1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Procedures for creating, accessing and interpreting the device tree. 4 * 5 * Paul Mackerras August 1996. 6 * Copyright (C) 1996-2005 Paul Mackerras. 7 * 8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 9 * {engebret|bergner}@us.ibm.com 10 * 11 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 12 * 13 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 14 * Grant Likely. 15 */ 16 17 #define pr_fmt(fmt) "OF: " fmt 18 19 #include <linux/cleanup.h> 20 #include <linux/console.h> 21 #include <linux/ctype.h> 22 #include <linux/cpu.h> 23 #include <linux/module.h> 24 #include <linux/of.h> 25 #include <linux/of_device.h> 26 #include <linux/of_graph.h> 27 #include <linux/spinlock.h> 28 #include <linux/slab.h> 29 #include <linux/string.h> 30 #include <linux/proc_fs.h> 31 32 #include "of_private.h" 33 34 LIST_HEAD(aliases_lookup); 35 36 struct device_node *of_root; 37 EXPORT_SYMBOL(of_root); 38 struct device_node *of_chosen; 39 EXPORT_SYMBOL(of_chosen); 40 struct device_node *of_aliases; 41 struct device_node *of_stdout; 42 static const char *of_stdout_options; 43 44 struct kset *of_kset; 45 46 /* 47 * Used to protect the of_aliases, to hold off addition of nodes to sysfs. 48 * This mutex must be held whenever modifications are being made to the 49 * device tree. The of_{attach,detach}_node() and 50 * of_{add,remove,update}_property() helpers make sure this happens. 51 */ 52 DEFINE_MUTEX(of_mutex); 53 54 /* use when traversing tree through the child, sibling, 55 * or parent members of struct device_node. 56 */ 57 DEFINE_RAW_SPINLOCK(devtree_lock); 58 59 bool of_node_name_eq(const struct device_node *np, const char *name) 60 { 61 const char *node_name; 62 size_t len; 63 64 if (!np) 65 return false; 66 67 node_name = kbasename(np->full_name); 68 len = strchrnul(node_name, '@') - node_name; 69 70 return (strlen(name) == len) && (strncmp(node_name, name, len) == 0); 71 } 72 EXPORT_SYMBOL(of_node_name_eq); 73 74 bool of_node_name_prefix(const struct device_node *np, const char *prefix) 75 { 76 if (!np) 77 return false; 78 79 return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0; 80 } 81 EXPORT_SYMBOL(of_node_name_prefix); 82 83 static bool __of_node_is_type(const struct device_node *np, const char *type) 84 { 85 const char *match = __of_get_property(np, "device_type", NULL); 86 87 return np && match && type && !strcmp(match, type); 88 } 89 90 int of_bus_n_addr_cells(struct device_node *np) 91 { 92 u32 cells; 93 94 for (; np; np = np->parent) 95 if (!of_property_read_u32(np, "#address-cells", &cells)) 96 return cells; 97 98 /* No #address-cells property for the root node */ 99 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 100 } 101 102 int of_n_addr_cells(struct device_node *np) 103 { 104 if (np->parent) 105 np = np->parent; 106 107 return of_bus_n_addr_cells(np); 108 } 109 EXPORT_SYMBOL(of_n_addr_cells); 110 111 int of_bus_n_size_cells(struct device_node *np) 112 { 113 u32 cells; 114 115 for (; np; np = np->parent) 116 if (!of_property_read_u32(np, "#size-cells", &cells)) 117 return cells; 118 119 /* No #size-cells property for the root node */ 120 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 121 } 122 123 int of_n_size_cells(struct device_node *np) 124 { 125 if (np->parent) 126 np = np->parent; 127 128 return of_bus_n_size_cells(np); 129 } 130 EXPORT_SYMBOL(of_n_size_cells); 131 132 #ifdef CONFIG_NUMA 133 int __weak of_node_to_nid(struct device_node *np) 134 { 135 return NUMA_NO_NODE; 136 } 137 #endif 138 139 #define OF_PHANDLE_CACHE_BITS 7 140 #define OF_PHANDLE_CACHE_SZ BIT(OF_PHANDLE_CACHE_BITS) 141 142 static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ]; 143 144 static u32 of_phandle_cache_hash(phandle handle) 145 { 146 return hash_32(handle, OF_PHANDLE_CACHE_BITS); 147 } 148 149 /* 150 * Caller must hold devtree_lock. 151 */ 152 void __of_phandle_cache_inv_entry(phandle handle) 153 { 154 u32 handle_hash; 155 struct device_node *np; 156 157 if (!handle) 158 return; 159 160 handle_hash = of_phandle_cache_hash(handle); 161 162 np = phandle_cache[handle_hash]; 163 if (np && handle == np->phandle) 164 phandle_cache[handle_hash] = NULL; 165 } 166 167 void __init of_core_init(void) 168 { 169 struct device_node *np; 170 171 of_platform_register_reconfig_notifier(); 172 173 /* Create the kset, and register existing nodes */ 174 mutex_lock(&of_mutex); 175 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj); 176 if (!of_kset) { 177 mutex_unlock(&of_mutex); 178 pr_err("failed to register existing nodes\n"); 179 return; 180 } 181 for_each_of_allnodes(np) { 182 __of_attach_node_sysfs(np); 183 if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)]) 184 phandle_cache[of_phandle_cache_hash(np->phandle)] = np; 185 } 186 mutex_unlock(&of_mutex); 187 188 /* Symlink in /proc as required by userspace ABI */ 189 if (of_root) 190 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base"); 191 } 192 193 static struct property *__of_find_property(const struct device_node *np, 194 const char *name, int *lenp) 195 { 196 struct property *pp; 197 198 if (!np) 199 return NULL; 200 201 for (pp = np->properties; pp; pp = pp->next) { 202 if (of_prop_cmp(pp->name, name) == 0) { 203 if (lenp) 204 *lenp = pp->length; 205 break; 206 } 207 } 208 209 return pp; 210 } 211 212 struct property *of_find_property(const struct device_node *np, 213 const char *name, 214 int *lenp) 215 { 216 struct property *pp; 217 unsigned long flags; 218 219 raw_spin_lock_irqsave(&devtree_lock, flags); 220 pp = __of_find_property(np, name, lenp); 221 raw_spin_unlock_irqrestore(&devtree_lock, flags); 222 223 return pp; 224 } 225 EXPORT_SYMBOL(of_find_property); 226 227 struct device_node *__of_find_all_nodes(struct device_node *prev) 228 { 229 struct device_node *np; 230 if (!prev) { 231 np = of_root; 232 } else if (prev->child) { 233 np = prev->child; 234 } else { 235 /* Walk back up looking for a sibling, or the end of the structure */ 236 np = prev; 237 while (np->parent && !np->sibling) 238 np = np->parent; 239 np = np->sibling; /* Might be null at the end of the tree */ 240 } 241 return np; 242 } 243 244 /** 245 * of_find_all_nodes - Get next node in global list 246 * @prev: Previous node or NULL to start iteration 247 * of_node_put() will be called on it 248 * 249 * Return: A node pointer with refcount incremented, use 250 * of_node_put() on it when done. 251 */ 252 struct device_node *of_find_all_nodes(struct device_node *prev) 253 { 254 struct device_node *np; 255 unsigned long flags; 256 257 raw_spin_lock_irqsave(&devtree_lock, flags); 258 np = __of_find_all_nodes(prev); 259 of_node_get(np); 260 of_node_put(prev); 261 raw_spin_unlock_irqrestore(&devtree_lock, flags); 262 return np; 263 } 264 EXPORT_SYMBOL(of_find_all_nodes); 265 266 /* 267 * Find a property with a given name for a given node 268 * and return the value. 269 */ 270 const void *__of_get_property(const struct device_node *np, 271 const char *name, int *lenp) 272 { 273 struct property *pp = __of_find_property(np, name, lenp); 274 275 return pp ? pp->value : NULL; 276 } 277 278 /* 279 * Find a property with a given name for a given node 280 * and return the value. 281 */ 282 const void *of_get_property(const struct device_node *np, const char *name, 283 int *lenp) 284 { 285 struct property *pp = of_find_property(np, name, lenp); 286 287 return pp ? pp->value : NULL; 288 } 289 EXPORT_SYMBOL(of_get_property); 290 291 /** 292 * __of_device_is_compatible() - Check if the node matches given constraints 293 * @device: pointer to node 294 * @compat: required compatible string, NULL or "" for any match 295 * @type: required device_type value, NULL or "" for any match 296 * @name: required node name, NULL or "" for any match 297 * 298 * Checks if the given @compat, @type and @name strings match the 299 * properties of the given @device. A constraints can be skipped by 300 * passing NULL or an empty string as the constraint. 301 * 302 * Returns 0 for no match, and a positive integer on match. The return 303 * value is a relative score with larger values indicating better 304 * matches. The score is weighted for the most specific compatible value 305 * to get the highest score. Matching type is next, followed by matching 306 * name. Practically speaking, this results in the following priority 307 * order for matches: 308 * 309 * 1. specific compatible && type && name 310 * 2. specific compatible && type 311 * 3. specific compatible && name 312 * 4. specific compatible 313 * 5. general compatible && type && name 314 * 6. general compatible && type 315 * 7. general compatible && name 316 * 8. general compatible 317 * 9. type && name 318 * 10. type 319 * 11. name 320 */ 321 static int __of_device_is_compatible(const struct device_node *device, 322 const char *compat, const char *type, const char *name) 323 { 324 struct property *prop; 325 const char *cp; 326 int index = 0, score = 0; 327 328 /* Compatible match has highest priority */ 329 if (compat && compat[0]) { 330 prop = __of_find_property(device, "compatible", NULL); 331 for (cp = of_prop_next_string(prop, NULL); cp; 332 cp = of_prop_next_string(prop, cp), index++) { 333 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) { 334 score = INT_MAX/2 - (index << 2); 335 break; 336 } 337 } 338 if (!score) 339 return 0; 340 } 341 342 /* Matching type is better than matching name */ 343 if (type && type[0]) { 344 if (!__of_node_is_type(device, type)) 345 return 0; 346 score += 2; 347 } 348 349 /* Matching name is a bit better than not */ 350 if (name && name[0]) { 351 if (!of_node_name_eq(device, name)) 352 return 0; 353 score++; 354 } 355 356 return score; 357 } 358 359 /** Checks if the given "compat" string matches one of the strings in 360 * the device's "compatible" property 361 */ 362 int of_device_is_compatible(const struct device_node *device, 363 const char *compat) 364 { 365 unsigned long flags; 366 int res; 367 368 raw_spin_lock_irqsave(&devtree_lock, flags); 369 res = __of_device_is_compatible(device, compat, NULL, NULL); 370 raw_spin_unlock_irqrestore(&devtree_lock, flags); 371 return res; 372 } 373 EXPORT_SYMBOL(of_device_is_compatible); 374 375 /** Checks if the device is compatible with any of the entries in 376 * a NULL terminated array of strings. Returns the best match 377 * score or 0. 378 */ 379 int of_device_compatible_match(const struct device_node *device, 380 const char *const *compat) 381 { 382 unsigned int tmp, score = 0; 383 384 if (!compat) 385 return 0; 386 387 while (*compat) { 388 tmp = of_device_is_compatible(device, *compat); 389 if (tmp > score) 390 score = tmp; 391 compat++; 392 } 393 394 return score; 395 } 396 EXPORT_SYMBOL_GPL(of_device_compatible_match); 397 398 /** 399 * of_machine_compatible_match - Test root of device tree against a compatible array 400 * @compats: NULL terminated array of compatible strings to look for in root node's compatible property. 401 * 402 * Returns true if the root node has any of the given compatible values in its 403 * compatible property. 404 */ 405 bool of_machine_compatible_match(const char *const *compats) 406 { 407 struct device_node *root; 408 int rc = 0; 409 410 root = of_find_node_by_path("/"); 411 if (root) { 412 rc = of_device_compatible_match(root, compats); 413 of_node_put(root); 414 } 415 416 return rc != 0; 417 } 418 EXPORT_SYMBOL(of_machine_compatible_match); 419 420 static bool __of_device_is_status(const struct device_node *device, 421 const char * const*strings) 422 { 423 const char *status; 424 int statlen; 425 426 if (!device) 427 return false; 428 429 status = __of_get_property(device, "status", &statlen); 430 if (status == NULL) 431 return false; 432 433 if (statlen > 0) { 434 while (*strings) { 435 unsigned int len = strlen(*strings); 436 437 if ((*strings)[len - 1] == '-') { 438 if (!strncmp(status, *strings, len)) 439 return true; 440 } else { 441 if (!strcmp(status, *strings)) 442 return true; 443 } 444 strings++; 445 } 446 } 447 448 return false; 449 } 450 451 /** 452 * __of_device_is_available - check if a device is available for use 453 * 454 * @device: Node to check for availability, with locks already held 455 * 456 * Return: True if the status property is absent or set to "okay" or "ok", 457 * false otherwise 458 */ 459 static bool __of_device_is_available(const struct device_node *device) 460 { 461 static const char * const ok[] = {"okay", "ok", NULL}; 462 463 if (!device) 464 return false; 465 466 return !__of_get_property(device, "status", NULL) || 467 __of_device_is_status(device, ok); 468 } 469 470 /** 471 * __of_device_is_reserved - check if a device is reserved 472 * 473 * @device: Node to check for availability, with locks already held 474 * 475 * Return: True if the status property is set to "reserved", false otherwise 476 */ 477 static bool __of_device_is_reserved(const struct device_node *device) 478 { 479 static const char * const reserved[] = {"reserved", NULL}; 480 481 return __of_device_is_status(device, reserved); 482 } 483 484 /** 485 * of_device_is_available - check if a device is available for use 486 * 487 * @device: Node to check for availability 488 * 489 * Return: True if the status property is absent or set to "okay" or "ok", 490 * false otherwise 491 */ 492 bool of_device_is_available(const struct device_node *device) 493 { 494 unsigned long flags; 495 bool res; 496 497 raw_spin_lock_irqsave(&devtree_lock, flags); 498 res = __of_device_is_available(device); 499 raw_spin_unlock_irqrestore(&devtree_lock, flags); 500 return res; 501 502 } 503 EXPORT_SYMBOL(of_device_is_available); 504 505 /** 506 * __of_device_is_fail - check if a device has status "fail" or "fail-..." 507 * 508 * @device: Node to check status for, with locks already held 509 * 510 * Return: True if the status property is set to "fail" or "fail-..." (for any 511 * error code suffix), false otherwise 512 */ 513 static bool __of_device_is_fail(const struct device_node *device) 514 { 515 static const char * const fail[] = {"fail", "fail-", NULL}; 516 517 return __of_device_is_status(device, fail); 518 } 519 520 /** 521 * of_device_is_big_endian - check if a device has BE registers 522 * 523 * @device: Node to check for endianness 524 * 525 * Return: True if the device has a "big-endian" property, or if the kernel 526 * was compiled for BE *and* the device has a "native-endian" property. 527 * Returns false otherwise. 528 * 529 * Callers would nominally use ioread32be/iowrite32be if 530 * of_device_is_big_endian() == true, or readl/writel otherwise. 531 */ 532 bool of_device_is_big_endian(const struct device_node *device) 533 { 534 if (of_property_read_bool(device, "big-endian")) 535 return true; 536 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) && 537 of_property_read_bool(device, "native-endian")) 538 return true; 539 return false; 540 } 541 EXPORT_SYMBOL(of_device_is_big_endian); 542 543 /** 544 * of_get_parent - Get a node's parent if any 545 * @node: Node to get parent 546 * 547 * Return: A node pointer with refcount incremented, use 548 * of_node_put() on it when done. 549 */ 550 struct device_node *of_get_parent(const struct device_node *node) 551 { 552 struct device_node *np; 553 unsigned long flags; 554 555 if (!node) 556 return NULL; 557 558 raw_spin_lock_irqsave(&devtree_lock, flags); 559 np = of_node_get(node->parent); 560 raw_spin_unlock_irqrestore(&devtree_lock, flags); 561 return np; 562 } 563 EXPORT_SYMBOL(of_get_parent); 564 565 /** 566 * of_get_next_parent - Iterate to a node's parent 567 * @node: Node to get parent of 568 * 569 * This is like of_get_parent() except that it drops the 570 * refcount on the passed node, making it suitable for iterating 571 * through a node's parents. 572 * 573 * Return: A node pointer with refcount incremented, use 574 * of_node_put() on it when done. 575 */ 576 struct device_node *of_get_next_parent(struct device_node *node) 577 { 578 struct device_node *parent; 579 unsigned long flags; 580 581 if (!node) 582 return NULL; 583 584 raw_spin_lock_irqsave(&devtree_lock, flags); 585 parent = of_node_get(node->parent); 586 of_node_put(node); 587 raw_spin_unlock_irqrestore(&devtree_lock, flags); 588 return parent; 589 } 590 EXPORT_SYMBOL(of_get_next_parent); 591 592 static struct device_node *__of_get_next_child(const struct device_node *node, 593 struct device_node *prev) 594 { 595 struct device_node *next; 596 597 if (!node) 598 return NULL; 599 600 next = prev ? prev->sibling : node->child; 601 of_node_get(next); 602 of_node_put(prev); 603 return next; 604 } 605 #define __for_each_child_of_node(parent, child) \ 606 for (child = __of_get_next_child(parent, NULL); child != NULL; \ 607 child = __of_get_next_child(parent, child)) 608 609 /** 610 * of_get_next_child - Iterate a node childs 611 * @node: parent node 612 * @prev: previous child of the parent node, or NULL to get first 613 * 614 * Return: A node pointer with refcount incremented, use of_node_put() on 615 * it when done. Returns NULL when prev is the last child. Decrements the 616 * refcount of prev. 617 */ 618 struct device_node *of_get_next_child(const struct device_node *node, 619 struct device_node *prev) 620 { 621 struct device_node *next; 622 unsigned long flags; 623 624 raw_spin_lock_irqsave(&devtree_lock, flags); 625 next = __of_get_next_child(node, prev); 626 raw_spin_unlock_irqrestore(&devtree_lock, flags); 627 return next; 628 } 629 EXPORT_SYMBOL(of_get_next_child); 630 631 static struct device_node *of_get_next_status_child(const struct device_node *node, 632 struct device_node *prev, 633 bool (*checker)(const struct device_node *)) 634 { 635 struct device_node *next; 636 unsigned long flags; 637 638 if (!node) 639 return NULL; 640 641 raw_spin_lock_irqsave(&devtree_lock, flags); 642 next = prev ? prev->sibling : node->child; 643 for (; next; next = next->sibling) { 644 if (!checker(next)) 645 continue; 646 if (of_node_get(next)) 647 break; 648 } 649 of_node_put(prev); 650 raw_spin_unlock_irqrestore(&devtree_lock, flags); 651 return next; 652 } 653 654 /** 655 * of_get_next_available_child - Find the next available child node 656 * @node: parent node 657 * @prev: previous child of the parent node, or NULL to get first 658 * 659 * This function is like of_get_next_child(), except that it 660 * automatically skips any disabled nodes (i.e. status = "disabled"). 661 */ 662 struct device_node *of_get_next_available_child(const struct device_node *node, 663 struct device_node *prev) 664 { 665 return of_get_next_status_child(node, prev, __of_device_is_available); 666 } 667 EXPORT_SYMBOL(of_get_next_available_child); 668 669 /** 670 * of_get_next_reserved_child - Find the next reserved child node 671 * @node: parent node 672 * @prev: previous child of the parent node, or NULL to get first 673 * 674 * This function is like of_get_next_child(), except that it 675 * automatically skips any disabled nodes (i.e. status = "disabled"). 676 */ 677 struct device_node *of_get_next_reserved_child(const struct device_node *node, 678 struct device_node *prev) 679 { 680 return of_get_next_status_child(node, prev, __of_device_is_reserved); 681 } 682 EXPORT_SYMBOL(of_get_next_reserved_child); 683 684 /** 685 * of_get_next_cpu_node - Iterate on cpu nodes 686 * @prev: previous child of the /cpus node, or NULL to get first 687 * 688 * Unusable CPUs (those with the status property set to "fail" or "fail-...") 689 * will be skipped. 690 * 691 * Return: A cpu node pointer with refcount incremented, use of_node_put() 692 * on it when done. Returns NULL when prev is the last child. Decrements 693 * the refcount of prev. 694 */ 695 struct device_node *of_get_next_cpu_node(struct device_node *prev) 696 { 697 struct device_node *next = NULL; 698 unsigned long flags; 699 struct device_node *node; 700 701 if (!prev) 702 node = of_find_node_by_path("/cpus"); 703 704 raw_spin_lock_irqsave(&devtree_lock, flags); 705 if (prev) 706 next = prev->sibling; 707 else if (node) { 708 next = node->child; 709 of_node_put(node); 710 } 711 for (; next; next = next->sibling) { 712 if (__of_device_is_fail(next)) 713 continue; 714 if (!(of_node_name_eq(next, "cpu") || 715 __of_node_is_type(next, "cpu"))) 716 continue; 717 if (of_node_get(next)) 718 break; 719 } 720 of_node_put(prev); 721 raw_spin_unlock_irqrestore(&devtree_lock, flags); 722 return next; 723 } 724 EXPORT_SYMBOL(of_get_next_cpu_node); 725 726 /** 727 * of_get_compatible_child - Find compatible child node 728 * @parent: parent node 729 * @compatible: compatible string 730 * 731 * Lookup child node whose compatible property contains the given compatible 732 * string. 733 * 734 * Return: a node pointer with refcount incremented, use of_node_put() on it 735 * when done; or NULL if not found. 736 */ 737 struct device_node *of_get_compatible_child(const struct device_node *parent, 738 const char *compatible) 739 { 740 struct device_node *child; 741 742 for_each_child_of_node(parent, child) { 743 if (of_device_is_compatible(child, compatible)) 744 break; 745 } 746 747 return child; 748 } 749 EXPORT_SYMBOL(of_get_compatible_child); 750 751 /** 752 * of_get_child_by_name - Find the child node by name for a given parent 753 * @node: parent node 754 * @name: child name to look for. 755 * 756 * This function looks for child node for given matching name 757 * 758 * Return: A node pointer if found, with refcount incremented, use 759 * of_node_put() on it when done. 760 * Returns NULL if node is not found. 761 */ 762 struct device_node *of_get_child_by_name(const struct device_node *node, 763 const char *name) 764 { 765 struct device_node *child; 766 767 for_each_child_of_node(node, child) 768 if (of_node_name_eq(child, name)) 769 break; 770 return child; 771 } 772 EXPORT_SYMBOL(of_get_child_by_name); 773 774 struct device_node *__of_find_node_by_path(struct device_node *parent, 775 const char *path) 776 { 777 struct device_node *child; 778 int len; 779 780 len = strcspn(path, "/:"); 781 if (!len) 782 return NULL; 783 784 __for_each_child_of_node(parent, child) { 785 const char *name = kbasename(child->full_name); 786 if (strncmp(path, name, len) == 0 && (strlen(name) == len)) 787 return child; 788 } 789 return NULL; 790 } 791 792 struct device_node *__of_find_node_by_full_path(struct device_node *node, 793 const char *path) 794 { 795 const char *separator = strchr(path, ':'); 796 797 while (node && *path == '/') { 798 struct device_node *tmp = node; 799 800 path++; /* Increment past '/' delimiter */ 801 node = __of_find_node_by_path(node, path); 802 of_node_put(tmp); 803 path = strchrnul(path, '/'); 804 if (separator && separator < path) 805 break; 806 } 807 return node; 808 } 809 810 /** 811 * of_find_node_opts_by_path - Find a node matching a full OF path 812 * @path: Either the full path to match, or if the path does not 813 * start with '/', the name of a property of the /aliases 814 * node (an alias). In the case of an alias, the node 815 * matching the alias' value will be returned. 816 * @opts: Address of a pointer into which to store the start of 817 * an options string appended to the end of the path with 818 * a ':' separator. 819 * 820 * Valid paths: 821 * * /foo/bar Full path 822 * * foo Valid alias 823 * * foo/bar Valid alias + relative path 824 * 825 * Return: A node pointer with refcount incremented, use 826 * of_node_put() on it when done. 827 */ 828 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts) 829 { 830 struct device_node *np = NULL; 831 struct property *pp; 832 unsigned long flags; 833 const char *separator = strchr(path, ':'); 834 835 if (opts) 836 *opts = separator ? separator + 1 : NULL; 837 838 if (strcmp(path, "/") == 0) 839 return of_node_get(of_root); 840 841 /* The path could begin with an alias */ 842 if (*path != '/') { 843 int len; 844 const char *p = separator; 845 846 if (!p) 847 p = strchrnul(path, '/'); 848 len = p - path; 849 850 /* of_aliases must not be NULL */ 851 if (!of_aliases) 852 return NULL; 853 854 for_each_property_of_node(of_aliases, pp) { 855 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) { 856 np = of_find_node_by_path(pp->value); 857 break; 858 } 859 } 860 if (!np) 861 return NULL; 862 path = p; 863 } 864 865 /* Step down the tree matching path components */ 866 raw_spin_lock_irqsave(&devtree_lock, flags); 867 if (!np) 868 np = of_node_get(of_root); 869 np = __of_find_node_by_full_path(np, path); 870 raw_spin_unlock_irqrestore(&devtree_lock, flags); 871 return np; 872 } 873 EXPORT_SYMBOL(of_find_node_opts_by_path); 874 875 /** 876 * of_find_node_by_name - Find a node by its "name" property 877 * @from: The node to start searching from or NULL; the node 878 * you pass will not be searched, only the next one 879 * will. Typically, you pass what the previous call 880 * returned. of_node_put() will be called on @from. 881 * @name: The name string to match against 882 * 883 * Return: A node pointer with refcount incremented, use 884 * of_node_put() on it when done. 885 */ 886 struct device_node *of_find_node_by_name(struct device_node *from, 887 const char *name) 888 { 889 struct device_node *np; 890 unsigned long flags; 891 892 raw_spin_lock_irqsave(&devtree_lock, flags); 893 for_each_of_allnodes_from(from, np) 894 if (of_node_name_eq(np, name) && of_node_get(np)) 895 break; 896 of_node_put(from); 897 raw_spin_unlock_irqrestore(&devtree_lock, flags); 898 return np; 899 } 900 EXPORT_SYMBOL(of_find_node_by_name); 901 902 /** 903 * of_find_node_by_type - Find a node by its "device_type" property 904 * @from: The node to start searching from, or NULL to start searching 905 * the entire device tree. The node you pass will not be 906 * searched, only the next one will; typically, you pass 907 * what the previous call returned. of_node_put() will be 908 * called on from for you. 909 * @type: The type string to match against 910 * 911 * Return: A node pointer with refcount incremented, use 912 * of_node_put() on it when done. 913 */ 914 struct device_node *of_find_node_by_type(struct device_node *from, 915 const char *type) 916 { 917 struct device_node *np; 918 unsigned long flags; 919 920 raw_spin_lock_irqsave(&devtree_lock, flags); 921 for_each_of_allnodes_from(from, np) 922 if (__of_node_is_type(np, type) && of_node_get(np)) 923 break; 924 of_node_put(from); 925 raw_spin_unlock_irqrestore(&devtree_lock, flags); 926 return np; 927 } 928 EXPORT_SYMBOL(of_find_node_by_type); 929 930 /** 931 * of_find_compatible_node - Find a node based on type and one of the 932 * tokens in its "compatible" property 933 * @from: The node to start searching from or NULL, the node 934 * you pass will not be searched, only the next one 935 * will; typically, you pass what the previous call 936 * returned. of_node_put() will be called on it 937 * @type: The type string to match "device_type" or NULL to ignore 938 * @compatible: The string to match to one of the tokens in the device 939 * "compatible" list. 940 * 941 * Return: A node pointer with refcount incremented, use 942 * of_node_put() on it when done. 943 */ 944 struct device_node *of_find_compatible_node(struct device_node *from, 945 const char *type, const char *compatible) 946 { 947 struct device_node *np; 948 unsigned long flags; 949 950 raw_spin_lock_irqsave(&devtree_lock, flags); 951 for_each_of_allnodes_from(from, np) 952 if (__of_device_is_compatible(np, compatible, type, NULL) && 953 of_node_get(np)) 954 break; 955 of_node_put(from); 956 raw_spin_unlock_irqrestore(&devtree_lock, flags); 957 return np; 958 } 959 EXPORT_SYMBOL(of_find_compatible_node); 960 961 /** 962 * of_find_node_with_property - Find a node which has a property with 963 * the given name. 964 * @from: The node to start searching from or NULL, the node 965 * you pass will not be searched, only the next one 966 * will; typically, you pass what the previous call 967 * returned. of_node_put() will be called on it 968 * @prop_name: The name of the property to look for. 969 * 970 * Return: A node pointer with refcount incremented, use 971 * of_node_put() on it when done. 972 */ 973 struct device_node *of_find_node_with_property(struct device_node *from, 974 const char *prop_name) 975 { 976 struct device_node *np; 977 struct property *pp; 978 unsigned long flags; 979 980 raw_spin_lock_irqsave(&devtree_lock, flags); 981 for_each_of_allnodes_from(from, np) { 982 for (pp = np->properties; pp; pp = pp->next) { 983 if (of_prop_cmp(pp->name, prop_name) == 0) { 984 of_node_get(np); 985 goto out; 986 } 987 } 988 } 989 out: 990 of_node_put(from); 991 raw_spin_unlock_irqrestore(&devtree_lock, flags); 992 return np; 993 } 994 EXPORT_SYMBOL(of_find_node_with_property); 995 996 static 997 const struct of_device_id *__of_match_node(const struct of_device_id *matches, 998 const struct device_node *node) 999 { 1000 const struct of_device_id *best_match = NULL; 1001 int score, best_score = 0; 1002 1003 if (!matches) 1004 return NULL; 1005 1006 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) { 1007 score = __of_device_is_compatible(node, matches->compatible, 1008 matches->type, matches->name); 1009 if (score > best_score) { 1010 best_match = matches; 1011 best_score = score; 1012 } 1013 } 1014 1015 return best_match; 1016 } 1017 1018 /** 1019 * of_match_node - Tell if a device_node has a matching of_match structure 1020 * @matches: array of of device match structures to search in 1021 * @node: the of device structure to match against 1022 * 1023 * Low level utility function used by device matching. 1024 */ 1025 const struct of_device_id *of_match_node(const struct of_device_id *matches, 1026 const struct device_node *node) 1027 { 1028 const struct of_device_id *match; 1029 unsigned long flags; 1030 1031 raw_spin_lock_irqsave(&devtree_lock, flags); 1032 match = __of_match_node(matches, node); 1033 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1034 return match; 1035 } 1036 EXPORT_SYMBOL(of_match_node); 1037 1038 /** 1039 * of_find_matching_node_and_match - Find a node based on an of_device_id 1040 * match table. 1041 * @from: The node to start searching from or NULL, the node 1042 * you pass will not be searched, only the next one 1043 * will; typically, you pass what the previous call 1044 * returned. of_node_put() will be called on it 1045 * @matches: array of of device match structures to search in 1046 * @match: Updated to point at the matches entry which matched 1047 * 1048 * Return: A node pointer with refcount incremented, use 1049 * of_node_put() on it when done. 1050 */ 1051 struct device_node *of_find_matching_node_and_match(struct device_node *from, 1052 const struct of_device_id *matches, 1053 const struct of_device_id **match) 1054 { 1055 struct device_node *np; 1056 const struct of_device_id *m; 1057 unsigned long flags; 1058 1059 if (match) 1060 *match = NULL; 1061 1062 raw_spin_lock_irqsave(&devtree_lock, flags); 1063 for_each_of_allnodes_from(from, np) { 1064 m = __of_match_node(matches, np); 1065 if (m && of_node_get(np)) { 1066 if (match) 1067 *match = m; 1068 break; 1069 } 1070 } 1071 of_node_put(from); 1072 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1073 return np; 1074 } 1075 EXPORT_SYMBOL(of_find_matching_node_and_match); 1076 1077 /** 1078 * of_alias_from_compatible - Lookup appropriate alias for a device node 1079 * depending on compatible 1080 * @node: pointer to a device tree node 1081 * @alias: Pointer to buffer that alias value will be copied into 1082 * @len: Length of alias value 1083 * 1084 * Based on the value of the compatible property, this routine will attempt 1085 * to choose an appropriate alias value for a particular device tree node. 1086 * It does this by stripping the manufacturer prefix (as delimited by a ',') 1087 * from the first entry in the compatible list property. 1088 * 1089 * Note: The matching on just the "product" side of the compatible is a relic 1090 * from I2C and SPI. Please do not add any new user. 1091 * 1092 * Return: This routine returns 0 on success, <0 on failure. 1093 */ 1094 int of_alias_from_compatible(const struct device_node *node, char *alias, int len) 1095 { 1096 const char *compatible, *p; 1097 int cplen; 1098 1099 compatible = of_get_property(node, "compatible", &cplen); 1100 if (!compatible || strlen(compatible) > cplen) 1101 return -ENODEV; 1102 p = strchr(compatible, ','); 1103 strscpy(alias, p ? p + 1 : compatible, len); 1104 return 0; 1105 } 1106 EXPORT_SYMBOL_GPL(of_alias_from_compatible); 1107 1108 /** 1109 * of_find_node_by_phandle - Find a node given a phandle 1110 * @handle: phandle of the node to find 1111 * 1112 * Return: A node pointer with refcount incremented, use 1113 * of_node_put() on it when done. 1114 */ 1115 struct device_node *of_find_node_by_phandle(phandle handle) 1116 { 1117 struct device_node *np = NULL; 1118 unsigned long flags; 1119 u32 handle_hash; 1120 1121 if (!handle) 1122 return NULL; 1123 1124 handle_hash = of_phandle_cache_hash(handle); 1125 1126 raw_spin_lock_irqsave(&devtree_lock, flags); 1127 1128 if (phandle_cache[handle_hash] && 1129 handle == phandle_cache[handle_hash]->phandle) 1130 np = phandle_cache[handle_hash]; 1131 1132 if (!np) { 1133 for_each_of_allnodes(np) 1134 if (np->phandle == handle && 1135 !of_node_check_flag(np, OF_DETACHED)) { 1136 phandle_cache[handle_hash] = np; 1137 break; 1138 } 1139 } 1140 1141 of_node_get(np); 1142 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1143 return np; 1144 } 1145 EXPORT_SYMBOL(of_find_node_by_phandle); 1146 1147 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args) 1148 { 1149 int i; 1150 printk("%s %pOF", msg, args->np); 1151 for (i = 0; i < args->args_count; i++) { 1152 const char delim = i ? ',' : ':'; 1153 1154 pr_cont("%c%08x", delim, args->args[i]); 1155 } 1156 pr_cont("\n"); 1157 } 1158 1159 int of_phandle_iterator_init(struct of_phandle_iterator *it, 1160 const struct device_node *np, 1161 const char *list_name, 1162 const char *cells_name, 1163 int cell_count) 1164 { 1165 const __be32 *list; 1166 int size; 1167 1168 memset(it, 0, sizeof(*it)); 1169 1170 /* 1171 * one of cell_count or cells_name must be provided to determine the 1172 * argument length. 1173 */ 1174 if (cell_count < 0 && !cells_name) 1175 return -EINVAL; 1176 1177 list = of_get_property(np, list_name, &size); 1178 if (!list) 1179 return -ENOENT; 1180 1181 it->cells_name = cells_name; 1182 it->cell_count = cell_count; 1183 it->parent = np; 1184 it->list_end = list + size / sizeof(*list); 1185 it->phandle_end = list; 1186 it->cur = list; 1187 1188 return 0; 1189 } 1190 EXPORT_SYMBOL_GPL(of_phandle_iterator_init); 1191 1192 int of_phandle_iterator_next(struct of_phandle_iterator *it) 1193 { 1194 uint32_t count = 0; 1195 1196 if (it->node) { 1197 of_node_put(it->node); 1198 it->node = NULL; 1199 } 1200 1201 if (!it->cur || it->phandle_end >= it->list_end) 1202 return -ENOENT; 1203 1204 it->cur = it->phandle_end; 1205 1206 /* If phandle is 0, then it is an empty entry with no arguments. */ 1207 it->phandle = be32_to_cpup(it->cur++); 1208 1209 if (it->phandle) { 1210 1211 /* 1212 * Find the provider node and parse the #*-cells property to 1213 * determine the argument length. 1214 */ 1215 it->node = of_find_node_by_phandle(it->phandle); 1216 1217 if (it->cells_name) { 1218 if (!it->node) { 1219 pr_err("%pOF: could not find phandle %d\n", 1220 it->parent, it->phandle); 1221 goto err; 1222 } 1223 1224 if (of_property_read_u32(it->node, it->cells_name, 1225 &count)) { 1226 /* 1227 * If both cell_count and cells_name is given, 1228 * fall back to cell_count in absence 1229 * of the cells_name property 1230 */ 1231 if (it->cell_count >= 0) { 1232 count = it->cell_count; 1233 } else { 1234 pr_err("%pOF: could not get %s for %pOF\n", 1235 it->parent, 1236 it->cells_name, 1237 it->node); 1238 goto err; 1239 } 1240 } 1241 } else { 1242 count = it->cell_count; 1243 } 1244 1245 /* 1246 * Make sure that the arguments actually fit in the remaining 1247 * property data length 1248 */ 1249 if (it->cur + count > it->list_end) { 1250 if (it->cells_name) 1251 pr_err("%pOF: %s = %d found %td\n", 1252 it->parent, it->cells_name, 1253 count, it->list_end - it->cur); 1254 else 1255 pr_err("%pOF: phandle %s needs %d, found %td\n", 1256 it->parent, of_node_full_name(it->node), 1257 count, it->list_end - it->cur); 1258 goto err; 1259 } 1260 } 1261 1262 it->phandle_end = it->cur + count; 1263 it->cur_count = count; 1264 1265 return 0; 1266 1267 err: 1268 if (it->node) { 1269 of_node_put(it->node); 1270 it->node = NULL; 1271 } 1272 1273 return -EINVAL; 1274 } 1275 EXPORT_SYMBOL_GPL(of_phandle_iterator_next); 1276 1277 int of_phandle_iterator_args(struct of_phandle_iterator *it, 1278 uint32_t *args, 1279 int size) 1280 { 1281 int i, count; 1282 1283 count = it->cur_count; 1284 1285 if (WARN_ON(size < count)) 1286 count = size; 1287 1288 for (i = 0; i < count; i++) 1289 args[i] = be32_to_cpup(it->cur++); 1290 1291 return count; 1292 } 1293 1294 int __of_parse_phandle_with_args(const struct device_node *np, 1295 const char *list_name, 1296 const char *cells_name, 1297 int cell_count, int index, 1298 struct of_phandle_args *out_args) 1299 { 1300 struct of_phandle_iterator it; 1301 int rc, cur_index = 0; 1302 1303 if (index < 0) 1304 return -EINVAL; 1305 1306 /* Loop over the phandles until all the requested entry is found */ 1307 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) { 1308 /* 1309 * All of the error cases bail out of the loop, so at 1310 * this point, the parsing is successful. If the requested 1311 * index matches, then fill the out_args structure and return, 1312 * or return -ENOENT for an empty entry. 1313 */ 1314 rc = -ENOENT; 1315 if (cur_index == index) { 1316 if (!it.phandle) 1317 goto err; 1318 1319 if (out_args) { 1320 int c; 1321 1322 c = of_phandle_iterator_args(&it, 1323 out_args->args, 1324 MAX_PHANDLE_ARGS); 1325 out_args->np = it.node; 1326 out_args->args_count = c; 1327 } else { 1328 of_node_put(it.node); 1329 } 1330 1331 /* Found it! return success */ 1332 return 0; 1333 } 1334 1335 cur_index++; 1336 } 1337 1338 /* 1339 * Unlock node before returning result; will be one of: 1340 * -ENOENT : index is for empty phandle 1341 * -EINVAL : parsing error on data 1342 */ 1343 1344 err: 1345 of_node_put(it.node); 1346 return rc; 1347 } 1348 EXPORT_SYMBOL(__of_parse_phandle_with_args); 1349 1350 /** 1351 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it 1352 * @np: pointer to a device tree node containing a list 1353 * @list_name: property name that contains a list 1354 * @stem_name: stem of property names that specify phandles' arguments count 1355 * @index: index of a phandle to parse out 1356 * @out_args: optional pointer to output arguments structure (will be filled) 1357 * 1358 * This function is useful to parse lists of phandles and their arguments. 1359 * Returns 0 on success and fills out_args, on error returns appropriate errno 1360 * value. The difference between this function and of_parse_phandle_with_args() 1361 * is that this API remaps a phandle if the node the phandle points to has 1362 * a <@stem_name>-map property. 1363 * 1364 * Caller is responsible to call of_node_put() on the returned out_args->np 1365 * pointer. 1366 * 1367 * Example:: 1368 * 1369 * phandle1: node1 { 1370 * #list-cells = <2>; 1371 * }; 1372 * 1373 * phandle2: node2 { 1374 * #list-cells = <1>; 1375 * }; 1376 * 1377 * phandle3: node3 { 1378 * #list-cells = <1>; 1379 * list-map = <0 &phandle2 3>, 1380 * <1 &phandle2 2>, 1381 * <2 &phandle1 5 1>; 1382 * list-map-mask = <0x3>; 1383 * }; 1384 * 1385 * node4 { 1386 * list = <&phandle1 1 2 &phandle3 0>; 1387 * }; 1388 * 1389 * To get a device_node of the ``node2`` node you may call this: 1390 * of_parse_phandle_with_args(node4, "list", "list", 1, &args); 1391 */ 1392 int of_parse_phandle_with_args_map(const struct device_node *np, 1393 const char *list_name, 1394 const char *stem_name, 1395 int index, struct of_phandle_args *out_args) 1396 { 1397 char *cells_name __free(kfree) = kasprintf(GFP_KERNEL, "#%s-cells", stem_name); 1398 char *map_name __free(kfree) = kasprintf(GFP_KERNEL, "%s-map", stem_name); 1399 char *mask_name __free(kfree) = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name); 1400 char *pass_name __free(kfree) = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name); 1401 struct device_node *cur, *new = NULL; 1402 const __be32 *map, *mask, *pass; 1403 static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = cpu_to_be32(~0) }; 1404 static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = cpu_to_be32(0) }; 1405 __be32 initial_match_array[MAX_PHANDLE_ARGS]; 1406 const __be32 *match_array = initial_match_array; 1407 int i, ret, map_len, match; 1408 u32 list_size, new_size; 1409 1410 if (index < 0) 1411 return -EINVAL; 1412 1413 if (!cells_name || !map_name || !mask_name || !pass_name) 1414 return -ENOMEM; 1415 1416 ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index, 1417 out_args); 1418 if (ret) 1419 return ret; 1420 1421 /* Get the #<list>-cells property */ 1422 cur = out_args->np; 1423 ret = of_property_read_u32(cur, cells_name, &list_size); 1424 if (ret < 0) 1425 goto put; 1426 1427 /* Precalculate the match array - this simplifies match loop */ 1428 for (i = 0; i < list_size; i++) 1429 initial_match_array[i] = cpu_to_be32(out_args->args[i]); 1430 1431 ret = -EINVAL; 1432 while (cur) { 1433 /* Get the <list>-map property */ 1434 map = of_get_property(cur, map_name, &map_len); 1435 if (!map) { 1436 return 0; 1437 } 1438 map_len /= sizeof(u32); 1439 1440 /* Get the <list>-map-mask property (optional) */ 1441 mask = of_get_property(cur, mask_name, NULL); 1442 if (!mask) 1443 mask = dummy_mask; 1444 /* Iterate through <list>-map property */ 1445 match = 0; 1446 while (map_len > (list_size + 1) && !match) { 1447 /* Compare specifiers */ 1448 match = 1; 1449 for (i = 0; i < list_size; i++, map_len--) 1450 match &= !((match_array[i] ^ *map++) & mask[i]); 1451 1452 of_node_put(new); 1453 new = of_find_node_by_phandle(be32_to_cpup(map)); 1454 map++; 1455 map_len--; 1456 1457 /* Check if not found */ 1458 if (!new) 1459 goto put; 1460 1461 if (!of_device_is_available(new)) 1462 match = 0; 1463 1464 ret = of_property_read_u32(new, cells_name, &new_size); 1465 if (ret) 1466 goto put; 1467 1468 /* Check for malformed properties */ 1469 if (WARN_ON(new_size > MAX_PHANDLE_ARGS)) 1470 goto put; 1471 if (map_len < new_size) 1472 goto put; 1473 1474 /* Move forward by new node's #<list>-cells amount */ 1475 map += new_size; 1476 map_len -= new_size; 1477 } 1478 if (!match) 1479 goto put; 1480 1481 /* Get the <list>-map-pass-thru property (optional) */ 1482 pass = of_get_property(cur, pass_name, NULL); 1483 if (!pass) 1484 pass = dummy_pass; 1485 1486 /* 1487 * Successfully parsed a <list>-map translation; copy new 1488 * specifier into the out_args structure, keeping the 1489 * bits specified in <list>-map-pass-thru. 1490 */ 1491 match_array = map - new_size; 1492 for (i = 0; i < new_size; i++) { 1493 __be32 val = *(map - new_size + i); 1494 1495 if (i < list_size) { 1496 val &= ~pass[i]; 1497 val |= cpu_to_be32(out_args->args[i]) & pass[i]; 1498 } 1499 1500 out_args->args[i] = be32_to_cpu(val); 1501 } 1502 out_args->args_count = list_size = new_size; 1503 /* Iterate again with new provider */ 1504 out_args->np = new; 1505 of_node_put(cur); 1506 cur = new; 1507 new = NULL; 1508 } 1509 put: 1510 of_node_put(cur); 1511 of_node_put(new); 1512 return ret; 1513 } 1514 EXPORT_SYMBOL(of_parse_phandle_with_args_map); 1515 1516 /** 1517 * of_count_phandle_with_args() - Find the number of phandles references in a property 1518 * @np: pointer to a device tree node containing a list 1519 * @list_name: property name that contains a list 1520 * @cells_name: property name that specifies phandles' arguments count 1521 * 1522 * Return: The number of phandle + argument tuples within a property. It 1523 * is a typical pattern to encode a list of phandle and variable 1524 * arguments into a single property. The number of arguments is encoded 1525 * by a property in the phandle-target node. For example, a gpios 1526 * property would contain a list of GPIO specifies consisting of a 1527 * phandle and 1 or more arguments. The number of arguments are 1528 * determined by the #gpio-cells property in the node pointed to by the 1529 * phandle. 1530 */ 1531 int of_count_phandle_with_args(const struct device_node *np, const char *list_name, 1532 const char *cells_name) 1533 { 1534 struct of_phandle_iterator it; 1535 int rc, cur_index = 0; 1536 1537 /* 1538 * If cells_name is NULL we assume a cell count of 0. This makes 1539 * counting the phandles trivial as each 32bit word in the list is a 1540 * phandle and no arguments are to consider. So we don't iterate through 1541 * the list but just use the length to determine the phandle count. 1542 */ 1543 if (!cells_name) { 1544 const __be32 *list; 1545 int size; 1546 1547 list = of_get_property(np, list_name, &size); 1548 if (!list) 1549 return -ENOENT; 1550 1551 return size / sizeof(*list); 1552 } 1553 1554 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1); 1555 if (rc) 1556 return rc; 1557 1558 while ((rc = of_phandle_iterator_next(&it)) == 0) 1559 cur_index += 1; 1560 1561 if (rc != -ENOENT) 1562 return rc; 1563 1564 return cur_index; 1565 } 1566 EXPORT_SYMBOL(of_count_phandle_with_args); 1567 1568 static struct property *__of_remove_property_from_list(struct property **list, struct property *prop) 1569 { 1570 struct property **next; 1571 1572 for (next = list; *next; next = &(*next)->next) { 1573 if (*next == prop) { 1574 *next = prop->next; 1575 prop->next = NULL; 1576 return prop; 1577 } 1578 } 1579 return NULL; 1580 } 1581 1582 /** 1583 * __of_add_property - Add a property to a node without lock operations 1584 * @np: Caller's Device Node 1585 * @prop: Property to add 1586 */ 1587 int __of_add_property(struct device_node *np, struct property *prop) 1588 { 1589 int rc = 0; 1590 unsigned long flags; 1591 struct property **next; 1592 1593 raw_spin_lock_irqsave(&devtree_lock, flags); 1594 1595 __of_remove_property_from_list(&np->deadprops, prop); 1596 1597 prop->next = NULL; 1598 next = &np->properties; 1599 while (*next) { 1600 if (strcmp(prop->name, (*next)->name) == 0) { 1601 /* duplicate ! don't insert it */ 1602 rc = -EEXIST; 1603 goto out_unlock; 1604 } 1605 next = &(*next)->next; 1606 } 1607 *next = prop; 1608 1609 out_unlock: 1610 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1611 if (rc) 1612 return rc; 1613 1614 __of_add_property_sysfs(np, prop); 1615 return 0; 1616 } 1617 1618 /** 1619 * of_add_property - Add a property to a node 1620 * @np: Caller's Device Node 1621 * @prop: Property to add 1622 */ 1623 int of_add_property(struct device_node *np, struct property *prop) 1624 { 1625 int rc; 1626 1627 mutex_lock(&of_mutex); 1628 rc = __of_add_property(np, prop); 1629 mutex_unlock(&of_mutex); 1630 1631 if (!rc) 1632 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL); 1633 1634 return rc; 1635 } 1636 EXPORT_SYMBOL_GPL(of_add_property); 1637 1638 int __of_remove_property(struct device_node *np, struct property *prop) 1639 { 1640 unsigned long flags; 1641 int rc = -ENODEV; 1642 1643 raw_spin_lock_irqsave(&devtree_lock, flags); 1644 1645 if (__of_remove_property_from_list(&np->properties, prop)) { 1646 /* Found the property, add it to deadprops list */ 1647 prop->next = np->deadprops; 1648 np->deadprops = prop; 1649 rc = 0; 1650 } 1651 1652 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1653 if (rc) 1654 return rc; 1655 1656 __of_remove_property_sysfs(np, prop); 1657 return 0; 1658 } 1659 1660 /** 1661 * of_remove_property - Remove a property from a node. 1662 * @np: Caller's Device Node 1663 * @prop: Property to remove 1664 * 1665 * Note that we don't actually remove it, since we have given out 1666 * who-knows-how-many pointers to the data using get-property. 1667 * Instead we just move the property to the "dead properties" 1668 * list, so it won't be found any more. 1669 */ 1670 int of_remove_property(struct device_node *np, struct property *prop) 1671 { 1672 int rc; 1673 1674 if (!prop) 1675 return -ENODEV; 1676 1677 mutex_lock(&of_mutex); 1678 rc = __of_remove_property(np, prop); 1679 mutex_unlock(&of_mutex); 1680 1681 if (!rc) 1682 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL); 1683 1684 return rc; 1685 } 1686 EXPORT_SYMBOL_GPL(of_remove_property); 1687 1688 int __of_update_property(struct device_node *np, struct property *newprop, 1689 struct property **oldpropp) 1690 { 1691 struct property **next, *oldprop; 1692 unsigned long flags; 1693 1694 raw_spin_lock_irqsave(&devtree_lock, flags); 1695 1696 __of_remove_property_from_list(&np->deadprops, newprop); 1697 1698 for (next = &np->properties; *next; next = &(*next)->next) { 1699 if (of_prop_cmp((*next)->name, newprop->name) == 0) 1700 break; 1701 } 1702 *oldpropp = oldprop = *next; 1703 1704 if (oldprop) { 1705 /* replace the node */ 1706 newprop->next = oldprop->next; 1707 *next = newprop; 1708 oldprop->next = np->deadprops; 1709 np->deadprops = oldprop; 1710 } else { 1711 /* new node */ 1712 newprop->next = NULL; 1713 *next = newprop; 1714 } 1715 1716 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1717 1718 __of_update_property_sysfs(np, newprop, oldprop); 1719 1720 return 0; 1721 } 1722 1723 /* 1724 * of_update_property - Update a property in a node, if the property does 1725 * not exist, add it. 1726 * 1727 * Note that we don't actually remove it, since we have given out 1728 * who-knows-how-many pointers to the data using get-property. 1729 * Instead we just move the property to the "dead properties" list, 1730 * and add the new property to the property list 1731 */ 1732 int of_update_property(struct device_node *np, struct property *newprop) 1733 { 1734 struct property *oldprop; 1735 int rc; 1736 1737 if (!newprop->name) 1738 return -EINVAL; 1739 1740 mutex_lock(&of_mutex); 1741 rc = __of_update_property(np, newprop, &oldprop); 1742 mutex_unlock(&of_mutex); 1743 1744 if (!rc) 1745 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop); 1746 1747 return rc; 1748 } 1749 1750 static void of_alias_add(struct alias_prop *ap, struct device_node *np, 1751 int id, const char *stem, int stem_len) 1752 { 1753 ap->np = np; 1754 ap->id = id; 1755 strscpy(ap->stem, stem, stem_len + 1); 1756 list_add_tail(&ap->link, &aliases_lookup); 1757 pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n", 1758 ap->alias, ap->stem, ap->id, np); 1759 } 1760 1761 /** 1762 * of_alias_scan - Scan all properties of the 'aliases' node 1763 * @dt_alloc: An allocator that provides a virtual address to memory 1764 * for storing the resulting tree 1765 * 1766 * The function scans all the properties of the 'aliases' node and populates 1767 * the global lookup table with the properties. It returns the 1768 * number of alias properties found, or an error code in case of failure. 1769 */ 1770 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align)) 1771 { 1772 struct property *pp; 1773 1774 of_aliases = of_find_node_by_path("/aliases"); 1775 of_chosen = of_find_node_by_path("/chosen"); 1776 if (of_chosen == NULL) 1777 of_chosen = of_find_node_by_path("/chosen@0"); 1778 1779 if (of_chosen) { 1780 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */ 1781 const char *name = NULL; 1782 1783 if (of_property_read_string(of_chosen, "stdout-path", &name)) 1784 of_property_read_string(of_chosen, "linux,stdout-path", 1785 &name); 1786 if (IS_ENABLED(CONFIG_PPC) && !name) 1787 of_property_read_string(of_aliases, "stdout", &name); 1788 if (name) 1789 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options); 1790 if (of_stdout) 1791 of_stdout->fwnode.flags |= FWNODE_FLAG_BEST_EFFORT; 1792 } 1793 1794 if (!of_aliases) 1795 return; 1796 1797 for_each_property_of_node(of_aliases, pp) { 1798 const char *start = pp->name; 1799 const char *end = start + strlen(start); 1800 struct device_node *np; 1801 struct alias_prop *ap; 1802 int id, len; 1803 1804 /* Skip those we do not want to proceed */ 1805 if (!strcmp(pp->name, "name") || 1806 !strcmp(pp->name, "phandle") || 1807 !strcmp(pp->name, "linux,phandle")) 1808 continue; 1809 1810 np = of_find_node_by_path(pp->value); 1811 if (!np) 1812 continue; 1813 1814 /* walk the alias backwards to extract the id and work out 1815 * the 'stem' string */ 1816 while (isdigit(*(end-1)) && end > start) 1817 end--; 1818 len = end - start; 1819 1820 if (kstrtoint(end, 10, &id) < 0) 1821 continue; 1822 1823 /* Allocate an alias_prop with enough space for the stem */ 1824 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap)); 1825 if (!ap) 1826 continue; 1827 memset(ap, 0, sizeof(*ap) + len + 1); 1828 ap->alias = start; 1829 of_alias_add(ap, np, id, start, len); 1830 } 1831 } 1832 1833 /** 1834 * of_alias_get_id - Get alias id for the given device_node 1835 * @np: Pointer to the given device_node 1836 * @stem: Alias stem of the given device_node 1837 * 1838 * The function travels the lookup table to get the alias id for the given 1839 * device_node and alias stem. 1840 * 1841 * Return: The alias id if found. 1842 */ 1843 int of_alias_get_id(struct device_node *np, const char *stem) 1844 { 1845 struct alias_prop *app; 1846 int id = -ENODEV; 1847 1848 mutex_lock(&of_mutex); 1849 list_for_each_entry(app, &aliases_lookup, link) { 1850 if (strcmp(app->stem, stem) != 0) 1851 continue; 1852 1853 if (np == app->np) { 1854 id = app->id; 1855 break; 1856 } 1857 } 1858 mutex_unlock(&of_mutex); 1859 1860 return id; 1861 } 1862 EXPORT_SYMBOL_GPL(of_alias_get_id); 1863 1864 /** 1865 * of_alias_get_highest_id - Get highest alias id for the given stem 1866 * @stem: Alias stem to be examined 1867 * 1868 * The function travels the lookup table to get the highest alias id for the 1869 * given alias stem. It returns the alias id if found. 1870 */ 1871 int of_alias_get_highest_id(const char *stem) 1872 { 1873 struct alias_prop *app; 1874 int id = -ENODEV; 1875 1876 mutex_lock(&of_mutex); 1877 list_for_each_entry(app, &aliases_lookup, link) { 1878 if (strcmp(app->stem, stem) != 0) 1879 continue; 1880 1881 if (app->id > id) 1882 id = app->id; 1883 } 1884 mutex_unlock(&of_mutex); 1885 1886 return id; 1887 } 1888 EXPORT_SYMBOL_GPL(of_alias_get_highest_id); 1889 1890 /** 1891 * of_console_check() - Test and setup console for DT setup 1892 * @dn: Pointer to device node 1893 * @name: Name to use for preferred console without index. ex. "ttyS" 1894 * @index: Index to use for preferred console. 1895 * 1896 * Check if the given device node matches the stdout-path property in the 1897 * /chosen node. If it does then register it as the preferred console. 1898 * 1899 * Return: TRUE if console successfully setup. Otherwise return FALSE. 1900 */ 1901 bool of_console_check(struct device_node *dn, char *name, int index) 1902 { 1903 if (!dn || dn != of_stdout || console_set_on_cmdline) 1904 return false; 1905 1906 /* 1907 * XXX: cast `options' to char pointer to suppress complication 1908 * warnings: printk, UART and console drivers expect char pointer. 1909 */ 1910 return !add_preferred_console(name, index, (char *)of_stdout_options); 1911 } 1912 EXPORT_SYMBOL_GPL(of_console_check); 1913 1914 /** 1915 * of_find_next_cache_node - Find a node's subsidiary cache 1916 * @np: node of type "cpu" or "cache" 1917 * 1918 * Return: A node pointer with refcount incremented, use 1919 * of_node_put() on it when done. Caller should hold a reference 1920 * to np. 1921 */ 1922 struct device_node *of_find_next_cache_node(const struct device_node *np) 1923 { 1924 struct device_node *child, *cache_node; 1925 1926 cache_node = of_parse_phandle(np, "l2-cache", 0); 1927 if (!cache_node) 1928 cache_node = of_parse_phandle(np, "next-level-cache", 0); 1929 1930 if (cache_node) 1931 return cache_node; 1932 1933 /* OF on pmac has nodes instead of properties named "l2-cache" 1934 * beneath CPU nodes. 1935 */ 1936 if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu")) 1937 for_each_child_of_node(np, child) 1938 if (of_node_is_type(child, "cache")) 1939 return child; 1940 1941 return NULL; 1942 } 1943 1944 /** 1945 * of_find_last_cache_level - Find the level at which the last cache is 1946 * present for the given logical cpu 1947 * 1948 * @cpu: cpu number(logical index) for which the last cache level is needed 1949 * 1950 * Return: The level at which the last cache is present. It is exactly 1951 * same as the total number of cache levels for the given logical cpu. 1952 */ 1953 int of_find_last_cache_level(unsigned int cpu) 1954 { 1955 u32 cache_level = 0; 1956 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu); 1957 1958 while (np) { 1959 of_node_put(prev); 1960 prev = np; 1961 np = of_find_next_cache_node(np); 1962 } 1963 1964 of_property_read_u32(prev, "cache-level", &cache_level); 1965 of_node_put(prev); 1966 1967 return cache_level; 1968 } 1969 1970 /** 1971 * of_map_id - Translate an ID through a downstream mapping. 1972 * @np: root complex device node. 1973 * @id: device ID to map. 1974 * @map_name: property name of the map to use. 1975 * @map_mask_name: optional property name of the mask to use. 1976 * @target: optional pointer to a target device node. 1977 * @id_out: optional pointer to receive the translated ID. 1978 * 1979 * Given a device ID, look up the appropriate implementation-defined 1980 * platform ID and/or the target device which receives transactions on that 1981 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or 1982 * @id_out may be NULL if only the other is required. If @target points to 1983 * a non-NULL device node pointer, only entries targeting that node will be 1984 * matched; if it points to a NULL value, it will receive the device node of 1985 * the first matching target phandle, with a reference held. 1986 * 1987 * Return: 0 on success or a standard error code on failure. 1988 */ 1989 int of_map_id(struct device_node *np, u32 id, 1990 const char *map_name, const char *map_mask_name, 1991 struct device_node **target, u32 *id_out) 1992 { 1993 u32 map_mask, masked_id; 1994 int map_len; 1995 const __be32 *map = NULL; 1996 1997 if (!np || !map_name || (!target && !id_out)) 1998 return -EINVAL; 1999 2000 map = of_get_property(np, map_name, &map_len); 2001 if (!map) { 2002 if (target) 2003 return -ENODEV; 2004 /* Otherwise, no map implies no translation */ 2005 *id_out = id; 2006 return 0; 2007 } 2008 2009 if (!map_len || map_len % (4 * sizeof(*map))) { 2010 pr_err("%pOF: Error: Bad %s length: %d\n", np, 2011 map_name, map_len); 2012 return -EINVAL; 2013 } 2014 2015 /* The default is to select all bits. */ 2016 map_mask = 0xffffffff; 2017 2018 /* 2019 * Can be overridden by "{iommu,msi}-map-mask" property. 2020 * If of_property_read_u32() fails, the default is used. 2021 */ 2022 if (map_mask_name) 2023 of_property_read_u32(np, map_mask_name, &map_mask); 2024 2025 masked_id = map_mask & id; 2026 for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) { 2027 struct device_node *phandle_node; 2028 u32 id_base = be32_to_cpup(map + 0); 2029 u32 phandle = be32_to_cpup(map + 1); 2030 u32 out_base = be32_to_cpup(map + 2); 2031 u32 id_len = be32_to_cpup(map + 3); 2032 2033 if (id_base & ~map_mask) { 2034 pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n", 2035 np, map_name, map_name, 2036 map_mask, id_base); 2037 return -EFAULT; 2038 } 2039 2040 if (masked_id < id_base || masked_id >= id_base + id_len) 2041 continue; 2042 2043 phandle_node = of_find_node_by_phandle(phandle); 2044 if (!phandle_node) 2045 return -ENODEV; 2046 2047 if (target) { 2048 if (*target) 2049 of_node_put(phandle_node); 2050 else 2051 *target = phandle_node; 2052 2053 if (*target != phandle_node) 2054 continue; 2055 } 2056 2057 if (id_out) 2058 *id_out = masked_id - id_base + out_base; 2059 2060 pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n", 2061 np, map_name, map_mask, id_base, out_base, 2062 id_len, id, masked_id - id_base + out_base); 2063 return 0; 2064 } 2065 2066 pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name, 2067 id, target && *target ? *target : NULL); 2068 2069 /* Bypasses translation */ 2070 if (id_out) 2071 *id_out = id; 2072 return 0; 2073 } 2074 EXPORT_SYMBOL_GPL(of_map_id); 2075