1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Procedures for creating, accessing and interpreting the device tree. 4 * 5 * Paul Mackerras August 1996. 6 * Copyright (C) 1996-2005 Paul Mackerras. 7 * 8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 9 * {engebret|bergner}@us.ibm.com 10 * 11 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 12 * 13 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 14 * Grant Likely. 15 */ 16 17 #define pr_fmt(fmt) "OF: " fmt 18 19 #include <linux/bitmap.h> 20 #include <linux/console.h> 21 #include <linux/ctype.h> 22 #include <linux/cpu.h> 23 #include <linux/module.h> 24 #include <linux/of.h> 25 #include <linux/of_device.h> 26 #include <linux/of_graph.h> 27 #include <linux/spinlock.h> 28 #include <linux/slab.h> 29 #include <linux/string.h> 30 #include <linux/proc_fs.h> 31 32 #include "of_private.h" 33 34 LIST_HEAD(aliases_lookup); 35 36 struct device_node *of_root; 37 EXPORT_SYMBOL(of_root); 38 struct device_node *of_chosen; 39 struct device_node *of_aliases; 40 struct device_node *of_stdout; 41 static const char *of_stdout_options; 42 43 struct kset *of_kset; 44 45 /* 46 * Used to protect the of_aliases, to hold off addition of nodes to sysfs. 47 * This mutex must be held whenever modifications are being made to the 48 * device tree. The of_{attach,detach}_node() and 49 * of_{add,remove,update}_property() helpers make sure this happens. 50 */ 51 DEFINE_MUTEX(of_mutex); 52 53 /* use when traversing tree through the child, sibling, 54 * or parent members of struct device_node. 55 */ 56 DEFINE_RAW_SPINLOCK(devtree_lock); 57 58 bool of_node_name_eq(const struct device_node *np, const char *name) 59 { 60 const char *node_name; 61 size_t len; 62 63 if (!np) 64 return false; 65 66 node_name = kbasename(np->full_name); 67 len = strchrnul(node_name, '@') - node_name; 68 69 return (strlen(name) == len) && (strncmp(node_name, name, len) == 0); 70 } 71 72 bool of_node_name_prefix(const struct device_node *np, const char *prefix) 73 { 74 if (!np) 75 return false; 76 77 return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0; 78 } 79 80 int of_n_addr_cells(struct device_node *np) 81 { 82 u32 cells; 83 84 do { 85 if (np->parent) 86 np = np->parent; 87 if (!of_property_read_u32(np, "#address-cells", &cells)) 88 return cells; 89 } while (np->parent); 90 /* No #address-cells property for the root node */ 91 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 92 } 93 EXPORT_SYMBOL(of_n_addr_cells); 94 95 int of_n_size_cells(struct device_node *np) 96 { 97 u32 cells; 98 99 do { 100 if (np->parent) 101 np = np->parent; 102 if (!of_property_read_u32(np, "#size-cells", &cells)) 103 return cells; 104 } while (np->parent); 105 /* No #size-cells property for the root node */ 106 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 107 } 108 EXPORT_SYMBOL(of_n_size_cells); 109 110 #ifdef CONFIG_NUMA 111 int __weak of_node_to_nid(struct device_node *np) 112 { 113 return NUMA_NO_NODE; 114 } 115 #endif 116 117 static struct device_node **phandle_cache; 118 static u32 phandle_cache_mask; 119 120 /* 121 * Assumptions behind phandle_cache implementation: 122 * - phandle property values are in a contiguous range of 1..n 123 * 124 * If the assumptions do not hold, then 125 * - the phandle lookup overhead reduction provided by the cache 126 * will likely be less 127 */ 128 void of_populate_phandle_cache(void) 129 { 130 unsigned long flags; 131 u32 cache_entries; 132 struct device_node *np; 133 u32 phandles = 0; 134 135 raw_spin_lock_irqsave(&devtree_lock, flags); 136 137 kfree(phandle_cache); 138 phandle_cache = NULL; 139 140 for_each_of_allnodes(np) 141 if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL) 142 phandles++; 143 144 if (!phandles) 145 goto out; 146 147 cache_entries = roundup_pow_of_two(phandles); 148 phandle_cache_mask = cache_entries - 1; 149 150 phandle_cache = kcalloc(cache_entries, sizeof(*phandle_cache), 151 GFP_ATOMIC); 152 if (!phandle_cache) 153 goto out; 154 155 for_each_of_allnodes(np) 156 if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL) 157 phandle_cache[np->phandle & phandle_cache_mask] = np; 158 159 out: 160 raw_spin_unlock_irqrestore(&devtree_lock, flags); 161 } 162 163 int of_free_phandle_cache(void) 164 { 165 unsigned long flags; 166 167 raw_spin_lock_irqsave(&devtree_lock, flags); 168 169 kfree(phandle_cache); 170 phandle_cache = NULL; 171 172 raw_spin_unlock_irqrestore(&devtree_lock, flags); 173 174 return 0; 175 } 176 #if !defined(CONFIG_MODULES) 177 late_initcall_sync(of_free_phandle_cache); 178 #endif 179 180 void __init of_core_init(void) 181 { 182 struct device_node *np; 183 184 of_populate_phandle_cache(); 185 186 /* Create the kset, and register existing nodes */ 187 mutex_lock(&of_mutex); 188 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj); 189 if (!of_kset) { 190 mutex_unlock(&of_mutex); 191 pr_err("failed to register existing nodes\n"); 192 return; 193 } 194 for_each_of_allnodes(np) 195 __of_attach_node_sysfs(np); 196 mutex_unlock(&of_mutex); 197 198 /* Symlink in /proc as required by userspace ABI */ 199 if (of_root) 200 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base"); 201 } 202 203 static struct property *__of_find_property(const struct device_node *np, 204 const char *name, int *lenp) 205 { 206 struct property *pp; 207 208 if (!np) 209 return NULL; 210 211 for (pp = np->properties; pp; pp = pp->next) { 212 if (of_prop_cmp(pp->name, name) == 0) { 213 if (lenp) 214 *lenp = pp->length; 215 break; 216 } 217 } 218 219 return pp; 220 } 221 222 struct property *of_find_property(const struct device_node *np, 223 const char *name, 224 int *lenp) 225 { 226 struct property *pp; 227 unsigned long flags; 228 229 raw_spin_lock_irqsave(&devtree_lock, flags); 230 pp = __of_find_property(np, name, lenp); 231 raw_spin_unlock_irqrestore(&devtree_lock, flags); 232 233 return pp; 234 } 235 EXPORT_SYMBOL(of_find_property); 236 237 struct device_node *__of_find_all_nodes(struct device_node *prev) 238 { 239 struct device_node *np; 240 if (!prev) { 241 np = of_root; 242 } else if (prev->child) { 243 np = prev->child; 244 } else { 245 /* Walk back up looking for a sibling, or the end of the structure */ 246 np = prev; 247 while (np->parent && !np->sibling) 248 np = np->parent; 249 np = np->sibling; /* Might be null at the end of the tree */ 250 } 251 return np; 252 } 253 254 /** 255 * of_find_all_nodes - Get next node in global list 256 * @prev: Previous node or NULL to start iteration 257 * of_node_put() will be called on it 258 * 259 * Returns a node pointer with refcount incremented, use 260 * of_node_put() on it when done. 261 */ 262 struct device_node *of_find_all_nodes(struct device_node *prev) 263 { 264 struct device_node *np; 265 unsigned long flags; 266 267 raw_spin_lock_irqsave(&devtree_lock, flags); 268 np = __of_find_all_nodes(prev); 269 of_node_get(np); 270 of_node_put(prev); 271 raw_spin_unlock_irqrestore(&devtree_lock, flags); 272 return np; 273 } 274 EXPORT_SYMBOL(of_find_all_nodes); 275 276 /* 277 * Find a property with a given name for a given node 278 * and return the value. 279 */ 280 const void *__of_get_property(const struct device_node *np, 281 const char *name, int *lenp) 282 { 283 struct property *pp = __of_find_property(np, name, lenp); 284 285 return pp ? pp->value : NULL; 286 } 287 288 /* 289 * Find a property with a given name for a given node 290 * and return the value. 291 */ 292 const void *of_get_property(const struct device_node *np, const char *name, 293 int *lenp) 294 { 295 struct property *pp = of_find_property(np, name, lenp); 296 297 return pp ? pp->value : NULL; 298 } 299 EXPORT_SYMBOL(of_get_property); 300 301 /* 302 * arch_match_cpu_phys_id - Match the given logical CPU and physical id 303 * 304 * @cpu: logical cpu index of a core/thread 305 * @phys_id: physical identifier of a core/thread 306 * 307 * CPU logical to physical index mapping is architecture specific. 308 * However this __weak function provides a default match of physical 309 * id to logical cpu index. phys_id provided here is usually values read 310 * from the device tree which must match the hardware internal registers. 311 * 312 * Returns true if the physical identifier and the logical cpu index 313 * correspond to the same core/thread, false otherwise. 314 */ 315 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id) 316 { 317 return (u32)phys_id == cpu; 318 } 319 320 /** 321 * Checks if the given "prop_name" property holds the physical id of the 322 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not 323 * NULL, local thread number within the core is returned in it. 324 */ 325 static bool __of_find_n_match_cpu_property(struct device_node *cpun, 326 const char *prop_name, int cpu, unsigned int *thread) 327 { 328 const __be32 *cell; 329 int ac, prop_len, tid; 330 u64 hwid; 331 332 ac = of_n_addr_cells(cpun); 333 cell = of_get_property(cpun, prop_name, &prop_len); 334 if (!cell || !ac) 335 return false; 336 prop_len /= sizeof(*cell) * ac; 337 for (tid = 0; tid < prop_len; tid++) { 338 hwid = of_read_number(cell, ac); 339 if (arch_match_cpu_phys_id(cpu, hwid)) { 340 if (thread) 341 *thread = tid; 342 return true; 343 } 344 cell += ac; 345 } 346 return false; 347 } 348 349 /* 350 * arch_find_n_match_cpu_physical_id - See if the given device node is 351 * for the cpu corresponding to logical cpu 'cpu'. Return true if so, 352 * else false. If 'thread' is non-NULL, the local thread number within the 353 * core is returned in it. 354 */ 355 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun, 356 int cpu, unsigned int *thread) 357 { 358 /* Check for non-standard "ibm,ppc-interrupt-server#s" property 359 * for thread ids on PowerPC. If it doesn't exist fallback to 360 * standard "reg" property. 361 */ 362 if (IS_ENABLED(CONFIG_PPC) && 363 __of_find_n_match_cpu_property(cpun, 364 "ibm,ppc-interrupt-server#s", 365 cpu, thread)) 366 return true; 367 368 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread); 369 } 370 371 /** 372 * of_get_cpu_node - Get device node associated with the given logical CPU 373 * 374 * @cpu: CPU number(logical index) for which device node is required 375 * @thread: if not NULL, local thread number within the physical core is 376 * returned 377 * 378 * The main purpose of this function is to retrieve the device node for the 379 * given logical CPU index. It should be used to initialize the of_node in 380 * cpu device. Once of_node in cpu device is populated, all the further 381 * references can use that instead. 382 * 383 * CPU logical to physical index mapping is architecture specific and is built 384 * before booting secondary cores. This function uses arch_match_cpu_phys_id 385 * which can be overridden by architecture specific implementation. 386 * 387 * Returns a node pointer for the logical cpu with refcount incremented, use 388 * of_node_put() on it when done. Returns NULL if not found. 389 */ 390 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread) 391 { 392 struct device_node *cpun; 393 394 for_each_node_by_type(cpun, "cpu") { 395 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread)) 396 return cpun; 397 } 398 return NULL; 399 } 400 EXPORT_SYMBOL(of_get_cpu_node); 401 402 /** 403 * of_cpu_node_to_id: Get the logical CPU number for a given device_node 404 * 405 * @cpu_node: Pointer to the device_node for CPU. 406 * 407 * Returns the logical CPU number of the given CPU device_node. 408 * Returns -ENODEV if the CPU is not found. 409 */ 410 int of_cpu_node_to_id(struct device_node *cpu_node) 411 { 412 int cpu; 413 bool found = false; 414 struct device_node *np; 415 416 for_each_possible_cpu(cpu) { 417 np = of_cpu_device_node_get(cpu); 418 found = (cpu_node == np); 419 of_node_put(np); 420 if (found) 421 return cpu; 422 } 423 424 return -ENODEV; 425 } 426 EXPORT_SYMBOL(of_cpu_node_to_id); 427 428 /** 429 * __of_device_is_compatible() - Check if the node matches given constraints 430 * @device: pointer to node 431 * @compat: required compatible string, NULL or "" for any match 432 * @type: required device_type value, NULL or "" for any match 433 * @name: required node name, NULL or "" for any match 434 * 435 * Checks if the given @compat, @type and @name strings match the 436 * properties of the given @device. A constraints can be skipped by 437 * passing NULL or an empty string as the constraint. 438 * 439 * Returns 0 for no match, and a positive integer on match. The return 440 * value is a relative score with larger values indicating better 441 * matches. The score is weighted for the most specific compatible value 442 * to get the highest score. Matching type is next, followed by matching 443 * name. Practically speaking, this results in the following priority 444 * order for matches: 445 * 446 * 1. specific compatible && type && name 447 * 2. specific compatible && type 448 * 3. specific compatible && name 449 * 4. specific compatible 450 * 5. general compatible && type && name 451 * 6. general compatible && type 452 * 7. general compatible && name 453 * 8. general compatible 454 * 9. type && name 455 * 10. type 456 * 11. name 457 */ 458 static int __of_device_is_compatible(const struct device_node *device, 459 const char *compat, const char *type, const char *name) 460 { 461 struct property *prop; 462 const char *cp; 463 int index = 0, score = 0; 464 465 /* Compatible match has highest priority */ 466 if (compat && compat[0]) { 467 prop = __of_find_property(device, "compatible", NULL); 468 for (cp = of_prop_next_string(prop, NULL); cp; 469 cp = of_prop_next_string(prop, cp), index++) { 470 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) { 471 score = INT_MAX/2 - (index << 2); 472 break; 473 } 474 } 475 if (!score) 476 return 0; 477 } 478 479 /* Matching type is better than matching name */ 480 if (type && type[0]) { 481 if (!device->type || of_node_cmp(type, device->type)) 482 return 0; 483 score += 2; 484 } 485 486 /* Matching name is a bit better than not */ 487 if (name && name[0]) { 488 if (!device->name || of_node_cmp(name, device->name)) 489 return 0; 490 score++; 491 } 492 493 return score; 494 } 495 496 /** Checks if the given "compat" string matches one of the strings in 497 * the device's "compatible" property 498 */ 499 int of_device_is_compatible(const struct device_node *device, 500 const char *compat) 501 { 502 unsigned long flags; 503 int res; 504 505 raw_spin_lock_irqsave(&devtree_lock, flags); 506 res = __of_device_is_compatible(device, compat, NULL, NULL); 507 raw_spin_unlock_irqrestore(&devtree_lock, flags); 508 return res; 509 } 510 EXPORT_SYMBOL(of_device_is_compatible); 511 512 /** Checks if the device is compatible with any of the entries in 513 * a NULL terminated array of strings. Returns the best match 514 * score or 0. 515 */ 516 int of_device_compatible_match(struct device_node *device, 517 const char *const *compat) 518 { 519 unsigned int tmp, score = 0; 520 521 if (!compat) 522 return 0; 523 524 while (*compat) { 525 tmp = of_device_is_compatible(device, *compat); 526 if (tmp > score) 527 score = tmp; 528 compat++; 529 } 530 531 return score; 532 } 533 534 /** 535 * of_machine_is_compatible - Test root of device tree for a given compatible value 536 * @compat: compatible string to look for in root node's compatible property. 537 * 538 * Returns a positive integer if the root node has the given value in its 539 * compatible property. 540 */ 541 int of_machine_is_compatible(const char *compat) 542 { 543 struct device_node *root; 544 int rc = 0; 545 546 root = of_find_node_by_path("/"); 547 if (root) { 548 rc = of_device_is_compatible(root, compat); 549 of_node_put(root); 550 } 551 return rc; 552 } 553 EXPORT_SYMBOL(of_machine_is_compatible); 554 555 /** 556 * __of_device_is_available - check if a device is available for use 557 * 558 * @device: Node to check for availability, with locks already held 559 * 560 * Returns true if the status property is absent or set to "okay" or "ok", 561 * false otherwise 562 */ 563 static bool __of_device_is_available(const struct device_node *device) 564 { 565 const char *status; 566 int statlen; 567 568 if (!device) 569 return false; 570 571 status = __of_get_property(device, "status", &statlen); 572 if (status == NULL) 573 return true; 574 575 if (statlen > 0) { 576 if (!strcmp(status, "okay") || !strcmp(status, "ok")) 577 return true; 578 } 579 580 return false; 581 } 582 583 /** 584 * of_device_is_available - check if a device is available for use 585 * 586 * @device: Node to check for availability 587 * 588 * Returns true if the status property is absent or set to "okay" or "ok", 589 * false otherwise 590 */ 591 bool of_device_is_available(const struct device_node *device) 592 { 593 unsigned long flags; 594 bool res; 595 596 raw_spin_lock_irqsave(&devtree_lock, flags); 597 res = __of_device_is_available(device); 598 raw_spin_unlock_irqrestore(&devtree_lock, flags); 599 return res; 600 601 } 602 EXPORT_SYMBOL(of_device_is_available); 603 604 /** 605 * of_device_is_big_endian - check if a device has BE registers 606 * 607 * @device: Node to check for endianness 608 * 609 * Returns true if the device has a "big-endian" property, or if the kernel 610 * was compiled for BE *and* the device has a "native-endian" property. 611 * Returns false otherwise. 612 * 613 * Callers would nominally use ioread32be/iowrite32be if 614 * of_device_is_big_endian() == true, or readl/writel otherwise. 615 */ 616 bool of_device_is_big_endian(const struct device_node *device) 617 { 618 if (of_property_read_bool(device, "big-endian")) 619 return true; 620 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) && 621 of_property_read_bool(device, "native-endian")) 622 return true; 623 return false; 624 } 625 EXPORT_SYMBOL(of_device_is_big_endian); 626 627 /** 628 * of_get_parent - Get a node's parent if any 629 * @node: Node to get parent 630 * 631 * Returns a node pointer with refcount incremented, use 632 * of_node_put() on it when done. 633 */ 634 struct device_node *of_get_parent(const struct device_node *node) 635 { 636 struct device_node *np; 637 unsigned long flags; 638 639 if (!node) 640 return NULL; 641 642 raw_spin_lock_irqsave(&devtree_lock, flags); 643 np = of_node_get(node->parent); 644 raw_spin_unlock_irqrestore(&devtree_lock, flags); 645 return np; 646 } 647 EXPORT_SYMBOL(of_get_parent); 648 649 /** 650 * of_get_next_parent - Iterate to a node's parent 651 * @node: Node to get parent of 652 * 653 * This is like of_get_parent() except that it drops the 654 * refcount on the passed node, making it suitable for iterating 655 * through a node's parents. 656 * 657 * Returns a node pointer with refcount incremented, use 658 * of_node_put() on it when done. 659 */ 660 struct device_node *of_get_next_parent(struct device_node *node) 661 { 662 struct device_node *parent; 663 unsigned long flags; 664 665 if (!node) 666 return NULL; 667 668 raw_spin_lock_irqsave(&devtree_lock, flags); 669 parent = of_node_get(node->parent); 670 of_node_put(node); 671 raw_spin_unlock_irqrestore(&devtree_lock, flags); 672 return parent; 673 } 674 EXPORT_SYMBOL(of_get_next_parent); 675 676 static struct device_node *__of_get_next_child(const struct device_node *node, 677 struct device_node *prev) 678 { 679 struct device_node *next; 680 681 if (!node) 682 return NULL; 683 684 next = prev ? prev->sibling : node->child; 685 for (; next; next = next->sibling) 686 if (of_node_get(next)) 687 break; 688 of_node_put(prev); 689 return next; 690 } 691 #define __for_each_child_of_node(parent, child) \ 692 for (child = __of_get_next_child(parent, NULL); child != NULL; \ 693 child = __of_get_next_child(parent, child)) 694 695 /** 696 * of_get_next_child - Iterate a node childs 697 * @node: parent node 698 * @prev: previous child of the parent node, or NULL to get first 699 * 700 * Returns a node pointer with refcount incremented, use of_node_put() on 701 * it when done. Returns NULL when prev is the last child. Decrements the 702 * refcount of prev. 703 */ 704 struct device_node *of_get_next_child(const struct device_node *node, 705 struct device_node *prev) 706 { 707 struct device_node *next; 708 unsigned long flags; 709 710 raw_spin_lock_irqsave(&devtree_lock, flags); 711 next = __of_get_next_child(node, prev); 712 raw_spin_unlock_irqrestore(&devtree_lock, flags); 713 return next; 714 } 715 EXPORT_SYMBOL(of_get_next_child); 716 717 /** 718 * of_get_next_available_child - Find the next available child node 719 * @node: parent node 720 * @prev: previous child of the parent node, or NULL to get first 721 * 722 * This function is like of_get_next_child(), except that it 723 * automatically skips any disabled nodes (i.e. status = "disabled"). 724 */ 725 struct device_node *of_get_next_available_child(const struct device_node *node, 726 struct device_node *prev) 727 { 728 struct device_node *next; 729 unsigned long flags; 730 731 if (!node) 732 return NULL; 733 734 raw_spin_lock_irqsave(&devtree_lock, flags); 735 next = prev ? prev->sibling : node->child; 736 for (; next; next = next->sibling) { 737 if (!__of_device_is_available(next)) 738 continue; 739 if (of_node_get(next)) 740 break; 741 } 742 of_node_put(prev); 743 raw_spin_unlock_irqrestore(&devtree_lock, flags); 744 return next; 745 } 746 EXPORT_SYMBOL(of_get_next_available_child); 747 748 /** 749 * of_get_compatible_child - Find compatible child node 750 * @parent: parent node 751 * @compatible: compatible string 752 * 753 * Lookup child node whose compatible property contains the given compatible 754 * string. 755 * 756 * Returns a node pointer with refcount incremented, use of_node_put() on it 757 * when done; or NULL if not found. 758 */ 759 struct device_node *of_get_compatible_child(const struct device_node *parent, 760 const char *compatible) 761 { 762 struct device_node *child; 763 764 for_each_child_of_node(parent, child) { 765 if (of_device_is_compatible(child, compatible)) 766 break; 767 } 768 769 return child; 770 } 771 EXPORT_SYMBOL(of_get_compatible_child); 772 773 /** 774 * of_get_child_by_name - Find the child node by name for a given parent 775 * @node: parent node 776 * @name: child name to look for. 777 * 778 * This function looks for child node for given matching name 779 * 780 * Returns a node pointer if found, with refcount incremented, use 781 * of_node_put() on it when done. 782 * Returns NULL if node is not found. 783 */ 784 struct device_node *of_get_child_by_name(const struct device_node *node, 785 const char *name) 786 { 787 struct device_node *child; 788 789 for_each_child_of_node(node, child) 790 if (child->name && (of_node_cmp(child->name, name) == 0)) 791 break; 792 return child; 793 } 794 EXPORT_SYMBOL(of_get_child_by_name); 795 796 struct device_node *__of_find_node_by_path(struct device_node *parent, 797 const char *path) 798 { 799 struct device_node *child; 800 int len; 801 802 len = strcspn(path, "/:"); 803 if (!len) 804 return NULL; 805 806 __for_each_child_of_node(parent, child) { 807 const char *name = kbasename(child->full_name); 808 if (strncmp(path, name, len) == 0 && (strlen(name) == len)) 809 return child; 810 } 811 return NULL; 812 } 813 814 struct device_node *__of_find_node_by_full_path(struct device_node *node, 815 const char *path) 816 { 817 const char *separator = strchr(path, ':'); 818 819 while (node && *path == '/') { 820 struct device_node *tmp = node; 821 822 path++; /* Increment past '/' delimiter */ 823 node = __of_find_node_by_path(node, path); 824 of_node_put(tmp); 825 path = strchrnul(path, '/'); 826 if (separator && separator < path) 827 break; 828 } 829 return node; 830 } 831 832 /** 833 * of_find_node_opts_by_path - Find a node matching a full OF path 834 * @path: Either the full path to match, or if the path does not 835 * start with '/', the name of a property of the /aliases 836 * node (an alias). In the case of an alias, the node 837 * matching the alias' value will be returned. 838 * @opts: Address of a pointer into which to store the start of 839 * an options string appended to the end of the path with 840 * a ':' separator. 841 * 842 * Valid paths: 843 * /foo/bar Full path 844 * foo Valid alias 845 * foo/bar Valid alias + relative path 846 * 847 * Returns a node pointer with refcount incremented, use 848 * of_node_put() on it when done. 849 */ 850 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts) 851 { 852 struct device_node *np = NULL; 853 struct property *pp; 854 unsigned long flags; 855 const char *separator = strchr(path, ':'); 856 857 if (opts) 858 *opts = separator ? separator + 1 : NULL; 859 860 if (strcmp(path, "/") == 0) 861 return of_node_get(of_root); 862 863 /* The path could begin with an alias */ 864 if (*path != '/') { 865 int len; 866 const char *p = separator; 867 868 if (!p) 869 p = strchrnul(path, '/'); 870 len = p - path; 871 872 /* of_aliases must not be NULL */ 873 if (!of_aliases) 874 return NULL; 875 876 for_each_property_of_node(of_aliases, pp) { 877 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) { 878 np = of_find_node_by_path(pp->value); 879 break; 880 } 881 } 882 if (!np) 883 return NULL; 884 path = p; 885 } 886 887 /* Step down the tree matching path components */ 888 raw_spin_lock_irqsave(&devtree_lock, flags); 889 if (!np) 890 np = of_node_get(of_root); 891 np = __of_find_node_by_full_path(np, path); 892 raw_spin_unlock_irqrestore(&devtree_lock, flags); 893 return np; 894 } 895 EXPORT_SYMBOL(of_find_node_opts_by_path); 896 897 /** 898 * of_find_node_by_name - Find a node by its "name" property 899 * @from: The node to start searching from or NULL; the node 900 * you pass will not be searched, only the next one 901 * will. Typically, you pass what the previous call 902 * returned. of_node_put() will be called on @from. 903 * @name: The name string to match against 904 * 905 * Returns a node pointer with refcount incremented, use 906 * of_node_put() on it when done. 907 */ 908 struct device_node *of_find_node_by_name(struct device_node *from, 909 const char *name) 910 { 911 struct device_node *np; 912 unsigned long flags; 913 914 raw_spin_lock_irqsave(&devtree_lock, flags); 915 for_each_of_allnodes_from(from, np) 916 if (np->name && (of_node_cmp(np->name, name) == 0) 917 && of_node_get(np)) 918 break; 919 of_node_put(from); 920 raw_spin_unlock_irqrestore(&devtree_lock, flags); 921 return np; 922 } 923 EXPORT_SYMBOL(of_find_node_by_name); 924 925 /** 926 * of_find_node_by_type - Find a node by its "device_type" property 927 * @from: The node to start searching from, or NULL to start searching 928 * the entire device tree. The node you pass will not be 929 * searched, only the next one will; typically, you pass 930 * what the previous call returned. of_node_put() will be 931 * called on from for you. 932 * @type: The type string to match against 933 * 934 * Returns a node pointer with refcount incremented, use 935 * of_node_put() on it when done. 936 */ 937 struct device_node *of_find_node_by_type(struct device_node *from, 938 const char *type) 939 { 940 struct device_node *np; 941 unsigned long flags; 942 943 raw_spin_lock_irqsave(&devtree_lock, flags); 944 for_each_of_allnodes_from(from, np) 945 if (np->type && (of_node_cmp(np->type, type) == 0) 946 && of_node_get(np)) 947 break; 948 of_node_put(from); 949 raw_spin_unlock_irqrestore(&devtree_lock, flags); 950 return np; 951 } 952 EXPORT_SYMBOL(of_find_node_by_type); 953 954 /** 955 * of_find_compatible_node - Find a node based on type and one of the 956 * tokens in its "compatible" property 957 * @from: The node to start searching from or NULL, the node 958 * you pass will not be searched, only the next one 959 * will; typically, you pass what the previous call 960 * returned. of_node_put() will be called on it 961 * @type: The type string to match "device_type" or NULL to ignore 962 * @compatible: The string to match to one of the tokens in the device 963 * "compatible" list. 964 * 965 * Returns a node pointer with refcount incremented, use 966 * of_node_put() on it when done. 967 */ 968 struct device_node *of_find_compatible_node(struct device_node *from, 969 const char *type, const char *compatible) 970 { 971 struct device_node *np; 972 unsigned long flags; 973 974 raw_spin_lock_irqsave(&devtree_lock, flags); 975 for_each_of_allnodes_from(from, np) 976 if (__of_device_is_compatible(np, compatible, type, NULL) && 977 of_node_get(np)) 978 break; 979 of_node_put(from); 980 raw_spin_unlock_irqrestore(&devtree_lock, flags); 981 return np; 982 } 983 EXPORT_SYMBOL(of_find_compatible_node); 984 985 /** 986 * of_find_node_with_property - Find a node which has a property with 987 * the given name. 988 * @from: The node to start searching from or NULL, the node 989 * you pass will not be searched, only the next one 990 * will; typically, you pass what the previous call 991 * returned. of_node_put() will be called on it 992 * @prop_name: The name of the property to look for. 993 * 994 * Returns a node pointer with refcount incremented, use 995 * of_node_put() on it when done. 996 */ 997 struct device_node *of_find_node_with_property(struct device_node *from, 998 const char *prop_name) 999 { 1000 struct device_node *np; 1001 struct property *pp; 1002 unsigned long flags; 1003 1004 raw_spin_lock_irqsave(&devtree_lock, flags); 1005 for_each_of_allnodes_from(from, np) { 1006 for (pp = np->properties; pp; pp = pp->next) { 1007 if (of_prop_cmp(pp->name, prop_name) == 0) { 1008 of_node_get(np); 1009 goto out; 1010 } 1011 } 1012 } 1013 out: 1014 of_node_put(from); 1015 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1016 return np; 1017 } 1018 EXPORT_SYMBOL(of_find_node_with_property); 1019 1020 static 1021 const struct of_device_id *__of_match_node(const struct of_device_id *matches, 1022 const struct device_node *node) 1023 { 1024 const struct of_device_id *best_match = NULL; 1025 int score, best_score = 0; 1026 1027 if (!matches) 1028 return NULL; 1029 1030 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) { 1031 score = __of_device_is_compatible(node, matches->compatible, 1032 matches->type, matches->name); 1033 if (score > best_score) { 1034 best_match = matches; 1035 best_score = score; 1036 } 1037 } 1038 1039 return best_match; 1040 } 1041 1042 /** 1043 * of_match_node - Tell if a device_node has a matching of_match structure 1044 * @matches: array of of device match structures to search in 1045 * @node: the of device structure to match against 1046 * 1047 * Low level utility function used by device matching. 1048 */ 1049 const struct of_device_id *of_match_node(const struct of_device_id *matches, 1050 const struct device_node *node) 1051 { 1052 const struct of_device_id *match; 1053 unsigned long flags; 1054 1055 raw_spin_lock_irqsave(&devtree_lock, flags); 1056 match = __of_match_node(matches, node); 1057 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1058 return match; 1059 } 1060 EXPORT_SYMBOL(of_match_node); 1061 1062 /** 1063 * of_find_matching_node_and_match - Find a node based on an of_device_id 1064 * match table. 1065 * @from: The node to start searching from or NULL, the node 1066 * you pass will not be searched, only the next one 1067 * will; typically, you pass what the previous call 1068 * returned. of_node_put() will be called on it 1069 * @matches: array of of device match structures to search in 1070 * @match Updated to point at the matches entry which matched 1071 * 1072 * Returns a node pointer with refcount incremented, use 1073 * of_node_put() on it when done. 1074 */ 1075 struct device_node *of_find_matching_node_and_match(struct device_node *from, 1076 const struct of_device_id *matches, 1077 const struct of_device_id **match) 1078 { 1079 struct device_node *np; 1080 const struct of_device_id *m; 1081 unsigned long flags; 1082 1083 if (match) 1084 *match = NULL; 1085 1086 raw_spin_lock_irqsave(&devtree_lock, flags); 1087 for_each_of_allnodes_from(from, np) { 1088 m = __of_match_node(matches, np); 1089 if (m && of_node_get(np)) { 1090 if (match) 1091 *match = m; 1092 break; 1093 } 1094 } 1095 of_node_put(from); 1096 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1097 return np; 1098 } 1099 EXPORT_SYMBOL(of_find_matching_node_and_match); 1100 1101 /** 1102 * of_modalias_node - Lookup appropriate modalias for a device node 1103 * @node: pointer to a device tree node 1104 * @modalias: Pointer to buffer that modalias value will be copied into 1105 * @len: Length of modalias value 1106 * 1107 * Based on the value of the compatible property, this routine will attempt 1108 * to choose an appropriate modalias value for a particular device tree node. 1109 * It does this by stripping the manufacturer prefix (as delimited by a ',') 1110 * from the first entry in the compatible list property. 1111 * 1112 * This routine returns 0 on success, <0 on failure. 1113 */ 1114 int of_modalias_node(struct device_node *node, char *modalias, int len) 1115 { 1116 const char *compatible, *p; 1117 int cplen; 1118 1119 compatible = of_get_property(node, "compatible", &cplen); 1120 if (!compatible || strlen(compatible) > cplen) 1121 return -ENODEV; 1122 p = strchr(compatible, ','); 1123 strlcpy(modalias, p ? p + 1 : compatible, len); 1124 return 0; 1125 } 1126 EXPORT_SYMBOL_GPL(of_modalias_node); 1127 1128 /** 1129 * of_find_node_by_phandle - Find a node given a phandle 1130 * @handle: phandle of the node to find 1131 * 1132 * Returns a node pointer with refcount incremented, use 1133 * of_node_put() on it when done. 1134 */ 1135 struct device_node *of_find_node_by_phandle(phandle handle) 1136 { 1137 struct device_node *np = NULL; 1138 unsigned long flags; 1139 phandle masked_handle; 1140 1141 if (!handle) 1142 return NULL; 1143 1144 raw_spin_lock_irqsave(&devtree_lock, flags); 1145 1146 masked_handle = handle & phandle_cache_mask; 1147 1148 if (phandle_cache) { 1149 if (phandle_cache[masked_handle] && 1150 handle == phandle_cache[masked_handle]->phandle) 1151 np = phandle_cache[masked_handle]; 1152 } 1153 1154 if (!np) { 1155 for_each_of_allnodes(np) 1156 if (np->phandle == handle) { 1157 if (phandle_cache) 1158 phandle_cache[masked_handle] = np; 1159 break; 1160 } 1161 } 1162 1163 of_node_get(np); 1164 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1165 return np; 1166 } 1167 EXPORT_SYMBOL(of_find_node_by_phandle); 1168 1169 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args) 1170 { 1171 int i; 1172 printk("%s %pOF", msg, args->np); 1173 for (i = 0; i < args->args_count; i++) { 1174 const char delim = i ? ',' : ':'; 1175 1176 pr_cont("%c%08x", delim, args->args[i]); 1177 } 1178 pr_cont("\n"); 1179 } 1180 1181 int of_phandle_iterator_init(struct of_phandle_iterator *it, 1182 const struct device_node *np, 1183 const char *list_name, 1184 const char *cells_name, 1185 int cell_count) 1186 { 1187 const __be32 *list; 1188 int size; 1189 1190 memset(it, 0, sizeof(*it)); 1191 1192 list = of_get_property(np, list_name, &size); 1193 if (!list) 1194 return -ENOENT; 1195 1196 it->cells_name = cells_name; 1197 it->cell_count = cell_count; 1198 it->parent = np; 1199 it->list_end = list + size / sizeof(*list); 1200 it->phandle_end = list; 1201 it->cur = list; 1202 1203 return 0; 1204 } 1205 EXPORT_SYMBOL_GPL(of_phandle_iterator_init); 1206 1207 int of_phandle_iterator_next(struct of_phandle_iterator *it) 1208 { 1209 uint32_t count = 0; 1210 1211 if (it->node) { 1212 of_node_put(it->node); 1213 it->node = NULL; 1214 } 1215 1216 if (!it->cur || it->phandle_end >= it->list_end) 1217 return -ENOENT; 1218 1219 it->cur = it->phandle_end; 1220 1221 /* If phandle is 0, then it is an empty entry with no arguments. */ 1222 it->phandle = be32_to_cpup(it->cur++); 1223 1224 if (it->phandle) { 1225 1226 /* 1227 * Find the provider node and parse the #*-cells property to 1228 * determine the argument length. 1229 */ 1230 it->node = of_find_node_by_phandle(it->phandle); 1231 1232 if (it->cells_name) { 1233 if (!it->node) { 1234 pr_err("%pOF: could not find phandle\n", 1235 it->parent); 1236 goto err; 1237 } 1238 1239 if (of_property_read_u32(it->node, it->cells_name, 1240 &count)) { 1241 pr_err("%pOF: could not get %s for %pOF\n", 1242 it->parent, 1243 it->cells_name, 1244 it->node); 1245 goto err; 1246 } 1247 } else { 1248 count = it->cell_count; 1249 } 1250 1251 /* 1252 * Make sure that the arguments actually fit in the remaining 1253 * property data length 1254 */ 1255 if (it->cur + count > it->list_end) { 1256 pr_err("%pOF: arguments longer than property\n", 1257 it->parent); 1258 goto err; 1259 } 1260 } 1261 1262 it->phandle_end = it->cur + count; 1263 it->cur_count = count; 1264 1265 return 0; 1266 1267 err: 1268 if (it->node) { 1269 of_node_put(it->node); 1270 it->node = NULL; 1271 } 1272 1273 return -EINVAL; 1274 } 1275 EXPORT_SYMBOL_GPL(of_phandle_iterator_next); 1276 1277 int of_phandle_iterator_args(struct of_phandle_iterator *it, 1278 uint32_t *args, 1279 int size) 1280 { 1281 int i, count; 1282 1283 count = it->cur_count; 1284 1285 if (WARN_ON(size < count)) 1286 count = size; 1287 1288 for (i = 0; i < count; i++) 1289 args[i] = be32_to_cpup(it->cur++); 1290 1291 return count; 1292 } 1293 1294 static int __of_parse_phandle_with_args(const struct device_node *np, 1295 const char *list_name, 1296 const char *cells_name, 1297 int cell_count, int index, 1298 struct of_phandle_args *out_args) 1299 { 1300 struct of_phandle_iterator it; 1301 int rc, cur_index = 0; 1302 1303 /* Loop over the phandles until all the requested entry is found */ 1304 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) { 1305 /* 1306 * All of the error cases bail out of the loop, so at 1307 * this point, the parsing is successful. If the requested 1308 * index matches, then fill the out_args structure and return, 1309 * or return -ENOENT for an empty entry. 1310 */ 1311 rc = -ENOENT; 1312 if (cur_index == index) { 1313 if (!it.phandle) 1314 goto err; 1315 1316 if (out_args) { 1317 int c; 1318 1319 c = of_phandle_iterator_args(&it, 1320 out_args->args, 1321 MAX_PHANDLE_ARGS); 1322 out_args->np = it.node; 1323 out_args->args_count = c; 1324 } else { 1325 of_node_put(it.node); 1326 } 1327 1328 /* Found it! return success */ 1329 return 0; 1330 } 1331 1332 cur_index++; 1333 } 1334 1335 /* 1336 * Unlock node before returning result; will be one of: 1337 * -ENOENT : index is for empty phandle 1338 * -EINVAL : parsing error on data 1339 */ 1340 1341 err: 1342 of_node_put(it.node); 1343 return rc; 1344 } 1345 1346 /** 1347 * of_parse_phandle - Resolve a phandle property to a device_node pointer 1348 * @np: Pointer to device node holding phandle property 1349 * @phandle_name: Name of property holding a phandle value 1350 * @index: For properties holding a table of phandles, this is the index into 1351 * the table 1352 * 1353 * Returns the device_node pointer with refcount incremented. Use 1354 * of_node_put() on it when done. 1355 */ 1356 struct device_node *of_parse_phandle(const struct device_node *np, 1357 const char *phandle_name, int index) 1358 { 1359 struct of_phandle_args args; 1360 1361 if (index < 0) 1362 return NULL; 1363 1364 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0, 1365 index, &args)) 1366 return NULL; 1367 1368 return args.np; 1369 } 1370 EXPORT_SYMBOL(of_parse_phandle); 1371 1372 /** 1373 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list 1374 * @np: pointer to a device tree node containing a list 1375 * @list_name: property name that contains a list 1376 * @cells_name: property name that specifies phandles' arguments count 1377 * @index: index of a phandle to parse out 1378 * @out_args: optional pointer to output arguments structure (will be filled) 1379 * 1380 * This function is useful to parse lists of phandles and their arguments. 1381 * Returns 0 on success and fills out_args, on error returns appropriate 1382 * errno value. 1383 * 1384 * Caller is responsible to call of_node_put() on the returned out_args->np 1385 * pointer. 1386 * 1387 * Example: 1388 * 1389 * phandle1: node1 { 1390 * #list-cells = <2>; 1391 * } 1392 * 1393 * phandle2: node2 { 1394 * #list-cells = <1>; 1395 * } 1396 * 1397 * node3 { 1398 * list = <&phandle1 1 2 &phandle2 3>; 1399 * } 1400 * 1401 * To get a device_node of the `node2' node you may call this: 1402 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args); 1403 */ 1404 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name, 1405 const char *cells_name, int index, 1406 struct of_phandle_args *out_args) 1407 { 1408 if (index < 0) 1409 return -EINVAL; 1410 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, 1411 index, out_args); 1412 } 1413 EXPORT_SYMBOL(of_parse_phandle_with_args); 1414 1415 /** 1416 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it 1417 * @np: pointer to a device tree node containing a list 1418 * @list_name: property name that contains a list 1419 * @stem_name: stem of property names that specify phandles' arguments count 1420 * @index: index of a phandle to parse out 1421 * @out_args: optional pointer to output arguments structure (will be filled) 1422 * 1423 * This function is useful to parse lists of phandles and their arguments. 1424 * Returns 0 on success and fills out_args, on error returns appropriate errno 1425 * value. The difference between this function and of_parse_phandle_with_args() 1426 * is that this API remaps a phandle if the node the phandle points to has 1427 * a <@stem_name>-map property. 1428 * 1429 * Caller is responsible to call of_node_put() on the returned out_args->np 1430 * pointer. 1431 * 1432 * Example: 1433 * 1434 * phandle1: node1 { 1435 * #list-cells = <2>; 1436 * } 1437 * 1438 * phandle2: node2 { 1439 * #list-cells = <1>; 1440 * } 1441 * 1442 * phandle3: node3 { 1443 * #list-cells = <1>; 1444 * list-map = <0 &phandle2 3>, 1445 * <1 &phandle2 2>, 1446 * <2 &phandle1 5 1>; 1447 * list-map-mask = <0x3>; 1448 * }; 1449 * 1450 * node4 { 1451 * list = <&phandle1 1 2 &phandle3 0>; 1452 * } 1453 * 1454 * To get a device_node of the `node2' node you may call this: 1455 * of_parse_phandle_with_args(node4, "list", "list", 1, &args); 1456 */ 1457 int of_parse_phandle_with_args_map(const struct device_node *np, 1458 const char *list_name, 1459 const char *stem_name, 1460 int index, struct of_phandle_args *out_args) 1461 { 1462 char *cells_name, *map_name = NULL, *mask_name = NULL; 1463 char *pass_name = NULL; 1464 struct device_node *cur, *new = NULL; 1465 const __be32 *map, *mask, *pass; 1466 static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 }; 1467 static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 }; 1468 __be32 initial_match_array[MAX_PHANDLE_ARGS]; 1469 const __be32 *match_array = initial_match_array; 1470 int i, ret, map_len, match; 1471 u32 list_size, new_size; 1472 1473 if (index < 0) 1474 return -EINVAL; 1475 1476 cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name); 1477 if (!cells_name) 1478 return -ENOMEM; 1479 1480 ret = -ENOMEM; 1481 map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name); 1482 if (!map_name) 1483 goto free; 1484 1485 mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name); 1486 if (!mask_name) 1487 goto free; 1488 1489 pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name); 1490 if (!pass_name) 1491 goto free; 1492 1493 ret = __of_parse_phandle_with_args(np, list_name, cells_name, 0, index, 1494 out_args); 1495 if (ret) 1496 goto free; 1497 1498 /* Get the #<list>-cells property */ 1499 cur = out_args->np; 1500 ret = of_property_read_u32(cur, cells_name, &list_size); 1501 if (ret < 0) 1502 goto put; 1503 1504 /* Precalculate the match array - this simplifies match loop */ 1505 for (i = 0; i < list_size; i++) 1506 initial_match_array[i] = cpu_to_be32(out_args->args[i]); 1507 1508 ret = -EINVAL; 1509 while (cur) { 1510 /* Get the <list>-map property */ 1511 map = of_get_property(cur, map_name, &map_len); 1512 if (!map) { 1513 ret = 0; 1514 goto free; 1515 } 1516 map_len /= sizeof(u32); 1517 1518 /* Get the <list>-map-mask property (optional) */ 1519 mask = of_get_property(cur, mask_name, NULL); 1520 if (!mask) 1521 mask = dummy_mask; 1522 /* Iterate through <list>-map property */ 1523 match = 0; 1524 while (map_len > (list_size + 1) && !match) { 1525 /* Compare specifiers */ 1526 match = 1; 1527 for (i = 0; i < list_size; i++, map_len--) 1528 match &= !((match_array[i] ^ *map++) & mask[i]); 1529 1530 of_node_put(new); 1531 new = of_find_node_by_phandle(be32_to_cpup(map)); 1532 map++; 1533 map_len--; 1534 1535 /* Check if not found */ 1536 if (!new) 1537 goto put; 1538 1539 if (!of_device_is_available(new)) 1540 match = 0; 1541 1542 ret = of_property_read_u32(new, cells_name, &new_size); 1543 if (ret) 1544 goto put; 1545 1546 /* Check for malformed properties */ 1547 if (WARN_ON(new_size > MAX_PHANDLE_ARGS)) 1548 goto put; 1549 if (map_len < new_size) 1550 goto put; 1551 1552 /* Move forward by new node's #<list>-cells amount */ 1553 map += new_size; 1554 map_len -= new_size; 1555 } 1556 if (!match) 1557 goto put; 1558 1559 /* Get the <list>-map-pass-thru property (optional) */ 1560 pass = of_get_property(cur, pass_name, NULL); 1561 if (!pass) 1562 pass = dummy_pass; 1563 1564 /* 1565 * Successfully parsed a <list>-map translation; copy new 1566 * specifier into the out_args structure, keeping the 1567 * bits specified in <list>-map-pass-thru. 1568 */ 1569 match_array = map - new_size; 1570 for (i = 0; i < new_size; i++) { 1571 __be32 val = *(map - new_size + i); 1572 1573 if (i < list_size) { 1574 val &= ~pass[i]; 1575 val |= cpu_to_be32(out_args->args[i]) & pass[i]; 1576 } 1577 1578 out_args->args[i] = be32_to_cpu(val); 1579 } 1580 out_args->args_count = list_size = new_size; 1581 /* Iterate again with new provider */ 1582 out_args->np = new; 1583 of_node_put(cur); 1584 cur = new; 1585 } 1586 put: 1587 of_node_put(cur); 1588 of_node_put(new); 1589 free: 1590 kfree(mask_name); 1591 kfree(map_name); 1592 kfree(cells_name); 1593 kfree(pass_name); 1594 1595 return ret; 1596 } 1597 EXPORT_SYMBOL(of_parse_phandle_with_args_map); 1598 1599 /** 1600 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list 1601 * @np: pointer to a device tree node containing a list 1602 * @list_name: property name that contains a list 1603 * @cell_count: number of argument cells following the phandle 1604 * @index: index of a phandle to parse out 1605 * @out_args: optional pointer to output arguments structure (will be filled) 1606 * 1607 * This function is useful to parse lists of phandles and their arguments. 1608 * Returns 0 on success and fills out_args, on error returns appropriate 1609 * errno value. 1610 * 1611 * Caller is responsible to call of_node_put() on the returned out_args->np 1612 * pointer. 1613 * 1614 * Example: 1615 * 1616 * phandle1: node1 { 1617 * } 1618 * 1619 * phandle2: node2 { 1620 * } 1621 * 1622 * node3 { 1623 * list = <&phandle1 0 2 &phandle2 2 3>; 1624 * } 1625 * 1626 * To get a device_node of the `node2' node you may call this: 1627 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args); 1628 */ 1629 int of_parse_phandle_with_fixed_args(const struct device_node *np, 1630 const char *list_name, int cell_count, 1631 int index, struct of_phandle_args *out_args) 1632 { 1633 if (index < 0) 1634 return -EINVAL; 1635 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count, 1636 index, out_args); 1637 } 1638 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args); 1639 1640 /** 1641 * of_count_phandle_with_args() - Find the number of phandles references in a property 1642 * @np: pointer to a device tree node containing a list 1643 * @list_name: property name that contains a list 1644 * @cells_name: property name that specifies phandles' arguments count 1645 * 1646 * Returns the number of phandle + argument tuples within a property. It 1647 * is a typical pattern to encode a list of phandle and variable 1648 * arguments into a single property. The number of arguments is encoded 1649 * by a property in the phandle-target node. For example, a gpios 1650 * property would contain a list of GPIO specifies consisting of a 1651 * phandle and 1 or more arguments. The number of arguments are 1652 * determined by the #gpio-cells property in the node pointed to by the 1653 * phandle. 1654 */ 1655 int of_count_phandle_with_args(const struct device_node *np, const char *list_name, 1656 const char *cells_name) 1657 { 1658 struct of_phandle_iterator it; 1659 int rc, cur_index = 0; 1660 1661 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0); 1662 if (rc) 1663 return rc; 1664 1665 while ((rc = of_phandle_iterator_next(&it)) == 0) 1666 cur_index += 1; 1667 1668 if (rc != -ENOENT) 1669 return rc; 1670 1671 return cur_index; 1672 } 1673 EXPORT_SYMBOL(of_count_phandle_with_args); 1674 1675 /** 1676 * __of_add_property - Add a property to a node without lock operations 1677 */ 1678 int __of_add_property(struct device_node *np, struct property *prop) 1679 { 1680 struct property **next; 1681 1682 prop->next = NULL; 1683 next = &np->properties; 1684 while (*next) { 1685 if (strcmp(prop->name, (*next)->name) == 0) 1686 /* duplicate ! don't insert it */ 1687 return -EEXIST; 1688 1689 next = &(*next)->next; 1690 } 1691 *next = prop; 1692 1693 return 0; 1694 } 1695 1696 /** 1697 * of_add_property - Add a property to a node 1698 */ 1699 int of_add_property(struct device_node *np, struct property *prop) 1700 { 1701 unsigned long flags; 1702 int rc; 1703 1704 mutex_lock(&of_mutex); 1705 1706 raw_spin_lock_irqsave(&devtree_lock, flags); 1707 rc = __of_add_property(np, prop); 1708 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1709 1710 if (!rc) 1711 __of_add_property_sysfs(np, prop); 1712 1713 mutex_unlock(&of_mutex); 1714 1715 if (!rc) 1716 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL); 1717 1718 return rc; 1719 } 1720 1721 int __of_remove_property(struct device_node *np, struct property *prop) 1722 { 1723 struct property **next; 1724 1725 for (next = &np->properties; *next; next = &(*next)->next) { 1726 if (*next == prop) 1727 break; 1728 } 1729 if (*next == NULL) 1730 return -ENODEV; 1731 1732 /* found the node */ 1733 *next = prop->next; 1734 prop->next = np->deadprops; 1735 np->deadprops = prop; 1736 1737 return 0; 1738 } 1739 1740 /** 1741 * of_remove_property - Remove a property from a node. 1742 * 1743 * Note that we don't actually remove it, since we have given out 1744 * who-knows-how-many pointers to the data using get-property. 1745 * Instead we just move the property to the "dead properties" 1746 * list, so it won't be found any more. 1747 */ 1748 int of_remove_property(struct device_node *np, struct property *prop) 1749 { 1750 unsigned long flags; 1751 int rc; 1752 1753 if (!prop) 1754 return -ENODEV; 1755 1756 mutex_lock(&of_mutex); 1757 1758 raw_spin_lock_irqsave(&devtree_lock, flags); 1759 rc = __of_remove_property(np, prop); 1760 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1761 1762 if (!rc) 1763 __of_remove_property_sysfs(np, prop); 1764 1765 mutex_unlock(&of_mutex); 1766 1767 if (!rc) 1768 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL); 1769 1770 return rc; 1771 } 1772 1773 int __of_update_property(struct device_node *np, struct property *newprop, 1774 struct property **oldpropp) 1775 { 1776 struct property **next, *oldprop; 1777 1778 for (next = &np->properties; *next; next = &(*next)->next) { 1779 if (of_prop_cmp((*next)->name, newprop->name) == 0) 1780 break; 1781 } 1782 *oldpropp = oldprop = *next; 1783 1784 if (oldprop) { 1785 /* replace the node */ 1786 newprop->next = oldprop->next; 1787 *next = newprop; 1788 oldprop->next = np->deadprops; 1789 np->deadprops = oldprop; 1790 } else { 1791 /* new node */ 1792 newprop->next = NULL; 1793 *next = newprop; 1794 } 1795 1796 return 0; 1797 } 1798 1799 /* 1800 * of_update_property - Update a property in a node, if the property does 1801 * not exist, add it. 1802 * 1803 * Note that we don't actually remove it, since we have given out 1804 * who-knows-how-many pointers to the data using get-property. 1805 * Instead we just move the property to the "dead properties" list, 1806 * and add the new property to the property list 1807 */ 1808 int of_update_property(struct device_node *np, struct property *newprop) 1809 { 1810 struct property *oldprop; 1811 unsigned long flags; 1812 int rc; 1813 1814 if (!newprop->name) 1815 return -EINVAL; 1816 1817 mutex_lock(&of_mutex); 1818 1819 raw_spin_lock_irqsave(&devtree_lock, flags); 1820 rc = __of_update_property(np, newprop, &oldprop); 1821 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1822 1823 if (!rc) 1824 __of_update_property_sysfs(np, newprop, oldprop); 1825 1826 mutex_unlock(&of_mutex); 1827 1828 if (!rc) 1829 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop); 1830 1831 return rc; 1832 } 1833 1834 static void of_alias_add(struct alias_prop *ap, struct device_node *np, 1835 int id, const char *stem, int stem_len) 1836 { 1837 ap->np = np; 1838 ap->id = id; 1839 strncpy(ap->stem, stem, stem_len); 1840 ap->stem[stem_len] = 0; 1841 list_add_tail(&ap->link, &aliases_lookup); 1842 pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n", 1843 ap->alias, ap->stem, ap->id, np); 1844 } 1845 1846 /** 1847 * of_alias_scan - Scan all properties of the 'aliases' node 1848 * 1849 * The function scans all the properties of the 'aliases' node and populates 1850 * the global lookup table with the properties. It returns the 1851 * number of alias properties found, or an error code in case of failure. 1852 * 1853 * @dt_alloc: An allocator that provides a virtual address to memory 1854 * for storing the resulting tree 1855 */ 1856 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align)) 1857 { 1858 struct property *pp; 1859 1860 of_aliases = of_find_node_by_path("/aliases"); 1861 of_chosen = of_find_node_by_path("/chosen"); 1862 if (of_chosen == NULL) 1863 of_chosen = of_find_node_by_path("/chosen@0"); 1864 1865 if (of_chosen) { 1866 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */ 1867 const char *name = NULL; 1868 1869 if (of_property_read_string(of_chosen, "stdout-path", &name)) 1870 of_property_read_string(of_chosen, "linux,stdout-path", 1871 &name); 1872 if (IS_ENABLED(CONFIG_PPC) && !name) 1873 of_property_read_string(of_aliases, "stdout", &name); 1874 if (name) 1875 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options); 1876 } 1877 1878 if (!of_aliases) 1879 return; 1880 1881 for_each_property_of_node(of_aliases, pp) { 1882 const char *start = pp->name; 1883 const char *end = start + strlen(start); 1884 struct device_node *np; 1885 struct alias_prop *ap; 1886 int id, len; 1887 1888 /* Skip those we do not want to proceed */ 1889 if (!strcmp(pp->name, "name") || 1890 !strcmp(pp->name, "phandle") || 1891 !strcmp(pp->name, "linux,phandle")) 1892 continue; 1893 1894 np = of_find_node_by_path(pp->value); 1895 if (!np) 1896 continue; 1897 1898 /* walk the alias backwards to extract the id and work out 1899 * the 'stem' string */ 1900 while (isdigit(*(end-1)) && end > start) 1901 end--; 1902 len = end - start; 1903 1904 if (kstrtoint(end, 10, &id) < 0) 1905 continue; 1906 1907 /* Allocate an alias_prop with enough space for the stem */ 1908 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap)); 1909 if (!ap) 1910 continue; 1911 memset(ap, 0, sizeof(*ap) + len + 1); 1912 ap->alias = start; 1913 of_alias_add(ap, np, id, start, len); 1914 } 1915 } 1916 1917 /** 1918 * of_alias_get_id - Get alias id for the given device_node 1919 * @np: Pointer to the given device_node 1920 * @stem: Alias stem of the given device_node 1921 * 1922 * The function travels the lookup table to get the alias id for the given 1923 * device_node and alias stem. It returns the alias id if found. 1924 */ 1925 int of_alias_get_id(struct device_node *np, const char *stem) 1926 { 1927 struct alias_prop *app; 1928 int id = -ENODEV; 1929 1930 mutex_lock(&of_mutex); 1931 list_for_each_entry(app, &aliases_lookup, link) { 1932 if (strcmp(app->stem, stem) != 0) 1933 continue; 1934 1935 if (np == app->np) { 1936 id = app->id; 1937 break; 1938 } 1939 } 1940 mutex_unlock(&of_mutex); 1941 1942 return id; 1943 } 1944 EXPORT_SYMBOL_GPL(of_alias_get_id); 1945 1946 /** 1947 * of_alias_get_alias_list - Get alias list for the given device driver 1948 * @matches: Array of OF device match structures to search in 1949 * @stem: Alias stem of the given device_node 1950 * @bitmap: Bitmap field pointer 1951 * @nbits: Maximum number of alias ID which can be recorded it bitmap 1952 * 1953 * The function travels the lookup table to record alias ids for the given 1954 * device match structures and alias stem. 1955 * 1956 * Return: 0 or -ENOSYS when !CONFIG_OF 1957 */ 1958 int of_alias_get_alias_list(const struct of_device_id *matches, 1959 const char *stem, unsigned long *bitmap, 1960 unsigned int nbits) 1961 { 1962 struct alias_prop *app; 1963 1964 /* Zero bitmap field to make sure that all the time it is clean */ 1965 bitmap_zero(bitmap, nbits); 1966 1967 mutex_lock(&of_mutex); 1968 pr_debug("%s: Looking for stem: %s\n", __func__, stem); 1969 list_for_each_entry(app, &aliases_lookup, link) { 1970 pr_debug("%s: stem: %s, id: %d\n", 1971 __func__, app->stem, app->id); 1972 1973 if (strcmp(app->stem, stem) != 0) { 1974 pr_debug("%s: stem comparison doesn't passed %s\n", 1975 __func__, app->stem); 1976 continue; 1977 } 1978 1979 if (app->id >= nbits) { 1980 pr_debug("%s: ID %d greater then bitmap field %d\n", 1981 __func__, app->id, nbits); 1982 continue; 1983 } 1984 1985 if (of_match_node(matches, app->np)) { 1986 pr_debug("%s: Allocated ID %d\n", __func__, app->id); 1987 set_bit(app->id, bitmap); 1988 } 1989 /* Alias exist but it not compatible with matches */ 1990 } 1991 mutex_unlock(&of_mutex); 1992 1993 return 0; 1994 } 1995 EXPORT_SYMBOL_GPL(of_alias_get_alias_list); 1996 1997 /** 1998 * of_alias_get_highest_id - Get highest alias id for the given stem 1999 * @stem: Alias stem to be examined 2000 * 2001 * The function travels the lookup table to get the highest alias id for the 2002 * given alias stem. It returns the alias id if found. 2003 */ 2004 int of_alias_get_highest_id(const char *stem) 2005 { 2006 struct alias_prop *app; 2007 int id = -ENODEV; 2008 2009 mutex_lock(&of_mutex); 2010 list_for_each_entry(app, &aliases_lookup, link) { 2011 if (strcmp(app->stem, stem) != 0) 2012 continue; 2013 2014 if (app->id > id) 2015 id = app->id; 2016 } 2017 mutex_unlock(&of_mutex); 2018 2019 return id; 2020 } 2021 EXPORT_SYMBOL_GPL(of_alias_get_highest_id); 2022 2023 /** 2024 * of_console_check() - Test and setup console for DT setup 2025 * @dn - Pointer to device node 2026 * @name - Name to use for preferred console without index. ex. "ttyS" 2027 * @index - Index to use for preferred console. 2028 * 2029 * Check if the given device node matches the stdout-path property in the 2030 * /chosen node. If it does then register it as the preferred console and return 2031 * TRUE. Otherwise return FALSE. 2032 */ 2033 bool of_console_check(struct device_node *dn, char *name, int index) 2034 { 2035 if (!dn || dn != of_stdout || console_set_on_cmdline) 2036 return false; 2037 2038 /* 2039 * XXX: cast `options' to char pointer to suppress complication 2040 * warnings: printk, UART and console drivers expect char pointer. 2041 */ 2042 return !add_preferred_console(name, index, (char *)of_stdout_options); 2043 } 2044 EXPORT_SYMBOL_GPL(of_console_check); 2045 2046 /** 2047 * of_find_next_cache_node - Find a node's subsidiary cache 2048 * @np: node of type "cpu" or "cache" 2049 * 2050 * Returns a node pointer with refcount incremented, use 2051 * of_node_put() on it when done. Caller should hold a reference 2052 * to np. 2053 */ 2054 struct device_node *of_find_next_cache_node(const struct device_node *np) 2055 { 2056 struct device_node *child, *cache_node; 2057 2058 cache_node = of_parse_phandle(np, "l2-cache", 0); 2059 if (!cache_node) 2060 cache_node = of_parse_phandle(np, "next-level-cache", 0); 2061 2062 if (cache_node) 2063 return cache_node; 2064 2065 /* OF on pmac has nodes instead of properties named "l2-cache" 2066 * beneath CPU nodes. 2067 */ 2068 if (!strcmp(np->type, "cpu")) 2069 for_each_child_of_node(np, child) 2070 if (!strcmp(child->type, "cache")) 2071 return child; 2072 2073 return NULL; 2074 } 2075 2076 /** 2077 * of_find_last_cache_level - Find the level at which the last cache is 2078 * present for the given logical cpu 2079 * 2080 * @cpu: cpu number(logical index) for which the last cache level is needed 2081 * 2082 * Returns the the level at which the last cache is present. It is exactly 2083 * same as the total number of cache levels for the given logical cpu. 2084 */ 2085 int of_find_last_cache_level(unsigned int cpu) 2086 { 2087 u32 cache_level = 0; 2088 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu); 2089 2090 while (np) { 2091 prev = np; 2092 of_node_put(np); 2093 np = of_find_next_cache_node(np); 2094 } 2095 2096 of_property_read_u32(prev, "cache-level", &cache_level); 2097 2098 return cache_level; 2099 } 2100