1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Procedures for creating, accessing and interpreting the device tree. 4 * 5 * Paul Mackerras August 1996. 6 * Copyright (C) 1996-2005 Paul Mackerras. 7 * 8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 9 * {engebret|bergner}@us.ibm.com 10 * 11 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 12 * 13 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 14 * Grant Likely. 15 */ 16 17 #define pr_fmt(fmt) "OF: " fmt 18 19 #include <linux/console.h> 20 #include <linux/ctype.h> 21 #include <linux/cpu.h> 22 #include <linux/module.h> 23 #include <linux/of.h> 24 #include <linux/of_device.h> 25 #include <linux/of_graph.h> 26 #include <linux/spinlock.h> 27 #include <linux/slab.h> 28 #include <linux/string.h> 29 #include <linux/proc_fs.h> 30 31 #include "of_private.h" 32 33 LIST_HEAD(aliases_lookup); 34 35 struct device_node *of_root; 36 EXPORT_SYMBOL(of_root); 37 struct device_node *of_chosen; 38 EXPORT_SYMBOL(of_chosen); 39 struct device_node *of_aliases; 40 struct device_node *of_stdout; 41 static const char *of_stdout_options; 42 43 struct kset *of_kset; 44 45 /* 46 * Used to protect the of_aliases, to hold off addition of nodes to sysfs. 47 * This mutex must be held whenever modifications are being made to the 48 * device tree. The of_{attach,detach}_node() and 49 * of_{add,remove,update}_property() helpers make sure this happens. 50 */ 51 DEFINE_MUTEX(of_mutex); 52 53 /* use when traversing tree through the child, sibling, 54 * or parent members of struct device_node. 55 */ 56 DEFINE_RAW_SPINLOCK(devtree_lock); 57 58 bool of_node_name_eq(const struct device_node *np, const char *name) 59 { 60 const char *node_name; 61 size_t len; 62 63 if (!np) 64 return false; 65 66 node_name = kbasename(np->full_name); 67 len = strchrnul(node_name, '@') - node_name; 68 69 return (strlen(name) == len) && (strncmp(node_name, name, len) == 0); 70 } 71 EXPORT_SYMBOL(of_node_name_eq); 72 73 bool of_node_name_prefix(const struct device_node *np, const char *prefix) 74 { 75 if (!np) 76 return false; 77 78 return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0; 79 } 80 EXPORT_SYMBOL(of_node_name_prefix); 81 82 static bool __of_node_is_type(const struct device_node *np, const char *type) 83 { 84 const char *match = __of_get_property(np, "device_type", NULL); 85 86 return np && match && type && !strcmp(match, type); 87 } 88 89 int of_bus_n_addr_cells(struct device_node *np) 90 { 91 u32 cells; 92 93 for (; np; np = np->parent) 94 if (!of_property_read_u32(np, "#address-cells", &cells)) 95 return cells; 96 97 /* No #address-cells property for the root node */ 98 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 99 } 100 101 int of_n_addr_cells(struct device_node *np) 102 { 103 if (np->parent) 104 np = np->parent; 105 106 return of_bus_n_addr_cells(np); 107 } 108 EXPORT_SYMBOL(of_n_addr_cells); 109 110 int of_bus_n_size_cells(struct device_node *np) 111 { 112 u32 cells; 113 114 for (; np; np = np->parent) 115 if (!of_property_read_u32(np, "#size-cells", &cells)) 116 return cells; 117 118 /* No #size-cells property for the root node */ 119 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 120 } 121 122 int of_n_size_cells(struct device_node *np) 123 { 124 if (np->parent) 125 np = np->parent; 126 127 return of_bus_n_size_cells(np); 128 } 129 EXPORT_SYMBOL(of_n_size_cells); 130 131 #ifdef CONFIG_NUMA 132 int __weak of_node_to_nid(struct device_node *np) 133 { 134 return NUMA_NO_NODE; 135 } 136 #endif 137 138 #define OF_PHANDLE_CACHE_BITS 7 139 #define OF_PHANDLE_CACHE_SZ BIT(OF_PHANDLE_CACHE_BITS) 140 141 static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ]; 142 143 static u32 of_phandle_cache_hash(phandle handle) 144 { 145 return hash_32(handle, OF_PHANDLE_CACHE_BITS); 146 } 147 148 /* 149 * Caller must hold devtree_lock. 150 */ 151 void __of_phandle_cache_inv_entry(phandle handle) 152 { 153 u32 handle_hash; 154 struct device_node *np; 155 156 if (!handle) 157 return; 158 159 handle_hash = of_phandle_cache_hash(handle); 160 161 np = phandle_cache[handle_hash]; 162 if (np && handle == np->phandle) 163 phandle_cache[handle_hash] = NULL; 164 } 165 166 void __init of_core_init(void) 167 { 168 struct device_node *np; 169 170 of_platform_register_reconfig_notifier(); 171 172 /* Create the kset, and register existing nodes */ 173 mutex_lock(&of_mutex); 174 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj); 175 if (!of_kset) { 176 mutex_unlock(&of_mutex); 177 pr_err("failed to register existing nodes\n"); 178 return; 179 } 180 for_each_of_allnodes(np) { 181 __of_attach_node_sysfs(np); 182 if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)]) 183 phandle_cache[of_phandle_cache_hash(np->phandle)] = np; 184 } 185 mutex_unlock(&of_mutex); 186 187 /* Symlink in /proc as required by userspace ABI */ 188 if (of_root) 189 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base"); 190 } 191 192 static struct property *__of_find_property(const struct device_node *np, 193 const char *name, int *lenp) 194 { 195 struct property *pp; 196 197 if (!np) 198 return NULL; 199 200 for (pp = np->properties; pp; pp = pp->next) { 201 if (of_prop_cmp(pp->name, name) == 0) { 202 if (lenp) 203 *lenp = pp->length; 204 break; 205 } 206 } 207 208 return pp; 209 } 210 211 struct property *of_find_property(const struct device_node *np, 212 const char *name, 213 int *lenp) 214 { 215 struct property *pp; 216 unsigned long flags; 217 218 raw_spin_lock_irqsave(&devtree_lock, flags); 219 pp = __of_find_property(np, name, lenp); 220 raw_spin_unlock_irqrestore(&devtree_lock, flags); 221 222 return pp; 223 } 224 EXPORT_SYMBOL(of_find_property); 225 226 struct device_node *__of_find_all_nodes(struct device_node *prev) 227 { 228 struct device_node *np; 229 if (!prev) { 230 np = of_root; 231 } else if (prev->child) { 232 np = prev->child; 233 } else { 234 /* Walk back up looking for a sibling, or the end of the structure */ 235 np = prev; 236 while (np->parent && !np->sibling) 237 np = np->parent; 238 np = np->sibling; /* Might be null at the end of the tree */ 239 } 240 return np; 241 } 242 243 /** 244 * of_find_all_nodes - Get next node in global list 245 * @prev: Previous node or NULL to start iteration 246 * of_node_put() will be called on it 247 * 248 * Return: A node pointer with refcount incremented, use 249 * of_node_put() on it when done. 250 */ 251 struct device_node *of_find_all_nodes(struct device_node *prev) 252 { 253 struct device_node *np; 254 unsigned long flags; 255 256 raw_spin_lock_irqsave(&devtree_lock, flags); 257 np = __of_find_all_nodes(prev); 258 of_node_get(np); 259 of_node_put(prev); 260 raw_spin_unlock_irqrestore(&devtree_lock, flags); 261 return np; 262 } 263 EXPORT_SYMBOL(of_find_all_nodes); 264 265 /* 266 * Find a property with a given name for a given node 267 * and return the value. 268 */ 269 const void *__of_get_property(const struct device_node *np, 270 const char *name, int *lenp) 271 { 272 struct property *pp = __of_find_property(np, name, lenp); 273 274 return pp ? pp->value : NULL; 275 } 276 277 /* 278 * Find a property with a given name for a given node 279 * and return the value. 280 */ 281 const void *of_get_property(const struct device_node *np, const char *name, 282 int *lenp) 283 { 284 struct property *pp = of_find_property(np, name, lenp); 285 286 return pp ? pp->value : NULL; 287 } 288 EXPORT_SYMBOL(of_get_property); 289 290 /** 291 * __of_device_is_compatible() - Check if the node matches given constraints 292 * @device: pointer to node 293 * @compat: required compatible string, NULL or "" for any match 294 * @type: required device_type value, NULL or "" for any match 295 * @name: required node name, NULL or "" for any match 296 * 297 * Checks if the given @compat, @type and @name strings match the 298 * properties of the given @device. A constraints can be skipped by 299 * passing NULL or an empty string as the constraint. 300 * 301 * Returns 0 for no match, and a positive integer on match. The return 302 * value is a relative score with larger values indicating better 303 * matches. The score is weighted for the most specific compatible value 304 * to get the highest score. Matching type is next, followed by matching 305 * name. Practically speaking, this results in the following priority 306 * order for matches: 307 * 308 * 1. specific compatible && type && name 309 * 2. specific compatible && type 310 * 3. specific compatible && name 311 * 4. specific compatible 312 * 5. general compatible && type && name 313 * 6. general compatible && type 314 * 7. general compatible && name 315 * 8. general compatible 316 * 9. type && name 317 * 10. type 318 * 11. name 319 */ 320 static int __of_device_is_compatible(const struct device_node *device, 321 const char *compat, const char *type, const char *name) 322 { 323 struct property *prop; 324 const char *cp; 325 int index = 0, score = 0; 326 327 /* Compatible match has highest priority */ 328 if (compat && compat[0]) { 329 prop = __of_find_property(device, "compatible", NULL); 330 for (cp = of_prop_next_string(prop, NULL); cp; 331 cp = of_prop_next_string(prop, cp), index++) { 332 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) { 333 score = INT_MAX/2 - (index << 2); 334 break; 335 } 336 } 337 if (!score) 338 return 0; 339 } 340 341 /* Matching type is better than matching name */ 342 if (type && type[0]) { 343 if (!__of_node_is_type(device, type)) 344 return 0; 345 score += 2; 346 } 347 348 /* Matching name is a bit better than not */ 349 if (name && name[0]) { 350 if (!of_node_name_eq(device, name)) 351 return 0; 352 score++; 353 } 354 355 return score; 356 } 357 358 /** Checks if the given "compat" string matches one of the strings in 359 * the device's "compatible" property 360 */ 361 int of_device_is_compatible(const struct device_node *device, 362 const char *compat) 363 { 364 unsigned long flags; 365 int res; 366 367 raw_spin_lock_irqsave(&devtree_lock, flags); 368 res = __of_device_is_compatible(device, compat, NULL, NULL); 369 raw_spin_unlock_irqrestore(&devtree_lock, flags); 370 return res; 371 } 372 EXPORT_SYMBOL(of_device_is_compatible); 373 374 /** Checks if the device is compatible with any of the entries in 375 * a NULL terminated array of strings. Returns the best match 376 * score or 0. 377 */ 378 int of_device_compatible_match(const struct device_node *device, 379 const char *const *compat) 380 { 381 unsigned int tmp, score = 0; 382 383 if (!compat) 384 return 0; 385 386 while (*compat) { 387 tmp = of_device_is_compatible(device, *compat); 388 if (tmp > score) 389 score = tmp; 390 compat++; 391 } 392 393 return score; 394 } 395 EXPORT_SYMBOL_GPL(of_device_compatible_match); 396 397 /** 398 * of_machine_is_compatible - Test root of device tree for a given compatible value 399 * @compat: compatible string to look for in root node's compatible property. 400 * 401 * Return: A positive integer if the root node has the given value in its 402 * compatible property. 403 */ 404 int of_machine_is_compatible(const char *compat) 405 { 406 struct device_node *root; 407 int rc = 0; 408 409 root = of_find_node_by_path("/"); 410 if (root) { 411 rc = of_device_is_compatible(root, compat); 412 of_node_put(root); 413 } 414 return rc; 415 } 416 EXPORT_SYMBOL(of_machine_is_compatible); 417 418 static bool __of_device_is_status(const struct device_node *device, 419 const char * const*strings) 420 { 421 const char *status; 422 int statlen; 423 424 if (!device) 425 return false; 426 427 status = __of_get_property(device, "status", &statlen); 428 if (status == NULL) 429 return false; 430 431 if (statlen > 0) { 432 while (*strings) { 433 unsigned int len = strlen(*strings); 434 435 if ((*strings)[len - 1] == '-') { 436 if (!strncmp(status, *strings, len)) 437 return true; 438 } else { 439 if (!strcmp(status, *strings)) 440 return true; 441 } 442 strings++; 443 } 444 } 445 446 return false; 447 } 448 449 /** 450 * __of_device_is_available - check if a device is available for use 451 * 452 * @device: Node to check for availability, with locks already held 453 * 454 * Return: True if the status property is absent or set to "okay" or "ok", 455 * false otherwise 456 */ 457 static bool __of_device_is_available(const struct device_node *device) 458 { 459 static const char * const ok[] = {"okay", "ok", NULL}; 460 461 if (!device) 462 return false; 463 464 return !__of_get_property(device, "status", NULL) || 465 __of_device_is_status(device, ok); 466 } 467 468 /** 469 * __of_device_is_reserved - check if a device is reserved 470 * 471 * @device: Node to check for availability, with locks already held 472 * 473 * Return: True if the status property is set to "reserved", false otherwise 474 */ 475 static bool __of_device_is_reserved(const struct device_node *device) 476 { 477 static const char * const reserved[] = {"reserved", NULL}; 478 479 return __of_device_is_status(device, reserved); 480 } 481 482 /** 483 * of_device_is_available - check if a device is available for use 484 * 485 * @device: Node to check for availability 486 * 487 * Return: True if the status property is absent or set to "okay" or "ok", 488 * false otherwise 489 */ 490 bool of_device_is_available(const struct device_node *device) 491 { 492 unsigned long flags; 493 bool res; 494 495 raw_spin_lock_irqsave(&devtree_lock, flags); 496 res = __of_device_is_available(device); 497 raw_spin_unlock_irqrestore(&devtree_lock, flags); 498 return res; 499 500 } 501 EXPORT_SYMBOL(of_device_is_available); 502 503 /** 504 * __of_device_is_fail - check if a device has status "fail" or "fail-..." 505 * 506 * @device: Node to check status for, with locks already held 507 * 508 * Return: True if the status property is set to "fail" or "fail-..." (for any 509 * error code suffix), false otherwise 510 */ 511 static bool __of_device_is_fail(const struct device_node *device) 512 { 513 static const char * const fail[] = {"fail", "fail-", NULL}; 514 515 return __of_device_is_status(device, fail); 516 } 517 518 /** 519 * of_device_is_big_endian - check if a device has BE registers 520 * 521 * @device: Node to check for endianness 522 * 523 * Return: True if the device has a "big-endian" property, or if the kernel 524 * was compiled for BE *and* the device has a "native-endian" property. 525 * Returns false otherwise. 526 * 527 * Callers would nominally use ioread32be/iowrite32be if 528 * of_device_is_big_endian() == true, or readl/writel otherwise. 529 */ 530 bool of_device_is_big_endian(const struct device_node *device) 531 { 532 if (of_property_read_bool(device, "big-endian")) 533 return true; 534 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) && 535 of_property_read_bool(device, "native-endian")) 536 return true; 537 return false; 538 } 539 EXPORT_SYMBOL(of_device_is_big_endian); 540 541 /** 542 * of_get_parent - Get a node's parent if any 543 * @node: Node to get parent 544 * 545 * Return: A node pointer with refcount incremented, use 546 * of_node_put() on it when done. 547 */ 548 struct device_node *of_get_parent(const struct device_node *node) 549 { 550 struct device_node *np; 551 unsigned long flags; 552 553 if (!node) 554 return NULL; 555 556 raw_spin_lock_irqsave(&devtree_lock, flags); 557 np = of_node_get(node->parent); 558 raw_spin_unlock_irqrestore(&devtree_lock, flags); 559 return np; 560 } 561 EXPORT_SYMBOL(of_get_parent); 562 563 /** 564 * of_get_next_parent - Iterate to a node's parent 565 * @node: Node to get parent of 566 * 567 * This is like of_get_parent() except that it drops the 568 * refcount on the passed node, making it suitable for iterating 569 * through a node's parents. 570 * 571 * Return: A node pointer with refcount incremented, use 572 * of_node_put() on it when done. 573 */ 574 struct device_node *of_get_next_parent(struct device_node *node) 575 { 576 struct device_node *parent; 577 unsigned long flags; 578 579 if (!node) 580 return NULL; 581 582 raw_spin_lock_irqsave(&devtree_lock, flags); 583 parent = of_node_get(node->parent); 584 of_node_put(node); 585 raw_spin_unlock_irqrestore(&devtree_lock, flags); 586 return parent; 587 } 588 EXPORT_SYMBOL(of_get_next_parent); 589 590 static struct device_node *__of_get_next_child(const struct device_node *node, 591 struct device_node *prev) 592 { 593 struct device_node *next; 594 595 if (!node) 596 return NULL; 597 598 next = prev ? prev->sibling : node->child; 599 of_node_get(next); 600 of_node_put(prev); 601 return next; 602 } 603 #define __for_each_child_of_node(parent, child) \ 604 for (child = __of_get_next_child(parent, NULL); child != NULL; \ 605 child = __of_get_next_child(parent, child)) 606 607 /** 608 * of_get_next_child - Iterate a node childs 609 * @node: parent node 610 * @prev: previous child of the parent node, or NULL to get first 611 * 612 * Return: A node pointer with refcount incremented, use of_node_put() on 613 * it when done. Returns NULL when prev is the last child. Decrements the 614 * refcount of prev. 615 */ 616 struct device_node *of_get_next_child(const struct device_node *node, 617 struct device_node *prev) 618 { 619 struct device_node *next; 620 unsigned long flags; 621 622 raw_spin_lock_irqsave(&devtree_lock, flags); 623 next = __of_get_next_child(node, prev); 624 raw_spin_unlock_irqrestore(&devtree_lock, flags); 625 return next; 626 } 627 EXPORT_SYMBOL(of_get_next_child); 628 629 static struct device_node *of_get_next_status_child(const struct device_node *node, 630 struct device_node *prev, 631 bool (*checker)(const struct device_node *)) 632 { 633 struct device_node *next; 634 unsigned long flags; 635 636 if (!node) 637 return NULL; 638 639 raw_spin_lock_irqsave(&devtree_lock, flags); 640 next = prev ? prev->sibling : node->child; 641 for (; next; next = next->sibling) { 642 if (!checker(next)) 643 continue; 644 if (of_node_get(next)) 645 break; 646 } 647 of_node_put(prev); 648 raw_spin_unlock_irqrestore(&devtree_lock, flags); 649 return next; 650 } 651 652 /** 653 * of_get_next_available_child - Find the next available child node 654 * @node: parent node 655 * @prev: previous child of the parent node, or NULL to get first 656 * 657 * This function is like of_get_next_child(), except that it 658 * automatically skips any disabled nodes (i.e. status = "disabled"). 659 */ 660 struct device_node *of_get_next_available_child(const struct device_node *node, 661 struct device_node *prev) 662 { 663 return of_get_next_status_child(node, prev, __of_device_is_available); 664 } 665 EXPORT_SYMBOL(of_get_next_available_child); 666 667 /** 668 * of_get_next_reserved_child - Find the next reserved child node 669 * @node: parent node 670 * @prev: previous child of the parent node, or NULL to get first 671 * 672 * This function is like of_get_next_child(), except that it 673 * automatically skips any disabled nodes (i.e. status = "disabled"). 674 */ 675 struct device_node *of_get_next_reserved_child(const struct device_node *node, 676 struct device_node *prev) 677 { 678 return of_get_next_status_child(node, prev, __of_device_is_reserved); 679 } 680 EXPORT_SYMBOL(of_get_next_reserved_child); 681 682 /** 683 * of_get_next_cpu_node - Iterate on cpu nodes 684 * @prev: previous child of the /cpus node, or NULL to get first 685 * 686 * Unusable CPUs (those with the status property set to "fail" or "fail-...") 687 * will be skipped. 688 * 689 * Return: A cpu node pointer with refcount incremented, use of_node_put() 690 * on it when done. Returns NULL when prev is the last child. Decrements 691 * the refcount of prev. 692 */ 693 struct device_node *of_get_next_cpu_node(struct device_node *prev) 694 { 695 struct device_node *next = NULL; 696 unsigned long flags; 697 struct device_node *node; 698 699 if (!prev) 700 node = of_find_node_by_path("/cpus"); 701 702 raw_spin_lock_irqsave(&devtree_lock, flags); 703 if (prev) 704 next = prev->sibling; 705 else if (node) { 706 next = node->child; 707 of_node_put(node); 708 } 709 for (; next; next = next->sibling) { 710 if (__of_device_is_fail(next)) 711 continue; 712 if (!(of_node_name_eq(next, "cpu") || 713 __of_node_is_type(next, "cpu"))) 714 continue; 715 if (of_node_get(next)) 716 break; 717 } 718 of_node_put(prev); 719 raw_spin_unlock_irqrestore(&devtree_lock, flags); 720 return next; 721 } 722 EXPORT_SYMBOL(of_get_next_cpu_node); 723 724 /** 725 * of_get_compatible_child - Find compatible child node 726 * @parent: parent node 727 * @compatible: compatible string 728 * 729 * Lookup child node whose compatible property contains the given compatible 730 * string. 731 * 732 * Return: a node pointer with refcount incremented, use of_node_put() on it 733 * when done; or NULL if not found. 734 */ 735 struct device_node *of_get_compatible_child(const struct device_node *parent, 736 const char *compatible) 737 { 738 struct device_node *child; 739 740 for_each_child_of_node(parent, child) { 741 if (of_device_is_compatible(child, compatible)) 742 break; 743 } 744 745 return child; 746 } 747 EXPORT_SYMBOL(of_get_compatible_child); 748 749 /** 750 * of_get_child_by_name - Find the child node by name for a given parent 751 * @node: parent node 752 * @name: child name to look for. 753 * 754 * This function looks for child node for given matching name 755 * 756 * Return: A node pointer if found, with refcount incremented, use 757 * of_node_put() on it when done. 758 * Returns NULL if node is not found. 759 */ 760 struct device_node *of_get_child_by_name(const struct device_node *node, 761 const char *name) 762 { 763 struct device_node *child; 764 765 for_each_child_of_node(node, child) 766 if (of_node_name_eq(child, name)) 767 break; 768 return child; 769 } 770 EXPORT_SYMBOL(of_get_child_by_name); 771 772 struct device_node *__of_find_node_by_path(struct device_node *parent, 773 const char *path) 774 { 775 struct device_node *child; 776 int len; 777 778 len = strcspn(path, "/:"); 779 if (!len) 780 return NULL; 781 782 __for_each_child_of_node(parent, child) { 783 const char *name = kbasename(child->full_name); 784 if (strncmp(path, name, len) == 0 && (strlen(name) == len)) 785 return child; 786 } 787 return NULL; 788 } 789 790 struct device_node *__of_find_node_by_full_path(struct device_node *node, 791 const char *path) 792 { 793 const char *separator = strchr(path, ':'); 794 795 while (node && *path == '/') { 796 struct device_node *tmp = node; 797 798 path++; /* Increment past '/' delimiter */ 799 node = __of_find_node_by_path(node, path); 800 of_node_put(tmp); 801 path = strchrnul(path, '/'); 802 if (separator && separator < path) 803 break; 804 } 805 return node; 806 } 807 808 /** 809 * of_find_node_opts_by_path - Find a node matching a full OF path 810 * @path: Either the full path to match, or if the path does not 811 * start with '/', the name of a property of the /aliases 812 * node (an alias). In the case of an alias, the node 813 * matching the alias' value will be returned. 814 * @opts: Address of a pointer into which to store the start of 815 * an options string appended to the end of the path with 816 * a ':' separator. 817 * 818 * Valid paths: 819 * * /foo/bar Full path 820 * * foo Valid alias 821 * * foo/bar Valid alias + relative path 822 * 823 * Return: A node pointer with refcount incremented, use 824 * of_node_put() on it when done. 825 */ 826 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts) 827 { 828 struct device_node *np = NULL; 829 struct property *pp; 830 unsigned long flags; 831 const char *separator = strchr(path, ':'); 832 833 if (opts) 834 *opts = separator ? separator + 1 : NULL; 835 836 if (strcmp(path, "/") == 0) 837 return of_node_get(of_root); 838 839 /* The path could begin with an alias */ 840 if (*path != '/') { 841 int len; 842 const char *p = separator; 843 844 if (!p) 845 p = strchrnul(path, '/'); 846 len = p - path; 847 848 /* of_aliases must not be NULL */ 849 if (!of_aliases) 850 return NULL; 851 852 for_each_property_of_node(of_aliases, pp) { 853 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) { 854 np = of_find_node_by_path(pp->value); 855 break; 856 } 857 } 858 if (!np) 859 return NULL; 860 path = p; 861 } 862 863 /* Step down the tree matching path components */ 864 raw_spin_lock_irqsave(&devtree_lock, flags); 865 if (!np) 866 np = of_node_get(of_root); 867 np = __of_find_node_by_full_path(np, path); 868 raw_spin_unlock_irqrestore(&devtree_lock, flags); 869 return np; 870 } 871 EXPORT_SYMBOL(of_find_node_opts_by_path); 872 873 /** 874 * of_find_node_by_name - Find a node by its "name" property 875 * @from: The node to start searching from or NULL; the node 876 * you pass will not be searched, only the next one 877 * will. Typically, you pass what the previous call 878 * returned. of_node_put() will be called on @from. 879 * @name: The name string to match against 880 * 881 * Return: A node pointer with refcount incremented, use 882 * of_node_put() on it when done. 883 */ 884 struct device_node *of_find_node_by_name(struct device_node *from, 885 const char *name) 886 { 887 struct device_node *np; 888 unsigned long flags; 889 890 raw_spin_lock_irqsave(&devtree_lock, flags); 891 for_each_of_allnodes_from(from, np) 892 if (of_node_name_eq(np, name) && of_node_get(np)) 893 break; 894 of_node_put(from); 895 raw_spin_unlock_irqrestore(&devtree_lock, flags); 896 return np; 897 } 898 EXPORT_SYMBOL(of_find_node_by_name); 899 900 /** 901 * of_find_node_by_type - Find a node by its "device_type" property 902 * @from: The node to start searching from, or NULL to start searching 903 * the entire device tree. The node you pass will not be 904 * searched, only the next one will; typically, you pass 905 * what the previous call returned. of_node_put() will be 906 * called on from for you. 907 * @type: The type string to match against 908 * 909 * Return: A node pointer with refcount incremented, use 910 * of_node_put() on it when done. 911 */ 912 struct device_node *of_find_node_by_type(struct device_node *from, 913 const char *type) 914 { 915 struct device_node *np; 916 unsigned long flags; 917 918 raw_spin_lock_irqsave(&devtree_lock, flags); 919 for_each_of_allnodes_from(from, np) 920 if (__of_node_is_type(np, type) && of_node_get(np)) 921 break; 922 of_node_put(from); 923 raw_spin_unlock_irqrestore(&devtree_lock, flags); 924 return np; 925 } 926 EXPORT_SYMBOL(of_find_node_by_type); 927 928 /** 929 * of_find_compatible_node - Find a node based on type and one of the 930 * tokens in its "compatible" property 931 * @from: The node to start searching from or NULL, the node 932 * you pass will not be searched, only the next one 933 * will; typically, you pass what the previous call 934 * returned. of_node_put() will be called on it 935 * @type: The type string to match "device_type" or NULL to ignore 936 * @compatible: The string to match to one of the tokens in the device 937 * "compatible" list. 938 * 939 * Return: A node pointer with refcount incremented, use 940 * of_node_put() on it when done. 941 */ 942 struct device_node *of_find_compatible_node(struct device_node *from, 943 const char *type, const char *compatible) 944 { 945 struct device_node *np; 946 unsigned long flags; 947 948 raw_spin_lock_irqsave(&devtree_lock, flags); 949 for_each_of_allnodes_from(from, np) 950 if (__of_device_is_compatible(np, compatible, type, NULL) && 951 of_node_get(np)) 952 break; 953 of_node_put(from); 954 raw_spin_unlock_irqrestore(&devtree_lock, flags); 955 return np; 956 } 957 EXPORT_SYMBOL(of_find_compatible_node); 958 959 /** 960 * of_find_node_with_property - Find a node which has a property with 961 * the given name. 962 * @from: The node to start searching from or NULL, the node 963 * you pass will not be searched, only the next one 964 * will; typically, you pass what the previous call 965 * returned. of_node_put() will be called on it 966 * @prop_name: The name of the property to look for. 967 * 968 * Return: A node pointer with refcount incremented, use 969 * of_node_put() on it when done. 970 */ 971 struct device_node *of_find_node_with_property(struct device_node *from, 972 const char *prop_name) 973 { 974 struct device_node *np; 975 struct property *pp; 976 unsigned long flags; 977 978 raw_spin_lock_irqsave(&devtree_lock, flags); 979 for_each_of_allnodes_from(from, np) { 980 for (pp = np->properties; pp; pp = pp->next) { 981 if (of_prop_cmp(pp->name, prop_name) == 0) { 982 of_node_get(np); 983 goto out; 984 } 985 } 986 } 987 out: 988 of_node_put(from); 989 raw_spin_unlock_irqrestore(&devtree_lock, flags); 990 return np; 991 } 992 EXPORT_SYMBOL(of_find_node_with_property); 993 994 static 995 const struct of_device_id *__of_match_node(const struct of_device_id *matches, 996 const struct device_node *node) 997 { 998 const struct of_device_id *best_match = NULL; 999 int score, best_score = 0; 1000 1001 if (!matches) 1002 return NULL; 1003 1004 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) { 1005 score = __of_device_is_compatible(node, matches->compatible, 1006 matches->type, matches->name); 1007 if (score > best_score) { 1008 best_match = matches; 1009 best_score = score; 1010 } 1011 } 1012 1013 return best_match; 1014 } 1015 1016 /** 1017 * of_match_node - Tell if a device_node has a matching of_match structure 1018 * @matches: array of of device match structures to search in 1019 * @node: the of device structure to match against 1020 * 1021 * Low level utility function used by device matching. 1022 */ 1023 const struct of_device_id *of_match_node(const struct of_device_id *matches, 1024 const struct device_node *node) 1025 { 1026 const struct of_device_id *match; 1027 unsigned long flags; 1028 1029 raw_spin_lock_irqsave(&devtree_lock, flags); 1030 match = __of_match_node(matches, node); 1031 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1032 return match; 1033 } 1034 EXPORT_SYMBOL(of_match_node); 1035 1036 /** 1037 * of_find_matching_node_and_match - Find a node based on an of_device_id 1038 * match table. 1039 * @from: The node to start searching from or NULL, the node 1040 * you pass will not be searched, only the next one 1041 * will; typically, you pass what the previous call 1042 * returned. of_node_put() will be called on it 1043 * @matches: array of of device match structures to search in 1044 * @match: Updated to point at the matches entry which matched 1045 * 1046 * Return: A node pointer with refcount incremented, use 1047 * of_node_put() on it when done. 1048 */ 1049 struct device_node *of_find_matching_node_and_match(struct device_node *from, 1050 const struct of_device_id *matches, 1051 const struct of_device_id **match) 1052 { 1053 struct device_node *np; 1054 const struct of_device_id *m; 1055 unsigned long flags; 1056 1057 if (match) 1058 *match = NULL; 1059 1060 raw_spin_lock_irqsave(&devtree_lock, flags); 1061 for_each_of_allnodes_from(from, np) { 1062 m = __of_match_node(matches, np); 1063 if (m && of_node_get(np)) { 1064 if (match) 1065 *match = m; 1066 break; 1067 } 1068 } 1069 of_node_put(from); 1070 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1071 return np; 1072 } 1073 EXPORT_SYMBOL(of_find_matching_node_and_match); 1074 1075 /** 1076 * of_alias_from_compatible - Lookup appropriate alias for a device node 1077 * depending on compatible 1078 * @node: pointer to a device tree node 1079 * @alias: Pointer to buffer that alias value will be copied into 1080 * @len: Length of alias value 1081 * 1082 * Based on the value of the compatible property, this routine will attempt 1083 * to choose an appropriate alias value for a particular device tree node. 1084 * It does this by stripping the manufacturer prefix (as delimited by a ',') 1085 * from the first entry in the compatible list property. 1086 * 1087 * Note: The matching on just the "product" side of the compatible is a relic 1088 * from I2C and SPI. Please do not add any new user. 1089 * 1090 * Return: This routine returns 0 on success, <0 on failure. 1091 */ 1092 int of_alias_from_compatible(const struct device_node *node, char *alias, int len) 1093 { 1094 const char *compatible, *p; 1095 int cplen; 1096 1097 compatible = of_get_property(node, "compatible", &cplen); 1098 if (!compatible || strlen(compatible) > cplen) 1099 return -ENODEV; 1100 p = strchr(compatible, ','); 1101 strscpy(alias, p ? p + 1 : compatible, len); 1102 return 0; 1103 } 1104 EXPORT_SYMBOL_GPL(of_alias_from_compatible); 1105 1106 /** 1107 * of_find_node_by_phandle - Find a node given a phandle 1108 * @handle: phandle of the node to find 1109 * 1110 * Return: A node pointer with refcount incremented, use 1111 * of_node_put() on it when done. 1112 */ 1113 struct device_node *of_find_node_by_phandle(phandle handle) 1114 { 1115 struct device_node *np = NULL; 1116 unsigned long flags; 1117 u32 handle_hash; 1118 1119 if (!handle) 1120 return NULL; 1121 1122 handle_hash = of_phandle_cache_hash(handle); 1123 1124 raw_spin_lock_irqsave(&devtree_lock, flags); 1125 1126 if (phandle_cache[handle_hash] && 1127 handle == phandle_cache[handle_hash]->phandle) 1128 np = phandle_cache[handle_hash]; 1129 1130 if (!np) { 1131 for_each_of_allnodes(np) 1132 if (np->phandle == handle && 1133 !of_node_check_flag(np, OF_DETACHED)) { 1134 phandle_cache[handle_hash] = np; 1135 break; 1136 } 1137 } 1138 1139 of_node_get(np); 1140 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1141 return np; 1142 } 1143 EXPORT_SYMBOL(of_find_node_by_phandle); 1144 1145 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args) 1146 { 1147 int i; 1148 printk("%s %pOF", msg, args->np); 1149 for (i = 0; i < args->args_count; i++) { 1150 const char delim = i ? ',' : ':'; 1151 1152 pr_cont("%c%08x", delim, args->args[i]); 1153 } 1154 pr_cont("\n"); 1155 } 1156 1157 int of_phandle_iterator_init(struct of_phandle_iterator *it, 1158 const struct device_node *np, 1159 const char *list_name, 1160 const char *cells_name, 1161 int cell_count) 1162 { 1163 const __be32 *list; 1164 int size; 1165 1166 memset(it, 0, sizeof(*it)); 1167 1168 /* 1169 * one of cell_count or cells_name must be provided to determine the 1170 * argument length. 1171 */ 1172 if (cell_count < 0 && !cells_name) 1173 return -EINVAL; 1174 1175 list = of_get_property(np, list_name, &size); 1176 if (!list) 1177 return -ENOENT; 1178 1179 it->cells_name = cells_name; 1180 it->cell_count = cell_count; 1181 it->parent = np; 1182 it->list_end = list + size / sizeof(*list); 1183 it->phandle_end = list; 1184 it->cur = list; 1185 1186 return 0; 1187 } 1188 EXPORT_SYMBOL_GPL(of_phandle_iterator_init); 1189 1190 int of_phandle_iterator_next(struct of_phandle_iterator *it) 1191 { 1192 uint32_t count = 0; 1193 1194 if (it->node) { 1195 of_node_put(it->node); 1196 it->node = NULL; 1197 } 1198 1199 if (!it->cur || it->phandle_end >= it->list_end) 1200 return -ENOENT; 1201 1202 it->cur = it->phandle_end; 1203 1204 /* If phandle is 0, then it is an empty entry with no arguments. */ 1205 it->phandle = be32_to_cpup(it->cur++); 1206 1207 if (it->phandle) { 1208 1209 /* 1210 * Find the provider node and parse the #*-cells property to 1211 * determine the argument length. 1212 */ 1213 it->node = of_find_node_by_phandle(it->phandle); 1214 1215 if (it->cells_name) { 1216 if (!it->node) { 1217 pr_err("%pOF: could not find phandle %d\n", 1218 it->parent, it->phandle); 1219 goto err; 1220 } 1221 1222 if (of_property_read_u32(it->node, it->cells_name, 1223 &count)) { 1224 /* 1225 * If both cell_count and cells_name is given, 1226 * fall back to cell_count in absence 1227 * of the cells_name property 1228 */ 1229 if (it->cell_count >= 0) { 1230 count = it->cell_count; 1231 } else { 1232 pr_err("%pOF: could not get %s for %pOF\n", 1233 it->parent, 1234 it->cells_name, 1235 it->node); 1236 goto err; 1237 } 1238 } 1239 } else { 1240 count = it->cell_count; 1241 } 1242 1243 /* 1244 * Make sure that the arguments actually fit in the remaining 1245 * property data length 1246 */ 1247 if (it->cur + count > it->list_end) { 1248 if (it->cells_name) 1249 pr_err("%pOF: %s = %d found %td\n", 1250 it->parent, it->cells_name, 1251 count, it->list_end - it->cur); 1252 else 1253 pr_err("%pOF: phandle %s needs %d, found %td\n", 1254 it->parent, of_node_full_name(it->node), 1255 count, it->list_end - it->cur); 1256 goto err; 1257 } 1258 } 1259 1260 it->phandle_end = it->cur + count; 1261 it->cur_count = count; 1262 1263 return 0; 1264 1265 err: 1266 if (it->node) { 1267 of_node_put(it->node); 1268 it->node = NULL; 1269 } 1270 1271 return -EINVAL; 1272 } 1273 EXPORT_SYMBOL_GPL(of_phandle_iterator_next); 1274 1275 int of_phandle_iterator_args(struct of_phandle_iterator *it, 1276 uint32_t *args, 1277 int size) 1278 { 1279 int i, count; 1280 1281 count = it->cur_count; 1282 1283 if (WARN_ON(size < count)) 1284 count = size; 1285 1286 for (i = 0; i < count; i++) 1287 args[i] = be32_to_cpup(it->cur++); 1288 1289 return count; 1290 } 1291 1292 int __of_parse_phandle_with_args(const struct device_node *np, 1293 const char *list_name, 1294 const char *cells_name, 1295 int cell_count, int index, 1296 struct of_phandle_args *out_args) 1297 { 1298 struct of_phandle_iterator it; 1299 int rc, cur_index = 0; 1300 1301 if (index < 0) 1302 return -EINVAL; 1303 1304 /* Loop over the phandles until all the requested entry is found */ 1305 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) { 1306 /* 1307 * All of the error cases bail out of the loop, so at 1308 * this point, the parsing is successful. If the requested 1309 * index matches, then fill the out_args structure and return, 1310 * or return -ENOENT for an empty entry. 1311 */ 1312 rc = -ENOENT; 1313 if (cur_index == index) { 1314 if (!it.phandle) 1315 goto err; 1316 1317 if (out_args) { 1318 int c; 1319 1320 c = of_phandle_iterator_args(&it, 1321 out_args->args, 1322 MAX_PHANDLE_ARGS); 1323 out_args->np = it.node; 1324 out_args->args_count = c; 1325 } else { 1326 of_node_put(it.node); 1327 } 1328 1329 /* Found it! return success */ 1330 return 0; 1331 } 1332 1333 cur_index++; 1334 } 1335 1336 /* 1337 * Unlock node before returning result; will be one of: 1338 * -ENOENT : index is for empty phandle 1339 * -EINVAL : parsing error on data 1340 */ 1341 1342 err: 1343 of_node_put(it.node); 1344 return rc; 1345 } 1346 EXPORT_SYMBOL(__of_parse_phandle_with_args); 1347 1348 /** 1349 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it 1350 * @np: pointer to a device tree node containing a list 1351 * @list_name: property name that contains a list 1352 * @stem_name: stem of property names that specify phandles' arguments count 1353 * @index: index of a phandle to parse out 1354 * @out_args: optional pointer to output arguments structure (will be filled) 1355 * 1356 * This function is useful to parse lists of phandles and their arguments. 1357 * Returns 0 on success and fills out_args, on error returns appropriate errno 1358 * value. The difference between this function and of_parse_phandle_with_args() 1359 * is that this API remaps a phandle if the node the phandle points to has 1360 * a <@stem_name>-map property. 1361 * 1362 * Caller is responsible to call of_node_put() on the returned out_args->np 1363 * pointer. 1364 * 1365 * Example:: 1366 * 1367 * phandle1: node1 { 1368 * #list-cells = <2>; 1369 * }; 1370 * 1371 * phandle2: node2 { 1372 * #list-cells = <1>; 1373 * }; 1374 * 1375 * phandle3: node3 { 1376 * #list-cells = <1>; 1377 * list-map = <0 &phandle2 3>, 1378 * <1 &phandle2 2>, 1379 * <2 &phandle1 5 1>; 1380 * list-map-mask = <0x3>; 1381 * }; 1382 * 1383 * node4 { 1384 * list = <&phandle1 1 2 &phandle3 0>; 1385 * }; 1386 * 1387 * To get a device_node of the ``node2`` node you may call this: 1388 * of_parse_phandle_with_args(node4, "list", "list", 1, &args); 1389 */ 1390 int of_parse_phandle_with_args_map(const struct device_node *np, 1391 const char *list_name, 1392 const char *stem_name, 1393 int index, struct of_phandle_args *out_args) 1394 { 1395 char *cells_name, *map_name = NULL, *mask_name = NULL; 1396 char *pass_name = NULL; 1397 struct device_node *cur, *new = NULL; 1398 const __be32 *map, *mask, *pass; 1399 static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = cpu_to_be32(~0) }; 1400 static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = cpu_to_be32(0) }; 1401 __be32 initial_match_array[MAX_PHANDLE_ARGS]; 1402 const __be32 *match_array = initial_match_array; 1403 int i, ret, map_len, match; 1404 u32 list_size, new_size; 1405 1406 if (index < 0) 1407 return -EINVAL; 1408 1409 cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name); 1410 if (!cells_name) 1411 return -ENOMEM; 1412 1413 ret = -ENOMEM; 1414 map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name); 1415 if (!map_name) 1416 goto free; 1417 1418 mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name); 1419 if (!mask_name) 1420 goto free; 1421 1422 pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name); 1423 if (!pass_name) 1424 goto free; 1425 1426 ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index, 1427 out_args); 1428 if (ret) 1429 goto free; 1430 1431 /* Get the #<list>-cells property */ 1432 cur = out_args->np; 1433 ret = of_property_read_u32(cur, cells_name, &list_size); 1434 if (ret < 0) 1435 goto put; 1436 1437 /* Precalculate the match array - this simplifies match loop */ 1438 for (i = 0; i < list_size; i++) 1439 initial_match_array[i] = cpu_to_be32(out_args->args[i]); 1440 1441 ret = -EINVAL; 1442 while (cur) { 1443 /* Get the <list>-map property */ 1444 map = of_get_property(cur, map_name, &map_len); 1445 if (!map) { 1446 ret = 0; 1447 goto free; 1448 } 1449 map_len /= sizeof(u32); 1450 1451 /* Get the <list>-map-mask property (optional) */ 1452 mask = of_get_property(cur, mask_name, NULL); 1453 if (!mask) 1454 mask = dummy_mask; 1455 /* Iterate through <list>-map property */ 1456 match = 0; 1457 while (map_len > (list_size + 1) && !match) { 1458 /* Compare specifiers */ 1459 match = 1; 1460 for (i = 0; i < list_size; i++, map_len--) 1461 match &= !((match_array[i] ^ *map++) & mask[i]); 1462 1463 of_node_put(new); 1464 new = of_find_node_by_phandle(be32_to_cpup(map)); 1465 map++; 1466 map_len--; 1467 1468 /* Check if not found */ 1469 if (!new) 1470 goto put; 1471 1472 if (!of_device_is_available(new)) 1473 match = 0; 1474 1475 ret = of_property_read_u32(new, cells_name, &new_size); 1476 if (ret) 1477 goto put; 1478 1479 /* Check for malformed properties */ 1480 if (WARN_ON(new_size > MAX_PHANDLE_ARGS)) 1481 goto put; 1482 if (map_len < new_size) 1483 goto put; 1484 1485 /* Move forward by new node's #<list>-cells amount */ 1486 map += new_size; 1487 map_len -= new_size; 1488 } 1489 if (!match) 1490 goto put; 1491 1492 /* Get the <list>-map-pass-thru property (optional) */ 1493 pass = of_get_property(cur, pass_name, NULL); 1494 if (!pass) 1495 pass = dummy_pass; 1496 1497 /* 1498 * Successfully parsed a <list>-map translation; copy new 1499 * specifier into the out_args structure, keeping the 1500 * bits specified in <list>-map-pass-thru. 1501 */ 1502 match_array = map - new_size; 1503 for (i = 0; i < new_size; i++) { 1504 __be32 val = *(map - new_size + i); 1505 1506 if (i < list_size) { 1507 val &= ~pass[i]; 1508 val |= cpu_to_be32(out_args->args[i]) & pass[i]; 1509 } 1510 1511 out_args->args[i] = be32_to_cpu(val); 1512 } 1513 out_args->args_count = list_size = new_size; 1514 /* Iterate again with new provider */ 1515 out_args->np = new; 1516 of_node_put(cur); 1517 cur = new; 1518 new = NULL; 1519 } 1520 put: 1521 of_node_put(cur); 1522 of_node_put(new); 1523 free: 1524 kfree(mask_name); 1525 kfree(map_name); 1526 kfree(cells_name); 1527 kfree(pass_name); 1528 1529 return ret; 1530 } 1531 EXPORT_SYMBOL(of_parse_phandle_with_args_map); 1532 1533 /** 1534 * of_count_phandle_with_args() - Find the number of phandles references in a property 1535 * @np: pointer to a device tree node containing a list 1536 * @list_name: property name that contains a list 1537 * @cells_name: property name that specifies phandles' arguments count 1538 * 1539 * Return: The number of phandle + argument tuples within a property. It 1540 * is a typical pattern to encode a list of phandle and variable 1541 * arguments into a single property. The number of arguments is encoded 1542 * by a property in the phandle-target node. For example, a gpios 1543 * property would contain a list of GPIO specifies consisting of a 1544 * phandle and 1 or more arguments. The number of arguments are 1545 * determined by the #gpio-cells property in the node pointed to by the 1546 * phandle. 1547 */ 1548 int of_count_phandle_with_args(const struct device_node *np, const char *list_name, 1549 const char *cells_name) 1550 { 1551 struct of_phandle_iterator it; 1552 int rc, cur_index = 0; 1553 1554 /* 1555 * If cells_name is NULL we assume a cell count of 0. This makes 1556 * counting the phandles trivial as each 32bit word in the list is a 1557 * phandle and no arguments are to consider. So we don't iterate through 1558 * the list but just use the length to determine the phandle count. 1559 */ 1560 if (!cells_name) { 1561 const __be32 *list; 1562 int size; 1563 1564 list = of_get_property(np, list_name, &size); 1565 if (!list) 1566 return -ENOENT; 1567 1568 return size / sizeof(*list); 1569 } 1570 1571 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1); 1572 if (rc) 1573 return rc; 1574 1575 while ((rc = of_phandle_iterator_next(&it)) == 0) 1576 cur_index += 1; 1577 1578 if (rc != -ENOENT) 1579 return rc; 1580 1581 return cur_index; 1582 } 1583 EXPORT_SYMBOL(of_count_phandle_with_args); 1584 1585 static struct property *__of_remove_property_from_list(struct property **list, struct property *prop) 1586 { 1587 struct property **next; 1588 1589 for (next = list; *next; next = &(*next)->next) { 1590 if (*next == prop) { 1591 *next = prop->next; 1592 prop->next = NULL; 1593 return prop; 1594 } 1595 } 1596 return NULL; 1597 } 1598 1599 /** 1600 * __of_add_property - Add a property to a node without lock operations 1601 * @np: Caller's Device Node 1602 * @prop: Property to add 1603 */ 1604 int __of_add_property(struct device_node *np, struct property *prop) 1605 { 1606 int rc = 0; 1607 unsigned long flags; 1608 struct property **next; 1609 1610 raw_spin_lock_irqsave(&devtree_lock, flags); 1611 1612 __of_remove_property_from_list(&np->deadprops, prop); 1613 1614 prop->next = NULL; 1615 next = &np->properties; 1616 while (*next) { 1617 if (strcmp(prop->name, (*next)->name) == 0) { 1618 /* duplicate ! don't insert it */ 1619 rc = -EEXIST; 1620 goto out_unlock; 1621 } 1622 next = &(*next)->next; 1623 } 1624 *next = prop; 1625 1626 out_unlock: 1627 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1628 if (rc) 1629 return rc; 1630 1631 __of_add_property_sysfs(np, prop); 1632 return 0; 1633 } 1634 1635 /** 1636 * of_add_property - Add a property to a node 1637 * @np: Caller's Device Node 1638 * @prop: Property to add 1639 */ 1640 int of_add_property(struct device_node *np, struct property *prop) 1641 { 1642 int rc; 1643 1644 mutex_lock(&of_mutex); 1645 rc = __of_add_property(np, prop); 1646 mutex_unlock(&of_mutex); 1647 1648 if (!rc) 1649 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL); 1650 1651 return rc; 1652 } 1653 EXPORT_SYMBOL_GPL(of_add_property); 1654 1655 int __of_remove_property(struct device_node *np, struct property *prop) 1656 { 1657 unsigned long flags; 1658 int rc = -ENODEV; 1659 1660 raw_spin_lock_irqsave(&devtree_lock, flags); 1661 1662 if (__of_remove_property_from_list(&np->properties, prop)) { 1663 /* Found the property, add it to deadprops list */ 1664 prop->next = np->deadprops; 1665 np->deadprops = prop; 1666 rc = 0; 1667 } 1668 1669 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1670 if (rc) 1671 return rc; 1672 1673 __of_remove_property_sysfs(np, prop); 1674 return 0; 1675 } 1676 1677 /** 1678 * of_remove_property - Remove a property from a node. 1679 * @np: Caller's Device Node 1680 * @prop: Property to remove 1681 * 1682 * Note that we don't actually remove it, since we have given out 1683 * who-knows-how-many pointers to the data using get-property. 1684 * Instead we just move the property to the "dead properties" 1685 * list, so it won't be found any more. 1686 */ 1687 int of_remove_property(struct device_node *np, struct property *prop) 1688 { 1689 int rc; 1690 1691 if (!prop) 1692 return -ENODEV; 1693 1694 mutex_lock(&of_mutex); 1695 rc = __of_remove_property(np, prop); 1696 mutex_unlock(&of_mutex); 1697 1698 if (!rc) 1699 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL); 1700 1701 return rc; 1702 } 1703 EXPORT_SYMBOL_GPL(of_remove_property); 1704 1705 int __of_update_property(struct device_node *np, struct property *newprop, 1706 struct property **oldpropp) 1707 { 1708 struct property **next, *oldprop; 1709 unsigned long flags; 1710 1711 raw_spin_lock_irqsave(&devtree_lock, flags); 1712 1713 __of_remove_property_from_list(&np->deadprops, newprop); 1714 1715 for (next = &np->properties; *next; next = &(*next)->next) { 1716 if (of_prop_cmp((*next)->name, newprop->name) == 0) 1717 break; 1718 } 1719 *oldpropp = oldprop = *next; 1720 1721 if (oldprop) { 1722 /* replace the node */ 1723 newprop->next = oldprop->next; 1724 *next = newprop; 1725 oldprop->next = np->deadprops; 1726 np->deadprops = oldprop; 1727 } else { 1728 /* new node */ 1729 newprop->next = NULL; 1730 *next = newprop; 1731 } 1732 1733 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1734 1735 __of_update_property_sysfs(np, newprop, oldprop); 1736 1737 return 0; 1738 } 1739 1740 /* 1741 * of_update_property - Update a property in a node, if the property does 1742 * not exist, add it. 1743 * 1744 * Note that we don't actually remove it, since we have given out 1745 * who-knows-how-many pointers to the data using get-property. 1746 * Instead we just move the property to the "dead properties" list, 1747 * and add the new property to the property list 1748 */ 1749 int of_update_property(struct device_node *np, struct property *newprop) 1750 { 1751 struct property *oldprop; 1752 int rc; 1753 1754 if (!newprop->name) 1755 return -EINVAL; 1756 1757 mutex_lock(&of_mutex); 1758 rc = __of_update_property(np, newprop, &oldprop); 1759 mutex_unlock(&of_mutex); 1760 1761 if (!rc) 1762 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop); 1763 1764 return rc; 1765 } 1766 1767 static void of_alias_add(struct alias_prop *ap, struct device_node *np, 1768 int id, const char *stem, int stem_len) 1769 { 1770 ap->np = np; 1771 ap->id = id; 1772 strscpy(ap->stem, stem, stem_len + 1); 1773 list_add_tail(&ap->link, &aliases_lookup); 1774 pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n", 1775 ap->alias, ap->stem, ap->id, np); 1776 } 1777 1778 /** 1779 * of_alias_scan - Scan all properties of the 'aliases' node 1780 * @dt_alloc: An allocator that provides a virtual address to memory 1781 * for storing the resulting tree 1782 * 1783 * The function scans all the properties of the 'aliases' node and populates 1784 * the global lookup table with the properties. It returns the 1785 * number of alias properties found, or an error code in case of failure. 1786 */ 1787 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align)) 1788 { 1789 struct property *pp; 1790 1791 of_aliases = of_find_node_by_path("/aliases"); 1792 of_chosen = of_find_node_by_path("/chosen"); 1793 if (of_chosen == NULL) 1794 of_chosen = of_find_node_by_path("/chosen@0"); 1795 1796 if (of_chosen) { 1797 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */ 1798 const char *name = NULL; 1799 1800 if (of_property_read_string(of_chosen, "stdout-path", &name)) 1801 of_property_read_string(of_chosen, "linux,stdout-path", 1802 &name); 1803 if (IS_ENABLED(CONFIG_PPC) && !name) 1804 of_property_read_string(of_aliases, "stdout", &name); 1805 if (name) 1806 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options); 1807 if (of_stdout) 1808 of_stdout->fwnode.flags |= FWNODE_FLAG_BEST_EFFORT; 1809 } 1810 1811 if (!of_aliases) 1812 return; 1813 1814 for_each_property_of_node(of_aliases, pp) { 1815 const char *start = pp->name; 1816 const char *end = start + strlen(start); 1817 struct device_node *np; 1818 struct alias_prop *ap; 1819 int id, len; 1820 1821 /* Skip those we do not want to proceed */ 1822 if (!strcmp(pp->name, "name") || 1823 !strcmp(pp->name, "phandle") || 1824 !strcmp(pp->name, "linux,phandle")) 1825 continue; 1826 1827 np = of_find_node_by_path(pp->value); 1828 if (!np) 1829 continue; 1830 1831 /* walk the alias backwards to extract the id and work out 1832 * the 'stem' string */ 1833 while (isdigit(*(end-1)) && end > start) 1834 end--; 1835 len = end - start; 1836 1837 if (kstrtoint(end, 10, &id) < 0) 1838 continue; 1839 1840 /* Allocate an alias_prop with enough space for the stem */ 1841 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap)); 1842 if (!ap) 1843 continue; 1844 memset(ap, 0, sizeof(*ap) + len + 1); 1845 ap->alias = start; 1846 of_alias_add(ap, np, id, start, len); 1847 } 1848 } 1849 1850 /** 1851 * of_alias_get_id - Get alias id for the given device_node 1852 * @np: Pointer to the given device_node 1853 * @stem: Alias stem of the given device_node 1854 * 1855 * The function travels the lookup table to get the alias id for the given 1856 * device_node and alias stem. 1857 * 1858 * Return: The alias id if found. 1859 */ 1860 int of_alias_get_id(struct device_node *np, const char *stem) 1861 { 1862 struct alias_prop *app; 1863 int id = -ENODEV; 1864 1865 mutex_lock(&of_mutex); 1866 list_for_each_entry(app, &aliases_lookup, link) { 1867 if (strcmp(app->stem, stem) != 0) 1868 continue; 1869 1870 if (np == app->np) { 1871 id = app->id; 1872 break; 1873 } 1874 } 1875 mutex_unlock(&of_mutex); 1876 1877 return id; 1878 } 1879 EXPORT_SYMBOL_GPL(of_alias_get_id); 1880 1881 /** 1882 * of_alias_get_highest_id - Get highest alias id for the given stem 1883 * @stem: Alias stem to be examined 1884 * 1885 * The function travels the lookup table to get the highest alias id for the 1886 * given alias stem. It returns the alias id if found. 1887 */ 1888 int of_alias_get_highest_id(const char *stem) 1889 { 1890 struct alias_prop *app; 1891 int id = -ENODEV; 1892 1893 mutex_lock(&of_mutex); 1894 list_for_each_entry(app, &aliases_lookup, link) { 1895 if (strcmp(app->stem, stem) != 0) 1896 continue; 1897 1898 if (app->id > id) 1899 id = app->id; 1900 } 1901 mutex_unlock(&of_mutex); 1902 1903 return id; 1904 } 1905 EXPORT_SYMBOL_GPL(of_alias_get_highest_id); 1906 1907 /** 1908 * of_console_check() - Test and setup console for DT setup 1909 * @dn: Pointer to device node 1910 * @name: Name to use for preferred console without index. ex. "ttyS" 1911 * @index: Index to use for preferred console. 1912 * 1913 * Check if the given device node matches the stdout-path property in the 1914 * /chosen node. If it does then register it as the preferred console. 1915 * 1916 * Return: TRUE if console successfully setup. Otherwise return FALSE. 1917 */ 1918 bool of_console_check(struct device_node *dn, char *name, int index) 1919 { 1920 if (!dn || dn != of_stdout || console_set_on_cmdline) 1921 return false; 1922 1923 /* 1924 * XXX: cast `options' to char pointer to suppress complication 1925 * warnings: printk, UART and console drivers expect char pointer. 1926 */ 1927 return !add_preferred_console(name, index, (char *)of_stdout_options); 1928 } 1929 EXPORT_SYMBOL_GPL(of_console_check); 1930 1931 /** 1932 * of_find_next_cache_node - Find a node's subsidiary cache 1933 * @np: node of type "cpu" or "cache" 1934 * 1935 * Return: A node pointer with refcount incremented, use 1936 * of_node_put() on it when done. Caller should hold a reference 1937 * to np. 1938 */ 1939 struct device_node *of_find_next_cache_node(const struct device_node *np) 1940 { 1941 struct device_node *child, *cache_node; 1942 1943 cache_node = of_parse_phandle(np, "l2-cache", 0); 1944 if (!cache_node) 1945 cache_node = of_parse_phandle(np, "next-level-cache", 0); 1946 1947 if (cache_node) 1948 return cache_node; 1949 1950 /* OF on pmac has nodes instead of properties named "l2-cache" 1951 * beneath CPU nodes. 1952 */ 1953 if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu")) 1954 for_each_child_of_node(np, child) 1955 if (of_node_is_type(child, "cache")) 1956 return child; 1957 1958 return NULL; 1959 } 1960 1961 /** 1962 * of_find_last_cache_level - Find the level at which the last cache is 1963 * present for the given logical cpu 1964 * 1965 * @cpu: cpu number(logical index) for which the last cache level is needed 1966 * 1967 * Return: The level at which the last cache is present. It is exactly 1968 * same as the total number of cache levels for the given logical cpu. 1969 */ 1970 int of_find_last_cache_level(unsigned int cpu) 1971 { 1972 u32 cache_level = 0; 1973 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu); 1974 1975 while (np) { 1976 of_node_put(prev); 1977 prev = np; 1978 np = of_find_next_cache_node(np); 1979 } 1980 1981 of_property_read_u32(prev, "cache-level", &cache_level); 1982 of_node_put(prev); 1983 1984 return cache_level; 1985 } 1986 1987 /** 1988 * of_map_id - Translate an ID through a downstream mapping. 1989 * @np: root complex device node. 1990 * @id: device ID to map. 1991 * @map_name: property name of the map to use. 1992 * @map_mask_name: optional property name of the mask to use. 1993 * @target: optional pointer to a target device node. 1994 * @id_out: optional pointer to receive the translated ID. 1995 * 1996 * Given a device ID, look up the appropriate implementation-defined 1997 * platform ID and/or the target device which receives transactions on that 1998 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or 1999 * @id_out may be NULL if only the other is required. If @target points to 2000 * a non-NULL device node pointer, only entries targeting that node will be 2001 * matched; if it points to a NULL value, it will receive the device node of 2002 * the first matching target phandle, with a reference held. 2003 * 2004 * Return: 0 on success or a standard error code on failure. 2005 */ 2006 int of_map_id(struct device_node *np, u32 id, 2007 const char *map_name, const char *map_mask_name, 2008 struct device_node **target, u32 *id_out) 2009 { 2010 u32 map_mask, masked_id; 2011 int map_len; 2012 const __be32 *map = NULL; 2013 2014 if (!np || !map_name || (!target && !id_out)) 2015 return -EINVAL; 2016 2017 map = of_get_property(np, map_name, &map_len); 2018 if (!map) { 2019 if (target) 2020 return -ENODEV; 2021 /* Otherwise, no map implies no translation */ 2022 *id_out = id; 2023 return 0; 2024 } 2025 2026 if (!map_len || map_len % (4 * sizeof(*map))) { 2027 pr_err("%pOF: Error: Bad %s length: %d\n", np, 2028 map_name, map_len); 2029 return -EINVAL; 2030 } 2031 2032 /* The default is to select all bits. */ 2033 map_mask = 0xffffffff; 2034 2035 /* 2036 * Can be overridden by "{iommu,msi}-map-mask" property. 2037 * If of_property_read_u32() fails, the default is used. 2038 */ 2039 if (map_mask_name) 2040 of_property_read_u32(np, map_mask_name, &map_mask); 2041 2042 masked_id = map_mask & id; 2043 for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) { 2044 struct device_node *phandle_node; 2045 u32 id_base = be32_to_cpup(map + 0); 2046 u32 phandle = be32_to_cpup(map + 1); 2047 u32 out_base = be32_to_cpup(map + 2); 2048 u32 id_len = be32_to_cpup(map + 3); 2049 2050 if (id_base & ~map_mask) { 2051 pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n", 2052 np, map_name, map_name, 2053 map_mask, id_base); 2054 return -EFAULT; 2055 } 2056 2057 if (masked_id < id_base || masked_id >= id_base + id_len) 2058 continue; 2059 2060 phandle_node = of_find_node_by_phandle(phandle); 2061 if (!phandle_node) 2062 return -ENODEV; 2063 2064 if (target) { 2065 if (*target) 2066 of_node_put(phandle_node); 2067 else 2068 *target = phandle_node; 2069 2070 if (*target != phandle_node) 2071 continue; 2072 } 2073 2074 if (id_out) 2075 *id_out = masked_id - id_base + out_base; 2076 2077 pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n", 2078 np, map_name, map_mask, id_base, out_base, 2079 id_len, id, masked_id - id_base + out_base); 2080 return 0; 2081 } 2082 2083 pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name, 2084 id, target && *target ? *target : NULL); 2085 2086 /* Bypasses translation */ 2087 if (id_out) 2088 *id_out = id; 2089 return 0; 2090 } 2091 EXPORT_SYMBOL_GPL(of_map_id); 2092