xref: /linux/drivers/of/base.c (revision b0319c4642638bad4b36974055b1c0894b2c7aa9)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Procedures for creating, accessing and interpreting the device tree.
4  *
5  * Paul Mackerras	August 1996.
6  * Copyright (C) 1996-2005 Paul Mackerras.
7  *
8  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9  *    {engebret|bergner}@us.ibm.com
10  *
11  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12  *
13  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
14  *  Grant Likely.
15  */
16 
17 #define pr_fmt(fmt)	"OF: " fmt
18 
19 #include <linux/cleanup.h>
20 #include <linux/console.h>
21 #include <linux/ctype.h>
22 #include <linux/cpu.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/of_graph.h>
27 #include <linux/spinlock.h>
28 #include <linux/slab.h>
29 #include <linux/string.h>
30 #include <linux/proc_fs.h>
31 
32 #include "of_private.h"
33 
34 LIST_HEAD(aliases_lookup);
35 
36 struct device_node *of_root;
37 EXPORT_SYMBOL(of_root);
38 struct device_node *of_chosen;
39 EXPORT_SYMBOL(of_chosen);
40 struct device_node *of_aliases;
41 struct device_node *of_stdout;
42 static const char *of_stdout_options;
43 
44 struct kset *of_kset;
45 
46 /*
47  * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
48  * This mutex must be held whenever modifications are being made to the
49  * device tree. The of_{attach,detach}_node() and
50  * of_{add,remove,update}_property() helpers make sure this happens.
51  */
52 DEFINE_MUTEX(of_mutex);
53 
54 /* use when traversing tree through the child, sibling,
55  * or parent members of struct device_node.
56  */
57 DEFINE_RAW_SPINLOCK(devtree_lock);
58 
59 bool of_node_name_eq(const struct device_node *np, const char *name)
60 {
61 	const char *node_name;
62 	size_t len;
63 
64 	if (!np)
65 		return false;
66 
67 	node_name = kbasename(np->full_name);
68 	len = strchrnul(node_name, '@') - node_name;
69 
70 	return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
71 }
72 EXPORT_SYMBOL(of_node_name_eq);
73 
74 bool of_node_name_prefix(const struct device_node *np, const char *prefix)
75 {
76 	if (!np)
77 		return false;
78 
79 	return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
80 }
81 EXPORT_SYMBOL(of_node_name_prefix);
82 
83 static bool __of_node_is_type(const struct device_node *np, const char *type)
84 {
85 	const char *match = __of_get_property(np, "device_type", NULL);
86 
87 	return np && match && type && !strcmp(match, type);
88 }
89 
90 #define EXCLUDED_DEFAULT_CELLS_PLATFORMS ( \
91 	IS_ENABLED(CONFIG_SPARC) || \
92 	of_find_compatible_node(NULL, NULL, "coreboot") \
93 )
94 
95 int of_bus_n_addr_cells(struct device_node *np)
96 {
97 	u32 cells;
98 
99 	for (; np; np = np->parent) {
100 		if (!of_property_read_u32(np, "#address-cells", &cells))
101 			return cells;
102 		/*
103 		 * Default root value and walking parent nodes for "#address-cells"
104 		 * is deprecated. Any platforms which hit this warning should
105 		 * be added to the excluded list.
106 		 */
107 		WARN_ONCE(!EXCLUDED_DEFAULT_CELLS_PLATFORMS,
108 			  "Missing '#address-cells' in %pOF\n", np);
109 	}
110 	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
111 }
112 
113 int of_n_addr_cells(struct device_node *np)
114 {
115 	if (np->parent)
116 		np = np->parent;
117 
118 	return of_bus_n_addr_cells(np);
119 }
120 EXPORT_SYMBOL(of_n_addr_cells);
121 
122 int of_bus_n_size_cells(struct device_node *np)
123 {
124 	u32 cells;
125 
126 	for (; np; np = np->parent) {
127 		if (!of_property_read_u32(np, "#size-cells", &cells))
128 			return cells;
129 		/*
130 		 * Default root value and walking parent nodes for "#size-cells"
131 		 * is deprecated. Any platforms which hit this warning should
132 		 * be added to the excluded list.
133 		 */
134 		WARN_ONCE(!EXCLUDED_DEFAULT_CELLS_PLATFORMS,
135 			  "Missing '#size-cells' in %pOF\n", np);
136 	}
137 	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
138 }
139 
140 int of_n_size_cells(struct device_node *np)
141 {
142 	if (np->parent)
143 		np = np->parent;
144 
145 	return of_bus_n_size_cells(np);
146 }
147 EXPORT_SYMBOL(of_n_size_cells);
148 
149 #ifdef CONFIG_NUMA
150 int __weak of_node_to_nid(struct device_node *np)
151 {
152 	return NUMA_NO_NODE;
153 }
154 #endif
155 
156 #define OF_PHANDLE_CACHE_BITS	7
157 #define OF_PHANDLE_CACHE_SZ	BIT(OF_PHANDLE_CACHE_BITS)
158 
159 static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ];
160 
161 static u32 of_phandle_cache_hash(phandle handle)
162 {
163 	return hash_32(handle, OF_PHANDLE_CACHE_BITS);
164 }
165 
166 /*
167  * Caller must hold devtree_lock.
168  */
169 void __of_phandle_cache_inv_entry(phandle handle)
170 {
171 	u32 handle_hash;
172 	struct device_node *np;
173 
174 	if (!handle)
175 		return;
176 
177 	handle_hash = of_phandle_cache_hash(handle);
178 
179 	np = phandle_cache[handle_hash];
180 	if (np && handle == np->phandle)
181 		phandle_cache[handle_hash] = NULL;
182 }
183 
184 void __init of_core_init(void)
185 {
186 	struct device_node *np;
187 
188 	of_platform_register_reconfig_notifier();
189 
190 	/* Create the kset, and register existing nodes */
191 	mutex_lock(&of_mutex);
192 	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
193 	if (!of_kset) {
194 		mutex_unlock(&of_mutex);
195 		pr_err("failed to register existing nodes\n");
196 		return;
197 	}
198 	for_each_of_allnodes(np) {
199 		__of_attach_node_sysfs(np);
200 		if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)])
201 			phandle_cache[of_phandle_cache_hash(np->phandle)] = np;
202 	}
203 	mutex_unlock(&of_mutex);
204 
205 	/* Symlink in /proc as required by userspace ABI */
206 	if (of_root)
207 		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
208 }
209 
210 static struct property *__of_find_property(const struct device_node *np,
211 					   const char *name, int *lenp)
212 {
213 	struct property *pp;
214 
215 	if (!np)
216 		return NULL;
217 
218 	for (pp = np->properties; pp; pp = pp->next) {
219 		if (of_prop_cmp(pp->name, name) == 0) {
220 			if (lenp)
221 				*lenp = pp->length;
222 			break;
223 		}
224 	}
225 
226 	return pp;
227 }
228 
229 struct property *of_find_property(const struct device_node *np,
230 				  const char *name,
231 				  int *lenp)
232 {
233 	struct property *pp;
234 	unsigned long flags;
235 
236 	raw_spin_lock_irqsave(&devtree_lock, flags);
237 	pp = __of_find_property(np, name, lenp);
238 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
239 
240 	return pp;
241 }
242 EXPORT_SYMBOL(of_find_property);
243 
244 struct device_node *__of_find_all_nodes(struct device_node *prev)
245 {
246 	struct device_node *np;
247 	if (!prev) {
248 		np = of_root;
249 	} else if (prev->child) {
250 		np = prev->child;
251 	} else {
252 		/* Walk back up looking for a sibling, or the end of the structure */
253 		np = prev;
254 		while (np->parent && !np->sibling)
255 			np = np->parent;
256 		np = np->sibling; /* Might be null at the end of the tree */
257 	}
258 	return np;
259 }
260 
261 /**
262  * of_find_all_nodes - Get next node in global list
263  * @prev:	Previous node or NULL to start iteration
264  *		of_node_put() will be called on it
265  *
266  * Return: A node pointer with refcount incremented, use
267  * of_node_put() on it when done.
268  */
269 struct device_node *of_find_all_nodes(struct device_node *prev)
270 {
271 	struct device_node *np;
272 	unsigned long flags;
273 
274 	raw_spin_lock_irqsave(&devtree_lock, flags);
275 	np = __of_find_all_nodes(prev);
276 	of_node_get(np);
277 	of_node_put(prev);
278 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
279 	return np;
280 }
281 EXPORT_SYMBOL(of_find_all_nodes);
282 
283 /*
284  * Find a property with a given name for a given node
285  * and return the value.
286  */
287 const void *__of_get_property(const struct device_node *np,
288 			      const char *name, int *lenp)
289 {
290 	const struct property *pp = __of_find_property(np, name, lenp);
291 
292 	return pp ? pp->value : NULL;
293 }
294 
295 /*
296  * Find a property with a given name for a given node
297  * and return the value.
298  */
299 const void *of_get_property(const struct device_node *np, const char *name,
300 			    int *lenp)
301 {
302 	const struct property *pp = of_find_property(np, name, lenp);
303 
304 	return pp ? pp->value : NULL;
305 }
306 EXPORT_SYMBOL(of_get_property);
307 
308 /**
309  * __of_device_is_compatible() - Check if the node matches given constraints
310  * @device: pointer to node
311  * @compat: required compatible string, NULL or "" for any match
312  * @type: required device_type value, NULL or "" for any match
313  * @name: required node name, NULL or "" for any match
314  *
315  * Checks if the given @compat, @type and @name strings match the
316  * properties of the given @device. A constraints can be skipped by
317  * passing NULL or an empty string as the constraint.
318  *
319  * Returns 0 for no match, and a positive integer on match. The return
320  * value is a relative score with larger values indicating better
321  * matches. The score is weighted for the most specific compatible value
322  * to get the highest score. Matching type is next, followed by matching
323  * name. Practically speaking, this results in the following priority
324  * order for matches:
325  *
326  * 1. specific compatible && type && name
327  * 2. specific compatible && type
328  * 3. specific compatible && name
329  * 4. specific compatible
330  * 5. general compatible && type && name
331  * 6. general compatible && type
332  * 7. general compatible && name
333  * 8. general compatible
334  * 9. type && name
335  * 10. type
336  * 11. name
337  */
338 static int __of_device_is_compatible(const struct device_node *device,
339 				     const char *compat, const char *type, const char *name)
340 {
341 	const struct property *prop;
342 	const char *cp;
343 	int index = 0, score = 0;
344 
345 	/* Compatible match has highest priority */
346 	if (compat && compat[0]) {
347 		prop = __of_find_property(device, "compatible", NULL);
348 		for (cp = of_prop_next_string(prop, NULL); cp;
349 		     cp = of_prop_next_string(prop, cp), index++) {
350 			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
351 				score = INT_MAX/2 - (index << 2);
352 				break;
353 			}
354 		}
355 		if (!score)
356 			return 0;
357 	}
358 
359 	/* Matching type is better than matching name */
360 	if (type && type[0]) {
361 		if (!__of_node_is_type(device, type))
362 			return 0;
363 		score += 2;
364 	}
365 
366 	/* Matching name is a bit better than not */
367 	if (name && name[0]) {
368 		if (!of_node_name_eq(device, name))
369 			return 0;
370 		score++;
371 	}
372 
373 	return score;
374 }
375 
376 /** Checks if the given "compat" string matches one of the strings in
377  * the device's "compatible" property
378  */
379 int of_device_is_compatible(const struct device_node *device,
380 		const char *compat)
381 {
382 	unsigned long flags;
383 	int res;
384 
385 	raw_spin_lock_irqsave(&devtree_lock, flags);
386 	res = __of_device_is_compatible(device, compat, NULL, NULL);
387 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
388 	return res;
389 }
390 EXPORT_SYMBOL(of_device_is_compatible);
391 
392 /** Checks if the device is compatible with any of the entries in
393  *  a NULL terminated array of strings. Returns the best match
394  *  score or 0.
395  */
396 int of_device_compatible_match(const struct device_node *device,
397 			       const char *const *compat)
398 {
399 	unsigned int tmp, score = 0;
400 
401 	if (!compat)
402 		return 0;
403 
404 	while (*compat) {
405 		tmp = of_device_is_compatible(device, *compat);
406 		if (tmp > score)
407 			score = tmp;
408 		compat++;
409 	}
410 
411 	return score;
412 }
413 EXPORT_SYMBOL_GPL(of_device_compatible_match);
414 
415 /**
416  * of_machine_compatible_match - Test root of device tree against a compatible array
417  * @compats: NULL terminated array of compatible strings to look for in root node's compatible property.
418  *
419  * Returns true if the root node has any of the given compatible values in its
420  * compatible property.
421  */
422 bool of_machine_compatible_match(const char *const *compats)
423 {
424 	struct device_node *root;
425 	int rc = 0;
426 
427 	root = of_find_node_by_path("/");
428 	if (root) {
429 		rc = of_device_compatible_match(root, compats);
430 		of_node_put(root);
431 	}
432 
433 	return rc != 0;
434 }
435 EXPORT_SYMBOL(of_machine_compatible_match);
436 
437 /**
438  * of_machine_device_match - Test root of device tree against a of_device_id array
439  * @matches:	NULL terminated array of of_device_id match structures to search in
440  *
441  * Returns true if the root node has any of the given compatible values in its
442  * compatible property.
443  */
444 bool of_machine_device_match(const struct of_device_id *matches)
445 {
446 	struct device_node *root;
447 	const struct of_device_id *match = NULL;
448 
449 	root = of_find_node_by_path("/");
450 	if (root) {
451 		match = of_match_node(matches, root);
452 		of_node_put(root);
453 	}
454 
455 	return match != NULL;
456 }
457 EXPORT_SYMBOL(of_machine_device_match);
458 
459 /**
460  * of_machine_get_match_data - Tell if root of device tree has a matching of_match structure
461  * @matches:	NULL terminated array of of_device_id match structures to search in
462  *
463  * Returns data associated with matched entry or NULL
464  */
465 const void *of_machine_get_match_data(const struct of_device_id *matches)
466 {
467 	const struct of_device_id *match;
468 	struct device_node *root;
469 
470 	root = of_find_node_by_path("/");
471 	if (!root)
472 		return NULL;
473 
474 	match = of_match_node(matches, root);
475 	of_node_put(root);
476 
477 	if (!match)
478 		return NULL;
479 
480 	return match->data;
481 }
482 EXPORT_SYMBOL(of_machine_get_match_data);
483 
484 static bool __of_device_is_status(const struct device_node *device,
485 				  const char * const*strings)
486 {
487 	const char *status;
488 	int statlen;
489 
490 	if (!device)
491 		return false;
492 
493 	status = __of_get_property(device, "status", &statlen);
494 	if (status == NULL)
495 		return false;
496 
497 	if (statlen > 0) {
498 		while (*strings) {
499 			unsigned int len = strlen(*strings);
500 
501 			if ((*strings)[len - 1] == '-') {
502 				if (!strncmp(status, *strings, len))
503 					return true;
504 			} else {
505 				if (!strcmp(status, *strings))
506 					return true;
507 			}
508 			strings++;
509 		}
510 	}
511 
512 	return false;
513 }
514 
515 /**
516  *  __of_device_is_available - check if a device is available for use
517  *
518  *  @device: Node to check for availability, with locks already held
519  *
520  *  Return: True if the status property is absent or set to "okay" or "ok",
521  *  false otherwise
522  */
523 static bool __of_device_is_available(const struct device_node *device)
524 {
525 	static const char * const ok[] = {"okay", "ok", NULL};
526 
527 	if (!device)
528 		return false;
529 
530 	return !__of_get_property(device, "status", NULL) ||
531 		__of_device_is_status(device, ok);
532 }
533 
534 /**
535  *  __of_device_is_reserved - check if a device is reserved
536  *
537  *  @device: Node to check for availability, with locks already held
538  *
539  *  Return: True if the status property is set to "reserved", false otherwise
540  */
541 static bool __of_device_is_reserved(const struct device_node *device)
542 {
543 	static const char * const reserved[] = {"reserved", NULL};
544 
545 	return __of_device_is_status(device, reserved);
546 }
547 
548 /**
549  *  of_device_is_available - check if a device is available for use
550  *
551  *  @device: Node to check for availability
552  *
553  *  Return: True if the status property is absent or set to "okay" or "ok",
554  *  false otherwise
555  */
556 bool of_device_is_available(const struct device_node *device)
557 {
558 	unsigned long flags;
559 	bool res;
560 
561 	raw_spin_lock_irqsave(&devtree_lock, flags);
562 	res = __of_device_is_available(device);
563 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
564 	return res;
565 
566 }
567 EXPORT_SYMBOL(of_device_is_available);
568 
569 /**
570  *  __of_device_is_fail - check if a device has status "fail" or "fail-..."
571  *
572  *  @device: Node to check status for, with locks already held
573  *
574  *  Return: True if the status property is set to "fail" or "fail-..." (for any
575  *  error code suffix), false otherwise
576  */
577 static bool __of_device_is_fail(const struct device_node *device)
578 {
579 	static const char * const fail[] = {"fail", "fail-", NULL};
580 
581 	return __of_device_is_status(device, fail);
582 }
583 
584 /**
585  *  of_device_is_big_endian - check if a device has BE registers
586  *
587  *  @device: Node to check for endianness
588  *
589  *  Return: True if the device has a "big-endian" property, or if the kernel
590  *  was compiled for BE *and* the device has a "native-endian" property.
591  *  Returns false otherwise.
592  *
593  *  Callers would nominally use ioread32be/iowrite32be if
594  *  of_device_is_big_endian() == true, or readl/writel otherwise.
595  */
596 bool of_device_is_big_endian(const struct device_node *device)
597 {
598 	if (of_property_read_bool(device, "big-endian"))
599 		return true;
600 	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
601 	    of_property_read_bool(device, "native-endian"))
602 		return true;
603 	return false;
604 }
605 EXPORT_SYMBOL(of_device_is_big_endian);
606 
607 /**
608  * of_get_parent - Get a node's parent if any
609  * @node:	Node to get parent
610  *
611  * Return: A node pointer with refcount incremented, use
612  * of_node_put() on it when done.
613  */
614 struct device_node *of_get_parent(const struct device_node *node)
615 {
616 	struct device_node *np;
617 	unsigned long flags;
618 
619 	if (!node)
620 		return NULL;
621 
622 	raw_spin_lock_irqsave(&devtree_lock, flags);
623 	np = of_node_get(node->parent);
624 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
625 	return np;
626 }
627 EXPORT_SYMBOL(of_get_parent);
628 
629 /**
630  * of_get_next_parent - Iterate to a node's parent
631  * @node:	Node to get parent of
632  *
633  * This is like of_get_parent() except that it drops the
634  * refcount on the passed node, making it suitable for iterating
635  * through a node's parents.
636  *
637  * Return: A node pointer with refcount incremented, use
638  * of_node_put() on it when done.
639  */
640 struct device_node *of_get_next_parent(struct device_node *node)
641 {
642 	struct device_node *parent;
643 	unsigned long flags;
644 
645 	if (!node)
646 		return NULL;
647 
648 	raw_spin_lock_irqsave(&devtree_lock, flags);
649 	parent = of_node_get(node->parent);
650 	of_node_put(node);
651 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
652 	return parent;
653 }
654 EXPORT_SYMBOL(of_get_next_parent);
655 
656 static struct device_node *__of_get_next_child(const struct device_node *node,
657 						struct device_node *prev)
658 {
659 	struct device_node *next;
660 
661 	if (!node)
662 		return NULL;
663 
664 	next = prev ? prev->sibling : node->child;
665 	of_node_get(next);
666 	of_node_put(prev);
667 	return next;
668 }
669 #define __for_each_child_of_node(parent, child) \
670 	for (child = __of_get_next_child(parent, NULL); child != NULL; \
671 	     child = __of_get_next_child(parent, child))
672 
673 /**
674  * of_get_next_child - Iterate a node childs
675  * @node:	parent node
676  * @prev:	previous child of the parent node, or NULL to get first
677  *
678  * Return: A node pointer with refcount incremented, use of_node_put() on
679  * it when done. Returns NULL when prev is the last child. Decrements the
680  * refcount of prev.
681  */
682 struct device_node *of_get_next_child(const struct device_node *node,
683 	struct device_node *prev)
684 {
685 	struct device_node *next;
686 	unsigned long flags;
687 
688 	raw_spin_lock_irqsave(&devtree_lock, flags);
689 	next = __of_get_next_child(node, prev);
690 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
691 	return next;
692 }
693 EXPORT_SYMBOL(of_get_next_child);
694 
695 /**
696  * of_get_next_child_with_prefix - Find the next child node with prefix
697  * @node:	parent node
698  * @prev:	previous child of the parent node, or NULL to get first
699  * @prefix:	prefix that the node name should have
700  *
701  * This function is like of_get_next_child(), except that it automatically
702  * skips any nodes whose name doesn't have the given prefix.
703  *
704  * Return: A node pointer with refcount incremented, use
705  * of_node_put() on it when done.
706  */
707 struct device_node *of_get_next_child_with_prefix(const struct device_node *node,
708 						  struct device_node *prev,
709 						  const char *prefix)
710 {
711 	struct device_node *next;
712 	unsigned long flags;
713 
714 	if (!node)
715 		return NULL;
716 
717 	raw_spin_lock_irqsave(&devtree_lock, flags);
718 	next = prev ? prev->sibling : node->child;
719 	for (; next; next = next->sibling) {
720 		if (!of_node_name_prefix(next, prefix))
721 			continue;
722 		if (of_node_get(next))
723 			break;
724 	}
725 	of_node_put(prev);
726 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
727 	return next;
728 }
729 EXPORT_SYMBOL(of_get_next_child_with_prefix);
730 
731 static struct device_node *of_get_next_status_child(const struct device_node *node,
732 						    struct device_node *prev,
733 						    bool (*checker)(const struct device_node *))
734 {
735 	struct device_node *next;
736 	unsigned long flags;
737 
738 	if (!node)
739 		return NULL;
740 
741 	raw_spin_lock_irqsave(&devtree_lock, flags);
742 	next = prev ? prev->sibling : node->child;
743 	for (; next; next = next->sibling) {
744 		if (!checker(next))
745 			continue;
746 		if (of_node_get(next))
747 			break;
748 	}
749 	of_node_put(prev);
750 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
751 	return next;
752 }
753 
754 /**
755  * of_get_next_available_child - Find the next available child node
756  * @node:	parent node
757  * @prev:	previous child of the parent node, or NULL to get first
758  *
759  * This function is like of_get_next_child(), except that it
760  * automatically skips any disabled nodes (i.e. status = "disabled").
761  */
762 struct device_node *of_get_next_available_child(const struct device_node *node,
763 	struct device_node *prev)
764 {
765 	return of_get_next_status_child(node, prev, __of_device_is_available);
766 }
767 EXPORT_SYMBOL(of_get_next_available_child);
768 
769 /**
770  * of_get_next_reserved_child - Find the next reserved child node
771  * @node:	parent node
772  * @prev:	previous child of the parent node, or NULL to get first
773  *
774  * This function is like of_get_next_child(), except that it
775  * automatically skips any disabled nodes (i.e. status = "disabled").
776  */
777 struct device_node *of_get_next_reserved_child(const struct device_node *node,
778 						struct device_node *prev)
779 {
780 	return of_get_next_status_child(node, prev, __of_device_is_reserved);
781 }
782 EXPORT_SYMBOL(of_get_next_reserved_child);
783 
784 /**
785  * of_get_next_cpu_node - Iterate on cpu nodes
786  * @prev:	previous child of the /cpus node, or NULL to get first
787  *
788  * Unusable CPUs (those with the status property set to "fail" or "fail-...")
789  * will be skipped.
790  *
791  * Return: A cpu node pointer with refcount incremented, use of_node_put()
792  * on it when done. Returns NULL when prev is the last child. Decrements
793  * the refcount of prev.
794  */
795 struct device_node *of_get_next_cpu_node(struct device_node *prev)
796 {
797 	struct device_node *next = NULL;
798 	unsigned long flags;
799 	struct device_node *node;
800 
801 	if (!prev)
802 		node = of_find_node_by_path("/cpus");
803 
804 	raw_spin_lock_irqsave(&devtree_lock, flags);
805 	if (prev)
806 		next = prev->sibling;
807 	else if (node) {
808 		next = node->child;
809 		of_node_put(node);
810 	}
811 	for (; next; next = next->sibling) {
812 		if (__of_device_is_fail(next))
813 			continue;
814 		if (!(of_node_name_eq(next, "cpu") ||
815 		      __of_node_is_type(next, "cpu")))
816 			continue;
817 		if (of_node_get(next))
818 			break;
819 	}
820 	of_node_put(prev);
821 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
822 	return next;
823 }
824 EXPORT_SYMBOL(of_get_next_cpu_node);
825 
826 /**
827  * of_get_compatible_child - Find compatible child node
828  * @parent:	parent node
829  * @compatible:	compatible string
830  *
831  * Lookup child node whose compatible property contains the given compatible
832  * string.
833  *
834  * Return: a node pointer with refcount incremented, use of_node_put() on it
835  * when done; or NULL if not found.
836  */
837 struct device_node *of_get_compatible_child(const struct device_node *parent,
838 				const char *compatible)
839 {
840 	struct device_node *child;
841 
842 	for_each_child_of_node(parent, child) {
843 		if (of_device_is_compatible(child, compatible))
844 			break;
845 	}
846 
847 	return child;
848 }
849 EXPORT_SYMBOL(of_get_compatible_child);
850 
851 /**
852  * of_get_child_by_name - Find the child node by name for a given parent
853  * @node:	parent node
854  * @name:	child name to look for.
855  *
856  * This function looks for child node for given matching name
857  *
858  * Return: A node pointer if found, with refcount incremented, use
859  * of_node_put() on it when done.
860  * Returns NULL if node is not found.
861  */
862 struct device_node *of_get_child_by_name(const struct device_node *node,
863 				const char *name)
864 {
865 	struct device_node *child;
866 
867 	for_each_child_of_node(node, child)
868 		if (of_node_name_eq(child, name))
869 			break;
870 	return child;
871 }
872 EXPORT_SYMBOL(of_get_child_by_name);
873 
874 /**
875  * of_get_available_child_by_name - Find the available child node by name for a given parent
876  * @node:	parent node
877  * @name:	child name to look for.
878  *
879  * This function looks for child node for given matching name and checks the
880  * device's availability for use.
881  *
882  * Return: A node pointer if found, with refcount incremented, use
883  * of_node_put() on it when done.
884  * Returns NULL if node is not found.
885  */
886 struct device_node *of_get_available_child_by_name(const struct device_node *node,
887 						   const char *name)
888 {
889 	struct device_node *child;
890 
891 	child = of_get_child_by_name(node, name);
892 	if (child && !of_device_is_available(child)) {
893 		of_node_put(child);
894 		return NULL;
895 	}
896 
897 	return child;
898 }
899 EXPORT_SYMBOL(of_get_available_child_by_name);
900 
901 struct device_node *__of_find_node_by_path(const struct device_node *parent,
902 						const char *path)
903 {
904 	struct device_node *child;
905 	int len;
906 
907 	len = strcspn(path, "/:");
908 	if (!len)
909 		return NULL;
910 
911 	__for_each_child_of_node(parent, child) {
912 		const char *name = kbasename(child->full_name);
913 		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
914 			return child;
915 	}
916 	return NULL;
917 }
918 
919 struct device_node *__of_find_node_by_full_path(struct device_node *node,
920 						const char *path)
921 {
922 	const char *separator = strchr(path, ':');
923 
924 	while (node && *path == '/') {
925 		struct device_node *tmp = node;
926 
927 		path++; /* Increment past '/' delimiter */
928 		node = __of_find_node_by_path(node, path);
929 		of_node_put(tmp);
930 		path = strchrnul(path, '/');
931 		if (separator && separator < path)
932 			break;
933 	}
934 	return node;
935 }
936 
937 /**
938  * of_find_node_opts_by_path - Find a node matching a full OF path
939  * @path: Either the full path to match, or if the path does not
940  *       start with '/', the name of a property of the /aliases
941  *       node (an alias).  In the case of an alias, the node
942  *       matching the alias' value will be returned.
943  * @opts: Address of a pointer into which to store the start of
944  *       an options string appended to the end of the path with
945  *       a ':' separator.
946  *
947  * Valid paths:
948  *  * /foo/bar	Full path
949  *  * foo	Valid alias
950  *  * foo/bar	Valid alias + relative path
951  *
952  * Return: A node pointer with refcount incremented, use
953  * of_node_put() on it when done.
954  */
955 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
956 {
957 	struct device_node *np = NULL;
958 	const struct property *pp;
959 	unsigned long flags;
960 	const char *separator = strchr(path, ':');
961 
962 	if (opts)
963 		*opts = separator ? separator + 1 : NULL;
964 
965 	if (strcmp(path, "/") == 0)
966 		return of_node_get(of_root);
967 
968 	/* The path could begin with an alias */
969 	if (*path != '/') {
970 		int len;
971 		const char *p = strchrnul(path, '/');
972 
973 		if (separator && separator < p)
974 			p = separator;
975 		len = p - path;
976 
977 		/* of_aliases must not be NULL */
978 		if (!of_aliases)
979 			return NULL;
980 
981 		for_each_property_of_node(of_aliases, pp) {
982 			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
983 				np = of_find_node_by_path(pp->value);
984 				break;
985 			}
986 		}
987 		if (!np)
988 			return NULL;
989 		path = p;
990 	}
991 
992 	/* Step down the tree matching path components */
993 	raw_spin_lock_irqsave(&devtree_lock, flags);
994 	if (!np)
995 		np = of_node_get(of_root);
996 	np = __of_find_node_by_full_path(np, path);
997 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
998 	return np;
999 }
1000 EXPORT_SYMBOL(of_find_node_opts_by_path);
1001 
1002 /**
1003  * of_find_node_by_name - Find a node by its "name" property
1004  * @from:	The node to start searching from or NULL; the node
1005  *		you pass will not be searched, only the next one
1006  *		will. Typically, you pass what the previous call
1007  *		returned. of_node_put() will be called on @from.
1008  * @name:	The name string to match against
1009  *
1010  * Return: A node pointer with refcount incremented, use
1011  * of_node_put() on it when done.
1012  */
1013 struct device_node *of_find_node_by_name(struct device_node *from,
1014 	const char *name)
1015 {
1016 	struct device_node *np;
1017 	unsigned long flags;
1018 
1019 	raw_spin_lock_irqsave(&devtree_lock, flags);
1020 	for_each_of_allnodes_from(from, np)
1021 		if (of_node_name_eq(np, name) && of_node_get(np))
1022 			break;
1023 	of_node_put(from);
1024 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1025 	return np;
1026 }
1027 EXPORT_SYMBOL(of_find_node_by_name);
1028 
1029 /**
1030  * of_find_node_by_type - Find a node by its "device_type" property
1031  * @from:	The node to start searching from, or NULL to start searching
1032  *		the entire device tree. The node you pass will not be
1033  *		searched, only the next one will; typically, you pass
1034  *		what the previous call returned. of_node_put() will be
1035  *		called on from for you.
1036  * @type:	The type string to match against
1037  *
1038  * Return: A node pointer with refcount incremented, use
1039  * of_node_put() on it when done.
1040  */
1041 struct device_node *of_find_node_by_type(struct device_node *from,
1042 	const char *type)
1043 {
1044 	struct device_node *np;
1045 	unsigned long flags;
1046 
1047 	raw_spin_lock_irqsave(&devtree_lock, flags);
1048 	for_each_of_allnodes_from(from, np)
1049 		if (__of_node_is_type(np, type) && of_node_get(np))
1050 			break;
1051 	of_node_put(from);
1052 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1053 	return np;
1054 }
1055 EXPORT_SYMBOL(of_find_node_by_type);
1056 
1057 /**
1058  * of_find_compatible_node - Find a node based on type and one of the
1059  *                                tokens in its "compatible" property
1060  * @from:	The node to start searching from or NULL, the node
1061  *		you pass will not be searched, only the next one
1062  *		will; typically, you pass what the previous call
1063  *		returned. of_node_put() will be called on it
1064  * @type:	The type string to match "device_type" or NULL to ignore
1065  * @compatible:	The string to match to one of the tokens in the device
1066  *		"compatible" list.
1067  *
1068  * Return: A node pointer with refcount incremented, use
1069  * of_node_put() on it when done.
1070  */
1071 struct device_node *of_find_compatible_node(struct device_node *from,
1072 	const char *type, const char *compatible)
1073 {
1074 	struct device_node *np;
1075 	unsigned long flags;
1076 
1077 	raw_spin_lock_irqsave(&devtree_lock, flags);
1078 	for_each_of_allnodes_from(from, np)
1079 		if (__of_device_is_compatible(np, compatible, type, NULL) &&
1080 		    of_node_get(np))
1081 			break;
1082 	of_node_put(from);
1083 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1084 	return np;
1085 }
1086 EXPORT_SYMBOL(of_find_compatible_node);
1087 
1088 /**
1089  * of_find_node_with_property - Find a node which has a property with
1090  *                              the given name.
1091  * @from:	The node to start searching from or NULL, the node
1092  *		you pass will not be searched, only the next one
1093  *		will; typically, you pass what the previous call
1094  *		returned. of_node_put() will be called on it
1095  * @prop_name:	The name of the property to look for.
1096  *
1097  * Return: A node pointer with refcount incremented, use
1098  * of_node_put() on it when done.
1099  */
1100 struct device_node *of_find_node_with_property(struct device_node *from,
1101 	const char *prop_name)
1102 {
1103 	struct device_node *np;
1104 	unsigned long flags;
1105 
1106 	raw_spin_lock_irqsave(&devtree_lock, flags);
1107 	for_each_of_allnodes_from(from, np) {
1108 		if (__of_find_property(np, prop_name, NULL)) {
1109 			of_node_get(np);
1110 			break;
1111 		}
1112 	}
1113 	of_node_put(from);
1114 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1115 	return np;
1116 }
1117 EXPORT_SYMBOL(of_find_node_with_property);
1118 
1119 static
1120 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
1121 					   const struct device_node *node)
1122 {
1123 	const struct of_device_id *best_match = NULL;
1124 	int score, best_score = 0;
1125 
1126 	if (!matches)
1127 		return NULL;
1128 
1129 	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1130 		score = __of_device_is_compatible(node, matches->compatible,
1131 						  matches->type, matches->name);
1132 		if (score > best_score) {
1133 			best_match = matches;
1134 			best_score = score;
1135 		}
1136 	}
1137 
1138 	return best_match;
1139 }
1140 
1141 /**
1142  * of_match_node - Tell if a device_node has a matching of_match structure
1143  * @matches:	array of of device match structures to search in
1144  * @node:	the of device structure to match against
1145  *
1146  * Low level utility function used by device matching.
1147  */
1148 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1149 					 const struct device_node *node)
1150 {
1151 	const struct of_device_id *match;
1152 	unsigned long flags;
1153 
1154 	raw_spin_lock_irqsave(&devtree_lock, flags);
1155 	match = __of_match_node(matches, node);
1156 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1157 	return match;
1158 }
1159 EXPORT_SYMBOL(of_match_node);
1160 
1161 /**
1162  * of_find_matching_node_and_match - Find a node based on an of_device_id
1163  *				     match table.
1164  * @from:	The node to start searching from or NULL, the node
1165  *		you pass will not be searched, only the next one
1166  *		will; typically, you pass what the previous call
1167  *		returned. of_node_put() will be called on it
1168  * @matches:	array of of device match structures to search in
1169  * @match:	Updated to point at the matches entry which matched
1170  *
1171  * Return: A node pointer with refcount incremented, use
1172  * of_node_put() on it when done.
1173  */
1174 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1175 					const struct of_device_id *matches,
1176 					const struct of_device_id **match)
1177 {
1178 	struct device_node *np;
1179 	const struct of_device_id *m;
1180 	unsigned long flags;
1181 
1182 	if (match)
1183 		*match = NULL;
1184 
1185 	raw_spin_lock_irqsave(&devtree_lock, flags);
1186 	for_each_of_allnodes_from(from, np) {
1187 		m = __of_match_node(matches, np);
1188 		if (m && of_node_get(np)) {
1189 			if (match)
1190 				*match = m;
1191 			break;
1192 		}
1193 	}
1194 	of_node_put(from);
1195 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1196 	return np;
1197 }
1198 EXPORT_SYMBOL(of_find_matching_node_and_match);
1199 
1200 /**
1201  * of_alias_from_compatible - Lookup appropriate alias for a device node
1202  *			      depending on compatible
1203  * @node:	pointer to a device tree node
1204  * @alias:	Pointer to buffer that alias value will be copied into
1205  * @len:	Length of alias value
1206  *
1207  * Based on the value of the compatible property, this routine will attempt
1208  * to choose an appropriate alias value for a particular device tree node.
1209  * It does this by stripping the manufacturer prefix (as delimited by a ',')
1210  * from the first entry in the compatible list property.
1211  *
1212  * Note: The matching on just the "product" side of the compatible is a relic
1213  * from I2C and SPI. Please do not add any new user.
1214  *
1215  * Return: This routine returns 0 on success, <0 on failure.
1216  */
1217 int of_alias_from_compatible(const struct device_node *node, char *alias, int len)
1218 {
1219 	const char *compatible, *p;
1220 	int cplen;
1221 
1222 	compatible = of_get_property(node, "compatible", &cplen);
1223 	if (!compatible || strlen(compatible) > cplen)
1224 		return -ENODEV;
1225 	p = strchr(compatible, ',');
1226 	strscpy(alias, p ? p + 1 : compatible, len);
1227 	return 0;
1228 }
1229 EXPORT_SYMBOL_GPL(of_alias_from_compatible);
1230 
1231 /**
1232  * of_find_node_by_phandle - Find a node given a phandle
1233  * @handle:	phandle of the node to find
1234  *
1235  * Return: A node pointer with refcount incremented, use
1236  * of_node_put() on it when done.
1237  */
1238 struct device_node *of_find_node_by_phandle(phandle handle)
1239 {
1240 	struct device_node *np = NULL;
1241 	unsigned long flags;
1242 	u32 handle_hash;
1243 
1244 	if (!handle)
1245 		return NULL;
1246 
1247 	handle_hash = of_phandle_cache_hash(handle);
1248 
1249 	raw_spin_lock_irqsave(&devtree_lock, flags);
1250 
1251 	if (phandle_cache[handle_hash] &&
1252 	    handle == phandle_cache[handle_hash]->phandle)
1253 		np = phandle_cache[handle_hash];
1254 
1255 	if (!np) {
1256 		for_each_of_allnodes(np)
1257 			if (np->phandle == handle &&
1258 			    !of_node_check_flag(np, OF_DETACHED)) {
1259 				phandle_cache[handle_hash] = np;
1260 				break;
1261 			}
1262 	}
1263 
1264 	of_node_get(np);
1265 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1266 	return np;
1267 }
1268 EXPORT_SYMBOL(of_find_node_by_phandle);
1269 
1270 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1271 {
1272 	int i;
1273 	printk("%s %pOF", msg, args->np);
1274 	for (i = 0; i < args->args_count; i++) {
1275 		const char delim = i ? ',' : ':';
1276 
1277 		pr_cont("%c%08x", delim, args->args[i]);
1278 	}
1279 	pr_cont("\n");
1280 }
1281 
1282 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1283 		const struct device_node *np,
1284 		const char *list_name,
1285 		const char *cells_name,
1286 		int cell_count)
1287 {
1288 	const __be32 *list;
1289 	int size;
1290 
1291 	memset(it, 0, sizeof(*it));
1292 
1293 	/*
1294 	 * one of cell_count or cells_name must be provided to determine the
1295 	 * argument length.
1296 	 */
1297 	if (cell_count < 0 && !cells_name)
1298 		return -EINVAL;
1299 
1300 	list = of_get_property(np, list_name, &size);
1301 	if (!list)
1302 		return -ENOENT;
1303 
1304 	it->cells_name = cells_name;
1305 	it->cell_count = cell_count;
1306 	it->parent = np;
1307 	it->list_end = list + size / sizeof(*list);
1308 	it->phandle_end = list;
1309 	it->cur = list;
1310 
1311 	return 0;
1312 }
1313 EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1314 
1315 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1316 {
1317 	uint32_t count = 0;
1318 
1319 	if (it->node) {
1320 		of_node_put(it->node);
1321 		it->node = NULL;
1322 	}
1323 
1324 	if (!it->cur || it->phandle_end >= it->list_end)
1325 		return -ENOENT;
1326 
1327 	it->cur = it->phandle_end;
1328 
1329 	/* If phandle is 0, then it is an empty entry with no arguments. */
1330 	it->phandle = be32_to_cpup(it->cur++);
1331 
1332 	if (it->phandle) {
1333 
1334 		/*
1335 		 * Find the provider node and parse the #*-cells property to
1336 		 * determine the argument length.
1337 		 */
1338 		it->node = of_find_node_by_phandle(it->phandle);
1339 
1340 		if (it->cells_name) {
1341 			if (!it->node) {
1342 				pr_err("%pOF: could not find phandle %d\n",
1343 				       it->parent, it->phandle);
1344 				goto err;
1345 			}
1346 
1347 			if (of_property_read_u32(it->node, it->cells_name,
1348 						 &count)) {
1349 				/*
1350 				 * If both cell_count and cells_name is given,
1351 				 * fall back to cell_count in absence
1352 				 * of the cells_name property
1353 				 */
1354 				if (it->cell_count >= 0) {
1355 					count = it->cell_count;
1356 				} else {
1357 					pr_err("%pOF: could not get %s for %pOF\n",
1358 					       it->parent,
1359 					       it->cells_name,
1360 					       it->node);
1361 					goto err;
1362 				}
1363 			}
1364 		} else {
1365 			count = it->cell_count;
1366 		}
1367 
1368 		/*
1369 		 * Make sure that the arguments actually fit in the remaining
1370 		 * property data length
1371 		 */
1372 		if (it->cur + count > it->list_end) {
1373 			if (it->cells_name)
1374 				pr_err("%pOF: %s = %d found %td\n",
1375 					it->parent, it->cells_name,
1376 					count, it->list_end - it->cur);
1377 			else
1378 				pr_err("%pOF: phandle %s needs %d, found %td\n",
1379 					it->parent, of_node_full_name(it->node),
1380 					count, it->list_end - it->cur);
1381 			goto err;
1382 		}
1383 	}
1384 
1385 	it->phandle_end = it->cur + count;
1386 	it->cur_count = count;
1387 
1388 	return 0;
1389 
1390 err:
1391 	if (it->node) {
1392 		of_node_put(it->node);
1393 		it->node = NULL;
1394 	}
1395 
1396 	return -EINVAL;
1397 }
1398 EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1399 
1400 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1401 			     uint32_t *args,
1402 			     int size)
1403 {
1404 	int i, count;
1405 
1406 	count = it->cur_count;
1407 
1408 	if (WARN_ON(size < count))
1409 		count = size;
1410 
1411 	for (i = 0; i < count; i++)
1412 		args[i] = be32_to_cpup(it->cur++);
1413 
1414 	return count;
1415 }
1416 
1417 int __of_parse_phandle_with_args(const struct device_node *np,
1418 				 const char *list_name,
1419 				 const char *cells_name,
1420 				 int cell_count, int index,
1421 				 struct of_phandle_args *out_args)
1422 {
1423 	struct of_phandle_iterator it;
1424 	int rc, cur_index = 0;
1425 
1426 	if (index < 0)
1427 		return -EINVAL;
1428 
1429 	/* Loop over the phandles until all the requested entry is found */
1430 	of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1431 		/*
1432 		 * All of the error cases bail out of the loop, so at
1433 		 * this point, the parsing is successful. If the requested
1434 		 * index matches, then fill the out_args structure and return,
1435 		 * or return -ENOENT for an empty entry.
1436 		 */
1437 		rc = -ENOENT;
1438 		if (cur_index == index) {
1439 			if (!it.phandle)
1440 				goto err;
1441 
1442 			if (out_args) {
1443 				int c;
1444 
1445 				c = of_phandle_iterator_args(&it,
1446 							     out_args->args,
1447 							     MAX_PHANDLE_ARGS);
1448 				out_args->np = it.node;
1449 				out_args->args_count = c;
1450 			} else {
1451 				of_node_put(it.node);
1452 			}
1453 
1454 			/* Found it! return success */
1455 			return 0;
1456 		}
1457 
1458 		cur_index++;
1459 	}
1460 
1461 	/*
1462 	 * Unlock node before returning result; will be one of:
1463 	 * -ENOENT : index is for empty phandle
1464 	 * -EINVAL : parsing error on data
1465 	 */
1466 
1467  err:
1468 	of_node_put(it.node);
1469 	return rc;
1470 }
1471 EXPORT_SYMBOL(__of_parse_phandle_with_args);
1472 
1473 /**
1474  * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1475  * @np:		pointer to a device tree node containing a list
1476  * @list_name:	property name that contains a list
1477  * @stem_name:	stem of property names that specify phandles' arguments count
1478  * @index:	index of a phandle to parse out
1479  * @out_args:	optional pointer to output arguments structure (will be filled)
1480  *
1481  * This function is useful to parse lists of phandles and their arguments.
1482  * Returns 0 on success and fills out_args, on error returns appropriate errno
1483  * value. The difference between this function and of_parse_phandle_with_args()
1484  * is that this API remaps a phandle if the node the phandle points to has
1485  * a <@stem_name>-map property.
1486  *
1487  * Caller is responsible to call of_node_put() on the returned out_args->np
1488  * pointer.
1489  *
1490  * Example::
1491  *
1492  *  phandle1: node1 {
1493  *  	#list-cells = <2>;
1494  *  };
1495  *
1496  *  phandle2: node2 {
1497  *  	#list-cells = <1>;
1498  *  };
1499  *
1500  *  phandle3: node3 {
1501  *  	#list-cells = <1>;
1502  *  	list-map = <0 &phandle2 3>,
1503  *  		   <1 &phandle2 2>,
1504  *  		   <2 &phandle1 5 1>;
1505  *  	list-map-mask = <0x3>;
1506  *  };
1507  *
1508  *  node4 {
1509  *  	list = <&phandle1 1 2 &phandle3 0>;
1510  *  };
1511  *
1512  * To get a device_node of the ``node2`` node you may call this:
1513  * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1514  */
1515 int of_parse_phandle_with_args_map(const struct device_node *np,
1516 				   const char *list_name,
1517 				   const char *stem_name,
1518 				   int index, struct of_phandle_args *out_args)
1519 {
1520 	char *cells_name __free(kfree) = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1521 	char *map_name __free(kfree) = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1522 	char *mask_name __free(kfree) = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1523 	char *pass_name __free(kfree) = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1524 	struct device_node *cur, *new = NULL;
1525 	const __be32 *map, *mask, *pass;
1526 	static const __be32 dummy_mask[] = { [0 ... (MAX_PHANDLE_ARGS - 1)] = cpu_to_be32(~0) };
1527 	static const __be32 dummy_pass[] = { [0 ... (MAX_PHANDLE_ARGS - 1)] = cpu_to_be32(0) };
1528 	__be32 initial_match_array[MAX_PHANDLE_ARGS];
1529 	const __be32 *match_array = initial_match_array;
1530 	int i, ret, map_len, match;
1531 	u32 list_size, new_size;
1532 
1533 	if (index < 0)
1534 		return -EINVAL;
1535 
1536 	if (!cells_name || !map_name || !mask_name || !pass_name)
1537 		return -ENOMEM;
1538 
1539 	ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index,
1540 					   out_args);
1541 	if (ret)
1542 		return ret;
1543 
1544 	/* Get the #<list>-cells property */
1545 	cur = out_args->np;
1546 	ret = of_property_read_u32(cur, cells_name, &list_size);
1547 	if (ret < 0)
1548 		goto put;
1549 
1550 	/* Precalculate the match array - this simplifies match loop */
1551 	for (i = 0; i < list_size; i++)
1552 		initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1553 
1554 	ret = -EINVAL;
1555 	while (cur) {
1556 		/* Get the <list>-map property */
1557 		map = of_get_property(cur, map_name, &map_len);
1558 		if (!map) {
1559 			return 0;
1560 		}
1561 		map_len /= sizeof(u32);
1562 
1563 		/* Get the <list>-map-mask property (optional) */
1564 		mask = of_get_property(cur, mask_name, NULL);
1565 		if (!mask)
1566 			mask = dummy_mask;
1567 		/* Iterate through <list>-map property */
1568 		match = 0;
1569 		while (map_len > (list_size + 1) && !match) {
1570 			/* Compare specifiers */
1571 			match = 1;
1572 			for (i = 0; i < list_size; i++, map_len--)
1573 				match &= !((match_array[i] ^ *map++) & mask[i]);
1574 
1575 			of_node_put(new);
1576 			new = of_find_node_by_phandle(be32_to_cpup(map));
1577 			map++;
1578 			map_len--;
1579 
1580 			/* Check if not found */
1581 			if (!new) {
1582 				ret = -EINVAL;
1583 				goto put;
1584 			}
1585 
1586 			if (!of_device_is_available(new))
1587 				match = 0;
1588 
1589 			ret = of_property_read_u32(new, cells_name, &new_size);
1590 			if (ret)
1591 				goto put;
1592 
1593 			/* Check for malformed properties */
1594 			if (WARN_ON(new_size > MAX_PHANDLE_ARGS) ||
1595 			    map_len < new_size) {
1596 				ret = -EINVAL;
1597 				goto put;
1598 			}
1599 
1600 			/* Move forward by new node's #<list>-cells amount */
1601 			map += new_size;
1602 			map_len -= new_size;
1603 		}
1604 		if (!match) {
1605 			ret = -ENOENT;
1606 			goto put;
1607 		}
1608 
1609 		/* Get the <list>-map-pass-thru property (optional) */
1610 		pass = of_get_property(cur, pass_name, NULL);
1611 		if (!pass)
1612 			pass = dummy_pass;
1613 
1614 		/*
1615 		 * Successfully parsed a <list>-map translation; copy new
1616 		 * specifier into the out_args structure, keeping the
1617 		 * bits specified in <list>-map-pass-thru.
1618 		 */
1619 		for (i = 0; i < new_size; i++) {
1620 			__be32 val = *(map - new_size + i);
1621 
1622 			if (i < list_size) {
1623 				val &= ~pass[i];
1624 				val |= cpu_to_be32(out_args->args[i]) & pass[i];
1625 			}
1626 
1627 			initial_match_array[i] = val;
1628 			out_args->args[i] = be32_to_cpu(val);
1629 		}
1630 		out_args->args_count = list_size = new_size;
1631 		/* Iterate again with new provider */
1632 		out_args->np = new;
1633 		of_node_put(cur);
1634 		cur = new;
1635 		new = NULL;
1636 	}
1637 put:
1638 	of_node_put(cur);
1639 	of_node_put(new);
1640 	return ret;
1641 }
1642 EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1643 
1644 /**
1645  * of_count_phandle_with_args() - Find the number of phandles references in a property
1646  * @np:		pointer to a device tree node containing a list
1647  * @list_name:	property name that contains a list
1648  * @cells_name:	property name that specifies phandles' arguments count
1649  *
1650  * Return: The number of phandle + argument tuples within a property. It
1651  * is a typical pattern to encode a list of phandle and variable
1652  * arguments into a single property. The number of arguments is encoded
1653  * by a property in the phandle-target node. For example, a gpios
1654  * property would contain a list of GPIO specifies consisting of a
1655  * phandle and 1 or more arguments. The number of arguments are
1656  * determined by the #gpio-cells property in the node pointed to by the
1657  * phandle.
1658  */
1659 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1660 				const char *cells_name)
1661 {
1662 	struct of_phandle_iterator it;
1663 	int rc, cur_index = 0;
1664 
1665 	/*
1666 	 * If cells_name is NULL we assume a cell count of 0. This makes
1667 	 * counting the phandles trivial as each 32bit word in the list is a
1668 	 * phandle and no arguments are to consider. So we don't iterate through
1669 	 * the list but just use the length to determine the phandle count.
1670 	 */
1671 	if (!cells_name) {
1672 		const __be32 *list;
1673 		int size;
1674 
1675 		list = of_get_property(np, list_name, &size);
1676 		if (!list)
1677 			return -ENOENT;
1678 
1679 		return size / sizeof(*list);
1680 	}
1681 
1682 	rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1);
1683 	if (rc)
1684 		return rc;
1685 
1686 	while ((rc = of_phandle_iterator_next(&it)) == 0)
1687 		cur_index += 1;
1688 
1689 	if (rc != -ENOENT)
1690 		return rc;
1691 
1692 	return cur_index;
1693 }
1694 EXPORT_SYMBOL(of_count_phandle_with_args);
1695 
1696 static struct property *__of_remove_property_from_list(struct property **list, struct property *prop)
1697 {
1698 	struct property **next;
1699 
1700 	for (next = list; *next; next = &(*next)->next) {
1701 		if (*next == prop) {
1702 			*next = prop->next;
1703 			prop->next = NULL;
1704 			return prop;
1705 		}
1706 	}
1707 	return NULL;
1708 }
1709 
1710 /**
1711  * __of_add_property - Add a property to a node without lock operations
1712  * @np:		Caller's Device Node
1713  * @prop:	Property to add
1714  */
1715 int __of_add_property(struct device_node *np, struct property *prop)
1716 {
1717 	int rc = 0;
1718 	unsigned long flags;
1719 	struct property **next;
1720 
1721 	raw_spin_lock_irqsave(&devtree_lock, flags);
1722 
1723 	__of_remove_property_from_list(&np->deadprops, prop);
1724 
1725 	prop->next = NULL;
1726 	next = &np->properties;
1727 	while (*next) {
1728 		if (of_prop_cmp(prop->name, (*next)->name) == 0) {
1729 			/* duplicate ! don't insert it */
1730 			rc = -EEXIST;
1731 			goto out_unlock;
1732 		}
1733 		next = &(*next)->next;
1734 	}
1735 	*next = prop;
1736 
1737 out_unlock:
1738 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1739 	if (rc)
1740 		return rc;
1741 
1742 	__of_add_property_sysfs(np, prop);
1743 	return 0;
1744 }
1745 
1746 /**
1747  * of_add_property - Add a property to a node
1748  * @np:		Caller's Device Node
1749  * @prop:	Property to add
1750  */
1751 int of_add_property(struct device_node *np, struct property *prop)
1752 {
1753 	int rc;
1754 
1755 	mutex_lock(&of_mutex);
1756 	rc = __of_add_property(np, prop);
1757 	mutex_unlock(&of_mutex);
1758 
1759 	if (!rc)
1760 		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1761 
1762 	return rc;
1763 }
1764 EXPORT_SYMBOL_GPL(of_add_property);
1765 
1766 int __of_remove_property(struct device_node *np, struct property *prop)
1767 {
1768 	unsigned long flags;
1769 	int rc = -ENODEV;
1770 
1771 	raw_spin_lock_irqsave(&devtree_lock, flags);
1772 
1773 	if (__of_remove_property_from_list(&np->properties, prop)) {
1774 		/* Found the property, add it to deadprops list */
1775 		prop->next = np->deadprops;
1776 		np->deadprops = prop;
1777 		rc = 0;
1778 	}
1779 
1780 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1781 	if (rc)
1782 		return rc;
1783 
1784 	__of_remove_property_sysfs(np, prop);
1785 	return 0;
1786 }
1787 
1788 /**
1789  * of_remove_property - Remove a property from a node.
1790  * @np:		Caller's Device Node
1791  * @prop:	Property to remove
1792  *
1793  * Note that we don't actually remove it, since we have given out
1794  * who-knows-how-many pointers to the data using get-property.
1795  * Instead we just move the property to the "dead properties"
1796  * list, so it won't be found any more.
1797  */
1798 int of_remove_property(struct device_node *np, struct property *prop)
1799 {
1800 	int rc;
1801 
1802 	if (!prop)
1803 		return -ENODEV;
1804 
1805 	mutex_lock(&of_mutex);
1806 	rc = __of_remove_property(np, prop);
1807 	mutex_unlock(&of_mutex);
1808 
1809 	if (!rc)
1810 		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1811 
1812 	return rc;
1813 }
1814 EXPORT_SYMBOL_GPL(of_remove_property);
1815 
1816 int __of_update_property(struct device_node *np, struct property *newprop,
1817 		struct property **oldpropp)
1818 {
1819 	struct property **next, *oldprop;
1820 	unsigned long flags;
1821 
1822 	raw_spin_lock_irqsave(&devtree_lock, flags);
1823 
1824 	__of_remove_property_from_list(&np->deadprops, newprop);
1825 
1826 	for (next = &np->properties; *next; next = &(*next)->next) {
1827 		if (of_prop_cmp((*next)->name, newprop->name) == 0)
1828 			break;
1829 	}
1830 	*oldpropp = oldprop = *next;
1831 
1832 	if (oldprop) {
1833 		/* replace the node */
1834 		newprop->next = oldprop->next;
1835 		*next = newprop;
1836 		oldprop->next = np->deadprops;
1837 		np->deadprops = oldprop;
1838 	} else {
1839 		/* new node */
1840 		newprop->next = NULL;
1841 		*next = newprop;
1842 	}
1843 
1844 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1845 
1846 	__of_update_property_sysfs(np, newprop, oldprop);
1847 
1848 	return 0;
1849 }
1850 
1851 /*
1852  * of_update_property - Update a property in a node, if the property does
1853  * not exist, add it.
1854  *
1855  * Note that we don't actually remove it, since we have given out
1856  * who-knows-how-many pointers to the data using get-property.
1857  * Instead we just move the property to the "dead properties" list,
1858  * and add the new property to the property list
1859  */
1860 int of_update_property(struct device_node *np, struct property *newprop)
1861 {
1862 	struct property *oldprop;
1863 	int rc;
1864 
1865 	if (!newprop->name)
1866 		return -EINVAL;
1867 
1868 	mutex_lock(&of_mutex);
1869 	rc = __of_update_property(np, newprop, &oldprop);
1870 	mutex_unlock(&of_mutex);
1871 
1872 	if (!rc)
1873 		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1874 
1875 	return rc;
1876 }
1877 
1878 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1879 			 int id, const char *stem, int stem_len)
1880 {
1881 	ap->np = np;
1882 	ap->id = id;
1883 	strscpy(ap->stem, stem, stem_len + 1);
1884 	list_add_tail(&ap->link, &aliases_lookup);
1885 	pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1886 		 ap->alias, ap->stem, ap->id, np);
1887 }
1888 
1889 /**
1890  * of_alias_scan - Scan all properties of the 'aliases' node
1891  * @dt_alloc:	An allocator that provides a virtual address to memory
1892  *		for storing the resulting tree
1893  *
1894  * The function scans all the properties of the 'aliases' node and populates
1895  * the global lookup table with the properties.
1896  */
1897 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1898 {
1899 	const struct property *pp;
1900 
1901 	of_aliases = of_find_node_by_path("/aliases");
1902 	of_chosen = of_find_node_by_path("/chosen");
1903 	if (of_chosen == NULL)
1904 		of_chosen = of_find_node_by_path("/chosen@0");
1905 
1906 	if (of_chosen) {
1907 		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1908 		const char *name = NULL;
1909 
1910 		if (of_property_read_string(of_chosen, "stdout-path", &name))
1911 			of_property_read_string(of_chosen, "linux,stdout-path",
1912 						&name);
1913 		if (IS_ENABLED(CONFIG_PPC) && !name)
1914 			of_property_read_string(of_aliases, "stdout", &name);
1915 		if (name)
1916 			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1917 		if (of_stdout)
1918 			of_stdout->fwnode.flags |= FWNODE_FLAG_BEST_EFFORT;
1919 	}
1920 
1921 	if (!of_aliases)
1922 		return;
1923 
1924 	for_each_property_of_node(of_aliases, pp) {
1925 		const char *start = pp->name;
1926 		const char *end = start + strlen(start);
1927 		struct device_node *np;
1928 		struct alias_prop *ap;
1929 		int id, len;
1930 
1931 		/* Skip those we do not want to proceed */
1932 		if (is_pseudo_property(pp->name))
1933 			continue;
1934 
1935 		np = of_find_node_by_path(pp->value);
1936 		if (!np)
1937 			continue;
1938 
1939 		/* walk the alias backwards to extract the id and work out
1940 		 * the 'stem' string */
1941 		while (isdigit(*(end-1)) && end > start)
1942 			end--;
1943 		len = end - start;
1944 
1945 		if (kstrtoint(end, 10, &id) < 0)
1946 			continue;
1947 
1948 		/* Allocate an alias_prop with enough space for the stem */
1949 		ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
1950 		if (!ap)
1951 			continue;
1952 		memset(ap, 0, sizeof(*ap) + len + 1);
1953 		ap->alias = start;
1954 		of_alias_add(ap, np, id, start, len);
1955 	}
1956 }
1957 
1958 /**
1959  * of_alias_get_id - Get alias id for the given device_node
1960  * @np:		Pointer to the given device_node
1961  * @stem:	Alias stem of the given device_node
1962  *
1963  * The function travels the lookup table to get the alias id for the given
1964  * device_node and alias stem.
1965  *
1966  * Return: The alias id if found.
1967  */
1968 int of_alias_get_id(const struct device_node *np, const char *stem)
1969 {
1970 	struct alias_prop *app;
1971 	int id = -ENODEV;
1972 
1973 	mutex_lock(&of_mutex);
1974 	list_for_each_entry(app, &aliases_lookup, link) {
1975 		if (strcmp(app->stem, stem) != 0)
1976 			continue;
1977 
1978 		if (np == app->np) {
1979 			id = app->id;
1980 			break;
1981 		}
1982 	}
1983 	mutex_unlock(&of_mutex);
1984 
1985 	return id;
1986 }
1987 EXPORT_SYMBOL_GPL(of_alias_get_id);
1988 
1989 /**
1990  * of_alias_get_highest_id - Get highest alias id for the given stem
1991  * @stem:	Alias stem to be examined
1992  *
1993  * The function travels the lookup table to get the highest alias id for the
1994  * given alias stem.  It returns the alias id if found.
1995  */
1996 int of_alias_get_highest_id(const char *stem)
1997 {
1998 	struct alias_prop *app;
1999 	int id = -ENODEV;
2000 
2001 	mutex_lock(&of_mutex);
2002 	list_for_each_entry(app, &aliases_lookup, link) {
2003 		if (strcmp(app->stem, stem) != 0)
2004 			continue;
2005 
2006 		if (app->id > id)
2007 			id = app->id;
2008 	}
2009 	mutex_unlock(&of_mutex);
2010 
2011 	return id;
2012 }
2013 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2014 
2015 /**
2016  * of_console_check() - Test and setup console for DT setup
2017  * @dn: Pointer to device node
2018  * @name: Name to use for preferred console without index. ex. "ttyS"
2019  * @index: Index to use for preferred console.
2020  *
2021  * Check if the given device node matches the stdout-path property in the
2022  * /chosen node. If it does then register it as the preferred console.
2023  *
2024  * Return: TRUE if console successfully setup. Otherwise return FALSE.
2025  */
2026 bool of_console_check(const struct device_node *dn, char *name, int index)
2027 {
2028 	if (!dn || dn != of_stdout || console_set_on_cmdline)
2029 		return false;
2030 
2031 	/*
2032 	 * XXX: cast `options' to char pointer to suppress complication
2033 	 * warnings: printk, UART and console drivers expect char pointer.
2034 	 */
2035 	return !add_preferred_console(name, index, (char *)of_stdout_options);
2036 }
2037 EXPORT_SYMBOL_GPL(of_console_check);
2038 
2039 /**
2040  * of_find_next_cache_node - Find a node's subsidiary cache
2041  * @np:	node of type "cpu" or "cache"
2042  *
2043  * Return: A node pointer with refcount incremented, use
2044  * of_node_put() on it when done.  Caller should hold a reference
2045  * to np.
2046  */
2047 struct device_node *of_find_next_cache_node(const struct device_node *np)
2048 {
2049 	struct device_node *child, *cache_node;
2050 
2051 	cache_node = of_parse_phandle(np, "l2-cache", 0);
2052 	if (!cache_node)
2053 		cache_node = of_parse_phandle(np, "next-level-cache", 0);
2054 
2055 	if (cache_node)
2056 		return cache_node;
2057 
2058 	/* OF on pmac has nodes instead of properties named "l2-cache"
2059 	 * beneath CPU nodes.
2060 	 */
2061 	if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
2062 		for_each_child_of_node(np, child)
2063 			if (of_node_is_type(child, "cache"))
2064 				return child;
2065 
2066 	return NULL;
2067 }
2068 
2069 /**
2070  * of_find_last_cache_level - Find the level at which the last cache is
2071  * 		present for the given logical cpu
2072  *
2073  * @cpu: cpu number(logical index) for which the last cache level is needed
2074  *
2075  * Return: The level at which the last cache is present. It is exactly
2076  * same as  the total number of cache levels for the given logical cpu.
2077  */
2078 int of_find_last_cache_level(unsigned int cpu)
2079 {
2080 	u32 cache_level = 0;
2081 	struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
2082 
2083 	while (np) {
2084 		of_node_put(prev);
2085 		prev = np;
2086 		np = of_find_next_cache_node(np);
2087 	}
2088 
2089 	of_property_read_u32(prev, "cache-level", &cache_level);
2090 	of_node_put(prev);
2091 
2092 	return cache_level;
2093 }
2094 
2095 /**
2096  * of_map_id - Translate an ID through a downstream mapping.
2097  * @np: root complex device node.
2098  * @id: device ID to map.
2099  * @map_name: property name of the map to use.
2100  * @map_mask_name: optional property name of the mask to use.
2101  * @target: optional pointer to a target device node.
2102  * @id_out: optional pointer to receive the translated ID.
2103  *
2104  * Given a device ID, look up the appropriate implementation-defined
2105  * platform ID and/or the target device which receives transactions on that
2106  * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
2107  * @id_out may be NULL if only the other is required. If @target points to
2108  * a non-NULL device node pointer, only entries targeting that node will be
2109  * matched; if it points to a NULL value, it will receive the device node of
2110  * the first matching target phandle, with a reference held.
2111  *
2112  * Return: 0 on success or a standard error code on failure.
2113  */
2114 int of_map_id(const struct device_node *np, u32 id,
2115 	       const char *map_name, const char *map_mask_name,
2116 	       struct device_node **target, u32 *id_out)
2117 {
2118 	u32 map_mask, masked_id;
2119 	int map_len;
2120 	const __be32 *map = NULL;
2121 
2122 	if (!np || !map_name || (!target && !id_out))
2123 		return -EINVAL;
2124 
2125 	map = of_get_property(np, map_name, &map_len);
2126 	if (!map) {
2127 		if (target)
2128 			return -ENODEV;
2129 		/* Otherwise, no map implies no translation */
2130 		*id_out = id;
2131 		return 0;
2132 	}
2133 
2134 	if (!map_len || map_len % (4 * sizeof(*map))) {
2135 		pr_err("%pOF: Error: Bad %s length: %d\n", np,
2136 			map_name, map_len);
2137 		return -EINVAL;
2138 	}
2139 
2140 	/* The default is to select all bits. */
2141 	map_mask = 0xffffffff;
2142 
2143 	/*
2144 	 * Can be overridden by "{iommu,msi}-map-mask" property.
2145 	 * If of_property_read_u32() fails, the default is used.
2146 	 */
2147 	if (map_mask_name)
2148 		of_property_read_u32(np, map_mask_name, &map_mask);
2149 
2150 	masked_id = map_mask & id;
2151 	for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
2152 		struct device_node *phandle_node;
2153 		u32 id_base = be32_to_cpup(map + 0);
2154 		u32 phandle = be32_to_cpup(map + 1);
2155 		u32 out_base = be32_to_cpup(map + 2);
2156 		u32 id_len = be32_to_cpup(map + 3);
2157 
2158 		if (id_base & ~map_mask) {
2159 			pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n",
2160 				np, map_name, map_name,
2161 				map_mask, id_base);
2162 			return -EFAULT;
2163 		}
2164 
2165 		if (masked_id < id_base || masked_id >= id_base + id_len)
2166 			continue;
2167 
2168 		phandle_node = of_find_node_by_phandle(phandle);
2169 		if (!phandle_node)
2170 			return -ENODEV;
2171 
2172 		if (target) {
2173 			if (*target)
2174 				of_node_put(phandle_node);
2175 			else
2176 				*target = phandle_node;
2177 
2178 			if (*target != phandle_node)
2179 				continue;
2180 		}
2181 
2182 		if (id_out)
2183 			*id_out = masked_id - id_base + out_base;
2184 
2185 		pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n",
2186 			np, map_name, map_mask, id_base, out_base,
2187 			id_len, id, masked_id - id_base + out_base);
2188 		return 0;
2189 	}
2190 
2191 	pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name,
2192 		id, target && *target ? *target : NULL);
2193 
2194 	/* Bypasses translation */
2195 	if (id_out)
2196 		*id_out = id;
2197 	return 0;
2198 }
2199 EXPORT_SYMBOL_GPL(of_map_id);
2200