xref: /linux/drivers/of/base.c (revision ad8c0eaa0a418ae8ef3f9217638bb86439399eac)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Procedures for creating, accessing and interpreting the device tree.
4  *
5  * Paul Mackerras	August 1996.
6  * Copyright (C) 1996-2005 Paul Mackerras.
7  *
8  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9  *    {engebret|bergner}@us.ibm.com
10  *
11  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12  *
13  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
14  *  Grant Likely.
15  */
16 
17 #define pr_fmt(fmt)	"OF: " fmt
18 
19 #include <linux/bitmap.h>
20 #include <linux/console.h>
21 #include <linux/ctype.h>
22 #include <linux/cpu.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/of_graph.h>
27 #include <linux/spinlock.h>
28 #include <linux/slab.h>
29 #include <linux/string.h>
30 #include <linux/proc_fs.h>
31 
32 #include "of_private.h"
33 
34 LIST_HEAD(aliases_lookup);
35 
36 struct device_node *of_root;
37 EXPORT_SYMBOL(of_root);
38 struct device_node *of_chosen;
39 struct device_node *of_aliases;
40 struct device_node *of_stdout;
41 static const char *of_stdout_options;
42 
43 struct kset *of_kset;
44 
45 /*
46  * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
47  * This mutex must be held whenever modifications are being made to the
48  * device tree. The of_{attach,detach}_node() and
49  * of_{add,remove,update}_property() helpers make sure this happens.
50  */
51 DEFINE_MUTEX(of_mutex);
52 
53 /* use when traversing tree through the child, sibling,
54  * or parent members of struct device_node.
55  */
56 DEFINE_RAW_SPINLOCK(devtree_lock);
57 
58 bool of_node_name_eq(const struct device_node *np, const char *name)
59 {
60 	const char *node_name;
61 	size_t len;
62 
63 	if (!np)
64 		return false;
65 
66 	node_name = kbasename(np->full_name);
67 	len = strchrnul(node_name, '@') - node_name;
68 
69 	return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
70 }
71 
72 bool of_node_name_prefix(const struct device_node *np, const char *prefix)
73 {
74 	if (!np)
75 		return false;
76 
77 	return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
78 }
79 
80 int of_n_addr_cells(struct device_node *np)
81 {
82 	u32 cells;
83 
84 	do {
85 		if (np->parent)
86 			np = np->parent;
87 		if (!of_property_read_u32(np, "#address-cells", &cells))
88 			return cells;
89 	} while (np->parent);
90 	/* No #address-cells property for the root node */
91 	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
92 }
93 EXPORT_SYMBOL(of_n_addr_cells);
94 
95 int of_n_size_cells(struct device_node *np)
96 {
97 	u32 cells;
98 
99 	do {
100 		if (np->parent)
101 			np = np->parent;
102 		if (!of_property_read_u32(np, "#size-cells", &cells))
103 			return cells;
104 	} while (np->parent);
105 	/* No #size-cells property for the root node */
106 	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
107 }
108 EXPORT_SYMBOL(of_n_size_cells);
109 
110 #ifdef CONFIG_NUMA
111 int __weak of_node_to_nid(struct device_node *np)
112 {
113 	return NUMA_NO_NODE;
114 }
115 #endif
116 
117 static struct device_node **phandle_cache;
118 static u32 phandle_cache_mask;
119 
120 /*
121  * Assumptions behind phandle_cache implementation:
122  *   - phandle property values are in a contiguous range of 1..n
123  *
124  * If the assumptions do not hold, then
125  *   - the phandle lookup overhead reduction provided by the cache
126  *     will likely be less
127  */
128 void of_populate_phandle_cache(void)
129 {
130 	unsigned long flags;
131 	u32 cache_entries;
132 	struct device_node *np;
133 	u32 phandles = 0;
134 
135 	raw_spin_lock_irqsave(&devtree_lock, flags);
136 
137 	kfree(phandle_cache);
138 	phandle_cache = NULL;
139 
140 	for_each_of_allnodes(np)
141 		if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL)
142 			phandles++;
143 
144 	if (!phandles)
145 		goto out;
146 
147 	cache_entries = roundup_pow_of_two(phandles);
148 	phandle_cache_mask = cache_entries - 1;
149 
150 	phandle_cache = kcalloc(cache_entries, sizeof(*phandle_cache),
151 				GFP_ATOMIC);
152 	if (!phandle_cache)
153 		goto out;
154 
155 	for_each_of_allnodes(np)
156 		if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL)
157 			phandle_cache[np->phandle & phandle_cache_mask] = np;
158 
159 out:
160 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
161 }
162 
163 int of_free_phandle_cache(void)
164 {
165 	unsigned long flags;
166 
167 	raw_spin_lock_irqsave(&devtree_lock, flags);
168 
169 	kfree(phandle_cache);
170 	phandle_cache = NULL;
171 
172 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
173 
174 	return 0;
175 }
176 #if !defined(CONFIG_MODULES)
177 late_initcall_sync(of_free_phandle_cache);
178 #endif
179 
180 void __init of_core_init(void)
181 {
182 	struct device_node *np;
183 
184 	of_populate_phandle_cache();
185 
186 	/* Create the kset, and register existing nodes */
187 	mutex_lock(&of_mutex);
188 	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
189 	if (!of_kset) {
190 		mutex_unlock(&of_mutex);
191 		pr_err("failed to register existing nodes\n");
192 		return;
193 	}
194 	for_each_of_allnodes(np)
195 		__of_attach_node_sysfs(np);
196 	mutex_unlock(&of_mutex);
197 
198 	/* Symlink in /proc as required by userspace ABI */
199 	if (of_root)
200 		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
201 }
202 
203 static struct property *__of_find_property(const struct device_node *np,
204 					   const char *name, int *lenp)
205 {
206 	struct property *pp;
207 
208 	if (!np)
209 		return NULL;
210 
211 	for (pp = np->properties; pp; pp = pp->next) {
212 		if (of_prop_cmp(pp->name, name) == 0) {
213 			if (lenp)
214 				*lenp = pp->length;
215 			break;
216 		}
217 	}
218 
219 	return pp;
220 }
221 
222 struct property *of_find_property(const struct device_node *np,
223 				  const char *name,
224 				  int *lenp)
225 {
226 	struct property *pp;
227 	unsigned long flags;
228 
229 	raw_spin_lock_irqsave(&devtree_lock, flags);
230 	pp = __of_find_property(np, name, lenp);
231 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
232 
233 	return pp;
234 }
235 EXPORT_SYMBOL(of_find_property);
236 
237 struct device_node *__of_find_all_nodes(struct device_node *prev)
238 {
239 	struct device_node *np;
240 	if (!prev) {
241 		np = of_root;
242 	} else if (prev->child) {
243 		np = prev->child;
244 	} else {
245 		/* Walk back up looking for a sibling, or the end of the structure */
246 		np = prev;
247 		while (np->parent && !np->sibling)
248 			np = np->parent;
249 		np = np->sibling; /* Might be null at the end of the tree */
250 	}
251 	return np;
252 }
253 
254 /**
255  * of_find_all_nodes - Get next node in global list
256  * @prev:	Previous node or NULL to start iteration
257  *		of_node_put() will be called on it
258  *
259  * Returns a node pointer with refcount incremented, use
260  * of_node_put() on it when done.
261  */
262 struct device_node *of_find_all_nodes(struct device_node *prev)
263 {
264 	struct device_node *np;
265 	unsigned long flags;
266 
267 	raw_spin_lock_irqsave(&devtree_lock, flags);
268 	np = __of_find_all_nodes(prev);
269 	of_node_get(np);
270 	of_node_put(prev);
271 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
272 	return np;
273 }
274 EXPORT_SYMBOL(of_find_all_nodes);
275 
276 /*
277  * Find a property with a given name for a given node
278  * and return the value.
279  */
280 const void *__of_get_property(const struct device_node *np,
281 			      const char *name, int *lenp)
282 {
283 	struct property *pp = __of_find_property(np, name, lenp);
284 
285 	return pp ? pp->value : NULL;
286 }
287 
288 /*
289  * Find a property with a given name for a given node
290  * and return the value.
291  */
292 const void *of_get_property(const struct device_node *np, const char *name,
293 			    int *lenp)
294 {
295 	struct property *pp = of_find_property(np, name, lenp);
296 
297 	return pp ? pp->value : NULL;
298 }
299 EXPORT_SYMBOL(of_get_property);
300 
301 /*
302  * arch_match_cpu_phys_id - Match the given logical CPU and physical id
303  *
304  * @cpu: logical cpu index of a core/thread
305  * @phys_id: physical identifier of a core/thread
306  *
307  * CPU logical to physical index mapping is architecture specific.
308  * However this __weak function provides a default match of physical
309  * id to logical cpu index. phys_id provided here is usually values read
310  * from the device tree which must match the hardware internal registers.
311  *
312  * Returns true if the physical identifier and the logical cpu index
313  * correspond to the same core/thread, false otherwise.
314  */
315 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
316 {
317 	return (u32)phys_id == cpu;
318 }
319 
320 /**
321  * Checks if the given "prop_name" property holds the physical id of the
322  * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
323  * NULL, local thread number within the core is returned in it.
324  */
325 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
326 			const char *prop_name, int cpu, unsigned int *thread)
327 {
328 	const __be32 *cell;
329 	int ac, prop_len, tid;
330 	u64 hwid;
331 
332 	ac = of_n_addr_cells(cpun);
333 	cell = of_get_property(cpun, prop_name, &prop_len);
334 	if (!cell || !ac)
335 		return false;
336 	prop_len /= sizeof(*cell) * ac;
337 	for (tid = 0; tid < prop_len; tid++) {
338 		hwid = of_read_number(cell, ac);
339 		if (arch_match_cpu_phys_id(cpu, hwid)) {
340 			if (thread)
341 				*thread = tid;
342 			return true;
343 		}
344 		cell += ac;
345 	}
346 	return false;
347 }
348 
349 /*
350  * arch_find_n_match_cpu_physical_id - See if the given device node is
351  * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
352  * else false.  If 'thread' is non-NULL, the local thread number within the
353  * core is returned in it.
354  */
355 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
356 					      int cpu, unsigned int *thread)
357 {
358 	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
359 	 * for thread ids on PowerPC. If it doesn't exist fallback to
360 	 * standard "reg" property.
361 	 */
362 	if (IS_ENABLED(CONFIG_PPC) &&
363 	    __of_find_n_match_cpu_property(cpun,
364 					   "ibm,ppc-interrupt-server#s",
365 					   cpu, thread))
366 		return true;
367 
368 	return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
369 }
370 
371 /**
372  * of_get_cpu_node - Get device node associated with the given logical CPU
373  *
374  * @cpu: CPU number(logical index) for which device node is required
375  * @thread: if not NULL, local thread number within the physical core is
376  *          returned
377  *
378  * The main purpose of this function is to retrieve the device node for the
379  * given logical CPU index. It should be used to initialize the of_node in
380  * cpu device. Once of_node in cpu device is populated, all the further
381  * references can use that instead.
382  *
383  * CPU logical to physical index mapping is architecture specific and is built
384  * before booting secondary cores. This function uses arch_match_cpu_phys_id
385  * which can be overridden by architecture specific implementation.
386  *
387  * Returns a node pointer for the logical cpu with refcount incremented, use
388  * of_node_put() on it when done. Returns NULL if not found.
389  */
390 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
391 {
392 	struct device_node *cpun;
393 
394 	for_each_node_by_type(cpun, "cpu") {
395 		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
396 			return cpun;
397 	}
398 	return NULL;
399 }
400 EXPORT_SYMBOL(of_get_cpu_node);
401 
402 /**
403  * of_cpu_node_to_id: Get the logical CPU number for a given device_node
404  *
405  * @cpu_node: Pointer to the device_node for CPU.
406  *
407  * Returns the logical CPU number of the given CPU device_node.
408  * Returns -ENODEV if the CPU is not found.
409  */
410 int of_cpu_node_to_id(struct device_node *cpu_node)
411 {
412 	int cpu;
413 	bool found = false;
414 	struct device_node *np;
415 
416 	for_each_possible_cpu(cpu) {
417 		np = of_cpu_device_node_get(cpu);
418 		found = (cpu_node == np);
419 		of_node_put(np);
420 		if (found)
421 			return cpu;
422 	}
423 
424 	return -ENODEV;
425 }
426 EXPORT_SYMBOL(of_cpu_node_to_id);
427 
428 /**
429  * __of_device_is_compatible() - Check if the node matches given constraints
430  * @device: pointer to node
431  * @compat: required compatible string, NULL or "" for any match
432  * @type: required device_type value, NULL or "" for any match
433  * @name: required node name, NULL or "" for any match
434  *
435  * Checks if the given @compat, @type and @name strings match the
436  * properties of the given @device. A constraints can be skipped by
437  * passing NULL or an empty string as the constraint.
438  *
439  * Returns 0 for no match, and a positive integer on match. The return
440  * value is a relative score with larger values indicating better
441  * matches. The score is weighted for the most specific compatible value
442  * to get the highest score. Matching type is next, followed by matching
443  * name. Practically speaking, this results in the following priority
444  * order for matches:
445  *
446  * 1. specific compatible && type && name
447  * 2. specific compatible && type
448  * 3. specific compatible && name
449  * 4. specific compatible
450  * 5. general compatible && type && name
451  * 6. general compatible && type
452  * 7. general compatible && name
453  * 8. general compatible
454  * 9. type && name
455  * 10. type
456  * 11. name
457  */
458 static int __of_device_is_compatible(const struct device_node *device,
459 				     const char *compat, const char *type, const char *name)
460 {
461 	struct property *prop;
462 	const char *cp;
463 	int index = 0, score = 0;
464 
465 	/* Compatible match has highest priority */
466 	if (compat && compat[0]) {
467 		prop = __of_find_property(device, "compatible", NULL);
468 		for (cp = of_prop_next_string(prop, NULL); cp;
469 		     cp = of_prop_next_string(prop, cp), index++) {
470 			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
471 				score = INT_MAX/2 - (index << 2);
472 				break;
473 			}
474 		}
475 		if (!score)
476 			return 0;
477 	}
478 
479 	/* Matching type is better than matching name */
480 	if (type && type[0]) {
481 		if (!device->type || of_node_cmp(type, device->type))
482 			return 0;
483 		score += 2;
484 	}
485 
486 	/* Matching name is a bit better than not */
487 	if (name && name[0]) {
488 		if (!device->name || of_node_cmp(name, device->name))
489 			return 0;
490 		score++;
491 	}
492 
493 	return score;
494 }
495 
496 /** Checks if the given "compat" string matches one of the strings in
497  * the device's "compatible" property
498  */
499 int of_device_is_compatible(const struct device_node *device,
500 		const char *compat)
501 {
502 	unsigned long flags;
503 	int res;
504 
505 	raw_spin_lock_irqsave(&devtree_lock, flags);
506 	res = __of_device_is_compatible(device, compat, NULL, NULL);
507 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
508 	return res;
509 }
510 EXPORT_SYMBOL(of_device_is_compatible);
511 
512 /** Checks if the device is compatible with any of the entries in
513  *  a NULL terminated array of strings. Returns the best match
514  *  score or 0.
515  */
516 int of_device_compatible_match(struct device_node *device,
517 			       const char *const *compat)
518 {
519 	unsigned int tmp, score = 0;
520 
521 	if (!compat)
522 		return 0;
523 
524 	while (*compat) {
525 		tmp = of_device_is_compatible(device, *compat);
526 		if (tmp > score)
527 			score = tmp;
528 		compat++;
529 	}
530 
531 	return score;
532 }
533 
534 /**
535  * of_machine_is_compatible - Test root of device tree for a given compatible value
536  * @compat: compatible string to look for in root node's compatible property.
537  *
538  * Returns a positive integer if the root node has the given value in its
539  * compatible property.
540  */
541 int of_machine_is_compatible(const char *compat)
542 {
543 	struct device_node *root;
544 	int rc = 0;
545 
546 	root = of_find_node_by_path("/");
547 	if (root) {
548 		rc = of_device_is_compatible(root, compat);
549 		of_node_put(root);
550 	}
551 	return rc;
552 }
553 EXPORT_SYMBOL(of_machine_is_compatible);
554 
555 /**
556  *  __of_device_is_available - check if a device is available for use
557  *
558  *  @device: Node to check for availability, with locks already held
559  *
560  *  Returns true if the status property is absent or set to "okay" or "ok",
561  *  false otherwise
562  */
563 static bool __of_device_is_available(const struct device_node *device)
564 {
565 	const char *status;
566 	int statlen;
567 
568 	if (!device)
569 		return false;
570 
571 	status = __of_get_property(device, "status", &statlen);
572 	if (status == NULL)
573 		return true;
574 
575 	if (statlen > 0) {
576 		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
577 			return true;
578 	}
579 
580 	return false;
581 }
582 
583 /**
584  *  of_device_is_available - check if a device is available for use
585  *
586  *  @device: Node to check for availability
587  *
588  *  Returns true if the status property is absent or set to "okay" or "ok",
589  *  false otherwise
590  */
591 bool of_device_is_available(const struct device_node *device)
592 {
593 	unsigned long flags;
594 	bool res;
595 
596 	raw_spin_lock_irqsave(&devtree_lock, flags);
597 	res = __of_device_is_available(device);
598 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
599 	return res;
600 
601 }
602 EXPORT_SYMBOL(of_device_is_available);
603 
604 /**
605  *  of_device_is_big_endian - check if a device has BE registers
606  *
607  *  @device: Node to check for endianness
608  *
609  *  Returns true if the device has a "big-endian" property, or if the kernel
610  *  was compiled for BE *and* the device has a "native-endian" property.
611  *  Returns false otherwise.
612  *
613  *  Callers would nominally use ioread32be/iowrite32be if
614  *  of_device_is_big_endian() == true, or readl/writel otherwise.
615  */
616 bool of_device_is_big_endian(const struct device_node *device)
617 {
618 	if (of_property_read_bool(device, "big-endian"))
619 		return true;
620 	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
621 	    of_property_read_bool(device, "native-endian"))
622 		return true;
623 	return false;
624 }
625 EXPORT_SYMBOL(of_device_is_big_endian);
626 
627 /**
628  *	of_get_parent - Get a node's parent if any
629  *	@node:	Node to get parent
630  *
631  *	Returns a node pointer with refcount incremented, use
632  *	of_node_put() on it when done.
633  */
634 struct device_node *of_get_parent(const struct device_node *node)
635 {
636 	struct device_node *np;
637 	unsigned long flags;
638 
639 	if (!node)
640 		return NULL;
641 
642 	raw_spin_lock_irqsave(&devtree_lock, flags);
643 	np = of_node_get(node->parent);
644 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
645 	return np;
646 }
647 EXPORT_SYMBOL(of_get_parent);
648 
649 /**
650  *	of_get_next_parent - Iterate to a node's parent
651  *	@node:	Node to get parent of
652  *
653  *	This is like of_get_parent() except that it drops the
654  *	refcount on the passed node, making it suitable for iterating
655  *	through a node's parents.
656  *
657  *	Returns a node pointer with refcount incremented, use
658  *	of_node_put() on it when done.
659  */
660 struct device_node *of_get_next_parent(struct device_node *node)
661 {
662 	struct device_node *parent;
663 	unsigned long flags;
664 
665 	if (!node)
666 		return NULL;
667 
668 	raw_spin_lock_irqsave(&devtree_lock, flags);
669 	parent = of_node_get(node->parent);
670 	of_node_put(node);
671 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
672 	return parent;
673 }
674 EXPORT_SYMBOL(of_get_next_parent);
675 
676 static struct device_node *__of_get_next_child(const struct device_node *node,
677 						struct device_node *prev)
678 {
679 	struct device_node *next;
680 
681 	if (!node)
682 		return NULL;
683 
684 	next = prev ? prev->sibling : node->child;
685 	for (; next; next = next->sibling)
686 		if (of_node_get(next))
687 			break;
688 	of_node_put(prev);
689 	return next;
690 }
691 #define __for_each_child_of_node(parent, child) \
692 	for (child = __of_get_next_child(parent, NULL); child != NULL; \
693 	     child = __of_get_next_child(parent, child))
694 
695 /**
696  *	of_get_next_child - Iterate a node childs
697  *	@node:	parent node
698  *	@prev:	previous child of the parent node, or NULL to get first
699  *
700  *	Returns a node pointer with refcount incremented, use of_node_put() on
701  *	it when done. Returns NULL when prev is the last child. Decrements the
702  *	refcount of prev.
703  */
704 struct device_node *of_get_next_child(const struct device_node *node,
705 	struct device_node *prev)
706 {
707 	struct device_node *next;
708 	unsigned long flags;
709 
710 	raw_spin_lock_irqsave(&devtree_lock, flags);
711 	next = __of_get_next_child(node, prev);
712 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
713 	return next;
714 }
715 EXPORT_SYMBOL(of_get_next_child);
716 
717 /**
718  *	of_get_next_available_child - Find the next available child node
719  *	@node:	parent node
720  *	@prev:	previous child of the parent node, or NULL to get first
721  *
722  *      This function is like of_get_next_child(), except that it
723  *      automatically skips any disabled nodes (i.e. status = "disabled").
724  */
725 struct device_node *of_get_next_available_child(const struct device_node *node,
726 	struct device_node *prev)
727 {
728 	struct device_node *next;
729 	unsigned long flags;
730 
731 	if (!node)
732 		return NULL;
733 
734 	raw_spin_lock_irqsave(&devtree_lock, flags);
735 	next = prev ? prev->sibling : node->child;
736 	for (; next; next = next->sibling) {
737 		if (!__of_device_is_available(next))
738 			continue;
739 		if (of_node_get(next))
740 			break;
741 	}
742 	of_node_put(prev);
743 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
744 	return next;
745 }
746 EXPORT_SYMBOL(of_get_next_available_child);
747 
748 /**
749  * of_get_compatible_child - Find compatible child node
750  * @parent:	parent node
751  * @compatible:	compatible string
752  *
753  * Lookup child node whose compatible property contains the given compatible
754  * string.
755  *
756  * Returns a node pointer with refcount incremented, use of_node_put() on it
757  * when done; or NULL if not found.
758  */
759 struct device_node *of_get_compatible_child(const struct device_node *parent,
760 				const char *compatible)
761 {
762 	struct device_node *child;
763 
764 	for_each_child_of_node(parent, child) {
765 		if (of_device_is_compatible(child, compatible))
766 			break;
767 	}
768 
769 	return child;
770 }
771 EXPORT_SYMBOL(of_get_compatible_child);
772 
773 /**
774  *	of_get_child_by_name - Find the child node by name for a given parent
775  *	@node:	parent node
776  *	@name:	child name to look for.
777  *
778  *      This function looks for child node for given matching name
779  *
780  *	Returns a node pointer if found, with refcount incremented, use
781  *	of_node_put() on it when done.
782  *	Returns NULL if node is not found.
783  */
784 struct device_node *of_get_child_by_name(const struct device_node *node,
785 				const char *name)
786 {
787 	struct device_node *child;
788 
789 	for_each_child_of_node(node, child)
790 		if (child->name && (of_node_cmp(child->name, name) == 0))
791 			break;
792 	return child;
793 }
794 EXPORT_SYMBOL(of_get_child_by_name);
795 
796 struct device_node *__of_find_node_by_path(struct device_node *parent,
797 						const char *path)
798 {
799 	struct device_node *child;
800 	int len;
801 
802 	len = strcspn(path, "/:");
803 	if (!len)
804 		return NULL;
805 
806 	__for_each_child_of_node(parent, child) {
807 		const char *name = kbasename(child->full_name);
808 		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
809 			return child;
810 	}
811 	return NULL;
812 }
813 
814 struct device_node *__of_find_node_by_full_path(struct device_node *node,
815 						const char *path)
816 {
817 	const char *separator = strchr(path, ':');
818 
819 	while (node && *path == '/') {
820 		struct device_node *tmp = node;
821 
822 		path++; /* Increment past '/' delimiter */
823 		node = __of_find_node_by_path(node, path);
824 		of_node_put(tmp);
825 		path = strchrnul(path, '/');
826 		if (separator && separator < path)
827 			break;
828 	}
829 	return node;
830 }
831 
832 /**
833  *	of_find_node_opts_by_path - Find a node matching a full OF path
834  *	@path: Either the full path to match, or if the path does not
835  *	       start with '/', the name of a property of the /aliases
836  *	       node (an alias).  In the case of an alias, the node
837  *	       matching the alias' value will be returned.
838  *	@opts: Address of a pointer into which to store the start of
839  *	       an options string appended to the end of the path with
840  *	       a ':' separator.
841  *
842  *	Valid paths:
843  *		/foo/bar	Full path
844  *		foo		Valid alias
845  *		foo/bar		Valid alias + relative path
846  *
847  *	Returns a node pointer with refcount incremented, use
848  *	of_node_put() on it when done.
849  */
850 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
851 {
852 	struct device_node *np = NULL;
853 	struct property *pp;
854 	unsigned long flags;
855 	const char *separator = strchr(path, ':');
856 
857 	if (opts)
858 		*opts = separator ? separator + 1 : NULL;
859 
860 	if (strcmp(path, "/") == 0)
861 		return of_node_get(of_root);
862 
863 	/* The path could begin with an alias */
864 	if (*path != '/') {
865 		int len;
866 		const char *p = separator;
867 
868 		if (!p)
869 			p = strchrnul(path, '/');
870 		len = p - path;
871 
872 		/* of_aliases must not be NULL */
873 		if (!of_aliases)
874 			return NULL;
875 
876 		for_each_property_of_node(of_aliases, pp) {
877 			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
878 				np = of_find_node_by_path(pp->value);
879 				break;
880 			}
881 		}
882 		if (!np)
883 			return NULL;
884 		path = p;
885 	}
886 
887 	/* Step down the tree matching path components */
888 	raw_spin_lock_irqsave(&devtree_lock, flags);
889 	if (!np)
890 		np = of_node_get(of_root);
891 	np = __of_find_node_by_full_path(np, path);
892 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
893 	return np;
894 }
895 EXPORT_SYMBOL(of_find_node_opts_by_path);
896 
897 /**
898  *	of_find_node_by_name - Find a node by its "name" property
899  *	@from:	The node to start searching from or NULL; the node
900  *		you pass will not be searched, only the next one
901  *		will. Typically, you pass what the previous call
902  *		returned. of_node_put() will be called on @from.
903  *	@name:	The name string to match against
904  *
905  *	Returns a node pointer with refcount incremented, use
906  *	of_node_put() on it when done.
907  */
908 struct device_node *of_find_node_by_name(struct device_node *from,
909 	const char *name)
910 {
911 	struct device_node *np;
912 	unsigned long flags;
913 
914 	raw_spin_lock_irqsave(&devtree_lock, flags);
915 	for_each_of_allnodes_from(from, np)
916 		if (np->name && (of_node_cmp(np->name, name) == 0)
917 		    && of_node_get(np))
918 			break;
919 	of_node_put(from);
920 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
921 	return np;
922 }
923 EXPORT_SYMBOL(of_find_node_by_name);
924 
925 /**
926  *	of_find_node_by_type - Find a node by its "device_type" property
927  *	@from:	The node to start searching from, or NULL to start searching
928  *		the entire device tree. The node you pass will not be
929  *		searched, only the next one will; typically, you pass
930  *		what the previous call returned. of_node_put() will be
931  *		called on from for you.
932  *	@type:	The type string to match against
933  *
934  *	Returns a node pointer with refcount incremented, use
935  *	of_node_put() on it when done.
936  */
937 struct device_node *of_find_node_by_type(struct device_node *from,
938 	const char *type)
939 {
940 	struct device_node *np;
941 	unsigned long flags;
942 
943 	raw_spin_lock_irqsave(&devtree_lock, flags);
944 	for_each_of_allnodes_from(from, np)
945 		if (np->type && (of_node_cmp(np->type, type) == 0)
946 		    && of_node_get(np))
947 			break;
948 	of_node_put(from);
949 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
950 	return np;
951 }
952 EXPORT_SYMBOL(of_find_node_by_type);
953 
954 /**
955  *	of_find_compatible_node - Find a node based on type and one of the
956  *                                tokens in its "compatible" property
957  *	@from:		The node to start searching from or NULL, the node
958  *			you pass will not be searched, only the next one
959  *			will; typically, you pass what the previous call
960  *			returned. of_node_put() will be called on it
961  *	@type:		The type string to match "device_type" or NULL to ignore
962  *	@compatible:	The string to match to one of the tokens in the device
963  *			"compatible" list.
964  *
965  *	Returns a node pointer with refcount incremented, use
966  *	of_node_put() on it when done.
967  */
968 struct device_node *of_find_compatible_node(struct device_node *from,
969 	const char *type, const char *compatible)
970 {
971 	struct device_node *np;
972 	unsigned long flags;
973 
974 	raw_spin_lock_irqsave(&devtree_lock, flags);
975 	for_each_of_allnodes_from(from, np)
976 		if (__of_device_is_compatible(np, compatible, type, NULL) &&
977 		    of_node_get(np))
978 			break;
979 	of_node_put(from);
980 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
981 	return np;
982 }
983 EXPORT_SYMBOL(of_find_compatible_node);
984 
985 /**
986  *	of_find_node_with_property - Find a node which has a property with
987  *                                   the given name.
988  *	@from:		The node to start searching from or NULL, the node
989  *			you pass will not be searched, only the next one
990  *			will; typically, you pass what the previous call
991  *			returned. of_node_put() will be called on it
992  *	@prop_name:	The name of the property to look for.
993  *
994  *	Returns a node pointer with refcount incremented, use
995  *	of_node_put() on it when done.
996  */
997 struct device_node *of_find_node_with_property(struct device_node *from,
998 	const char *prop_name)
999 {
1000 	struct device_node *np;
1001 	struct property *pp;
1002 	unsigned long flags;
1003 
1004 	raw_spin_lock_irqsave(&devtree_lock, flags);
1005 	for_each_of_allnodes_from(from, np) {
1006 		for (pp = np->properties; pp; pp = pp->next) {
1007 			if (of_prop_cmp(pp->name, prop_name) == 0) {
1008 				of_node_get(np);
1009 				goto out;
1010 			}
1011 		}
1012 	}
1013 out:
1014 	of_node_put(from);
1015 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1016 	return np;
1017 }
1018 EXPORT_SYMBOL(of_find_node_with_property);
1019 
1020 static
1021 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
1022 					   const struct device_node *node)
1023 {
1024 	const struct of_device_id *best_match = NULL;
1025 	int score, best_score = 0;
1026 
1027 	if (!matches)
1028 		return NULL;
1029 
1030 	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1031 		score = __of_device_is_compatible(node, matches->compatible,
1032 						  matches->type, matches->name);
1033 		if (score > best_score) {
1034 			best_match = matches;
1035 			best_score = score;
1036 		}
1037 	}
1038 
1039 	return best_match;
1040 }
1041 
1042 /**
1043  * of_match_node - Tell if a device_node has a matching of_match structure
1044  *	@matches:	array of of device match structures to search in
1045  *	@node:		the of device structure to match against
1046  *
1047  *	Low level utility function used by device matching.
1048  */
1049 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1050 					 const struct device_node *node)
1051 {
1052 	const struct of_device_id *match;
1053 	unsigned long flags;
1054 
1055 	raw_spin_lock_irqsave(&devtree_lock, flags);
1056 	match = __of_match_node(matches, node);
1057 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1058 	return match;
1059 }
1060 EXPORT_SYMBOL(of_match_node);
1061 
1062 /**
1063  *	of_find_matching_node_and_match - Find a node based on an of_device_id
1064  *					  match table.
1065  *	@from:		The node to start searching from or NULL, the node
1066  *			you pass will not be searched, only the next one
1067  *			will; typically, you pass what the previous call
1068  *			returned. of_node_put() will be called on it
1069  *	@matches:	array of of device match structures to search in
1070  *	@match		Updated to point at the matches entry which matched
1071  *
1072  *	Returns a node pointer with refcount incremented, use
1073  *	of_node_put() on it when done.
1074  */
1075 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1076 					const struct of_device_id *matches,
1077 					const struct of_device_id **match)
1078 {
1079 	struct device_node *np;
1080 	const struct of_device_id *m;
1081 	unsigned long flags;
1082 
1083 	if (match)
1084 		*match = NULL;
1085 
1086 	raw_spin_lock_irqsave(&devtree_lock, flags);
1087 	for_each_of_allnodes_from(from, np) {
1088 		m = __of_match_node(matches, np);
1089 		if (m && of_node_get(np)) {
1090 			if (match)
1091 				*match = m;
1092 			break;
1093 		}
1094 	}
1095 	of_node_put(from);
1096 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1097 	return np;
1098 }
1099 EXPORT_SYMBOL(of_find_matching_node_and_match);
1100 
1101 /**
1102  * of_modalias_node - Lookup appropriate modalias for a device node
1103  * @node:	pointer to a device tree node
1104  * @modalias:	Pointer to buffer that modalias value will be copied into
1105  * @len:	Length of modalias value
1106  *
1107  * Based on the value of the compatible property, this routine will attempt
1108  * to choose an appropriate modalias value for a particular device tree node.
1109  * It does this by stripping the manufacturer prefix (as delimited by a ',')
1110  * from the first entry in the compatible list property.
1111  *
1112  * This routine returns 0 on success, <0 on failure.
1113  */
1114 int of_modalias_node(struct device_node *node, char *modalias, int len)
1115 {
1116 	const char *compatible, *p;
1117 	int cplen;
1118 
1119 	compatible = of_get_property(node, "compatible", &cplen);
1120 	if (!compatible || strlen(compatible) > cplen)
1121 		return -ENODEV;
1122 	p = strchr(compatible, ',');
1123 	strlcpy(modalias, p ? p + 1 : compatible, len);
1124 	return 0;
1125 }
1126 EXPORT_SYMBOL_GPL(of_modalias_node);
1127 
1128 /**
1129  * of_find_node_by_phandle - Find a node given a phandle
1130  * @handle:	phandle of the node to find
1131  *
1132  * Returns a node pointer with refcount incremented, use
1133  * of_node_put() on it when done.
1134  */
1135 struct device_node *of_find_node_by_phandle(phandle handle)
1136 {
1137 	struct device_node *np = NULL;
1138 	unsigned long flags;
1139 	phandle masked_handle;
1140 
1141 	if (!handle)
1142 		return NULL;
1143 
1144 	raw_spin_lock_irqsave(&devtree_lock, flags);
1145 
1146 	masked_handle = handle & phandle_cache_mask;
1147 
1148 	if (phandle_cache) {
1149 		if (phandle_cache[masked_handle] &&
1150 		    handle == phandle_cache[masked_handle]->phandle)
1151 			np = phandle_cache[masked_handle];
1152 	}
1153 
1154 	if (!np) {
1155 		for_each_of_allnodes(np)
1156 			if (np->phandle == handle) {
1157 				if (phandle_cache)
1158 					phandle_cache[masked_handle] = np;
1159 				break;
1160 			}
1161 	}
1162 
1163 	of_node_get(np);
1164 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1165 	return np;
1166 }
1167 EXPORT_SYMBOL(of_find_node_by_phandle);
1168 
1169 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1170 {
1171 	int i;
1172 	printk("%s %pOF", msg, args->np);
1173 	for (i = 0; i < args->args_count; i++) {
1174 		const char delim = i ? ',' : ':';
1175 
1176 		pr_cont("%c%08x", delim, args->args[i]);
1177 	}
1178 	pr_cont("\n");
1179 }
1180 
1181 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1182 		const struct device_node *np,
1183 		const char *list_name,
1184 		const char *cells_name,
1185 		int cell_count)
1186 {
1187 	const __be32 *list;
1188 	int size;
1189 
1190 	memset(it, 0, sizeof(*it));
1191 
1192 	list = of_get_property(np, list_name, &size);
1193 	if (!list)
1194 		return -ENOENT;
1195 
1196 	it->cells_name = cells_name;
1197 	it->cell_count = cell_count;
1198 	it->parent = np;
1199 	it->list_end = list + size / sizeof(*list);
1200 	it->phandle_end = list;
1201 	it->cur = list;
1202 
1203 	return 0;
1204 }
1205 EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1206 
1207 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1208 {
1209 	uint32_t count = 0;
1210 
1211 	if (it->node) {
1212 		of_node_put(it->node);
1213 		it->node = NULL;
1214 	}
1215 
1216 	if (!it->cur || it->phandle_end >= it->list_end)
1217 		return -ENOENT;
1218 
1219 	it->cur = it->phandle_end;
1220 
1221 	/* If phandle is 0, then it is an empty entry with no arguments. */
1222 	it->phandle = be32_to_cpup(it->cur++);
1223 
1224 	if (it->phandle) {
1225 
1226 		/*
1227 		 * Find the provider node and parse the #*-cells property to
1228 		 * determine the argument length.
1229 		 */
1230 		it->node = of_find_node_by_phandle(it->phandle);
1231 
1232 		if (it->cells_name) {
1233 			if (!it->node) {
1234 				pr_err("%pOF: could not find phandle\n",
1235 				       it->parent);
1236 				goto err;
1237 			}
1238 
1239 			if (of_property_read_u32(it->node, it->cells_name,
1240 						 &count)) {
1241 				pr_err("%pOF: could not get %s for %pOF\n",
1242 				       it->parent,
1243 				       it->cells_name,
1244 				       it->node);
1245 				goto err;
1246 			}
1247 		} else {
1248 			count = it->cell_count;
1249 		}
1250 
1251 		/*
1252 		 * Make sure that the arguments actually fit in the remaining
1253 		 * property data length
1254 		 */
1255 		if (it->cur + count > it->list_end) {
1256 			pr_err("%pOF: arguments longer than property\n",
1257 			       it->parent);
1258 			goto err;
1259 		}
1260 	}
1261 
1262 	it->phandle_end = it->cur + count;
1263 	it->cur_count = count;
1264 
1265 	return 0;
1266 
1267 err:
1268 	if (it->node) {
1269 		of_node_put(it->node);
1270 		it->node = NULL;
1271 	}
1272 
1273 	return -EINVAL;
1274 }
1275 EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1276 
1277 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1278 			     uint32_t *args,
1279 			     int size)
1280 {
1281 	int i, count;
1282 
1283 	count = it->cur_count;
1284 
1285 	if (WARN_ON(size < count))
1286 		count = size;
1287 
1288 	for (i = 0; i < count; i++)
1289 		args[i] = be32_to_cpup(it->cur++);
1290 
1291 	return count;
1292 }
1293 
1294 static int __of_parse_phandle_with_args(const struct device_node *np,
1295 					const char *list_name,
1296 					const char *cells_name,
1297 					int cell_count, int index,
1298 					struct of_phandle_args *out_args)
1299 {
1300 	struct of_phandle_iterator it;
1301 	int rc, cur_index = 0;
1302 
1303 	/* Loop over the phandles until all the requested entry is found */
1304 	of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1305 		/*
1306 		 * All of the error cases bail out of the loop, so at
1307 		 * this point, the parsing is successful. If the requested
1308 		 * index matches, then fill the out_args structure and return,
1309 		 * or return -ENOENT for an empty entry.
1310 		 */
1311 		rc = -ENOENT;
1312 		if (cur_index == index) {
1313 			if (!it.phandle)
1314 				goto err;
1315 
1316 			if (out_args) {
1317 				int c;
1318 
1319 				c = of_phandle_iterator_args(&it,
1320 							     out_args->args,
1321 							     MAX_PHANDLE_ARGS);
1322 				out_args->np = it.node;
1323 				out_args->args_count = c;
1324 			} else {
1325 				of_node_put(it.node);
1326 			}
1327 
1328 			/* Found it! return success */
1329 			return 0;
1330 		}
1331 
1332 		cur_index++;
1333 	}
1334 
1335 	/*
1336 	 * Unlock node before returning result; will be one of:
1337 	 * -ENOENT : index is for empty phandle
1338 	 * -EINVAL : parsing error on data
1339 	 */
1340 
1341  err:
1342 	of_node_put(it.node);
1343 	return rc;
1344 }
1345 
1346 /**
1347  * of_parse_phandle - Resolve a phandle property to a device_node pointer
1348  * @np: Pointer to device node holding phandle property
1349  * @phandle_name: Name of property holding a phandle value
1350  * @index: For properties holding a table of phandles, this is the index into
1351  *         the table
1352  *
1353  * Returns the device_node pointer with refcount incremented.  Use
1354  * of_node_put() on it when done.
1355  */
1356 struct device_node *of_parse_phandle(const struct device_node *np,
1357 				     const char *phandle_name, int index)
1358 {
1359 	struct of_phandle_args args;
1360 
1361 	if (index < 0)
1362 		return NULL;
1363 
1364 	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1365 					 index, &args))
1366 		return NULL;
1367 
1368 	return args.np;
1369 }
1370 EXPORT_SYMBOL(of_parse_phandle);
1371 
1372 /**
1373  * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1374  * @np:		pointer to a device tree node containing a list
1375  * @list_name:	property name that contains a list
1376  * @cells_name:	property name that specifies phandles' arguments count
1377  * @index:	index of a phandle to parse out
1378  * @out_args:	optional pointer to output arguments structure (will be filled)
1379  *
1380  * This function is useful to parse lists of phandles and their arguments.
1381  * Returns 0 on success and fills out_args, on error returns appropriate
1382  * errno value.
1383  *
1384  * Caller is responsible to call of_node_put() on the returned out_args->np
1385  * pointer.
1386  *
1387  * Example:
1388  *
1389  * phandle1: node1 {
1390  *	#list-cells = <2>;
1391  * }
1392  *
1393  * phandle2: node2 {
1394  *	#list-cells = <1>;
1395  * }
1396  *
1397  * node3 {
1398  *	list = <&phandle1 1 2 &phandle2 3>;
1399  * }
1400  *
1401  * To get a device_node of the `node2' node you may call this:
1402  * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1403  */
1404 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1405 				const char *cells_name, int index,
1406 				struct of_phandle_args *out_args)
1407 {
1408 	if (index < 0)
1409 		return -EINVAL;
1410 	return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1411 					    index, out_args);
1412 }
1413 EXPORT_SYMBOL(of_parse_phandle_with_args);
1414 
1415 /**
1416  * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1417  * @np:		pointer to a device tree node containing a list
1418  * @list_name:	property name that contains a list
1419  * @stem_name:	stem of property names that specify phandles' arguments count
1420  * @index:	index of a phandle to parse out
1421  * @out_args:	optional pointer to output arguments structure (will be filled)
1422  *
1423  * This function is useful to parse lists of phandles and their arguments.
1424  * Returns 0 on success and fills out_args, on error returns appropriate errno
1425  * value. The difference between this function and of_parse_phandle_with_args()
1426  * is that this API remaps a phandle if the node the phandle points to has
1427  * a <@stem_name>-map property.
1428  *
1429  * Caller is responsible to call of_node_put() on the returned out_args->np
1430  * pointer.
1431  *
1432  * Example:
1433  *
1434  * phandle1: node1 {
1435  *	#list-cells = <2>;
1436  * }
1437  *
1438  * phandle2: node2 {
1439  *	#list-cells = <1>;
1440  * }
1441  *
1442  * phandle3: node3 {
1443  * 	#list-cells = <1>;
1444  * 	list-map = <0 &phandle2 3>,
1445  * 		   <1 &phandle2 2>,
1446  * 		   <2 &phandle1 5 1>;
1447  *	list-map-mask = <0x3>;
1448  * };
1449  *
1450  * node4 {
1451  *	list = <&phandle1 1 2 &phandle3 0>;
1452  * }
1453  *
1454  * To get a device_node of the `node2' node you may call this:
1455  * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1456  */
1457 int of_parse_phandle_with_args_map(const struct device_node *np,
1458 				   const char *list_name,
1459 				   const char *stem_name,
1460 				   int index, struct of_phandle_args *out_args)
1461 {
1462 	char *cells_name, *map_name = NULL, *mask_name = NULL;
1463 	char *pass_name = NULL;
1464 	struct device_node *cur, *new = NULL;
1465 	const __be32 *map, *mask, *pass;
1466 	static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
1467 	static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
1468 	__be32 initial_match_array[MAX_PHANDLE_ARGS];
1469 	const __be32 *match_array = initial_match_array;
1470 	int i, ret, map_len, match;
1471 	u32 list_size, new_size;
1472 
1473 	if (index < 0)
1474 		return -EINVAL;
1475 
1476 	cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1477 	if (!cells_name)
1478 		return -ENOMEM;
1479 
1480 	ret = -ENOMEM;
1481 	map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1482 	if (!map_name)
1483 		goto free;
1484 
1485 	mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1486 	if (!mask_name)
1487 		goto free;
1488 
1489 	pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1490 	if (!pass_name)
1491 		goto free;
1492 
1493 	ret = __of_parse_phandle_with_args(np, list_name, cells_name, 0, index,
1494 					   out_args);
1495 	if (ret)
1496 		goto free;
1497 
1498 	/* Get the #<list>-cells property */
1499 	cur = out_args->np;
1500 	ret = of_property_read_u32(cur, cells_name, &list_size);
1501 	if (ret < 0)
1502 		goto put;
1503 
1504 	/* Precalculate the match array - this simplifies match loop */
1505 	for (i = 0; i < list_size; i++)
1506 		initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1507 
1508 	ret = -EINVAL;
1509 	while (cur) {
1510 		/* Get the <list>-map property */
1511 		map = of_get_property(cur, map_name, &map_len);
1512 		if (!map) {
1513 			ret = 0;
1514 			goto free;
1515 		}
1516 		map_len /= sizeof(u32);
1517 
1518 		/* Get the <list>-map-mask property (optional) */
1519 		mask = of_get_property(cur, mask_name, NULL);
1520 		if (!mask)
1521 			mask = dummy_mask;
1522 		/* Iterate through <list>-map property */
1523 		match = 0;
1524 		while (map_len > (list_size + 1) && !match) {
1525 			/* Compare specifiers */
1526 			match = 1;
1527 			for (i = 0; i < list_size; i++, map_len--)
1528 				match &= !((match_array[i] ^ *map++) & mask[i]);
1529 
1530 			of_node_put(new);
1531 			new = of_find_node_by_phandle(be32_to_cpup(map));
1532 			map++;
1533 			map_len--;
1534 
1535 			/* Check if not found */
1536 			if (!new)
1537 				goto put;
1538 
1539 			if (!of_device_is_available(new))
1540 				match = 0;
1541 
1542 			ret = of_property_read_u32(new, cells_name, &new_size);
1543 			if (ret)
1544 				goto put;
1545 
1546 			/* Check for malformed properties */
1547 			if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1548 				goto put;
1549 			if (map_len < new_size)
1550 				goto put;
1551 
1552 			/* Move forward by new node's #<list>-cells amount */
1553 			map += new_size;
1554 			map_len -= new_size;
1555 		}
1556 		if (!match)
1557 			goto put;
1558 
1559 		/* Get the <list>-map-pass-thru property (optional) */
1560 		pass = of_get_property(cur, pass_name, NULL);
1561 		if (!pass)
1562 			pass = dummy_pass;
1563 
1564 		/*
1565 		 * Successfully parsed a <list>-map translation; copy new
1566 		 * specifier into the out_args structure, keeping the
1567 		 * bits specified in <list>-map-pass-thru.
1568 		 */
1569 		match_array = map - new_size;
1570 		for (i = 0; i < new_size; i++) {
1571 			__be32 val = *(map - new_size + i);
1572 
1573 			if (i < list_size) {
1574 				val &= ~pass[i];
1575 				val |= cpu_to_be32(out_args->args[i]) & pass[i];
1576 			}
1577 
1578 			out_args->args[i] = be32_to_cpu(val);
1579 		}
1580 		out_args->args_count = list_size = new_size;
1581 		/* Iterate again with new provider */
1582 		out_args->np = new;
1583 		of_node_put(cur);
1584 		cur = new;
1585 	}
1586 put:
1587 	of_node_put(cur);
1588 	of_node_put(new);
1589 free:
1590 	kfree(mask_name);
1591 	kfree(map_name);
1592 	kfree(cells_name);
1593 	kfree(pass_name);
1594 
1595 	return ret;
1596 }
1597 EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1598 
1599 /**
1600  * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1601  * @np:		pointer to a device tree node containing a list
1602  * @list_name:	property name that contains a list
1603  * @cell_count: number of argument cells following the phandle
1604  * @index:	index of a phandle to parse out
1605  * @out_args:	optional pointer to output arguments structure (will be filled)
1606  *
1607  * This function is useful to parse lists of phandles and their arguments.
1608  * Returns 0 on success and fills out_args, on error returns appropriate
1609  * errno value.
1610  *
1611  * Caller is responsible to call of_node_put() on the returned out_args->np
1612  * pointer.
1613  *
1614  * Example:
1615  *
1616  * phandle1: node1 {
1617  * }
1618  *
1619  * phandle2: node2 {
1620  * }
1621  *
1622  * node3 {
1623  *	list = <&phandle1 0 2 &phandle2 2 3>;
1624  * }
1625  *
1626  * To get a device_node of the `node2' node you may call this:
1627  * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1628  */
1629 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1630 				const char *list_name, int cell_count,
1631 				int index, struct of_phandle_args *out_args)
1632 {
1633 	if (index < 0)
1634 		return -EINVAL;
1635 	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1636 					   index, out_args);
1637 }
1638 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1639 
1640 /**
1641  * of_count_phandle_with_args() - Find the number of phandles references in a property
1642  * @np:		pointer to a device tree node containing a list
1643  * @list_name:	property name that contains a list
1644  * @cells_name:	property name that specifies phandles' arguments count
1645  *
1646  * Returns the number of phandle + argument tuples within a property. It
1647  * is a typical pattern to encode a list of phandle and variable
1648  * arguments into a single property. The number of arguments is encoded
1649  * by a property in the phandle-target node. For example, a gpios
1650  * property would contain a list of GPIO specifies consisting of a
1651  * phandle and 1 or more arguments. The number of arguments are
1652  * determined by the #gpio-cells property in the node pointed to by the
1653  * phandle.
1654  */
1655 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1656 				const char *cells_name)
1657 {
1658 	struct of_phandle_iterator it;
1659 	int rc, cur_index = 0;
1660 
1661 	rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0);
1662 	if (rc)
1663 		return rc;
1664 
1665 	while ((rc = of_phandle_iterator_next(&it)) == 0)
1666 		cur_index += 1;
1667 
1668 	if (rc != -ENOENT)
1669 		return rc;
1670 
1671 	return cur_index;
1672 }
1673 EXPORT_SYMBOL(of_count_phandle_with_args);
1674 
1675 /**
1676  * __of_add_property - Add a property to a node without lock operations
1677  */
1678 int __of_add_property(struct device_node *np, struct property *prop)
1679 {
1680 	struct property **next;
1681 
1682 	prop->next = NULL;
1683 	next = &np->properties;
1684 	while (*next) {
1685 		if (strcmp(prop->name, (*next)->name) == 0)
1686 			/* duplicate ! don't insert it */
1687 			return -EEXIST;
1688 
1689 		next = &(*next)->next;
1690 	}
1691 	*next = prop;
1692 
1693 	return 0;
1694 }
1695 
1696 /**
1697  * of_add_property - Add a property to a node
1698  */
1699 int of_add_property(struct device_node *np, struct property *prop)
1700 {
1701 	unsigned long flags;
1702 	int rc;
1703 
1704 	mutex_lock(&of_mutex);
1705 
1706 	raw_spin_lock_irqsave(&devtree_lock, flags);
1707 	rc = __of_add_property(np, prop);
1708 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1709 
1710 	if (!rc)
1711 		__of_add_property_sysfs(np, prop);
1712 
1713 	mutex_unlock(&of_mutex);
1714 
1715 	if (!rc)
1716 		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1717 
1718 	return rc;
1719 }
1720 
1721 int __of_remove_property(struct device_node *np, struct property *prop)
1722 {
1723 	struct property **next;
1724 
1725 	for (next = &np->properties; *next; next = &(*next)->next) {
1726 		if (*next == prop)
1727 			break;
1728 	}
1729 	if (*next == NULL)
1730 		return -ENODEV;
1731 
1732 	/* found the node */
1733 	*next = prop->next;
1734 	prop->next = np->deadprops;
1735 	np->deadprops = prop;
1736 
1737 	return 0;
1738 }
1739 
1740 /**
1741  * of_remove_property - Remove a property from a node.
1742  *
1743  * Note that we don't actually remove it, since we have given out
1744  * who-knows-how-many pointers to the data using get-property.
1745  * Instead we just move the property to the "dead properties"
1746  * list, so it won't be found any more.
1747  */
1748 int of_remove_property(struct device_node *np, struct property *prop)
1749 {
1750 	unsigned long flags;
1751 	int rc;
1752 
1753 	if (!prop)
1754 		return -ENODEV;
1755 
1756 	mutex_lock(&of_mutex);
1757 
1758 	raw_spin_lock_irqsave(&devtree_lock, flags);
1759 	rc = __of_remove_property(np, prop);
1760 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1761 
1762 	if (!rc)
1763 		__of_remove_property_sysfs(np, prop);
1764 
1765 	mutex_unlock(&of_mutex);
1766 
1767 	if (!rc)
1768 		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1769 
1770 	return rc;
1771 }
1772 
1773 int __of_update_property(struct device_node *np, struct property *newprop,
1774 		struct property **oldpropp)
1775 {
1776 	struct property **next, *oldprop;
1777 
1778 	for (next = &np->properties; *next; next = &(*next)->next) {
1779 		if (of_prop_cmp((*next)->name, newprop->name) == 0)
1780 			break;
1781 	}
1782 	*oldpropp = oldprop = *next;
1783 
1784 	if (oldprop) {
1785 		/* replace the node */
1786 		newprop->next = oldprop->next;
1787 		*next = newprop;
1788 		oldprop->next = np->deadprops;
1789 		np->deadprops = oldprop;
1790 	} else {
1791 		/* new node */
1792 		newprop->next = NULL;
1793 		*next = newprop;
1794 	}
1795 
1796 	return 0;
1797 }
1798 
1799 /*
1800  * of_update_property - Update a property in a node, if the property does
1801  * not exist, add it.
1802  *
1803  * Note that we don't actually remove it, since we have given out
1804  * who-knows-how-many pointers to the data using get-property.
1805  * Instead we just move the property to the "dead properties" list,
1806  * and add the new property to the property list
1807  */
1808 int of_update_property(struct device_node *np, struct property *newprop)
1809 {
1810 	struct property *oldprop;
1811 	unsigned long flags;
1812 	int rc;
1813 
1814 	if (!newprop->name)
1815 		return -EINVAL;
1816 
1817 	mutex_lock(&of_mutex);
1818 
1819 	raw_spin_lock_irqsave(&devtree_lock, flags);
1820 	rc = __of_update_property(np, newprop, &oldprop);
1821 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1822 
1823 	if (!rc)
1824 		__of_update_property_sysfs(np, newprop, oldprop);
1825 
1826 	mutex_unlock(&of_mutex);
1827 
1828 	if (!rc)
1829 		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1830 
1831 	return rc;
1832 }
1833 
1834 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1835 			 int id, const char *stem, int stem_len)
1836 {
1837 	ap->np = np;
1838 	ap->id = id;
1839 	strncpy(ap->stem, stem, stem_len);
1840 	ap->stem[stem_len] = 0;
1841 	list_add_tail(&ap->link, &aliases_lookup);
1842 	pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1843 		 ap->alias, ap->stem, ap->id, np);
1844 }
1845 
1846 /**
1847  * of_alias_scan - Scan all properties of the 'aliases' node
1848  *
1849  * The function scans all the properties of the 'aliases' node and populates
1850  * the global lookup table with the properties.  It returns the
1851  * number of alias properties found, or an error code in case of failure.
1852  *
1853  * @dt_alloc:	An allocator that provides a virtual address to memory
1854  *		for storing the resulting tree
1855  */
1856 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1857 {
1858 	struct property *pp;
1859 
1860 	of_aliases = of_find_node_by_path("/aliases");
1861 	of_chosen = of_find_node_by_path("/chosen");
1862 	if (of_chosen == NULL)
1863 		of_chosen = of_find_node_by_path("/chosen@0");
1864 
1865 	if (of_chosen) {
1866 		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1867 		const char *name = NULL;
1868 
1869 		if (of_property_read_string(of_chosen, "stdout-path", &name))
1870 			of_property_read_string(of_chosen, "linux,stdout-path",
1871 						&name);
1872 		if (IS_ENABLED(CONFIG_PPC) && !name)
1873 			of_property_read_string(of_aliases, "stdout", &name);
1874 		if (name)
1875 			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1876 	}
1877 
1878 	if (!of_aliases)
1879 		return;
1880 
1881 	for_each_property_of_node(of_aliases, pp) {
1882 		const char *start = pp->name;
1883 		const char *end = start + strlen(start);
1884 		struct device_node *np;
1885 		struct alias_prop *ap;
1886 		int id, len;
1887 
1888 		/* Skip those we do not want to proceed */
1889 		if (!strcmp(pp->name, "name") ||
1890 		    !strcmp(pp->name, "phandle") ||
1891 		    !strcmp(pp->name, "linux,phandle"))
1892 			continue;
1893 
1894 		np = of_find_node_by_path(pp->value);
1895 		if (!np)
1896 			continue;
1897 
1898 		/* walk the alias backwards to extract the id and work out
1899 		 * the 'stem' string */
1900 		while (isdigit(*(end-1)) && end > start)
1901 			end--;
1902 		len = end - start;
1903 
1904 		if (kstrtoint(end, 10, &id) < 0)
1905 			continue;
1906 
1907 		/* Allocate an alias_prop with enough space for the stem */
1908 		ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
1909 		if (!ap)
1910 			continue;
1911 		memset(ap, 0, sizeof(*ap) + len + 1);
1912 		ap->alias = start;
1913 		of_alias_add(ap, np, id, start, len);
1914 	}
1915 }
1916 
1917 /**
1918  * of_alias_get_id - Get alias id for the given device_node
1919  * @np:		Pointer to the given device_node
1920  * @stem:	Alias stem of the given device_node
1921  *
1922  * The function travels the lookup table to get the alias id for the given
1923  * device_node and alias stem.  It returns the alias id if found.
1924  */
1925 int of_alias_get_id(struct device_node *np, const char *stem)
1926 {
1927 	struct alias_prop *app;
1928 	int id = -ENODEV;
1929 
1930 	mutex_lock(&of_mutex);
1931 	list_for_each_entry(app, &aliases_lookup, link) {
1932 		if (strcmp(app->stem, stem) != 0)
1933 			continue;
1934 
1935 		if (np == app->np) {
1936 			id = app->id;
1937 			break;
1938 		}
1939 	}
1940 	mutex_unlock(&of_mutex);
1941 
1942 	return id;
1943 }
1944 EXPORT_SYMBOL_GPL(of_alias_get_id);
1945 
1946 /**
1947  * of_alias_get_alias_list - Get alias list for the given device driver
1948  * @matches:	Array of OF device match structures to search in
1949  * @stem:	Alias stem of the given device_node
1950  * @bitmap:	Bitmap field pointer
1951  * @nbits:	Maximum number of alias ID which can be recorded it bitmap
1952  *
1953  * The function travels the lookup table to record alias ids for the given
1954  * device match structures and alias stem.
1955  *
1956  * Return:	0 or -ENOSYS when !CONFIG_OF
1957  */
1958 int of_alias_get_alias_list(const struct of_device_id *matches,
1959 			     const char *stem, unsigned long *bitmap,
1960 			     unsigned int nbits)
1961 {
1962 	struct alias_prop *app;
1963 
1964 	/* Zero bitmap field to make sure that all the time it is clean */
1965 	bitmap_zero(bitmap, nbits);
1966 
1967 	mutex_lock(&of_mutex);
1968 	pr_debug("%s: Looking for stem: %s\n", __func__, stem);
1969 	list_for_each_entry(app, &aliases_lookup, link) {
1970 		pr_debug("%s: stem: %s, id: %d\n",
1971 			 __func__, app->stem, app->id);
1972 
1973 		if (strcmp(app->stem, stem) != 0) {
1974 			pr_debug("%s: stem comparison doesn't passed %s\n",
1975 				 __func__, app->stem);
1976 			continue;
1977 		}
1978 
1979 		if (app->id >= nbits) {
1980 			pr_debug("%s: ID %d greater then bitmap field %d\n",
1981 				__func__, app->id, nbits);
1982 			continue;
1983 		}
1984 
1985 		if (of_match_node(matches, app->np)) {
1986 			pr_debug("%s: Allocated ID %d\n", __func__, app->id);
1987 			set_bit(app->id, bitmap);
1988 		}
1989 		/* Alias exist but it not compatible with matches */
1990 	}
1991 	mutex_unlock(&of_mutex);
1992 
1993 	return 0;
1994 }
1995 EXPORT_SYMBOL_GPL(of_alias_get_alias_list);
1996 
1997 /**
1998  * of_alias_get_highest_id - Get highest alias id for the given stem
1999  * @stem:	Alias stem to be examined
2000  *
2001  * The function travels the lookup table to get the highest alias id for the
2002  * given alias stem.  It returns the alias id if found.
2003  */
2004 int of_alias_get_highest_id(const char *stem)
2005 {
2006 	struct alias_prop *app;
2007 	int id = -ENODEV;
2008 
2009 	mutex_lock(&of_mutex);
2010 	list_for_each_entry(app, &aliases_lookup, link) {
2011 		if (strcmp(app->stem, stem) != 0)
2012 			continue;
2013 
2014 		if (app->id > id)
2015 			id = app->id;
2016 	}
2017 	mutex_unlock(&of_mutex);
2018 
2019 	return id;
2020 }
2021 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2022 
2023 /**
2024  * of_console_check() - Test and setup console for DT setup
2025  * @dn - Pointer to device node
2026  * @name - Name to use for preferred console without index. ex. "ttyS"
2027  * @index - Index to use for preferred console.
2028  *
2029  * Check if the given device node matches the stdout-path property in the
2030  * /chosen node. If it does then register it as the preferred console and return
2031  * TRUE. Otherwise return FALSE.
2032  */
2033 bool of_console_check(struct device_node *dn, char *name, int index)
2034 {
2035 	if (!dn || dn != of_stdout || console_set_on_cmdline)
2036 		return false;
2037 
2038 	/*
2039 	 * XXX: cast `options' to char pointer to suppress complication
2040 	 * warnings: printk, UART and console drivers expect char pointer.
2041 	 */
2042 	return !add_preferred_console(name, index, (char *)of_stdout_options);
2043 }
2044 EXPORT_SYMBOL_GPL(of_console_check);
2045 
2046 /**
2047  *	of_find_next_cache_node - Find a node's subsidiary cache
2048  *	@np:	node of type "cpu" or "cache"
2049  *
2050  *	Returns a node pointer with refcount incremented, use
2051  *	of_node_put() on it when done.  Caller should hold a reference
2052  *	to np.
2053  */
2054 struct device_node *of_find_next_cache_node(const struct device_node *np)
2055 {
2056 	struct device_node *child, *cache_node;
2057 
2058 	cache_node = of_parse_phandle(np, "l2-cache", 0);
2059 	if (!cache_node)
2060 		cache_node = of_parse_phandle(np, "next-level-cache", 0);
2061 
2062 	if (cache_node)
2063 		return cache_node;
2064 
2065 	/* OF on pmac has nodes instead of properties named "l2-cache"
2066 	 * beneath CPU nodes.
2067 	 */
2068 	if (!strcmp(np->type, "cpu"))
2069 		for_each_child_of_node(np, child)
2070 			if (!strcmp(child->type, "cache"))
2071 				return child;
2072 
2073 	return NULL;
2074 }
2075 
2076 /**
2077  * of_find_last_cache_level - Find the level at which the last cache is
2078  * 		present for the given logical cpu
2079  *
2080  * @cpu: cpu number(logical index) for which the last cache level is needed
2081  *
2082  * Returns the the level at which the last cache is present. It is exactly
2083  * same as  the total number of cache levels for the given logical cpu.
2084  */
2085 int of_find_last_cache_level(unsigned int cpu)
2086 {
2087 	u32 cache_level = 0;
2088 	struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
2089 
2090 	while (np) {
2091 		prev = np;
2092 		of_node_put(np);
2093 		np = of_find_next_cache_node(np);
2094 	}
2095 
2096 	of_property_read_u32(prev, "cache-level", &cache_level);
2097 
2098 	return cache_level;
2099 }
2100