } 1438 * 1439 * node3 { 1440 * list = <&phandle1 1 2 &phandle2 3>; 1441 * } 1442 * 1443 * To get a device_node of the `node2' node you may call this: 1444 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args); 1445 */ 1446 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name, 1447 const char *cells_name, int index, 1448 struct of_phandle_args *out_args) 1449 { 1450 if (index < 0) 1451 return -EINVAL; 1452 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, 1453 index, out_args); 1454 } 1455 EXPORT_SYMBOL(of_parse_phandle_with_args); 1456 1457 /** 1458 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it 1459 * @np: pointer to a device tree node containing a list 1460 * @list_name: property name that contains a list 1461 * @stem_name: stem of property names that specify phandles' arguments count 1462 * @index: index of a phandle to parse out 1463 * @out_args: optional pointer to output arguments structure (will be filled) 1464 * 1465 * This function is useful to parse lists of phandles and their arguments. 1466 * Returns 0 on success and fills out_args, on error returns appropriate errno 1467 * value. The difference between this function and of_parse_phandle_with_args() 1468 * is that this API remaps a phandle if the node the phandle points to has 1469 * a <@stem_name>-map property. 1470 * 1471 * Caller is responsible to call of_node_put() on the returned out_args->np 1472 * pointer. 1473 * 1474 * Example: 1475 * 1476 * phandle1: node1 { 1477 * #list-cells = <2>; 1478 * } 1479 * 1480 * phandle2: node2 { 1481 * #list-cells = <1>; 1482 * } 1483 * 1484 * phandle3: node3 { 1485 * #list-cells = <1>; 1486 * list-map = <0 &phandle2 3>, 1487 * <1 &phandle2 2>, 1488 * <2 &phandle1 5 1>; 1489 * list-map-mask = <0x3>; 1490 * }; 1491 * 1492 * node4 { 1493 * list = <&phandle1 1 2 &phandle3 0>; 1494 * } 1495 * 1496 * To get a device_node of the `node2' node you may call this: 1497 * of_parse_phandle_with_args(node4, "list", "list", 1, &args); 1498 */ 1499 int of_parse_phandle_with_args_map(const struct device_node *np, 1500 const char *list_name, 1501 const char *stem_name, 1502 int index, struct of_phandle_args *out_args) 1503 { 1504 char *cells_name, *map_name = NULL, *mask_name = NULL; 1505 char *pass_name = NULL; 1506 struct device_node *cur, *new = NULL; 1507 const __be32 *map, *mask, *pass; 1508 static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 }; 1509 static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 }; 1510 __be32 initial_match_array[MAX_PHANDLE_ARGS]; 1511 const __be32 *match_array = initial_match_array; 1512 int i, ret, map_len, match; 1513 u32 list_size, new_size; 1514 1515 if (index < 0) 1516 return -EINVAL; 1517 1518 cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name); 1519 if (!cells_name) 1520 return -ENOMEM; 1521 1522 ret = -ENOMEM; 1523 map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name); 1524 if (!map_name) 1525 goto free; 1526 1527 mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name); 1528 if (!mask_name) 1529 goto free; 1530 1531 pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name); 1532 if (!pass_name) 1533 goto free; 1534 1535 ret = __of_parse_phandle_with_args(np, list_name, cells_name, 0, index, 1536 out_args); 1537 if (ret) 1538 goto free; 1539 1540 /* Get the #<list>-cells property */ 1541 cur = out_args->np; 1542 ret = of_property_read_u32(cur, cells_name, &list_size); 1543 if (ret < 0) 1544 goto put; 1545 1546 /* Precalculate the match array - this simplifies match loop */ 1547 for (i = 0; i < list_size; i++) 1548 initial_match_array[i] = cpu_to_be32(out_args->args[i]); 1549 1550 ret = -EINVAL; 1551 while (cur) { 1552 /* Get the <list>-map property */ 1553 map = of_get_property(cur, map_name, &map_len); 1554 if (!map) { 1555 ret = 0; 1556 goto free; 1557 } 1558 map_len /= sizeof(u32); 1559 1560 /* Get the <list>-map-mask property (optional) */ 1561 mask = of_get_property(cur, mask_name, NULL); 1562 if (!mask) 1563 mask = dummy_mask; 1564 /* Iterate through <list>-map property */ 1565 match = 0; 1566 while (map_len > (list_size + 1) && !match) { 1567 /* Compare specifiers */ 1568 match = 1; 1569 for (i = 0; i < list_size; i++, map_len--) 1570 match &= !((match_array[i] ^ *map++) & mask[i]); 1571 1572 of_node_put(new); 1573 new = of_find_node_by_phandle(be32_to_cpup(map)); 1574 map++; 1575 map_len--; 1576 1577 /* Check if not found */ 1578 if (!new) 1579 goto put; 1580 1581 if (!of_device_is_available(new)) 1582 match = 0; 1583 1584 ret = of_property_read_u32(new, cells_name, &new_size); 1585 if (ret) 1586 goto put; 1587 1588 /* Check for malformed properties */ 1589 if (WARN_ON(new_size > MAX_PHANDLE_ARGS)) 1590 goto put; 1591 if (map_len < new_size) 1592 goto put; 1593 1594 /* Move forward by new node's #<list>-cells amount */ 1595 map += new_size; 1596 map_len -= new_size; 1597 } 1598 if (!match) 1599 goto put; 1600 1601 /* Get the <list>-map-pass-thru property (optional) */ 1602 pass = of_get_property(cur, pass_name, NULL); 1603 if (!pass) 1604 pass = dummy_pass; 1605 1606 /* 1607 * Successfully parsed a <list>-map translation; copy new 1608 * specifier into the out_args structure, keeping the 1609 * bits specified in <list>-map-pass-thru. 1610 */ 1611 match_array = map - new_size; 1612 for (i = 0; i < new_size; i++) { 1613 __be32 val = *(map - new_size + i); 1614 1615 if (i < list_size) { 1616 val &= ~pass[i]; 1617 val |= cpu_to_be32(out_args->args[i]) & pass[i]; 1618 } 1619 1620 out_args->args[i] = be32_to_cpu(val); 1621 } 1622 out_args->args_count = list_size = new_size; 1623 /* Iterate again with new provider */ 1624 out_args->np = new; 1625 of_node_put(cur); 1626 cur = new; 1627 } 1628 put: 1629 of_node_put(cur); 1630 of_node_put(new); 1631 free: 1632 kfree(mask_name); 1633 kfree(map_name); 1634 kfree(cells_name); 1635 kfree(pass_name); 1636 1637 return ret; 1638 } 1639 EXPORT_SYMBOL(of_parse_phandle_with_args_map); 1640 1641 /** 1642 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list 1643 * @np: pointer to a device tree node containing a list 1644 * @list_name: property name that contains a list 1645 * @cell_count: number of argument cells following the phandle 1646 * @index: index of a phandle to parse out 1647 * @out_args: optional pointer to output arguments structure (will be filled) 1648 * 1649 * This function is useful to parse lists of phandles and their arguments. 1650 * Returns 0 on success and fills out_args, on error returns appropriate 1651 * errno value. 1652 * 1653 * Caller is responsible to call of_node_put() on the returned out_args->np 1654 * pointer. 1655 * 1656 * Example: 1657 * 1658 * phandle1: node1 { 1659 * } 1660 * 1661 * phandle2: node2 { 1662 * } 1663 * 1664 * node3 { 1665 * list = <&phandle1 0 2 &phandle2 2 3>; 1666 * } 1667 * 1668 * To get a device_node of the `node2' node you may call this: 1669 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args); 1670 */ 1671 int of_parse_phandle_with_fixed_args(const struct device_node *np, 1672 const char *list_name, int cell_count, 1673 int index, struct of_phandle_args *out_args) 1674 { 1675 if (index < 0) 1676 return -EINVAL; 1677 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count, 1678 index, out_args); 1679 } 1680 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args); 1681 1682 /** 1683 * of_count_phandle_with_args() - Find the number of phandles references in a property 1684 * @np: pointer to a device tree node containing a list 1685 * @list_name: property name that contains a list 1686 * @cells_name: property name that specifies phandles' arguments count 1687 * 1688 * Returns the number of phandle + argument tuples within a property. It 1689 * is a typical pattern to encode a list of phandle and variable 1690 * arguments into a single property. The number of arguments is encoded 1691 * by a property in the phandle-target node. For example, a gpios 1692 * property would contain a list of GPIO specifies consisting of a 1693 * phandle and 1 or more arguments. The number of arguments are 1694 * determined by the #gpio-cells property in the node pointed to by the 1695 * phandle. 1696 */ 1697 int of_count_phandle_with_args(const struct device_node *np, const char *list_name, 1698 const char *cells_name) 1699 { 1700 struct of_phandle_iterator it; 1701 int rc, cur_index = 0; 1702 1703 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0); 1704 if (rc) 1705 return rc; 1706 1707 while ((rc = of_phandle_iterator_next(&it)) == 0) 1708 cur_index += 1; 1709 1710 if (rc != -ENOENT) 1711 return rc; 1712 1713 return cur_index; 1714 } 1715 EXPORT_SYMBOL(of_count_phandle_with_args); 1716 1717 /** 1718 * __of_add_property - Add a property to a node without lock operations 1719 */ 1720 int __of_add_property(struct device_node *np, struct property *prop) 1721 { 1722 struct property **next; 1723 1724 prop->next = NULL; 1725 next = &np->properties; 1726 while (*next) { 1727 if (strcmp(prop->name, (*next)->name) == 0) 1728 /* duplicate ! don't insert it */ 1729 return -EEXIST; 1730 1731 next = &(*next)->next; 1732 } 1733 *next = prop; 1734 1735 return 0; 1736 } 1737 1738 /** 1739 * of_add_property - Add a property to a node 1740 */ 1741 int of_add_property(struct device_node *np, struct property *prop) 1742 { 1743 unsigned long flags; 1744 int rc; 1745 1746 mutex_lock(&of_mutex); 1747 1748 raw_spin_lock_irqsave(&devtree_lock, flags); 1749 rc = __of_add_property(np, prop); 1750 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1751 1752 if (!rc) 1753 __of_add_property_sysfs(np, prop); 1754 1755 mutex_unlock(&of_mutex); 1756 1757 if (!rc) 1758 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL); 1759 1760 return rc; 1761 } 1762 1763 int __of_remove_property(struct device_node *np, struct property *prop) 1764 { 1765 struct property **next; 1766 1767 for (next = &np->properties; *next; next = &(*next)->next) { 1768 if (*next == prop) 1769 break; 1770 } 1771 if (*next == NULL) 1772 return -ENODEV; 1773 1774 /* found the node */ 1775 *next = prop->next; 1776 prop->next = np->deadprops; 1777 np->deadprops = prop; 1778 1779 return 0; 1780 } 1781 1782 /** 1783 * of_remove_property - Remove a property from a node. 1784 * 1785 * Note that we don't actually remove it, since we have given out 1786 * who-knows-how-many pointers to the data using get-property. 1787 * Instead we just move the property to the "dead properties" 1788 * list, so it won't be found any more. 1789 */ 1790 int of_remove_property(struct device_node *np, struct property *prop) 1791 { 1792 unsigned long flags; 1793 int rc; 1794 1795 if (!prop) 1796 return -ENODEV; 1797 1798 mutex_lock(&of_mutex); 1799 1800 raw_spin_lock_irqsave(&devtree_lock, flags); 1801 rc = __of_remove_property(np, prop); 1802 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1803 1804 if (!rc) 1805 __of_remove_property_sysfs(np, prop); 1806 1807 mutex_unlock(&of_mutex); 1808 1809 if (!rc) 1810 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL); 1811 1812 return rc; 1813 } 1814 1815 int __of_update_property(struct device_node *np, struct property *newprop, 1816 struct property **oldpropp) 1817 { 1818 struct property **next, *oldprop; 1819 1820 for (next = &np->properties; *next; next = &(*next)->next) { 1821 if (of_prop_cmp((*next)->name, newprop->name) == 0) 1822 break; 1823 } 1824 *oldpropp = oldprop = *next; 1825 1826 if (oldprop) { 1827 /* replace the node */ 1828 newprop->next = oldprop->next; 1829 *next = newprop; 1830 oldprop->next = np->deadprops; 1831 np->deadprops = oldprop; 1832 } else { 1833 /* new node */ 1834 newprop->next = NULL; 1835 *next = newprop; 1836 } 1837 1838 return 0; 1839 } 1840 1841 /* 1842 * of_update_property - Update a property in a node, if the property does 1843 * not exist, add it. 1844 * 1845 * Note that we don't actually remove it, since we have given out 1846 * who-knows-how-many pointers to the data using get-property. 1847 * Instead we just move the property to the "dead properties" list, 1848 * and add the new property to the property list 1849 */ 1850 int of_update_property(struct device_node *np, struct property *newprop) 1851 { 1852 struct property *oldprop; 1853 unsigned long flags; 1854 int rc; 1855 1856 if (!newprop->name) 1857 return -EINVAL; 1858 1859 mutex_lock(&of_mutex); 1860 1861 raw_spin_lock_irqsave(&devtree_lock, flags); 1862 rc = __of_update_property(np, newprop, &oldprop); 1863 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1864 1865 if (!rc) 1866 __of_update_property_sysfs(np, newprop, oldprop); 1867 1868 mutex_unlock(&of_mutex); 1869 1870 if (!rc) 1871 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop); 1872 1873 return rc; 1874 } 1875 1876 static void of_alias_add(struct alias_prop *ap, struct device_node *np, 1877 int id, const char *stem, int stem_len) 1878 { 1879 ap->np = np; 1880 ap->id = id; 1881 strncpy(ap->stem, stem, stem_len); 1882 ap->stem[stem_len] = 0; 1883 list_add_tail(&ap->link, &aliases_lookup); 1884 pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n", 1885 ap->alias, ap->stem, ap->id, np); 1886 } 1887 1888 /** 1889 * of_alias_scan - Scan all properties of the 'aliases' node 1890 * 1891 * The function scans all the properties of the 'aliases' node and populates 1892 * the global lookup table with the properties. It returns the 1893 * number of alias properties found, or an error code in case of failure. 1894 * 1895 * @dt_alloc: An allocator that provides a virtual address to memory 1896 * for storing the resulting tree 1897 */ 1898 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align)) 1899 { 1900 struct property *pp; 1901 1902 of_aliases = of_find_node_by_path("/aliases"); 1903 of_chosen = of_find_node_by_path("/chosen"); 1904 if (of_chosen == NULL) 1905 of_chosen = of_find_node_by_path("/chosen@0"); 1906 1907 if (of_chosen) { 1908 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */ 1909 const char *name = NULL; 1910 1911 if (of_property_read_string(of_chosen, "stdout-path", &name)) 1912 of_property_read_string(of_chosen, "linux,stdout-path", 1913 &name); 1914 if (IS_ENABLED(CONFIG_PPC) && !name) 1915 of_property_read_string(of_aliases, "stdout", &name); 1916 if (name) 1917 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options); 1918 } 1919 1920 if (!of_aliases) 1921 return; 1922 1923 for_each_property_of_node(of_aliases, pp) { 1924 const char *start = pp->name; 1925 const char *end = start + strlen(start); 1926 struct device_node *np; 1927 struct alias_prop *ap; 1928 int id, len; 1929 1930 /* Skip those we do not want to proceed */ 1931 if (!strcmp(pp->name, "name") || 1932 !strcmp(pp->name, "phandle") || 1933 !strcmp(pp->name, "linux,phandle")) 1934 continue; 1935 1936 np = of_find_node_by_path(pp->value); 1937 if (!np) 1938 continue; 1939 1940 /* walk the alias backwards to extract the id and work out 1941 * the 'stem' string */ 1942 while (isdigit(*(end-1)) && end > start) 1943 end--; 1944 len = end - start; 1945 1946 if (kstrtoint(end, 10, &id) < 0) 1947 continue; 1948 1949 /* Allocate an alias_prop with enough space for the stem */ 1950 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap)); 1951 if (!ap) 1952 continue; 1953 memset(ap, 0, sizeof(*ap) + len + 1); 1954 ap->alias = start; 1955 of_alias_add(ap, np, id, start, len); 1956 } 1957 } 1958 1959 /** 1960 * of_alias_get_id - Get alias id for the given device_node 1961 * @np: Pointer to the given device_node 1962 * @stem: Alias stem of the given device_node 1963 * 1964 * The function travels the lookup table to get the alias id for the given 1965 * device_node and alias stem. It returns the alias id if found. 1966 */ 1967 int of_alias_get_id(struct device_node *np, const char *stem) 1968 { 1969 struct alias_prop *app; 1970 int id = -ENODEV; 1971 1972 mutex_lock(&of_mutex); 1973 list_for_each_entry(app, &aliases_lookup, link) { 1974 if (strcmp(app->stem, stem) != 0) 1975 continue; 1976 1977 if (np == app->np) { 1978 id = app->id; 1979 break; 1980 } 1981 } 1982 mutex_unlock(&of_mutex); 1983 1984 return id; 1985 } 1986 EXPORT_SYMBOL_GPL(of_alias_get_id); 1987 1988 /** 1989 * of_alias_get_highest_id - Get highest alias id for the given stem 1990 * @stem: Alias stem to be examined 1991 * 1992 * The function travels the lookup table to get the highest alias id for the 1993 * given alias stem. It returns the alias id if found. 1994 */ 1995 int of_alias_get_highest_id(const char *stem) 1996 { 1997 struct alias_prop *app; 1998 int id = -ENODEV; 1999 2000 mutex_lock(&of_mutex); 2001 list_for_each_entry(app, &aliases_lookup, link) { 2002 if (strcmp(app->stem, stem) != 0) 2003 continue; 2004 2005 if (app->id > id) 2006 id = app->id; 2007 } 2008 mutex_unlock(&of_mutex); 2009 2010 return id; 2011 } 2012 EXPORT_SYMBOL_GPL(of_alias_get_highest_id); 2013 2014 /** 2015 * of_console_check() - Test and setup console for DT setup 2016 * @dn - Pointer to device node 2017 * @name - Name to use for preferred console without index. ex. "ttyS" 2018 * @index - Index to use for preferred console. 2019 * 2020 * Check if the given device node matches the stdout-path property in the 2021 * /chosen node. If it does then register it as the preferred console and return 2022 * TRUE. Otherwise return FALSE. 2023 */ 2024 bool of_console_check(struct device_node *dn, char *name, int index) 2025 { 2026 if (!dn || dn != of_stdout || console_set_on_cmdline) 2027 return false; 2028 2029 /* 2030 * XXX: cast `options' to char pointer to suppress complication 2031 * warnings: printk, UART and console drivers expect char pointer. 2032 */ 2033 return !add_preferred_console(name, index, (char *)of_stdout_options); 2034 } 2035 EXPORT_SYMBOL_GPL(of_console_check); 2036 2037 /** 2038 * of_find_next_cache_node - Find a node's subsidiary cache 2039 * @np: node of type "cpu" or "cache" 2040 * 2041 * Returns a node pointer with refcount incremented, use 2042 * of_node_put() on it when done. Caller should hold a reference 2043 * to np. 2044 */ 2045 struct device_node *of_find_next_cache_node(const struct device_node *np) 2046 { 2047 struct device_node *child, *cache_node; 2048 2049 cache_node = of_parse_phandle(np, "l2-cache", 0); 2050 if (!cache_node) 2051 cache_node = of_parse_phandle(np, "next-level-cache", 0); 2052 2053 if (cache_node) 2054 return cache_node; 2055 2056 /* OF on pmac has nodes instead of properties named "l2-cache" 2057 * beneath CPU nodes. 2058 */ 2059 if (IS_ENABLED(CONFIG_PPC_PMAC) && !strcmp(np->type, "cpu")) 2060 for_each_child_of_node(np, child) 2061 if (!strcmp(child->type, "cache")) 2062 return child; 2063 2064 return NULL; 2065 } 2066 2067 /** 2068 * of_find_last_cache_level - Find the level at which the last cache is 2069 * present for the given logical cpu 2070 * 2071 * @cpu: cpu number(logical index) for which the last cache level is needed 2072 * 2073 * Returns the the level at which the last cache is present. It is exactly 2074 * same as the total number of cache levels for the given logical cpu. 2075 */ 2076 int of_find_last_cache_level(unsigned int cpu) 2077 { 2078 u32 cache_level = 0; 2079 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu); 2080 2081 while (np) { 2082 prev = np; 2083 of_node_put(np); 2084 np = of_find_next_cache_node(np); 2085 } 2086 2087 of_property_read_u32(prev, "cache-level", &cache_level); 2088 2089 return cache_level; 2090 } 2091 2092 /** 2093 * of_map_rid - Translate a requester ID through a downstream mapping. 2094 * @np: root complex device node. 2095 * @rid: device requester ID to map. 2096 * @map_name: property name of the map to use. 2097 * @map_mask_name: optional property name of the mask to use. 2098 * @target: optional pointer to a target device node. 2099 * @id_out: optional pointer to receive the translated ID. 2100 * 2101 * Given a device requester ID, look up the appropriate implementation-defined 2102 * platform ID and/or the target device which receives transactions on that 2103 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or 2104 * @id_out may be NULL if only the other is required. If @target points to 2105 * a non-NULL device node pointer, only entries targeting that node will be 2106 * matched; if it points to a NULL value, it will receive the device node of 2107 * the first matching target phandle, with a reference held. 2108 * 2109 * Return: 0 on success or a standard error code on failure. 2110 */ 2111 int of_map_rid(struct device_node *np, u32 rid, 2112 const char *map_name, const char *map_mask_name, 2113 struct device_node **target, u32 *id_out) 2114 { 2115 u32 map_mask, masked_rid; 2116 int map_len; 2117 const __be32 *map = NULL; 2118 2119 if (!np || !map_name || (!target && !id_out)) 2120 return -EINVAL; 2121 2122 map = of_get_property(np, map_name, &map_len); 2123 if (!map) { 2124 if (target) 2125 return -ENODEV; 2126 /* Otherwise, no map implies no translation */ 2127 *id_out = rid; 2128 return 0; 2129 } 2130 2131 if (!map_len || map_len % (4 * sizeof(*map))) { 2132 pr_err("%pOF: Error: Bad %s length: %d\n", np, 2133 map_name, map_len); 2134 return -EINVAL; 2135 } 2136 2137 /* The default is to select all bits. */ 2138 map_mask = 0xffffffff; 2139 2140 /* 2141 * Can be overridden by "{iommu,msi}-map-mask" property. 2142 * If of_property_read_u32() fails, the default is used. 2143 */ 2144 if (map_mask_name) 2145 of_property_read_u32(np, map_mask_name, &map_mask); 2146 2147 masked_rid = map_mask & rid; 2148 for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) { 2149 struct device_node *phandle_node; 2150 u32 rid_base = be32_to_cpup(map + 0); 2151 u32 phandle = be32_to_cpup(map + 1); 2152 u32 out_base = be32_to_cpup(map + 2); 2153 u32 rid_len = be32_to_cpup(map + 3); 2154 2155 if (rid_base & ~map_mask) { 2156 pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores rid-base (0x%x)\n", 2157 np, map_name, map_name, 2158 map_mask, rid_base); 2159 return -EFAULT; 2160 } 2161 2162 if (masked_rid < rid_base || masked_rid >= rid_base + rid_len) 2163 continue; 2164 2165 phandle_node = of_find_node_by_phandle(phandle); 2166 if (!phandle_node) 2167 return -ENODEV; 2168 2169 if (target) { 2170 if (*target) 2171 of_node_put(phandle_node); 2172 else 2173 *target = phandle_node; 2174 2175 if (*target != phandle_node) 2176 continue; 2177 } 2178 2179 if (id_out) 2180 *id_out = masked_rid - rid_base + out_base; 2181 2182 pr_debug("%pOF: %s, using mask %08x, rid-base: %08x, out-base: %08x, length: %08x, rid: %08x -> %08x\n", 2183 np, map_name, map_mask, rid_base, out_base, 2184 rid_len, rid, masked_rid - rid_base + out_base); 2185 return 0; 2186 } 2187 2188 pr_err("%pOF: Invalid %s translation - no match for rid 0x%x on %pOF\n", 2189 np, map_name, rid, target && *target ? *target : NULL); 2190 return -EFAULT; 2191 } 2192 EXPORT_SYMBOL_GPL(of_map_rid); 2193