1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Procedures for creating, accessing and interpreting the device tree. 4 * 5 * Paul Mackerras August 1996. 6 * Copyright (C) 1996-2005 Paul Mackerras. 7 * 8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 9 * {engebret|bergner}@us.ibm.com 10 * 11 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 12 * 13 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 14 * Grant Likely. 15 */ 16 17 #define pr_fmt(fmt) "OF: " fmt 18 19 #include <linux/cleanup.h> 20 #include <linux/console.h> 21 #include <linux/ctype.h> 22 #include <linux/cpu.h> 23 #include <linux/module.h> 24 #include <linux/of.h> 25 #include <linux/of_device.h> 26 #include <linux/of_graph.h> 27 #include <linux/spinlock.h> 28 #include <linux/slab.h> 29 #include <linux/string.h> 30 #include <linux/proc_fs.h> 31 32 #include "of_private.h" 33 34 LIST_HEAD(aliases_lookup); 35 36 struct device_node *of_root; 37 EXPORT_SYMBOL(of_root); 38 struct device_node *of_chosen; 39 EXPORT_SYMBOL(of_chosen); 40 struct device_node *of_aliases; 41 struct device_node *of_stdout; 42 static const char *of_stdout_options; 43 44 struct kset *of_kset; 45 46 /* 47 * Used to protect the of_aliases, to hold off addition of nodes to sysfs. 48 * This mutex must be held whenever modifications are being made to the 49 * device tree. The of_{attach,detach}_node() and 50 * of_{add,remove,update}_property() helpers make sure this happens. 51 */ 52 DEFINE_MUTEX(of_mutex); 53 54 /* use when traversing tree through the child, sibling, 55 * or parent members of struct device_node. 56 */ 57 DEFINE_RAW_SPINLOCK(devtree_lock); 58 59 bool of_node_name_eq(const struct device_node *np, const char *name) 60 { 61 const char *node_name; 62 size_t len; 63 64 if (!np) 65 return false; 66 67 node_name = kbasename(np->full_name); 68 len = strchrnul(node_name, '@') - node_name; 69 70 return (strlen(name) == len) && (strncmp(node_name, name, len) == 0); 71 } 72 EXPORT_SYMBOL(of_node_name_eq); 73 74 bool of_node_name_prefix(const struct device_node *np, const char *prefix) 75 { 76 if (!np) 77 return false; 78 79 return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0; 80 } 81 EXPORT_SYMBOL(of_node_name_prefix); 82 83 static bool __of_node_is_type(const struct device_node *np, const char *type) 84 { 85 const char *match = __of_get_property(np, "device_type", NULL); 86 87 return np && match && type && !strcmp(match, type); 88 } 89 90 #define EXCLUDED_DEFAULT_CELLS_PLATFORMS ( \ 91 IS_ENABLED(CONFIG_SPARC) || \ 92 of_find_compatible_node(NULL, NULL, "coreboot") \ 93 ) 94 95 int of_bus_n_addr_cells(struct device_node *np) 96 { 97 u32 cells; 98 99 for (; np; np = np->parent) { 100 if (!of_property_read_u32(np, "#address-cells", &cells)) 101 return cells; 102 /* 103 * Default root value and walking parent nodes for "#address-cells" 104 * is deprecated. Any platforms which hit this warning should 105 * be added to the excluded list. 106 */ 107 WARN_ONCE(!EXCLUDED_DEFAULT_CELLS_PLATFORMS, 108 "Missing '#address-cells' in %pOF\n", np); 109 } 110 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 111 } 112 113 int of_n_addr_cells(struct device_node *np) 114 { 115 if (np->parent) 116 np = np->parent; 117 118 return of_bus_n_addr_cells(np); 119 } 120 EXPORT_SYMBOL(of_n_addr_cells); 121 122 int of_bus_n_size_cells(struct device_node *np) 123 { 124 u32 cells; 125 126 for (; np; np = np->parent) { 127 if (!of_property_read_u32(np, "#size-cells", &cells)) 128 return cells; 129 /* 130 * Default root value and walking parent nodes for "#size-cells" 131 * is deprecated. Any platforms which hit this warning should 132 * be added to the excluded list. 133 */ 134 WARN_ONCE(!EXCLUDED_DEFAULT_CELLS_PLATFORMS, 135 "Missing '#size-cells' in %pOF\n", np); 136 } 137 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 138 } 139 140 int of_n_size_cells(struct device_node *np) 141 { 142 if (np->parent) 143 np = np->parent; 144 145 return of_bus_n_size_cells(np); 146 } 147 EXPORT_SYMBOL(of_n_size_cells); 148 149 #ifdef CONFIG_NUMA 150 int __weak of_node_to_nid(struct device_node *np) 151 { 152 return NUMA_NO_NODE; 153 } 154 #endif 155 156 #define OF_PHANDLE_CACHE_BITS 7 157 #define OF_PHANDLE_CACHE_SZ BIT(OF_PHANDLE_CACHE_BITS) 158 159 static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ]; 160 161 static u32 of_phandle_cache_hash(phandle handle) 162 { 163 return hash_32(handle, OF_PHANDLE_CACHE_BITS); 164 } 165 166 /* 167 * Caller must hold devtree_lock. 168 */ 169 void __of_phandle_cache_inv_entry(phandle handle) 170 { 171 u32 handle_hash; 172 struct device_node *np; 173 174 if (!handle) 175 return; 176 177 handle_hash = of_phandle_cache_hash(handle); 178 179 np = phandle_cache[handle_hash]; 180 if (np && handle == np->phandle) 181 phandle_cache[handle_hash] = NULL; 182 } 183 184 void __init of_core_init(void) 185 { 186 struct device_node *np; 187 188 of_platform_register_reconfig_notifier(); 189 190 /* Create the kset, and register existing nodes */ 191 mutex_lock(&of_mutex); 192 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj); 193 if (!of_kset) { 194 mutex_unlock(&of_mutex); 195 pr_err("failed to register existing nodes\n"); 196 return; 197 } 198 for_each_of_allnodes(np) { 199 __of_attach_node_sysfs(np); 200 if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)]) 201 phandle_cache[of_phandle_cache_hash(np->phandle)] = np; 202 } 203 mutex_unlock(&of_mutex); 204 205 /* Symlink in /proc as required by userspace ABI */ 206 if (of_root) 207 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base"); 208 } 209 210 static struct property *__of_find_property(const struct device_node *np, 211 const char *name, int *lenp) 212 { 213 struct property *pp; 214 215 if (!np) 216 return NULL; 217 218 for (pp = np->properties; pp; pp = pp->next) { 219 if (of_prop_cmp(pp->name, name) == 0) { 220 if (lenp) 221 *lenp = pp->length; 222 break; 223 } 224 } 225 226 return pp; 227 } 228 229 struct property *of_find_property(const struct device_node *np, 230 const char *name, 231 int *lenp) 232 { 233 struct property *pp; 234 unsigned long flags; 235 236 raw_spin_lock_irqsave(&devtree_lock, flags); 237 pp = __of_find_property(np, name, lenp); 238 raw_spin_unlock_irqrestore(&devtree_lock, flags); 239 240 return pp; 241 } 242 EXPORT_SYMBOL(of_find_property); 243 244 struct device_node *__of_find_all_nodes(struct device_node *prev) 245 { 246 struct device_node *np; 247 if (!prev) { 248 np = of_root; 249 } else if (prev->child) { 250 np = prev->child; 251 } else { 252 /* Walk back up looking for a sibling, or the end of the structure */ 253 np = prev; 254 while (np->parent && !np->sibling) 255 np = np->parent; 256 np = np->sibling; /* Might be null at the end of the tree */ 257 } 258 return np; 259 } 260 261 /** 262 * of_find_all_nodes - Get next node in global list 263 * @prev: Previous node or NULL to start iteration 264 * of_node_put() will be called on it 265 * 266 * Return: A node pointer with refcount incremented, use 267 * of_node_put() on it when done. 268 */ 269 struct device_node *of_find_all_nodes(struct device_node *prev) 270 { 271 struct device_node *np; 272 unsigned long flags; 273 274 raw_spin_lock_irqsave(&devtree_lock, flags); 275 np = __of_find_all_nodes(prev); 276 of_node_get(np); 277 of_node_put(prev); 278 raw_spin_unlock_irqrestore(&devtree_lock, flags); 279 return np; 280 } 281 EXPORT_SYMBOL(of_find_all_nodes); 282 283 /* 284 * Find a property with a given name for a given node 285 * and return the value. 286 */ 287 const void *__of_get_property(const struct device_node *np, 288 const char *name, int *lenp) 289 { 290 const struct property *pp = __of_find_property(np, name, lenp); 291 292 return pp ? pp->value : NULL; 293 } 294 295 /* 296 * Find a property with a given name for a given node 297 * and return the value. 298 */ 299 const void *of_get_property(const struct device_node *np, const char *name, 300 int *lenp) 301 { 302 const struct property *pp = of_find_property(np, name, lenp); 303 304 return pp ? pp->value : NULL; 305 } 306 EXPORT_SYMBOL(of_get_property); 307 308 /** 309 * __of_device_is_compatible() - Check if the node matches given constraints 310 * @device: pointer to node 311 * @compat: required compatible string, NULL or "" for any match 312 * @type: required device_type value, NULL or "" for any match 313 * @name: required node name, NULL or "" for any match 314 * 315 * Checks if the given @compat, @type and @name strings match the 316 * properties of the given @device. A constraints can be skipped by 317 * passing NULL or an empty string as the constraint. 318 * 319 * Returns 0 for no match, and a positive integer on match. The return 320 * value is a relative score with larger values indicating better 321 * matches. The score is weighted for the most specific compatible value 322 * to get the highest score. Matching type is next, followed by matching 323 * name. Practically speaking, this results in the following priority 324 * order for matches: 325 * 326 * 1. specific compatible && type && name 327 * 2. specific compatible && type 328 * 3. specific compatible && name 329 * 4. specific compatible 330 * 5. general compatible && type && name 331 * 6. general compatible && type 332 * 7. general compatible && name 333 * 8. general compatible 334 * 9. type && name 335 * 10. type 336 * 11. name 337 */ 338 static int __of_device_is_compatible(const struct device_node *device, 339 const char *compat, const char *type, const char *name) 340 { 341 const struct property *prop; 342 const char *cp; 343 int index = 0, score = 0; 344 345 /* Compatible match has highest priority */ 346 if (compat && compat[0]) { 347 prop = __of_find_property(device, "compatible", NULL); 348 for (cp = of_prop_next_string(prop, NULL); cp; 349 cp = of_prop_next_string(prop, cp), index++) { 350 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) { 351 score = INT_MAX/2 - (index << 2); 352 break; 353 } 354 } 355 if (!score) 356 return 0; 357 } 358 359 /* Matching type is better than matching name */ 360 if (type && type[0]) { 361 if (!__of_node_is_type(device, type)) 362 return 0; 363 score += 2; 364 } 365 366 /* Matching name is a bit better than not */ 367 if (name && name[0]) { 368 if (!of_node_name_eq(device, name)) 369 return 0; 370 score++; 371 } 372 373 return score; 374 } 375 376 /** Checks if the given "compat" string matches one of the strings in 377 * the device's "compatible" property 378 */ 379 int of_device_is_compatible(const struct device_node *device, 380 const char *compat) 381 { 382 unsigned long flags; 383 int res; 384 385 raw_spin_lock_irqsave(&devtree_lock, flags); 386 res = __of_device_is_compatible(device, compat, NULL, NULL); 387 raw_spin_unlock_irqrestore(&devtree_lock, flags); 388 return res; 389 } 390 EXPORT_SYMBOL(of_device_is_compatible); 391 392 /** Checks if the device is compatible with any of the entries in 393 * a NULL terminated array of strings. Returns the best match 394 * score or 0. 395 */ 396 int of_device_compatible_match(const struct device_node *device, 397 const char *const *compat) 398 { 399 unsigned int tmp, score = 0; 400 401 if (!compat) 402 return 0; 403 404 while (*compat) { 405 tmp = of_device_is_compatible(device, *compat); 406 if (tmp > score) 407 score = tmp; 408 compat++; 409 } 410 411 return score; 412 } 413 EXPORT_SYMBOL_GPL(of_device_compatible_match); 414 415 /** 416 * of_machine_compatible_match - Test root of device tree against a compatible array 417 * @compats: NULL terminated array of compatible strings to look for in root node's compatible property. 418 * 419 * Returns true if the root node has any of the given compatible values in its 420 * compatible property. 421 */ 422 bool of_machine_compatible_match(const char *const *compats) 423 { 424 struct device_node *root; 425 int rc = 0; 426 427 root = of_find_node_by_path("/"); 428 if (root) { 429 rc = of_device_compatible_match(root, compats); 430 of_node_put(root); 431 } 432 433 return rc != 0; 434 } 435 EXPORT_SYMBOL(of_machine_compatible_match); 436 437 /** 438 * of_machine_device_match - Test root of device tree against a of_device_id array 439 * @matches: NULL terminated array of of_device_id match structures to search in 440 * 441 * Returns true if the root node has any of the given compatible values in its 442 * compatible property. 443 */ 444 bool of_machine_device_match(const struct of_device_id *matches) 445 { 446 struct device_node *root; 447 const struct of_device_id *match = NULL; 448 449 root = of_find_node_by_path("/"); 450 if (root) { 451 match = of_match_node(matches, root); 452 of_node_put(root); 453 } 454 455 return match != NULL; 456 } 457 EXPORT_SYMBOL(of_machine_device_match); 458 459 /** 460 * of_machine_get_match_data - Tell if root of device tree has a matching of_match structure 461 * @matches: NULL terminated array of of_device_id match structures to search in 462 * 463 * Returns data associated with matched entry or NULL 464 */ 465 const void *of_machine_get_match_data(const struct of_device_id *matches) 466 { 467 const struct of_device_id *match; 468 struct device_node *root; 469 470 root = of_find_node_by_path("/"); 471 if (!root) 472 return NULL; 473 474 match = of_match_node(matches, root); 475 of_node_put(root); 476 477 if (!match) 478 return NULL; 479 480 return match->data; 481 } 482 EXPORT_SYMBOL(of_machine_get_match_data); 483 484 static bool __of_device_is_status(const struct device_node *device, 485 const char * const*strings) 486 { 487 const char *status; 488 int statlen; 489 490 if (!device) 491 return false; 492 493 status = __of_get_property(device, "status", &statlen); 494 if (status == NULL) 495 return false; 496 497 if (statlen > 0) { 498 while (*strings) { 499 unsigned int len = strlen(*strings); 500 501 if ((*strings)[len - 1] == '-') { 502 if (!strncmp(status, *strings, len)) 503 return true; 504 } else { 505 if (!strcmp(status, *strings)) 506 return true; 507 } 508 strings++; 509 } 510 } 511 512 return false; 513 } 514 515 /** 516 * __of_device_is_available - check if a device is available for use 517 * 518 * @device: Node to check for availability, with locks already held 519 * 520 * Return: True if the status property is absent or set to "okay" or "ok", 521 * false otherwise 522 */ 523 static bool __of_device_is_available(const struct device_node *device) 524 { 525 static const char * const ok[] = {"okay", "ok", NULL}; 526 527 if (!device) 528 return false; 529 530 return !__of_get_property(device, "status", NULL) || 531 __of_device_is_status(device, ok); 532 } 533 534 /** 535 * __of_device_is_reserved - check if a device is reserved 536 * 537 * @device: Node to check for availability, with locks already held 538 * 539 * Return: True if the status property is set to "reserved", false otherwise 540 */ 541 static bool __of_device_is_reserved(const struct device_node *device) 542 { 543 static const char * const reserved[] = {"reserved", NULL}; 544 545 return __of_device_is_status(device, reserved); 546 } 547 548 /** 549 * of_device_is_available - check if a device is available for use 550 * 551 * @device: Node to check for availability 552 * 553 * Return: True if the status property is absent or set to "okay" or "ok", 554 * false otherwise 555 */ 556 bool of_device_is_available(const struct device_node *device) 557 { 558 unsigned long flags; 559 bool res; 560 561 raw_spin_lock_irqsave(&devtree_lock, flags); 562 res = __of_device_is_available(device); 563 raw_spin_unlock_irqrestore(&devtree_lock, flags); 564 return res; 565 566 } 567 EXPORT_SYMBOL(of_device_is_available); 568 569 /** 570 * __of_device_is_fail - check if a device has status "fail" or "fail-..." 571 * 572 * @device: Node to check status for, with locks already held 573 * 574 * Return: True if the status property is set to "fail" or "fail-..." (for any 575 * error code suffix), false otherwise 576 */ 577 static bool __of_device_is_fail(const struct device_node *device) 578 { 579 static const char * const fail[] = {"fail", "fail-", NULL}; 580 581 return __of_device_is_status(device, fail); 582 } 583 584 /** 585 * of_device_is_big_endian - check if a device has BE registers 586 * 587 * @device: Node to check for endianness 588 * 589 * Return: True if the device has a "big-endian" property, or if the kernel 590 * was compiled for BE *and* the device has a "native-endian" property. 591 * Returns false otherwise. 592 * 593 * Callers would nominally use ioread32be/iowrite32be if 594 * of_device_is_big_endian() == true, or readl/writel otherwise. 595 */ 596 bool of_device_is_big_endian(const struct device_node *device) 597 { 598 if (of_property_read_bool(device, "big-endian")) 599 return true; 600 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) && 601 of_property_read_bool(device, "native-endian")) 602 return true; 603 return false; 604 } 605 EXPORT_SYMBOL(of_device_is_big_endian); 606 607 /** 608 * of_get_parent - Get a node's parent if any 609 * @node: Node to get parent 610 * 611 * Return: A node pointer with refcount incremented, use 612 * of_node_put() on it when done. 613 */ 614 struct device_node *of_get_parent(const struct device_node *node) 615 { 616 struct device_node *np; 617 unsigned long flags; 618 619 if (!node) 620 return NULL; 621 622 raw_spin_lock_irqsave(&devtree_lock, flags); 623 np = of_node_get(node->parent); 624 raw_spin_unlock_irqrestore(&devtree_lock, flags); 625 return np; 626 } 627 EXPORT_SYMBOL(of_get_parent); 628 629 /** 630 * of_get_next_parent - Iterate to a node's parent 631 * @node: Node to get parent of 632 * 633 * This is like of_get_parent() except that it drops the 634 * refcount on the passed node, making it suitable for iterating 635 * through a node's parents. 636 * 637 * Return: A node pointer with refcount incremented, use 638 * of_node_put() on it when done. 639 */ 640 struct device_node *of_get_next_parent(struct device_node *node) 641 { 642 struct device_node *parent; 643 unsigned long flags; 644 645 if (!node) 646 return NULL; 647 648 raw_spin_lock_irqsave(&devtree_lock, flags); 649 parent = of_node_get(node->parent); 650 of_node_put(node); 651 raw_spin_unlock_irqrestore(&devtree_lock, flags); 652 return parent; 653 } 654 EXPORT_SYMBOL(of_get_next_parent); 655 656 static struct device_node *__of_get_next_child(const struct device_node *node, 657 struct device_node *prev) 658 { 659 struct device_node *next; 660 661 if (!node) 662 return NULL; 663 664 next = prev ? prev->sibling : node->child; 665 of_node_get(next); 666 of_node_put(prev); 667 return next; 668 } 669 #define __for_each_child_of_node(parent, child) \ 670 for (child = __of_get_next_child(parent, NULL); child != NULL; \ 671 child = __of_get_next_child(parent, child)) 672 673 /** 674 * of_get_next_child - Iterate a node childs 675 * @node: parent node 676 * @prev: previous child of the parent node, or NULL to get first 677 * 678 * Return: A node pointer with refcount incremented, use of_node_put() on 679 * it when done. Returns NULL when prev is the last child. Decrements the 680 * refcount of prev. 681 */ 682 struct device_node *of_get_next_child(const struct device_node *node, 683 struct device_node *prev) 684 { 685 struct device_node *next; 686 unsigned long flags; 687 688 raw_spin_lock_irqsave(&devtree_lock, flags); 689 next = __of_get_next_child(node, prev); 690 raw_spin_unlock_irqrestore(&devtree_lock, flags); 691 return next; 692 } 693 EXPORT_SYMBOL(of_get_next_child); 694 695 /** 696 * of_get_next_child_with_prefix - Find the next child node with prefix 697 * @node: parent node 698 * @prev: previous child of the parent node, or NULL to get first 699 * @prefix: prefix that the node name should have 700 * 701 * This function is like of_get_next_child(), except that it automatically 702 * skips any nodes whose name doesn't have the given prefix. 703 * 704 * Return: A node pointer with refcount incremented, use 705 * of_node_put() on it when done. 706 */ 707 struct device_node *of_get_next_child_with_prefix(const struct device_node *node, 708 struct device_node *prev, 709 const char *prefix) 710 { 711 struct device_node *next; 712 unsigned long flags; 713 714 if (!node) 715 return NULL; 716 717 raw_spin_lock_irqsave(&devtree_lock, flags); 718 next = prev ? prev->sibling : node->child; 719 for (; next; next = next->sibling) { 720 if (!of_node_name_prefix(next, prefix)) 721 continue; 722 if (of_node_get(next)) 723 break; 724 } 725 of_node_put(prev); 726 raw_spin_unlock_irqrestore(&devtree_lock, flags); 727 return next; 728 } 729 EXPORT_SYMBOL(of_get_next_child_with_prefix); 730 731 static struct device_node *of_get_next_status_child(const struct device_node *node, 732 struct device_node *prev, 733 bool (*checker)(const struct device_node *)) 734 { 735 struct device_node *next; 736 unsigned long flags; 737 738 if (!node) 739 return NULL; 740 741 raw_spin_lock_irqsave(&devtree_lock, flags); 742 next = prev ? prev->sibling : node->child; 743 for (; next; next = next->sibling) { 744 if (!checker(next)) 745 continue; 746 if (of_node_get(next)) 747 break; 748 } 749 of_node_put(prev); 750 raw_spin_unlock_irqrestore(&devtree_lock, flags); 751 return next; 752 } 753 754 /** 755 * of_get_next_available_child - Find the next available child node 756 * @node: parent node 757 * @prev: previous child of the parent node, or NULL to get first 758 * 759 * This function is like of_get_next_child(), except that it 760 * automatically skips any disabled nodes (i.e. status = "disabled"). 761 */ 762 struct device_node *of_get_next_available_child(const struct device_node *node, 763 struct device_node *prev) 764 { 765 return of_get_next_status_child(node, prev, __of_device_is_available); 766 } 767 EXPORT_SYMBOL(of_get_next_available_child); 768 769 /** 770 * of_get_next_reserved_child - Find the next reserved child node 771 * @node: parent node 772 * @prev: previous child of the parent node, or NULL to get first 773 * 774 * This function is like of_get_next_child(), except that it 775 * automatically skips any disabled nodes (i.e. status = "disabled"). 776 */ 777 struct device_node *of_get_next_reserved_child(const struct device_node *node, 778 struct device_node *prev) 779 { 780 return of_get_next_status_child(node, prev, __of_device_is_reserved); 781 } 782 EXPORT_SYMBOL(of_get_next_reserved_child); 783 784 /** 785 * of_get_next_cpu_node - Iterate on cpu nodes 786 * @prev: previous child of the /cpus node, or NULL to get first 787 * 788 * Unusable CPUs (those with the status property set to "fail" or "fail-...") 789 * will be skipped. 790 * 791 * Return: A cpu node pointer with refcount incremented, use of_node_put() 792 * on it when done. Returns NULL when prev is the last child. Decrements 793 * the refcount of prev. 794 */ 795 struct device_node *of_get_next_cpu_node(struct device_node *prev) 796 { 797 struct device_node *next = NULL; 798 unsigned long flags; 799 struct device_node *node; 800 801 if (!prev) 802 node = of_find_node_by_path("/cpus"); 803 804 raw_spin_lock_irqsave(&devtree_lock, flags); 805 if (prev) 806 next = prev->sibling; 807 else if (node) { 808 next = node->child; 809 of_node_put(node); 810 } 811 for (; next; next = next->sibling) { 812 if (__of_device_is_fail(next)) 813 continue; 814 if (!(of_node_name_eq(next, "cpu") || 815 __of_node_is_type(next, "cpu"))) 816 continue; 817 if (of_node_get(next)) 818 break; 819 } 820 of_node_put(prev); 821 raw_spin_unlock_irqrestore(&devtree_lock, flags); 822 return next; 823 } 824 EXPORT_SYMBOL(of_get_next_cpu_node); 825 826 /** 827 * of_get_compatible_child - Find compatible child node 828 * @parent: parent node 829 * @compatible: compatible string 830 * 831 * Lookup child node whose compatible property contains the given compatible 832 * string. 833 * 834 * Return: a node pointer with refcount incremented, use of_node_put() on it 835 * when done; or NULL if not found. 836 */ 837 struct device_node *of_get_compatible_child(const struct device_node *parent, 838 const char *compatible) 839 { 840 struct device_node *child; 841 842 for_each_child_of_node(parent, child) { 843 if (of_device_is_compatible(child, compatible)) 844 break; 845 } 846 847 return child; 848 } 849 EXPORT_SYMBOL(of_get_compatible_child); 850 851 /** 852 * of_get_child_by_name - Find the child node by name for a given parent 853 * @node: parent node 854 * @name: child name to look for. 855 * 856 * This function looks for child node for given matching name 857 * 858 * Return: A node pointer if found, with refcount incremented, use 859 * of_node_put() on it when done. 860 * Returns NULL if node is not found. 861 */ 862 struct device_node *of_get_child_by_name(const struct device_node *node, 863 const char *name) 864 { 865 struct device_node *child; 866 867 for_each_child_of_node(node, child) 868 if (of_node_name_eq(child, name)) 869 break; 870 return child; 871 } 872 EXPORT_SYMBOL(of_get_child_by_name); 873 874 /** 875 * of_get_available_child_by_name - Find the available child node by name for a given parent 876 * @node: parent node 877 * @name: child name to look for. 878 * 879 * This function looks for child node for given matching name and checks the 880 * device's availability for use. 881 * 882 * Return: A node pointer if found, with refcount incremented, use 883 * of_node_put() on it when done. 884 * Returns NULL if node is not found. 885 */ 886 struct device_node *of_get_available_child_by_name(const struct device_node *node, 887 const char *name) 888 { 889 struct device_node *child; 890 891 child = of_get_child_by_name(node, name); 892 if (child && !of_device_is_available(child)) { 893 of_node_put(child); 894 return NULL; 895 } 896 897 return child; 898 } 899 EXPORT_SYMBOL(of_get_available_child_by_name); 900 901 struct device_node *__of_find_node_by_path(const struct device_node *parent, 902 const char *path) 903 { 904 struct device_node *child; 905 int len; 906 907 len = strcspn(path, "/:"); 908 if (!len) 909 return NULL; 910 911 __for_each_child_of_node(parent, child) { 912 const char *name = kbasename(child->full_name); 913 if (strncmp(path, name, len) == 0 && (strlen(name) == len)) 914 return child; 915 } 916 return NULL; 917 } 918 919 struct device_node *__of_find_node_by_full_path(struct device_node *node, 920 const char *path) 921 { 922 const char *separator = strchr(path, ':'); 923 924 while (node && *path == '/') { 925 struct device_node *tmp = node; 926 927 path++; /* Increment past '/' delimiter */ 928 node = __of_find_node_by_path(node, path); 929 of_node_put(tmp); 930 path = strchrnul(path, '/'); 931 if (separator && separator < path) 932 break; 933 } 934 return node; 935 } 936 937 /** 938 * of_find_node_opts_by_path - Find a node matching a full OF path 939 * @path: Either the full path to match, or if the path does not 940 * start with '/', the name of a property of the /aliases 941 * node (an alias). In the case of an alias, the node 942 * matching the alias' value will be returned. 943 * @opts: Address of a pointer into which to store the start of 944 * an options string appended to the end of the path with 945 * a ':' separator. 946 * 947 * Valid paths: 948 * * /foo/bar Full path 949 * * foo Valid alias 950 * * foo/bar Valid alias + relative path 951 * 952 * Return: A node pointer with refcount incremented, use 953 * of_node_put() on it when done. 954 */ 955 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts) 956 { 957 struct device_node *np = NULL; 958 const struct property *pp; 959 unsigned long flags; 960 const char *separator = strchr(path, ':'); 961 962 if (opts) 963 *opts = separator ? separator + 1 : NULL; 964 965 if (strcmp(path, "/") == 0) 966 return of_node_get(of_root); 967 968 /* The path could begin with an alias */ 969 if (*path != '/') { 970 int len; 971 const char *p = strchrnul(path, '/'); 972 973 if (separator && separator < p) 974 p = separator; 975 len = p - path; 976 977 /* of_aliases must not be NULL */ 978 if (!of_aliases) 979 return NULL; 980 981 for_each_property_of_node(of_aliases, pp) { 982 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) { 983 np = of_find_node_by_path(pp->value); 984 break; 985 } 986 } 987 if (!np) 988 return NULL; 989 path = p; 990 } 991 992 /* Step down the tree matching path components */ 993 raw_spin_lock_irqsave(&devtree_lock, flags); 994 if (!np) 995 np = of_node_get(of_root); 996 np = __of_find_node_by_full_path(np, path); 997 raw_spin_unlock_irqrestore(&devtree_lock, flags); 998 return np; 999 } 1000 EXPORT_SYMBOL(of_find_node_opts_by_path); 1001 1002 /** 1003 * of_find_node_by_name - Find a node by its "name" property 1004 * @from: The node to start searching from or NULL; the node 1005 * you pass will not be searched, only the next one 1006 * will. Typically, you pass what the previous call 1007 * returned. of_node_put() will be called on @from. 1008 * @name: The name string to match against 1009 * 1010 * Return: A node pointer with refcount incremented, use 1011 * of_node_put() on it when done. 1012 */ 1013 struct device_node *of_find_node_by_name(struct device_node *from, 1014 const char *name) 1015 { 1016 struct device_node *np; 1017 unsigned long flags; 1018 1019 raw_spin_lock_irqsave(&devtree_lock, flags); 1020 for_each_of_allnodes_from(from, np) 1021 if (of_node_name_eq(np, name) && of_node_get(np)) 1022 break; 1023 of_node_put(from); 1024 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1025 return np; 1026 } 1027 EXPORT_SYMBOL(of_find_node_by_name); 1028 1029 /** 1030 * of_find_node_by_type - Find a node by its "device_type" property 1031 * @from: The node to start searching from, or NULL to start searching 1032 * the entire device tree. The node you pass will not be 1033 * searched, only the next one will; typically, you pass 1034 * what the previous call returned. of_node_put() will be 1035 * called on from for you. 1036 * @type: The type string to match against 1037 * 1038 * Return: A node pointer with refcount incremented, use 1039 * of_node_put() on it when done. 1040 */ 1041 struct device_node *of_find_node_by_type(struct device_node *from, 1042 const char *type) 1043 { 1044 struct device_node *np; 1045 unsigned long flags; 1046 1047 raw_spin_lock_irqsave(&devtree_lock, flags); 1048 for_each_of_allnodes_from(from, np) 1049 if (__of_node_is_type(np, type) && of_node_get(np)) 1050 break; 1051 of_node_put(from); 1052 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1053 return np; 1054 } 1055 EXPORT_SYMBOL(of_find_node_by_type); 1056 1057 /** 1058 * of_find_compatible_node - Find a node based on type and one of the 1059 * tokens in its "compatible" property 1060 * @from: The node to start searching from or NULL, the node 1061 * you pass will not be searched, only the next one 1062 * will; typically, you pass what the previous call 1063 * returned. of_node_put() will be called on it 1064 * @type: The type string to match "device_type" or NULL to ignore 1065 * @compatible: The string to match to one of the tokens in the device 1066 * "compatible" list. 1067 * 1068 * Return: A node pointer with refcount incremented, use 1069 * of_node_put() on it when done. 1070 */ 1071 struct device_node *of_find_compatible_node(struct device_node *from, 1072 const char *type, const char *compatible) 1073 { 1074 struct device_node *np; 1075 unsigned long flags; 1076 1077 raw_spin_lock_irqsave(&devtree_lock, flags); 1078 for_each_of_allnodes_from(from, np) 1079 if (__of_device_is_compatible(np, compatible, type, NULL) && 1080 of_node_get(np)) 1081 break; 1082 of_node_put(from); 1083 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1084 return np; 1085 } 1086 EXPORT_SYMBOL(of_find_compatible_node); 1087 1088 /** 1089 * of_find_node_with_property - Find a node which has a property with 1090 * the given name. 1091 * @from: The node to start searching from or NULL, the node 1092 * you pass will not be searched, only the next one 1093 * will; typically, you pass what the previous call 1094 * returned. of_node_put() will be called on it 1095 * @prop_name: The name of the property to look for. 1096 * 1097 * Return: A node pointer with refcount incremented, use 1098 * of_node_put() on it when done. 1099 */ 1100 struct device_node *of_find_node_with_property(struct device_node *from, 1101 const char *prop_name) 1102 { 1103 struct device_node *np; 1104 unsigned long flags; 1105 1106 raw_spin_lock_irqsave(&devtree_lock, flags); 1107 for_each_of_allnodes_from(from, np) { 1108 if (__of_find_property(np, prop_name, NULL)) { 1109 of_node_get(np); 1110 break; 1111 } 1112 } 1113 of_node_put(from); 1114 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1115 return np; 1116 } 1117 EXPORT_SYMBOL(of_find_node_with_property); 1118 1119 static 1120 const struct of_device_id *__of_match_node(const struct of_device_id *matches, 1121 const struct device_node *node) 1122 { 1123 const struct of_device_id *best_match = NULL; 1124 int score, best_score = 0; 1125 1126 if (!matches) 1127 return NULL; 1128 1129 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) { 1130 score = __of_device_is_compatible(node, matches->compatible, 1131 matches->type, matches->name); 1132 if (score > best_score) { 1133 best_match = matches; 1134 best_score = score; 1135 } 1136 } 1137 1138 return best_match; 1139 } 1140 1141 /** 1142 * of_match_node - Tell if a device_node has a matching of_match structure 1143 * @matches: array of of device match structures to search in 1144 * @node: the of device structure to match against 1145 * 1146 * Low level utility function used by device matching. 1147 */ 1148 const struct of_device_id *of_match_node(const struct of_device_id *matches, 1149 const struct device_node *node) 1150 { 1151 const struct of_device_id *match; 1152 unsigned long flags; 1153 1154 raw_spin_lock_irqsave(&devtree_lock, flags); 1155 match = __of_match_node(matches, node); 1156 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1157 return match; 1158 } 1159 EXPORT_SYMBOL(of_match_node); 1160 1161 /** 1162 * of_find_matching_node_and_match - Find a node based on an of_device_id 1163 * match table. 1164 * @from: The node to start searching from or NULL, the node 1165 * you pass will not be searched, only the next one 1166 * will; typically, you pass what the previous call 1167 * returned. of_node_put() will be called on it 1168 * @matches: array of of device match structures to search in 1169 * @match: Updated to point at the matches entry which matched 1170 * 1171 * Return: A node pointer with refcount incremented, use 1172 * of_node_put() on it when done. 1173 */ 1174 struct device_node *of_find_matching_node_and_match(struct device_node *from, 1175 const struct of_device_id *matches, 1176 const struct of_device_id **match) 1177 { 1178 struct device_node *np; 1179 const struct of_device_id *m; 1180 unsigned long flags; 1181 1182 if (match) 1183 *match = NULL; 1184 1185 raw_spin_lock_irqsave(&devtree_lock, flags); 1186 for_each_of_allnodes_from(from, np) { 1187 m = __of_match_node(matches, np); 1188 if (m && of_node_get(np)) { 1189 if (match) 1190 *match = m; 1191 break; 1192 } 1193 } 1194 of_node_put(from); 1195 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1196 return np; 1197 } 1198 EXPORT_SYMBOL(of_find_matching_node_and_match); 1199 1200 /** 1201 * of_alias_from_compatible - Lookup appropriate alias for a device node 1202 * depending on compatible 1203 * @node: pointer to a device tree node 1204 * @alias: Pointer to buffer that alias value will be copied into 1205 * @len: Length of alias value 1206 * 1207 * Based on the value of the compatible property, this routine will attempt 1208 * to choose an appropriate alias value for a particular device tree node. 1209 * It does this by stripping the manufacturer prefix (as delimited by a ',') 1210 * from the first entry in the compatible list property. 1211 * 1212 * Note: The matching on just the "product" side of the compatible is a relic 1213 * from I2C and SPI. Please do not add any new user. 1214 * 1215 * Return: This routine returns 0 on success, <0 on failure. 1216 */ 1217 int of_alias_from_compatible(const struct device_node *node, char *alias, int len) 1218 { 1219 const char *compatible, *p; 1220 int cplen; 1221 1222 compatible = of_get_property(node, "compatible", &cplen); 1223 if (!compatible || strlen(compatible) > cplen) 1224 return -ENODEV; 1225 p = strchr(compatible, ','); 1226 strscpy(alias, p ? p + 1 : compatible, len); 1227 return 0; 1228 } 1229 EXPORT_SYMBOL_GPL(of_alias_from_compatible); 1230 1231 /** 1232 * of_find_node_by_phandle - Find a node given a phandle 1233 * @handle: phandle of the node to find 1234 * 1235 * Return: A node pointer with refcount incremented, use 1236 * of_node_put() on it when done. 1237 */ 1238 struct device_node *of_find_node_by_phandle(phandle handle) 1239 { 1240 struct device_node *np = NULL; 1241 unsigned long flags; 1242 u32 handle_hash; 1243 1244 if (!handle) 1245 return NULL; 1246 1247 handle_hash = of_phandle_cache_hash(handle); 1248 1249 raw_spin_lock_irqsave(&devtree_lock, flags); 1250 1251 if (phandle_cache[handle_hash] && 1252 handle == phandle_cache[handle_hash]->phandle) 1253 np = phandle_cache[handle_hash]; 1254 1255 if (!np) { 1256 for_each_of_allnodes(np) 1257 if (np->phandle == handle && 1258 !of_node_check_flag(np, OF_DETACHED)) { 1259 phandle_cache[handle_hash] = np; 1260 break; 1261 } 1262 } 1263 1264 of_node_get(np); 1265 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1266 return np; 1267 } 1268 EXPORT_SYMBOL(of_find_node_by_phandle); 1269 1270 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args) 1271 { 1272 int i; 1273 printk("%s %pOF", msg, args->np); 1274 for (i = 0; i < args->args_count; i++) { 1275 const char delim = i ? ',' : ':'; 1276 1277 pr_cont("%c%08x", delim, args->args[i]); 1278 } 1279 pr_cont("\n"); 1280 } 1281 1282 int of_phandle_iterator_init(struct of_phandle_iterator *it, 1283 const struct device_node *np, 1284 const char *list_name, 1285 const char *cells_name, 1286 int cell_count) 1287 { 1288 const __be32 *list; 1289 int size; 1290 1291 memset(it, 0, sizeof(*it)); 1292 1293 /* 1294 * one of cell_count or cells_name must be provided to determine the 1295 * argument length. 1296 */ 1297 if (cell_count < 0 && !cells_name) 1298 return -EINVAL; 1299 1300 list = of_get_property(np, list_name, &size); 1301 if (!list) 1302 return -ENOENT; 1303 1304 it->cells_name = cells_name; 1305 it->cell_count = cell_count; 1306 it->parent = np; 1307 it->list_end = list + size / sizeof(*list); 1308 it->phandle_end = list; 1309 it->cur = list; 1310 1311 return 0; 1312 } 1313 EXPORT_SYMBOL_GPL(of_phandle_iterator_init); 1314 1315 int of_phandle_iterator_next(struct of_phandle_iterator *it) 1316 { 1317 uint32_t count = 0; 1318 1319 if (it->node) { 1320 of_node_put(it->node); 1321 it->node = NULL; 1322 } 1323 1324 if (!it->cur || it->phandle_end >= it->list_end) 1325 return -ENOENT; 1326 1327 it->cur = it->phandle_end; 1328 1329 /* If phandle is 0, then it is an empty entry with no arguments. */ 1330 it->phandle = be32_to_cpup(it->cur++); 1331 1332 if (it->phandle) { 1333 1334 /* 1335 * Find the provider node and parse the #*-cells property to 1336 * determine the argument length. 1337 */ 1338 it->node = of_find_node_by_phandle(it->phandle); 1339 1340 if (it->cells_name) { 1341 if (!it->node) { 1342 pr_err("%pOF: could not find phandle %d\n", 1343 it->parent, it->phandle); 1344 goto err; 1345 } 1346 1347 if (of_property_read_u32(it->node, it->cells_name, 1348 &count)) { 1349 /* 1350 * If both cell_count and cells_name is given, 1351 * fall back to cell_count in absence 1352 * of the cells_name property 1353 */ 1354 if (it->cell_count >= 0) { 1355 count = it->cell_count; 1356 } else { 1357 pr_err("%pOF: could not get %s for %pOF\n", 1358 it->parent, 1359 it->cells_name, 1360 it->node); 1361 goto err; 1362 } 1363 } 1364 } else { 1365 count = it->cell_count; 1366 } 1367 1368 /* 1369 * Make sure that the arguments actually fit in the remaining 1370 * property data length 1371 */ 1372 if (it->cur + count > it->list_end) { 1373 if (it->cells_name) 1374 pr_err("%pOF: %s = %d found %td\n", 1375 it->parent, it->cells_name, 1376 count, it->list_end - it->cur); 1377 else 1378 pr_err("%pOF: phandle %s needs %d, found %td\n", 1379 it->parent, of_node_full_name(it->node), 1380 count, it->list_end - it->cur); 1381 goto err; 1382 } 1383 } 1384 1385 it->phandle_end = it->cur + count; 1386 it->cur_count = count; 1387 1388 return 0; 1389 1390 err: 1391 if (it->node) { 1392 of_node_put(it->node); 1393 it->node = NULL; 1394 } 1395 1396 return -EINVAL; 1397 } 1398 EXPORT_SYMBOL_GPL(of_phandle_iterator_next); 1399 1400 int of_phandle_iterator_args(struct of_phandle_iterator *it, 1401 uint32_t *args, 1402 int size) 1403 { 1404 int i, count; 1405 1406 count = it->cur_count; 1407 1408 if (WARN_ON(size < count)) 1409 count = size; 1410 1411 for (i = 0; i < count; i++) 1412 args[i] = be32_to_cpup(it->cur++); 1413 1414 return count; 1415 } 1416 1417 int __of_parse_phandle_with_args(const struct device_node *np, 1418 const char *list_name, 1419 const char *cells_name, 1420 int cell_count, int index, 1421 struct of_phandle_args *out_args) 1422 { 1423 struct of_phandle_iterator it; 1424 int rc, cur_index = 0; 1425 1426 if (index < 0) 1427 return -EINVAL; 1428 1429 /* Loop over the phandles until all the requested entry is found */ 1430 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) { 1431 /* 1432 * All of the error cases bail out of the loop, so at 1433 * this point, the parsing is successful. If the requested 1434 * index matches, then fill the out_args structure and return, 1435 * or return -ENOENT for an empty entry. 1436 */ 1437 rc = -ENOENT; 1438 if (cur_index == index) { 1439 if (!it.phandle) 1440 goto err; 1441 1442 if (out_args) { 1443 int c; 1444 1445 c = of_phandle_iterator_args(&it, 1446 out_args->args, 1447 MAX_PHANDLE_ARGS); 1448 out_args->np = it.node; 1449 out_args->args_count = c; 1450 } else { 1451 of_node_put(it.node); 1452 } 1453 1454 /* Found it! return success */ 1455 return 0; 1456 } 1457 1458 cur_index++; 1459 } 1460 1461 /* 1462 * Unlock node before returning result; will be one of: 1463 * -ENOENT : index is for empty phandle 1464 * -EINVAL : parsing error on data 1465 */ 1466 1467 err: 1468 of_node_put(it.node); 1469 return rc; 1470 } 1471 EXPORT_SYMBOL(__of_parse_phandle_with_args); 1472 1473 /** 1474 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it 1475 * @np: pointer to a device tree node containing a list 1476 * @list_name: property name that contains a list 1477 * @stem_name: stem of property names that specify phandles' arguments count 1478 * @index: index of a phandle to parse out 1479 * @out_args: optional pointer to output arguments structure (will be filled) 1480 * 1481 * This function is useful to parse lists of phandles and their arguments. 1482 * Returns 0 on success and fills out_args, on error returns appropriate errno 1483 * value. The difference between this function and of_parse_phandle_with_args() 1484 * is that this API remaps a phandle if the node the phandle points to has 1485 * a <@stem_name>-map property. 1486 * 1487 * Caller is responsible to call of_node_put() on the returned out_args->np 1488 * pointer. 1489 * 1490 * Example:: 1491 * 1492 * phandle1: node1 { 1493 * #list-cells = <2>; 1494 * }; 1495 * 1496 * phandle2: node2 { 1497 * #list-cells = <1>; 1498 * }; 1499 * 1500 * phandle3: node3 { 1501 * #list-cells = <1>; 1502 * list-map = <0 &phandle2 3>, 1503 * <1 &phandle2 2>, 1504 * <2 &phandle1 5 1>; 1505 * list-map-mask = <0x3>; 1506 * }; 1507 * 1508 * node4 { 1509 * list = <&phandle1 1 2 &phandle3 0>; 1510 * }; 1511 * 1512 * To get a device_node of the ``node2`` node you may call this: 1513 * of_parse_phandle_with_args(node4, "list", "list", 1, &args); 1514 */ 1515 int of_parse_phandle_with_args_map(const struct device_node *np, 1516 const char *list_name, 1517 const char *stem_name, 1518 int index, struct of_phandle_args *out_args) 1519 { 1520 char *cells_name __free(kfree) = kasprintf(GFP_KERNEL, "#%s-cells", stem_name); 1521 char *map_name __free(kfree) = kasprintf(GFP_KERNEL, "%s-map", stem_name); 1522 char *mask_name __free(kfree) = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name); 1523 char *pass_name __free(kfree) = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name); 1524 struct device_node *cur, *new = NULL; 1525 const __be32 *map, *mask, *pass; 1526 static const __be32 dummy_mask[] = { [0 ... (MAX_PHANDLE_ARGS - 1)] = cpu_to_be32(~0) }; 1527 static const __be32 dummy_pass[] = { [0 ... (MAX_PHANDLE_ARGS - 1)] = cpu_to_be32(0) }; 1528 __be32 initial_match_array[MAX_PHANDLE_ARGS]; 1529 const __be32 *match_array = initial_match_array; 1530 int i, ret, map_len, match; 1531 u32 list_size, new_size; 1532 1533 if (index < 0) 1534 return -EINVAL; 1535 1536 if (!cells_name || !map_name || !mask_name || !pass_name) 1537 return -ENOMEM; 1538 1539 ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index, 1540 out_args); 1541 if (ret) 1542 return ret; 1543 1544 /* Get the #<list>-cells property */ 1545 cur = out_args->np; 1546 ret = of_property_read_u32(cur, cells_name, &list_size); 1547 if (ret < 0) 1548 goto put; 1549 1550 /* Precalculate the match array - this simplifies match loop */ 1551 for (i = 0; i < list_size; i++) 1552 initial_match_array[i] = cpu_to_be32(out_args->args[i]); 1553 1554 ret = -EINVAL; 1555 while (cur) { 1556 /* Get the <list>-map property */ 1557 map = of_get_property(cur, map_name, &map_len); 1558 if (!map) { 1559 return 0; 1560 } 1561 map_len /= sizeof(u32); 1562 1563 /* Get the <list>-map-mask property (optional) */ 1564 mask = of_get_property(cur, mask_name, NULL); 1565 if (!mask) 1566 mask = dummy_mask; 1567 /* Iterate through <list>-map property */ 1568 match = 0; 1569 while (map_len > (list_size + 1) && !match) { 1570 /* Compare specifiers */ 1571 match = 1; 1572 for (i = 0; i < list_size; i++, map_len--) 1573 match &= !((match_array[i] ^ *map++) & mask[i]); 1574 1575 of_node_put(new); 1576 new = of_find_node_by_phandle(be32_to_cpup(map)); 1577 map++; 1578 map_len--; 1579 1580 /* Check if not found */ 1581 if (!new) { 1582 ret = -EINVAL; 1583 goto put; 1584 } 1585 1586 if (!of_device_is_available(new)) 1587 match = 0; 1588 1589 ret = of_property_read_u32(new, cells_name, &new_size); 1590 if (ret) 1591 goto put; 1592 1593 /* Check for malformed properties */ 1594 if (WARN_ON(new_size > MAX_PHANDLE_ARGS) || 1595 map_len < new_size) { 1596 ret = -EINVAL; 1597 goto put; 1598 } 1599 1600 /* Move forward by new node's #<list>-cells amount */ 1601 map += new_size; 1602 map_len -= new_size; 1603 } 1604 if (!match) { 1605 ret = -ENOENT; 1606 goto put; 1607 } 1608 1609 /* Get the <list>-map-pass-thru property (optional) */ 1610 pass = of_get_property(cur, pass_name, NULL); 1611 if (!pass) 1612 pass = dummy_pass; 1613 1614 /* 1615 * Successfully parsed a <list>-map translation; copy new 1616 * specifier into the out_args structure, keeping the 1617 * bits specified in <list>-map-pass-thru. 1618 */ 1619 for (i = 0; i < new_size; i++) { 1620 __be32 val = *(map - new_size + i); 1621 1622 if (i < list_size) { 1623 val &= ~pass[i]; 1624 val |= cpu_to_be32(out_args->args[i]) & pass[i]; 1625 } 1626 1627 initial_match_array[i] = val; 1628 out_args->args[i] = be32_to_cpu(val); 1629 } 1630 out_args->args_count = list_size = new_size; 1631 /* Iterate again with new provider */ 1632 out_args->np = new; 1633 of_node_put(cur); 1634 cur = new; 1635 new = NULL; 1636 } 1637 put: 1638 of_node_put(cur); 1639 of_node_put(new); 1640 return ret; 1641 } 1642 EXPORT_SYMBOL(of_parse_phandle_with_args_map); 1643 1644 /** 1645 * of_count_phandle_with_args() - Find the number of phandles references in a property 1646 * @np: pointer to a device tree node containing a list 1647 * @list_name: property name that contains a list 1648 * @cells_name: property name that specifies phandles' arguments count 1649 * 1650 * Return: The number of phandle + argument tuples within a property. It 1651 * is a typical pattern to encode a list of phandle and variable 1652 * arguments into a single property. The number of arguments is encoded 1653 * by a property in the phandle-target node. For example, a gpios 1654 * property would contain a list of GPIO specifies consisting of a 1655 * phandle and 1 or more arguments. The number of arguments are 1656 * determined by the #gpio-cells property in the node pointed to by the 1657 * phandle. 1658 */ 1659 int of_count_phandle_with_args(const struct device_node *np, const char *list_name, 1660 const char *cells_name) 1661 { 1662 struct of_phandle_iterator it; 1663 int rc, cur_index = 0; 1664 1665 /* 1666 * If cells_name is NULL we assume a cell count of 0. This makes 1667 * counting the phandles trivial as each 32bit word in the list is a 1668 * phandle and no arguments are to consider. So we don't iterate through 1669 * the list but just use the length to determine the phandle count. 1670 */ 1671 if (!cells_name) { 1672 const __be32 *list; 1673 int size; 1674 1675 list = of_get_property(np, list_name, &size); 1676 if (!list) 1677 return -ENOENT; 1678 1679 return size / sizeof(*list); 1680 } 1681 1682 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1); 1683 if (rc) 1684 return rc; 1685 1686 while ((rc = of_phandle_iterator_next(&it)) == 0) 1687 cur_index += 1; 1688 1689 if (rc != -ENOENT) 1690 return rc; 1691 1692 return cur_index; 1693 } 1694 EXPORT_SYMBOL(of_count_phandle_with_args); 1695 1696 static struct property *__of_remove_property_from_list(struct property **list, struct property *prop) 1697 { 1698 struct property **next; 1699 1700 for (next = list; *next; next = &(*next)->next) { 1701 if (*next == prop) { 1702 *next = prop->next; 1703 prop->next = NULL; 1704 return prop; 1705 } 1706 } 1707 return NULL; 1708 } 1709 1710 /** 1711 * __of_add_property - Add a property to a node without lock operations 1712 * @np: Caller's Device Node 1713 * @prop: Property to add 1714 */ 1715 int __of_add_property(struct device_node *np, struct property *prop) 1716 { 1717 int rc = 0; 1718 unsigned long flags; 1719 struct property **next; 1720 1721 raw_spin_lock_irqsave(&devtree_lock, flags); 1722 1723 __of_remove_property_from_list(&np->deadprops, prop); 1724 1725 prop->next = NULL; 1726 next = &np->properties; 1727 while (*next) { 1728 if (of_prop_cmp(prop->name, (*next)->name) == 0) { 1729 /* duplicate ! don't insert it */ 1730 rc = -EEXIST; 1731 goto out_unlock; 1732 } 1733 next = &(*next)->next; 1734 } 1735 *next = prop; 1736 1737 out_unlock: 1738 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1739 if (rc) 1740 return rc; 1741 1742 __of_add_property_sysfs(np, prop); 1743 return 0; 1744 } 1745 1746 /** 1747 * of_add_property - Add a property to a node 1748 * @np: Caller's Device Node 1749 * @prop: Property to add 1750 */ 1751 int of_add_property(struct device_node *np, struct property *prop) 1752 { 1753 int rc; 1754 1755 mutex_lock(&of_mutex); 1756 rc = __of_add_property(np, prop); 1757 mutex_unlock(&of_mutex); 1758 1759 if (!rc) 1760 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL); 1761 1762 return rc; 1763 } 1764 EXPORT_SYMBOL_GPL(of_add_property); 1765 1766 int __of_remove_property(struct device_node *np, struct property *prop) 1767 { 1768 unsigned long flags; 1769 int rc = -ENODEV; 1770 1771 raw_spin_lock_irqsave(&devtree_lock, flags); 1772 1773 if (__of_remove_property_from_list(&np->properties, prop)) { 1774 /* Found the property, add it to deadprops list */ 1775 prop->next = np->deadprops; 1776 np->deadprops = prop; 1777 rc = 0; 1778 } 1779 1780 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1781 if (rc) 1782 return rc; 1783 1784 __of_remove_property_sysfs(np, prop); 1785 return 0; 1786 } 1787 1788 /** 1789 * of_remove_property - Remove a property from a node. 1790 * @np: Caller's Device Node 1791 * @prop: Property to remove 1792 * 1793 * Note that we don't actually remove it, since we have given out 1794 * who-knows-how-many pointers to the data using get-property. 1795 * Instead we just move the property to the "dead properties" 1796 * list, so it won't be found any more. 1797 */ 1798 int of_remove_property(struct device_node *np, struct property *prop) 1799 { 1800 int rc; 1801 1802 if (!prop) 1803 return -ENODEV; 1804 1805 mutex_lock(&of_mutex); 1806 rc = __of_remove_property(np, prop); 1807 mutex_unlock(&of_mutex); 1808 1809 if (!rc) 1810 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL); 1811 1812 return rc; 1813 } 1814 EXPORT_SYMBOL_GPL(of_remove_property); 1815 1816 int __of_update_property(struct device_node *np, struct property *newprop, 1817 struct property **oldpropp) 1818 { 1819 struct property **next, *oldprop; 1820 unsigned long flags; 1821 1822 raw_spin_lock_irqsave(&devtree_lock, flags); 1823 1824 __of_remove_property_from_list(&np->deadprops, newprop); 1825 1826 for (next = &np->properties; *next; next = &(*next)->next) { 1827 if (of_prop_cmp((*next)->name, newprop->name) == 0) 1828 break; 1829 } 1830 *oldpropp = oldprop = *next; 1831 1832 if (oldprop) { 1833 /* replace the node */ 1834 newprop->next = oldprop->next; 1835 *next = newprop; 1836 oldprop->next = np->deadprops; 1837 np->deadprops = oldprop; 1838 } else { 1839 /* new node */ 1840 newprop->next = NULL; 1841 *next = newprop; 1842 } 1843 1844 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1845 1846 __of_update_property_sysfs(np, newprop, oldprop); 1847 1848 return 0; 1849 } 1850 1851 /* 1852 * of_update_property - Update a property in a node, if the property does 1853 * not exist, add it. 1854 * 1855 * Note that we don't actually remove it, since we have given out 1856 * who-knows-how-many pointers to the data using get-property. 1857 * Instead we just move the property to the "dead properties" list, 1858 * and add the new property to the property list 1859 */ 1860 int of_update_property(struct device_node *np, struct property *newprop) 1861 { 1862 struct property *oldprop; 1863 int rc; 1864 1865 if (!newprop->name) 1866 return -EINVAL; 1867 1868 mutex_lock(&of_mutex); 1869 rc = __of_update_property(np, newprop, &oldprop); 1870 mutex_unlock(&of_mutex); 1871 1872 if (!rc) 1873 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop); 1874 1875 return rc; 1876 } 1877 1878 static void of_alias_add(struct alias_prop *ap, struct device_node *np, 1879 int id, const char *stem, int stem_len) 1880 { 1881 ap->np = np; 1882 ap->id = id; 1883 strscpy(ap->stem, stem, stem_len + 1); 1884 list_add_tail(&ap->link, &aliases_lookup); 1885 pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n", 1886 ap->alias, ap->stem, ap->id, np); 1887 } 1888 1889 /** 1890 * of_alias_scan - Scan all properties of the 'aliases' node 1891 * @dt_alloc: An allocator that provides a virtual address to memory 1892 * for storing the resulting tree 1893 * 1894 * The function scans all the properties of the 'aliases' node and populates 1895 * the global lookup table with the properties. 1896 */ 1897 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align)) 1898 { 1899 const struct property *pp; 1900 1901 of_aliases = of_find_node_by_path("/aliases"); 1902 of_chosen = of_find_node_by_path("/chosen"); 1903 if (of_chosen == NULL) 1904 of_chosen = of_find_node_by_path("/chosen@0"); 1905 1906 if (of_chosen) { 1907 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */ 1908 const char *name = NULL; 1909 1910 if (of_property_read_string(of_chosen, "stdout-path", &name)) 1911 of_property_read_string(of_chosen, "linux,stdout-path", 1912 &name); 1913 if (IS_ENABLED(CONFIG_PPC) && !name) 1914 of_property_read_string(of_aliases, "stdout", &name); 1915 if (name) 1916 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options); 1917 if (of_stdout) 1918 of_stdout->fwnode.flags |= FWNODE_FLAG_BEST_EFFORT; 1919 } 1920 1921 if (!of_aliases) 1922 return; 1923 1924 for_each_property_of_node(of_aliases, pp) { 1925 const char *start = pp->name; 1926 const char *end = start + strlen(start); 1927 struct device_node *np; 1928 struct alias_prop *ap; 1929 int id, len; 1930 1931 /* Skip those we do not want to proceed */ 1932 if (is_pseudo_property(pp->name)) 1933 continue; 1934 1935 np = of_find_node_by_path(pp->value); 1936 if (!np) 1937 continue; 1938 1939 /* walk the alias backwards to extract the id and work out 1940 * the 'stem' string */ 1941 while (isdigit(*(end-1)) && end > start) 1942 end--; 1943 len = end - start; 1944 1945 if (kstrtoint(end, 10, &id) < 0) 1946 continue; 1947 1948 /* Allocate an alias_prop with enough space for the stem */ 1949 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap)); 1950 if (!ap) 1951 continue; 1952 memset(ap, 0, sizeof(*ap) + len + 1); 1953 ap->alias = start; 1954 of_alias_add(ap, np, id, start, len); 1955 } 1956 } 1957 1958 /** 1959 * of_alias_get_id - Get alias id for the given device_node 1960 * @np: Pointer to the given device_node 1961 * @stem: Alias stem of the given device_node 1962 * 1963 * The function travels the lookup table to get the alias id for the given 1964 * device_node and alias stem. 1965 * 1966 * Return: The alias id if found. 1967 */ 1968 int of_alias_get_id(const struct device_node *np, const char *stem) 1969 { 1970 struct alias_prop *app; 1971 int id = -ENODEV; 1972 1973 mutex_lock(&of_mutex); 1974 list_for_each_entry(app, &aliases_lookup, link) { 1975 if (strcmp(app->stem, stem) != 0) 1976 continue; 1977 1978 if (np == app->np) { 1979 id = app->id; 1980 break; 1981 } 1982 } 1983 mutex_unlock(&of_mutex); 1984 1985 return id; 1986 } 1987 EXPORT_SYMBOL_GPL(of_alias_get_id); 1988 1989 /** 1990 * of_alias_get_highest_id - Get highest alias id for the given stem 1991 * @stem: Alias stem to be examined 1992 * 1993 * The function travels the lookup table to get the highest alias id for the 1994 * given alias stem. It returns the alias id if found. 1995 */ 1996 int of_alias_get_highest_id(const char *stem) 1997 { 1998 struct alias_prop *app; 1999 int id = -ENODEV; 2000 2001 mutex_lock(&of_mutex); 2002 list_for_each_entry(app, &aliases_lookup, link) { 2003 if (strcmp(app->stem, stem) != 0) 2004 continue; 2005 2006 if (app->id > id) 2007 id = app->id; 2008 } 2009 mutex_unlock(&of_mutex); 2010 2011 return id; 2012 } 2013 EXPORT_SYMBOL_GPL(of_alias_get_highest_id); 2014 2015 /** 2016 * of_console_check() - Test and setup console for DT setup 2017 * @dn: Pointer to device node 2018 * @name: Name to use for preferred console without index. ex. "ttyS" 2019 * @index: Index to use for preferred console. 2020 * 2021 * Check if the given device node matches the stdout-path property in the 2022 * /chosen node. If it does then register it as the preferred console. 2023 * 2024 * Return: TRUE if console successfully setup. Otherwise return FALSE. 2025 */ 2026 bool of_console_check(const struct device_node *dn, char *name, int index) 2027 { 2028 if (!dn || dn != of_stdout || console_set_on_cmdline) 2029 return false; 2030 2031 /* 2032 * XXX: cast `options' to char pointer to suppress complication 2033 * warnings: printk, UART and console drivers expect char pointer. 2034 */ 2035 return !add_preferred_console(name, index, (char *)of_stdout_options); 2036 } 2037 EXPORT_SYMBOL_GPL(of_console_check); 2038 2039 /** 2040 * of_find_next_cache_node - Find a node's subsidiary cache 2041 * @np: node of type "cpu" or "cache" 2042 * 2043 * Return: A node pointer with refcount incremented, use 2044 * of_node_put() on it when done. Caller should hold a reference 2045 * to np. 2046 */ 2047 struct device_node *of_find_next_cache_node(const struct device_node *np) 2048 { 2049 struct device_node *child, *cache_node; 2050 2051 cache_node = of_parse_phandle(np, "l2-cache", 0); 2052 if (!cache_node) 2053 cache_node = of_parse_phandle(np, "next-level-cache", 0); 2054 2055 if (cache_node) 2056 return cache_node; 2057 2058 /* OF on pmac has nodes instead of properties named "l2-cache" 2059 * beneath CPU nodes. 2060 */ 2061 if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu")) 2062 for_each_child_of_node(np, child) 2063 if (of_node_is_type(child, "cache")) 2064 return child; 2065 2066 return NULL; 2067 } 2068 2069 /** 2070 * of_find_last_cache_level - Find the level at which the last cache is 2071 * present for the given logical cpu 2072 * 2073 * @cpu: cpu number(logical index) for which the last cache level is needed 2074 * 2075 * Return: The level at which the last cache is present. It is exactly 2076 * same as the total number of cache levels for the given logical cpu. 2077 */ 2078 int of_find_last_cache_level(unsigned int cpu) 2079 { 2080 u32 cache_level = 0; 2081 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu); 2082 2083 while (np) { 2084 of_node_put(prev); 2085 prev = np; 2086 np = of_find_next_cache_node(np); 2087 } 2088 2089 of_property_read_u32(prev, "cache-level", &cache_level); 2090 of_node_put(prev); 2091 2092 return cache_level; 2093 } 2094 2095 /** 2096 * of_map_id - Translate an ID through a downstream mapping. 2097 * @np: root complex device node. 2098 * @id: device ID to map. 2099 * @map_name: property name of the map to use. 2100 * @map_mask_name: optional property name of the mask to use. 2101 * @target: optional pointer to a target device node. 2102 * @id_out: optional pointer to receive the translated ID. 2103 * 2104 * Given a device ID, look up the appropriate implementation-defined 2105 * platform ID and/or the target device which receives transactions on that 2106 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or 2107 * @id_out may be NULL if only the other is required. If @target points to 2108 * a non-NULL device node pointer, only entries targeting that node will be 2109 * matched; if it points to a NULL value, it will receive the device node of 2110 * the first matching target phandle, with a reference held. 2111 * 2112 * Return: 0 on success or a standard error code on failure. 2113 */ 2114 int of_map_id(const struct device_node *np, u32 id, 2115 const char *map_name, const char *map_mask_name, 2116 struct device_node **target, u32 *id_out) 2117 { 2118 u32 map_mask, masked_id; 2119 int map_len; 2120 const __be32 *map = NULL; 2121 2122 if (!np || !map_name || (!target && !id_out)) 2123 return -EINVAL; 2124 2125 map = of_get_property(np, map_name, &map_len); 2126 if (!map) { 2127 if (target) 2128 return -ENODEV; 2129 /* Otherwise, no map implies no translation */ 2130 *id_out = id; 2131 return 0; 2132 } 2133 2134 if (!map_len || map_len % (4 * sizeof(*map))) { 2135 pr_err("%pOF: Error: Bad %s length: %d\n", np, 2136 map_name, map_len); 2137 return -EINVAL; 2138 } 2139 2140 /* The default is to select all bits. */ 2141 map_mask = 0xffffffff; 2142 2143 /* 2144 * Can be overridden by "{iommu,msi}-map-mask" property. 2145 * If of_property_read_u32() fails, the default is used. 2146 */ 2147 if (map_mask_name) 2148 of_property_read_u32(np, map_mask_name, &map_mask); 2149 2150 masked_id = map_mask & id; 2151 for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) { 2152 struct device_node *phandle_node; 2153 u32 id_base = be32_to_cpup(map + 0); 2154 u32 phandle = be32_to_cpup(map + 1); 2155 u32 out_base = be32_to_cpup(map + 2); 2156 u32 id_len = be32_to_cpup(map + 3); 2157 2158 if (id_base & ~map_mask) { 2159 pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n", 2160 np, map_name, map_name, 2161 map_mask, id_base); 2162 return -EFAULT; 2163 } 2164 2165 if (masked_id < id_base || masked_id >= id_base + id_len) 2166 continue; 2167 2168 phandle_node = of_find_node_by_phandle(phandle); 2169 if (!phandle_node) 2170 return -ENODEV; 2171 2172 if (target) { 2173 if (*target) 2174 of_node_put(phandle_node); 2175 else 2176 *target = phandle_node; 2177 2178 if (*target != phandle_node) 2179 continue; 2180 } 2181 2182 if (id_out) 2183 *id_out = masked_id - id_base + out_base; 2184 2185 pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n", 2186 np, map_name, map_mask, id_base, out_base, 2187 id_len, id, masked_id - id_base + out_base); 2188 return 0; 2189 } 2190 2191 pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name, 2192 id, target && *target ? *target : NULL); 2193 2194 /* Bypasses translation */ 2195 if (id_out) 2196 *id_out = id; 2197 return 0; 2198 } 2199 EXPORT_SYMBOL_GPL(of_map_id); 2200