xref: /linux/drivers/of/base.c (revision 8a2fbffcbfcb60378626e5d4144a6ff43f3b6776)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Procedures for creating, accessing and interpreting the device tree.
4  *
5  * Paul Mackerras	August 1996.
6  * Copyright (C) 1996-2005 Paul Mackerras.
7  *
8  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9  *    {engebret|bergner}@us.ibm.com
10  *
11  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12  *
13  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
14  *  Grant Likely.
15  */
16 
17 #define pr_fmt(fmt)	"OF: " fmt
18 
19 #include <linux/console.h>
20 #include <linux/ctype.h>
21 #include <linux/cpu.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/of_graph.h>
26 #include <linux/spinlock.h>
27 #include <linux/slab.h>
28 #include <linux/string.h>
29 #include <linux/proc_fs.h>
30 
31 #include "of_private.h"
32 
33 LIST_HEAD(aliases_lookup);
34 
35 struct device_node *of_root;
36 EXPORT_SYMBOL(of_root);
37 struct device_node *of_chosen;
38 EXPORT_SYMBOL(of_chosen);
39 struct device_node *of_aliases;
40 struct device_node *of_stdout;
41 static const char *of_stdout_options;
42 
43 struct kset *of_kset;
44 
45 /*
46  * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
47  * This mutex must be held whenever modifications are being made to the
48  * device tree. The of_{attach,detach}_node() and
49  * of_{add,remove,update}_property() helpers make sure this happens.
50  */
51 DEFINE_MUTEX(of_mutex);
52 
53 /* use when traversing tree through the child, sibling,
54  * or parent members of struct device_node.
55  */
56 DEFINE_RAW_SPINLOCK(devtree_lock);
57 
58 bool of_node_name_eq(const struct device_node *np, const char *name)
59 {
60 	const char *node_name;
61 	size_t len;
62 
63 	if (!np)
64 		return false;
65 
66 	node_name = kbasename(np->full_name);
67 	len = strchrnul(node_name, '@') - node_name;
68 
69 	return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
70 }
71 EXPORT_SYMBOL(of_node_name_eq);
72 
73 bool of_node_name_prefix(const struct device_node *np, const char *prefix)
74 {
75 	if (!np)
76 		return false;
77 
78 	return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
79 }
80 EXPORT_SYMBOL(of_node_name_prefix);
81 
82 static bool __of_node_is_type(const struct device_node *np, const char *type)
83 {
84 	const char *match = __of_get_property(np, "device_type", NULL);
85 
86 	return np && match && type && !strcmp(match, type);
87 }
88 
89 int of_bus_n_addr_cells(struct device_node *np)
90 {
91 	u32 cells;
92 
93 	for (; np; np = np->parent)
94 		if (!of_property_read_u32(np, "#address-cells", &cells))
95 			return cells;
96 
97 	/* No #address-cells property for the root node */
98 	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
99 }
100 
101 int of_n_addr_cells(struct device_node *np)
102 {
103 	if (np->parent)
104 		np = np->parent;
105 
106 	return of_bus_n_addr_cells(np);
107 }
108 EXPORT_SYMBOL(of_n_addr_cells);
109 
110 int of_bus_n_size_cells(struct device_node *np)
111 {
112 	u32 cells;
113 
114 	for (; np; np = np->parent)
115 		if (!of_property_read_u32(np, "#size-cells", &cells))
116 			return cells;
117 
118 	/* No #size-cells property for the root node */
119 	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
120 }
121 
122 int of_n_size_cells(struct device_node *np)
123 {
124 	if (np->parent)
125 		np = np->parent;
126 
127 	return of_bus_n_size_cells(np);
128 }
129 EXPORT_SYMBOL(of_n_size_cells);
130 
131 #ifdef CONFIG_NUMA
132 int __weak of_node_to_nid(struct device_node *np)
133 {
134 	return NUMA_NO_NODE;
135 }
136 #endif
137 
138 #define OF_PHANDLE_CACHE_BITS	7
139 #define OF_PHANDLE_CACHE_SZ	BIT(OF_PHANDLE_CACHE_BITS)
140 
141 static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ];
142 
143 static u32 of_phandle_cache_hash(phandle handle)
144 {
145 	return hash_32(handle, OF_PHANDLE_CACHE_BITS);
146 }
147 
148 /*
149  * Caller must hold devtree_lock.
150  */
151 void __of_phandle_cache_inv_entry(phandle handle)
152 {
153 	u32 handle_hash;
154 	struct device_node *np;
155 
156 	if (!handle)
157 		return;
158 
159 	handle_hash = of_phandle_cache_hash(handle);
160 
161 	np = phandle_cache[handle_hash];
162 	if (np && handle == np->phandle)
163 		phandle_cache[handle_hash] = NULL;
164 }
165 
166 void __init of_core_init(void)
167 {
168 	struct device_node *np;
169 
170 	of_platform_register_reconfig_notifier();
171 
172 	/* Create the kset, and register existing nodes */
173 	mutex_lock(&of_mutex);
174 	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
175 	if (!of_kset) {
176 		mutex_unlock(&of_mutex);
177 		pr_err("failed to register existing nodes\n");
178 		return;
179 	}
180 	for_each_of_allnodes(np) {
181 		__of_attach_node_sysfs(np);
182 		if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)])
183 			phandle_cache[of_phandle_cache_hash(np->phandle)] = np;
184 	}
185 	mutex_unlock(&of_mutex);
186 
187 	/* Symlink in /proc as required by userspace ABI */
188 	if (of_root)
189 		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
190 }
191 
192 static struct property *__of_find_property(const struct device_node *np,
193 					   const char *name, int *lenp)
194 {
195 	struct property *pp;
196 
197 	if (!np)
198 		return NULL;
199 
200 	for (pp = np->properties; pp; pp = pp->next) {
201 		if (of_prop_cmp(pp->name, name) == 0) {
202 			if (lenp)
203 				*lenp = pp->length;
204 			break;
205 		}
206 	}
207 
208 	return pp;
209 }
210 
211 struct property *of_find_property(const struct device_node *np,
212 				  const char *name,
213 				  int *lenp)
214 {
215 	struct property *pp;
216 	unsigned long flags;
217 
218 	raw_spin_lock_irqsave(&devtree_lock, flags);
219 	pp = __of_find_property(np, name, lenp);
220 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
221 
222 	return pp;
223 }
224 EXPORT_SYMBOL(of_find_property);
225 
226 struct device_node *__of_find_all_nodes(struct device_node *prev)
227 {
228 	struct device_node *np;
229 	if (!prev) {
230 		np = of_root;
231 	} else if (prev->child) {
232 		np = prev->child;
233 	} else {
234 		/* Walk back up looking for a sibling, or the end of the structure */
235 		np = prev;
236 		while (np->parent && !np->sibling)
237 			np = np->parent;
238 		np = np->sibling; /* Might be null at the end of the tree */
239 	}
240 	return np;
241 }
242 
243 /**
244  * of_find_all_nodes - Get next node in global list
245  * @prev:	Previous node or NULL to start iteration
246  *		of_node_put() will be called on it
247  *
248  * Return: A node pointer with refcount incremented, use
249  * of_node_put() on it when done.
250  */
251 struct device_node *of_find_all_nodes(struct device_node *prev)
252 {
253 	struct device_node *np;
254 	unsigned long flags;
255 
256 	raw_spin_lock_irqsave(&devtree_lock, flags);
257 	np = __of_find_all_nodes(prev);
258 	of_node_get(np);
259 	of_node_put(prev);
260 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
261 	return np;
262 }
263 EXPORT_SYMBOL(of_find_all_nodes);
264 
265 /*
266  * Find a property with a given name for a given node
267  * and return the value.
268  */
269 const void *__of_get_property(const struct device_node *np,
270 			      const char *name, int *lenp)
271 {
272 	struct property *pp = __of_find_property(np, name, lenp);
273 
274 	return pp ? pp->value : NULL;
275 }
276 
277 /*
278  * Find a property with a given name for a given node
279  * and return the value.
280  */
281 const void *of_get_property(const struct device_node *np, const char *name,
282 			    int *lenp)
283 {
284 	struct property *pp = of_find_property(np, name, lenp);
285 
286 	return pp ? pp->value : NULL;
287 }
288 EXPORT_SYMBOL(of_get_property);
289 
290 /**
291  * __of_device_is_compatible() - Check if the node matches given constraints
292  * @device: pointer to node
293  * @compat: required compatible string, NULL or "" for any match
294  * @type: required device_type value, NULL or "" for any match
295  * @name: required node name, NULL or "" for any match
296  *
297  * Checks if the given @compat, @type and @name strings match the
298  * properties of the given @device. A constraints can be skipped by
299  * passing NULL or an empty string as the constraint.
300  *
301  * Returns 0 for no match, and a positive integer on match. The return
302  * value is a relative score with larger values indicating better
303  * matches. The score is weighted for the most specific compatible value
304  * to get the highest score. Matching type is next, followed by matching
305  * name. Practically speaking, this results in the following priority
306  * order for matches:
307  *
308  * 1. specific compatible && type && name
309  * 2. specific compatible && type
310  * 3. specific compatible && name
311  * 4. specific compatible
312  * 5. general compatible && type && name
313  * 6. general compatible && type
314  * 7. general compatible && name
315  * 8. general compatible
316  * 9. type && name
317  * 10. type
318  * 11. name
319  */
320 static int __of_device_is_compatible(const struct device_node *device,
321 				     const char *compat, const char *type, const char *name)
322 {
323 	struct property *prop;
324 	const char *cp;
325 	int index = 0, score = 0;
326 
327 	/* Compatible match has highest priority */
328 	if (compat && compat[0]) {
329 		prop = __of_find_property(device, "compatible", NULL);
330 		for (cp = of_prop_next_string(prop, NULL); cp;
331 		     cp = of_prop_next_string(prop, cp), index++) {
332 			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
333 				score = INT_MAX/2 - (index << 2);
334 				break;
335 			}
336 		}
337 		if (!score)
338 			return 0;
339 	}
340 
341 	/* Matching type is better than matching name */
342 	if (type && type[0]) {
343 		if (!__of_node_is_type(device, type))
344 			return 0;
345 		score += 2;
346 	}
347 
348 	/* Matching name is a bit better than not */
349 	if (name && name[0]) {
350 		if (!of_node_name_eq(device, name))
351 			return 0;
352 		score++;
353 	}
354 
355 	return score;
356 }
357 
358 /** Checks if the given "compat" string matches one of the strings in
359  * the device's "compatible" property
360  */
361 int of_device_is_compatible(const struct device_node *device,
362 		const char *compat)
363 {
364 	unsigned long flags;
365 	int res;
366 
367 	raw_spin_lock_irqsave(&devtree_lock, flags);
368 	res = __of_device_is_compatible(device, compat, NULL, NULL);
369 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
370 	return res;
371 }
372 EXPORT_SYMBOL(of_device_is_compatible);
373 
374 /** Checks if the device is compatible with any of the entries in
375  *  a NULL terminated array of strings. Returns the best match
376  *  score or 0.
377  */
378 int of_device_compatible_match(const struct device_node *device,
379 			       const char *const *compat)
380 {
381 	unsigned int tmp, score = 0;
382 
383 	if (!compat)
384 		return 0;
385 
386 	while (*compat) {
387 		tmp = of_device_is_compatible(device, *compat);
388 		if (tmp > score)
389 			score = tmp;
390 		compat++;
391 	}
392 
393 	return score;
394 }
395 EXPORT_SYMBOL_GPL(of_device_compatible_match);
396 
397 /**
398  * of_machine_is_compatible - Test root of device tree for a given compatible value
399  * @compat: compatible string to look for in root node's compatible property.
400  *
401  * Return: A positive integer if the root node has the given value in its
402  * compatible property.
403  */
404 int of_machine_is_compatible(const char *compat)
405 {
406 	struct device_node *root;
407 	int rc = 0;
408 
409 	root = of_find_node_by_path("/");
410 	if (root) {
411 		rc = of_device_is_compatible(root, compat);
412 		of_node_put(root);
413 	}
414 	return rc;
415 }
416 EXPORT_SYMBOL(of_machine_is_compatible);
417 
418 static bool __of_device_is_status(const struct device_node *device,
419 				  const char * const*strings)
420 {
421 	const char *status;
422 	int statlen;
423 
424 	if (!device)
425 		return false;
426 
427 	status = __of_get_property(device, "status", &statlen);
428 	if (status == NULL)
429 		return false;
430 
431 	if (statlen > 0) {
432 		while (*strings) {
433 			unsigned int len = strlen(*strings);
434 
435 			if ((*strings)[len - 1] == '-') {
436 				if (!strncmp(status, *strings, len))
437 					return true;
438 			} else {
439 				if (!strcmp(status, *strings))
440 					return true;
441 			}
442 			strings++;
443 		}
444 	}
445 
446 	return false;
447 }
448 
449 /**
450  *  __of_device_is_available - check if a device is available for use
451  *
452  *  @device: Node to check for availability, with locks already held
453  *
454  *  Return: True if the status property is absent or set to "okay" or "ok",
455  *  false otherwise
456  */
457 static bool __of_device_is_available(const struct device_node *device)
458 {
459 	static const char * const ok[] = {"okay", "ok", NULL};
460 
461 	if (!device)
462 		return false;
463 
464 	return !__of_get_property(device, "status", NULL) ||
465 		__of_device_is_status(device, ok);
466 }
467 
468 /**
469  *  __of_device_is_reserved - check if a device is reserved
470  *
471  *  @device: Node to check for availability, with locks already held
472  *
473  *  Return: True if the status property is set to "reserved", false otherwise
474  */
475 static bool __of_device_is_reserved(const struct device_node *device)
476 {
477 	static const char * const reserved[] = {"reserved", NULL};
478 
479 	return __of_device_is_status(device, reserved);
480 }
481 
482 /**
483  *  of_device_is_available - check if a device is available for use
484  *
485  *  @device: Node to check for availability
486  *
487  *  Return: True if the status property is absent or set to "okay" or "ok",
488  *  false otherwise
489  */
490 bool of_device_is_available(const struct device_node *device)
491 {
492 	unsigned long flags;
493 	bool res;
494 
495 	raw_spin_lock_irqsave(&devtree_lock, flags);
496 	res = __of_device_is_available(device);
497 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
498 	return res;
499 
500 }
501 EXPORT_SYMBOL(of_device_is_available);
502 
503 /**
504  *  __of_device_is_fail - check if a device has status "fail" or "fail-..."
505  *
506  *  @device: Node to check status for, with locks already held
507  *
508  *  Return: True if the status property is set to "fail" or "fail-..." (for any
509  *  error code suffix), false otherwise
510  */
511 static bool __of_device_is_fail(const struct device_node *device)
512 {
513 	static const char * const fail[] = {"fail", "fail-", NULL};
514 
515 	return __of_device_is_status(device, fail);
516 }
517 
518 /**
519  *  of_device_is_big_endian - check if a device has BE registers
520  *
521  *  @device: Node to check for endianness
522  *
523  *  Return: True if the device has a "big-endian" property, or if the kernel
524  *  was compiled for BE *and* the device has a "native-endian" property.
525  *  Returns false otherwise.
526  *
527  *  Callers would nominally use ioread32be/iowrite32be if
528  *  of_device_is_big_endian() == true, or readl/writel otherwise.
529  */
530 bool of_device_is_big_endian(const struct device_node *device)
531 {
532 	if (of_property_read_bool(device, "big-endian"))
533 		return true;
534 	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
535 	    of_property_read_bool(device, "native-endian"))
536 		return true;
537 	return false;
538 }
539 EXPORT_SYMBOL(of_device_is_big_endian);
540 
541 /**
542  * of_get_parent - Get a node's parent if any
543  * @node:	Node to get parent
544  *
545  * Return: A node pointer with refcount incremented, use
546  * of_node_put() on it when done.
547  */
548 struct device_node *of_get_parent(const struct device_node *node)
549 {
550 	struct device_node *np;
551 	unsigned long flags;
552 
553 	if (!node)
554 		return NULL;
555 
556 	raw_spin_lock_irqsave(&devtree_lock, flags);
557 	np = of_node_get(node->parent);
558 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
559 	return np;
560 }
561 EXPORT_SYMBOL(of_get_parent);
562 
563 /**
564  * of_get_next_parent - Iterate to a node's parent
565  * @node:	Node to get parent of
566  *
567  * This is like of_get_parent() except that it drops the
568  * refcount on the passed node, making it suitable for iterating
569  * through a node's parents.
570  *
571  * Return: A node pointer with refcount incremented, use
572  * of_node_put() on it when done.
573  */
574 struct device_node *of_get_next_parent(struct device_node *node)
575 {
576 	struct device_node *parent;
577 	unsigned long flags;
578 
579 	if (!node)
580 		return NULL;
581 
582 	raw_spin_lock_irqsave(&devtree_lock, flags);
583 	parent = of_node_get(node->parent);
584 	of_node_put(node);
585 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
586 	return parent;
587 }
588 EXPORT_SYMBOL(of_get_next_parent);
589 
590 static struct device_node *__of_get_next_child(const struct device_node *node,
591 						struct device_node *prev)
592 {
593 	struct device_node *next;
594 
595 	if (!node)
596 		return NULL;
597 
598 	next = prev ? prev->sibling : node->child;
599 	of_node_get(next);
600 	of_node_put(prev);
601 	return next;
602 }
603 #define __for_each_child_of_node(parent, child) \
604 	for (child = __of_get_next_child(parent, NULL); child != NULL; \
605 	     child = __of_get_next_child(parent, child))
606 
607 /**
608  * of_get_next_child - Iterate a node childs
609  * @node:	parent node
610  * @prev:	previous child of the parent node, or NULL to get first
611  *
612  * Return: A node pointer with refcount incremented, use of_node_put() on
613  * it when done. Returns NULL when prev is the last child. Decrements the
614  * refcount of prev.
615  */
616 struct device_node *of_get_next_child(const struct device_node *node,
617 	struct device_node *prev)
618 {
619 	struct device_node *next;
620 	unsigned long flags;
621 
622 	raw_spin_lock_irqsave(&devtree_lock, flags);
623 	next = __of_get_next_child(node, prev);
624 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
625 	return next;
626 }
627 EXPORT_SYMBOL(of_get_next_child);
628 
629 static struct device_node *of_get_next_status_child(const struct device_node *node,
630 						    struct device_node *prev,
631 						    bool (*checker)(const struct device_node *))
632 {
633 	struct device_node *next;
634 	unsigned long flags;
635 
636 	if (!node)
637 		return NULL;
638 
639 	raw_spin_lock_irqsave(&devtree_lock, flags);
640 	next = prev ? prev->sibling : node->child;
641 	for (; next; next = next->sibling) {
642 		if (!checker(next))
643 			continue;
644 		if (of_node_get(next))
645 			break;
646 	}
647 	of_node_put(prev);
648 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
649 	return next;
650 }
651 
652 /**
653  * of_get_next_available_child - Find the next available child node
654  * @node:	parent node
655  * @prev:	previous child of the parent node, or NULL to get first
656  *
657  * This function is like of_get_next_child(), except that it
658  * automatically skips any disabled nodes (i.e. status = "disabled").
659  */
660 struct device_node *of_get_next_available_child(const struct device_node *node,
661 	struct device_node *prev)
662 {
663 	return of_get_next_status_child(node, prev, __of_device_is_available);
664 }
665 EXPORT_SYMBOL(of_get_next_available_child);
666 
667 /**
668  * of_get_next_reserved_child - Find the next reserved child node
669  * @node:	parent node
670  * @prev:	previous child of the parent node, or NULL to get first
671  *
672  * This function is like of_get_next_child(), except that it
673  * automatically skips any disabled nodes (i.e. status = "disabled").
674  */
675 struct device_node *of_get_next_reserved_child(const struct device_node *node,
676 						struct device_node *prev)
677 {
678 	return of_get_next_status_child(node, prev, __of_device_is_reserved);
679 }
680 EXPORT_SYMBOL(of_get_next_reserved_child);
681 
682 /**
683  * of_get_next_cpu_node - Iterate on cpu nodes
684  * @prev:	previous child of the /cpus node, or NULL to get first
685  *
686  * Unusable CPUs (those with the status property set to "fail" or "fail-...")
687  * will be skipped.
688  *
689  * Return: A cpu node pointer with refcount incremented, use of_node_put()
690  * on it when done. Returns NULL when prev is the last child. Decrements
691  * the refcount of prev.
692  */
693 struct device_node *of_get_next_cpu_node(struct device_node *prev)
694 {
695 	struct device_node *next = NULL;
696 	unsigned long flags;
697 	struct device_node *node;
698 
699 	if (!prev)
700 		node = of_find_node_by_path("/cpus");
701 
702 	raw_spin_lock_irqsave(&devtree_lock, flags);
703 	if (prev)
704 		next = prev->sibling;
705 	else if (node) {
706 		next = node->child;
707 		of_node_put(node);
708 	}
709 	for (; next; next = next->sibling) {
710 		if (__of_device_is_fail(next))
711 			continue;
712 		if (!(of_node_name_eq(next, "cpu") ||
713 		      __of_node_is_type(next, "cpu")))
714 			continue;
715 		if (of_node_get(next))
716 			break;
717 	}
718 	of_node_put(prev);
719 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
720 	return next;
721 }
722 EXPORT_SYMBOL(of_get_next_cpu_node);
723 
724 /**
725  * of_get_compatible_child - Find compatible child node
726  * @parent:	parent node
727  * @compatible:	compatible string
728  *
729  * Lookup child node whose compatible property contains the given compatible
730  * string.
731  *
732  * Return: a node pointer with refcount incremented, use of_node_put() on it
733  * when done; or NULL if not found.
734  */
735 struct device_node *of_get_compatible_child(const struct device_node *parent,
736 				const char *compatible)
737 {
738 	struct device_node *child;
739 
740 	for_each_child_of_node(parent, child) {
741 		if (of_device_is_compatible(child, compatible))
742 			break;
743 	}
744 
745 	return child;
746 }
747 EXPORT_SYMBOL(of_get_compatible_child);
748 
749 /**
750  * of_get_child_by_name - Find the child node by name for a given parent
751  * @node:	parent node
752  * @name:	child name to look for.
753  *
754  * This function looks for child node for given matching name
755  *
756  * Return: A node pointer if found, with refcount incremented, use
757  * of_node_put() on it when done.
758  * Returns NULL if node is not found.
759  */
760 struct device_node *of_get_child_by_name(const struct device_node *node,
761 				const char *name)
762 {
763 	struct device_node *child;
764 
765 	for_each_child_of_node(node, child)
766 		if (of_node_name_eq(child, name))
767 			break;
768 	return child;
769 }
770 EXPORT_SYMBOL(of_get_child_by_name);
771 
772 struct device_node *__of_find_node_by_path(struct device_node *parent,
773 						const char *path)
774 {
775 	struct device_node *child;
776 	int len;
777 
778 	len = strcspn(path, "/:");
779 	if (!len)
780 		return NULL;
781 
782 	__for_each_child_of_node(parent, child) {
783 		const char *name = kbasename(child->full_name);
784 		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
785 			return child;
786 	}
787 	return NULL;
788 }
789 
790 struct device_node *__of_find_node_by_full_path(struct device_node *node,
791 						const char *path)
792 {
793 	const char *separator = strchr(path, ':');
794 
795 	while (node && *path == '/') {
796 		struct device_node *tmp = node;
797 
798 		path++; /* Increment past '/' delimiter */
799 		node = __of_find_node_by_path(node, path);
800 		of_node_put(tmp);
801 		path = strchrnul(path, '/');
802 		if (separator && separator < path)
803 			break;
804 	}
805 	return node;
806 }
807 
808 /**
809  * of_find_node_opts_by_path - Find a node matching a full OF path
810  * @path: Either the full path to match, or if the path does not
811  *       start with '/', the name of a property of the /aliases
812  *       node (an alias).  In the case of an alias, the node
813  *       matching the alias' value will be returned.
814  * @opts: Address of a pointer into which to store the start of
815  *       an options string appended to the end of the path with
816  *       a ':' separator.
817  *
818  * Valid paths:
819  *  * /foo/bar	Full path
820  *  * foo	Valid alias
821  *  * foo/bar	Valid alias + relative path
822  *
823  * Return: A node pointer with refcount incremented, use
824  * of_node_put() on it when done.
825  */
826 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
827 {
828 	struct device_node *np = NULL;
829 	struct property *pp;
830 	unsigned long flags;
831 	const char *separator = strchr(path, ':');
832 
833 	if (opts)
834 		*opts = separator ? separator + 1 : NULL;
835 
836 	if (strcmp(path, "/") == 0)
837 		return of_node_get(of_root);
838 
839 	/* The path could begin with an alias */
840 	if (*path != '/') {
841 		int len;
842 		const char *p = separator;
843 
844 		if (!p)
845 			p = strchrnul(path, '/');
846 		len = p - path;
847 
848 		/* of_aliases must not be NULL */
849 		if (!of_aliases)
850 			return NULL;
851 
852 		for_each_property_of_node(of_aliases, pp) {
853 			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
854 				np = of_find_node_by_path(pp->value);
855 				break;
856 			}
857 		}
858 		if (!np)
859 			return NULL;
860 		path = p;
861 	}
862 
863 	/* Step down the tree matching path components */
864 	raw_spin_lock_irqsave(&devtree_lock, flags);
865 	if (!np)
866 		np = of_node_get(of_root);
867 	np = __of_find_node_by_full_path(np, path);
868 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
869 	return np;
870 }
871 EXPORT_SYMBOL(of_find_node_opts_by_path);
872 
873 /**
874  * of_find_node_by_name - Find a node by its "name" property
875  * @from:	The node to start searching from or NULL; the node
876  *		you pass will not be searched, only the next one
877  *		will. Typically, you pass what the previous call
878  *		returned. of_node_put() will be called on @from.
879  * @name:	The name string to match against
880  *
881  * Return: A node pointer with refcount incremented, use
882  * of_node_put() on it when done.
883  */
884 struct device_node *of_find_node_by_name(struct device_node *from,
885 	const char *name)
886 {
887 	struct device_node *np;
888 	unsigned long flags;
889 
890 	raw_spin_lock_irqsave(&devtree_lock, flags);
891 	for_each_of_allnodes_from(from, np)
892 		if (of_node_name_eq(np, name) && of_node_get(np))
893 			break;
894 	of_node_put(from);
895 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
896 	return np;
897 }
898 EXPORT_SYMBOL(of_find_node_by_name);
899 
900 /**
901  * of_find_node_by_type - Find a node by its "device_type" property
902  * @from:	The node to start searching from, or NULL to start searching
903  *		the entire device tree. The node you pass will not be
904  *		searched, only the next one will; typically, you pass
905  *		what the previous call returned. of_node_put() will be
906  *		called on from for you.
907  * @type:	The type string to match against
908  *
909  * Return: A node pointer with refcount incremented, use
910  * of_node_put() on it when done.
911  */
912 struct device_node *of_find_node_by_type(struct device_node *from,
913 	const char *type)
914 {
915 	struct device_node *np;
916 	unsigned long flags;
917 
918 	raw_spin_lock_irqsave(&devtree_lock, flags);
919 	for_each_of_allnodes_from(from, np)
920 		if (__of_node_is_type(np, type) && of_node_get(np))
921 			break;
922 	of_node_put(from);
923 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
924 	return np;
925 }
926 EXPORT_SYMBOL(of_find_node_by_type);
927 
928 /**
929  * of_find_compatible_node - Find a node based on type and one of the
930  *                                tokens in its "compatible" property
931  * @from:	The node to start searching from or NULL, the node
932  *		you pass will not be searched, only the next one
933  *		will; typically, you pass what the previous call
934  *		returned. of_node_put() will be called on it
935  * @type:	The type string to match "device_type" or NULL to ignore
936  * @compatible:	The string to match to one of the tokens in the device
937  *		"compatible" list.
938  *
939  * Return: A node pointer with refcount incremented, use
940  * of_node_put() on it when done.
941  */
942 struct device_node *of_find_compatible_node(struct device_node *from,
943 	const char *type, const char *compatible)
944 {
945 	struct device_node *np;
946 	unsigned long flags;
947 
948 	raw_spin_lock_irqsave(&devtree_lock, flags);
949 	for_each_of_allnodes_from(from, np)
950 		if (__of_device_is_compatible(np, compatible, type, NULL) &&
951 		    of_node_get(np))
952 			break;
953 	of_node_put(from);
954 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
955 	return np;
956 }
957 EXPORT_SYMBOL(of_find_compatible_node);
958 
959 /**
960  * of_find_node_with_property - Find a node which has a property with
961  *                              the given name.
962  * @from:	The node to start searching from or NULL, the node
963  *		you pass will not be searched, only the next one
964  *		will; typically, you pass what the previous call
965  *		returned. of_node_put() will be called on it
966  * @prop_name:	The name of the property to look for.
967  *
968  * Return: A node pointer with refcount incremented, use
969  * of_node_put() on it when done.
970  */
971 struct device_node *of_find_node_with_property(struct device_node *from,
972 	const char *prop_name)
973 {
974 	struct device_node *np;
975 	struct property *pp;
976 	unsigned long flags;
977 
978 	raw_spin_lock_irqsave(&devtree_lock, flags);
979 	for_each_of_allnodes_from(from, np) {
980 		for (pp = np->properties; pp; pp = pp->next) {
981 			if (of_prop_cmp(pp->name, prop_name) == 0) {
982 				of_node_get(np);
983 				goto out;
984 			}
985 		}
986 	}
987 out:
988 	of_node_put(from);
989 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
990 	return np;
991 }
992 EXPORT_SYMBOL(of_find_node_with_property);
993 
994 static
995 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
996 					   const struct device_node *node)
997 {
998 	const struct of_device_id *best_match = NULL;
999 	int score, best_score = 0;
1000 
1001 	if (!matches)
1002 		return NULL;
1003 
1004 	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1005 		score = __of_device_is_compatible(node, matches->compatible,
1006 						  matches->type, matches->name);
1007 		if (score > best_score) {
1008 			best_match = matches;
1009 			best_score = score;
1010 		}
1011 	}
1012 
1013 	return best_match;
1014 }
1015 
1016 /**
1017  * of_match_node - Tell if a device_node has a matching of_match structure
1018  * @matches:	array of of device match structures to search in
1019  * @node:	the of device structure to match against
1020  *
1021  * Low level utility function used by device matching.
1022  */
1023 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1024 					 const struct device_node *node)
1025 {
1026 	const struct of_device_id *match;
1027 	unsigned long flags;
1028 
1029 	raw_spin_lock_irqsave(&devtree_lock, flags);
1030 	match = __of_match_node(matches, node);
1031 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1032 	return match;
1033 }
1034 EXPORT_SYMBOL(of_match_node);
1035 
1036 /**
1037  * of_find_matching_node_and_match - Find a node based on an of_device_id
1038  *				     match table.
1039  * @from:	The node to start searching from or NULL, the node
1040  *		you pass will not be searched, only the next one
1041  *		will; typically, you pass what the previous call
1042  *		returned. of_node_put() will be called on it
1043  * @matches:	array of of device match structures to search in
1044  * @match:	Updated to point at the matches entry which matched
1045  *
1046  * Return: A node pointer with refcount incremented, use
1047  * of_node_put() on it when done.
1048  */
1049 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1050 					const struct of_device_id *matches,
1051 					const struct of_device_id **match)
1052 {
1053 	struct device_node *np;
1054 	const struct of_device_id *m;
1055 	unsigned long flags;
1056 
1057 	if (match)
1058 		*match = NULL;
1059 
1060 	raw_spin_lock_irqsave(&devtree_lock, flags);
1061 	for_each_of_allnodes_from(from, np) {
1062 		m = __of_match_node(matches, np);
1063 		if (m && of_node_get(np)) {
1064 			if (match)
1065 				*match = m;
1066 			break;
1067 		}
1068 	}
1069 	of_node_put(from);
1070 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1071 	return np;
1072 }
1073 EXPORT_SYMBOL(of_find_matching_node_and_match);
1074 
1075 /**
1076  * of_alias_from_compatible - Lookup appropriate alias for a device node
1077  *			      depending on compatible
1078  * @node:	pointer to a device tree node
1079  * @alias:	Pointer to buffer that alias value will be copied into
1080  * @len:	Length of alias value
1081  *
1082  * Based on the value of the compatible property, this routine will attempt
1083  * to choose an appropriate alias value for a particular device tree node.
1084  * It does this by stripping the manufacturer prefix (as delimited by a ',')
1085  * from the first entry in the compatible list property.
1086  *
1087  * Note: The matching on just the "product" side of the compatible is a relic
1088  * from I2C and SPI. Please do not add any new user.
1089  *
1090  * Return: This routine returns 0 on success, <0 on failure.
1091  */
1092 int of_alias_from_compatible(const struct device_node *node, char *alias, int len)
1093 {
1094 	const char *compatible, *p;
1095 	int cplen;
1096 
1097 	compatible = of_get_property(node, "compatible", &cplen);
1098 	if (!compatible || strlen(compatible) > cplen)
1099 		return -ENODEV;
1100 	p = strchr(compatible, ',');
1101 	strscpy(alias, p ? p + 1 : compatible, len);
1102 	return 0;
1103 }
1104 EXPORT_SYMBOL_GPL(of_alias_from_compatible);
1105 
1106 /**
1107  * of_find_node_by_phandle - Find a node given a phandle
1108  * @handle:	phandle of the node to find
1109  *
1110  * Return: A node pointer with refcount incremented, use
1111  * of_node_put() on it when done.
1112  */
1113 struct device_node *of_find_node_by_phandle(phandle handle)
1114 {
1115 	struct device_node *np = NULL;
1116 	unsigned long flags;
1117 	u32 handle_hash;
1118 
1119 	if (!handle)
1120 		return NULL;
1121 
1122 	handle_hash = of_phandle_cache_hash(handle);
1123 
1124 	raw_spin_lock_irqsave(&devtree_lock, flags);
1125 
1126 	if (phandle_cache[handle_hash] &&
1127 	    handle == phandle_cache[handle_hash]->phandle)
1128 		np = phandle_cache[handle_hash];
1129 
1130 	if (!np) {
1131 		for_each_of_allnodes(np)
1132 			if (np->phandle == handle &&
1133 			    !of_node_check_flag(np, OF_DETACHED)) {
1134 				phandle_cache[handle_hash] = np;
1135 				break;
1136 			}
1137 	}
1138 
1139 	of_node_get(np);
1140 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1141 	return np;
1142 }
1143 EXPORT_SYMBOL(of_find_node_by_phandle);
1144 
1145 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1146 {
1147 	int i;
1148 	printk("%s %pOF", msg, args->np);
1149 	for (i = 0; i < args->args_count; i++) {
1150 		const char delim = i ? ',' : ':';
1151 
1152 		pr_cont("%c%08x", delim, args->args[i]);
1153 	}
1154 	pr_cont("\n");
1155 }
1156 
1157 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1158 		const struct device_node *np,
1159 		const char *list_name,
1160 		const char *cells_name,
1161 		int cell_count)
1162 {
1163 	const __be32 *list;
1164 	int size;
1165 
1166 	memset(it, 0, sizeof(*it));
1167 
1168 	/*
1169 	 * one of cell_count or cells_name must be provided to determine the
1170 	 * argument length.
1171 	 */
1172 	if (cell_count < 0 && !cells_name)
1173 		return -EINVAL;
1174 
1175 	list = of_get_property(np, list_name, &size);
1176 	if (!list)
1177 		return -ENOENT;
1178 
1179 	it->cells_name = cells_name;
1180 	it->cell_count = cell_count;
1181 	it->parent = np;
1182 	it->list_end = list + size / sizeof(*list);
1183 	it->phandle_end = list;
1184 	it->cur = list;
1185 
1186 	return 0;
1187 }
1188 EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1189 
1190 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1191 {
1192 	uint32_t count = 0;
1193 
1194 	if (it->node) {
1195 		of_node_put(it->node);
1196 		it->node = NULL;
1197 	}
1198 
1199 	if (!it->cur || it->phandle_end >= it->list_end)
1200 		return -ENOENT;
1201 
1202 	it->cur = it->phandle_end;
1203 
1204 	/* If phandle is 0, then it is an empty entry with no arguments. */
1205 	it->phandle = be32_to_cpup(it->cur++);
1206 
1207 	if (it->phandle) {
1208 
1209 		/*
1210 		 * Find the provider node and parse the #*-cells property to
1211 		 * determine the argument length.
1212 		 */
1213 		it->node = of_find_node_by_phandle(it->phandle);
1214 
1215 		if (it->cells_name) {
1216 			if (!it->node) {
1217 				pr_err("%pOF: could not find phandle %d\n",
1218 				       it->parent, it->phandle);
1219 				goto err;
1220 			}
1221 
1222 			if (of_property_read_u32(it->node, it->cells_name,
1223 						 &count)) {
1224 				/*
1225 				 * If both cell_count and cells_name is given,
1226 				 * fall back to cell_count in absence
1227 				 * of the cells_name property
1228 				 */
1229 				if (it->cell_count >= 0) {
1230 					count = it->cell_count;
1231 				} else {
1232 					pr_err("%pOF: could not get %s for %pOF\n",
1233 					       it->parent,
1234 					       it->cells_name,
1235 					       it->node);
1236 					goto err;
1237 				}
1238 			}
1239 		} else {
1240 			count = it->cell_count;
1241 		}
1242 
1243 		/*
1244 		 * Make sure that the arguments actually fit in the remaining
1245 		 * property data length
1246 		 */
1247 		if (it->cur + count > it->list_end) {
1248 			if (it->cells_name)
1249 				pr_err("%pOF: %s = %d found %td\n",
1250 					it->parent, it->cells_name,
1251 					count, it->list_end - it->cur);
1252 			else
1253 				pr_err("%pOF: phandle %s needs %d, found %td\n",
1254 					it->parent, of_node_full_name(it->node),
1255 					count, it->list_end - it->cur);
1256 			goto err;
1257 		}
1258 	}
1259 
1260 	it->phandle_end = it->cur + count;
1261 	it->cur_count = count;
1262 
1263 	return 0;
1264 
1265 err:
1266 	if (it->node) {
1267 		of_node_put(it->node);
1268 		it->node = NULL;
1269 	}
1270 
1271 	return -EINVAL;
1272 }
1273 EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1274 
1275 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1276 			     uint32_t *args,
1277 			     int size)
1278 {
1279 	int i, count;
1280 
1281 	count = it->cur_count;
1282 
1283 	if (WARN_ON(size < count))
1284 		count = size;
1285 
1286 	for (i = 0; i < count; i++)
1287 		args[i] = be32_to_cpup(it->cur++);
1288 
1289 	return count;
1290 }
1291 
1292 int __of_parse_phandle_with_args(const struct device_node *np,
1293 				 const char *list_name,
1294 				 const char *cells_name,
1295 				 int cell_count, int index,
1296 				 struct of_phandle_args *out_args)
1297 {
1298 	struct of_phandle_iterator it;
1299 	int rc, cur_index = 0;
1300 
1301 	if (index < 0)
1302 		return -EINVAL;
1303 
1304 	/* Loop over the phandles until all the requested entry is found */
1305 	of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1306 		/*
1307 		 * All of the error cases bail out of the loop, so at
1308 		 * this point, the parsing is successful. If the requested
1309 		 * index matches, then fill the out_args structure and return,
1310 		 * or return -ENOENT for an empty entry.
1311 		 */
1312 		rc = -ENOENT;
1313 		if (cur_index == index) {
1314 			if (!it.phandle)
1315 				goto err;
1316 
1317 			if (out_args) {
1318 				int c;
1319 
1320 				c = of_phandle_iterator_args(&it,
1321 							     out_args->args,
1322 							     MAX_PHANDLE_ARGS);
1323 				out_args->np = it.node;
1324 				out_args->args_count = c;
1325 			} else {
1326 				of_node_put(it.node);
1327 			}
1328 
1329 			/* Found it! return success */
1330 			return 0;
1331 		}
1332 
1333 		cur_index++;
1334 	}
1335 
1336 	/*
1337 	 * Unlock node before returning result; will be one of:
1338 	 * -ENOENT : index is for empty phandle
1339 	 * -EINVAL : parsing error on data
1340 	 */
1341 
1342  err:
1343 	of_node_put(it.node);
1344 	return rc;
1345 }
1346 EXPORT_SYMBOL(__of_parse_phandle_with_args);
1347 
1348 /**
1349  * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1350  * @np:		pointer to a device tree node containing a list
1351  * @list_name:	property name that contains a list
1352  * @stem_name:	stem of property names that specify phandles' arguments count
1353  * @index:	index of a phandle to parse out
1354  * @out_args:	optional pointer to output arguments structure (will be filled)
1355  *
1356  * This function is useful to parse lists of phandles and their arguments.
1357  * Returns 0 on success and fills out_args, on error returns appropriate errno
1358  * value. The difference between this function and of_parse_phandle_with_args()
1359  * is that this API remaps a phandle if the node the phandle points to has
1360  * a <@stem_name>-map property.
1361  *
1362  * Caller is responsible to call of_node_put() on the returned out_args->np
1363  * pointer.
1364  *
1365  * Example::
1366  *
1367  *  phandle1: node1 {
1368  *  	#list-cells = <2>;
1369  *  };
1370  *
1371  *  phandle2: node2 {
1372  *  	#list-cells = <1>;
1373  *  };
1374  *
1375  *  phandle3: node3 {
1376  *  	#list-cells = <1>;
1377  *  	list-map = <0 &phandle2 3>,
1378  *  		   <1 &phandle2 2>,
1379  *  		   <2 &phandle1 5 1>;
1380  *  	list-map-mask = <0x3>;
1381  *  };
1382  *
1383  *  node4 {
1384  *  	list = <&phandle1 1 2 &phandle3 0>;
1385  *  };
1386  *
1387  * To get a device_node of the ``node2`` node you may call this:
1388  * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1389  */
1390 int of_parse_phandle_with_args_map(const struct device_node *np,
1391 				   const char *list_name,
1392 				   const char *stem_name,
1393 				   int index, struct of_phandle_args *out_args)
1394 {
1395 	char *cells_name, *map_name = NULL, *mask_name = NULL;
1396 	char *pass_name = NULL;
1397 	struct device_node *cur, *new = NULL;
1398 	const __be32 *map, *mask, *pass;
1399 	static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = cpu_to_be32(~0) };
1400 	static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = cpu_to_be32(0) };
1401 	__be32 initial_match_array[MAX_PHANDLE_ARGS];
1402 	const __be32 *match_array = initial_match_array;
1403 	int i, ret, map_len, match;
1404 	u32 list_size, new_size;
1405 
1406 	if (index < 0)
1407 		return -EINVAL;
1408 
1409 	cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1410 	if (!cells_name)
1411 		return -ENOMEM;
1412 
1413 	ret = -ENOMEM;
1414 	map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1415 	if (!map_name)
1416 		goto free;
1417 
1418 	mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1419 	if (!mask_name)
1420 		goto free;
1421 
1422 	pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1423 	if (!pass_name)
1424 		goto free;
1425 
1426 	ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index,
1427 					   out_args);
1428 	if (ret)
1429 		goto free;
1430 
1431 	/* Get the #<list>-cells property */
1432 	cur = out_args->np;
1433 	ret = of_property_read_u32(cur, cells_name, &list_size);
1434 	if (ret < 0)
1435 		goto put;
1436 
1437 	/* Precalculate the match array - this simplifies match loop */
1438 	for (i = 0; i < list_size; i++)
1439 		initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1440 
1441 	ret = -EINVAL;
1442 	while (cur) {
1443 		/* Get the <list>-map property */
1444 		map = of_get_property(cur, map_name, &map_len);
1445 		if (!map) {
1446 			ret = 0;
1447 			goto free;
1448 		}
1449 		map_len /= sizeof(u32);
1450 
1451 		/* Get the <list>-map-mask property (optional) */
1452 		mask = of_get_property(cur, mask_name, NULL);
1453 		if (!mask)
1454 			mask = dummy_mask;
1455 		/* Iterate through <list>-map property */
1456 		match = 0;
1457 		while (map_len > (list_size + 1) && !match) {
1458 			/* Compare specifiers */
1459 			match = 1;
1460 			for (i = 0; i < list_size; i++, map_len--)
1461 				match &= !((match_array[i] ^ *map++) & mask[i]);
1462 
1463 			of_node_put(new);
1464 			new = of_find_node_by_phandle(be32_to_cpup(map));
1465 			map++;
1466 			map_len--;
1467 
1468 			/* Check if not found */
1469 			if (!new)
1470 				goto put;
1471 
1472 			if (!of_device_is_available(new))
1473 				match = 0;
1474 
1475 			ret = of_property_read_u32(new, cells_name, &new_size);
1476 			if (ret)
1477 				goto put;
1478 
1479 			/* Check for malformed properties */
1480 			if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1481 				goto put;
1482 			if (map_len < new_size)
1483 				goto put;
1484 
1485 			/* Move forward by new node's #<list>-cells amount */
1486 			map += new_size;
1487 			map_len -= new_size;
1488 		}
1489 		if (!match)
1490 			goto put;
1491 
1492 		/* Get the <list>-map-pass-thru property (optional) */
1493 		pass = of_get_property(cur, pass_name, NULL);
1494 		if (!pass)
1495 			pass = dummy_pass;
1496 
1497 		/*
1498 		 * Successfully parsed a <list>-map translation; copy new
1499 		 * specifier into the out_args structure, keeping the
1500 		 * bits specified in <list>-map-pass-thru.
1501 		 */
1502 		match_array = map - new_size;
1503 		for (i = 0; i < new_size; i++) {
1504 			__be32 val = *(map - new_size + i);
1505 
1506 			if (i < list_size) {
1507 				val &= ~pass[i];
1508 				val |= cpu_to_be32(out_args->args[i]) & pass[i];
1509 			}
1510 
1511 			out_args->args[i] = be32_to_cpu(val);
1512 		}
1513 		out_args->args_count = list_size = new_size;
1514 		/* Iterate again with new provider */
1515 		out_args->np = new;
1516 		of_node_put(cur);
1517 		cur = new;
1518 		new = NULL;
1519 	}
1520 put:
1521 	of_node_put(cur);
1522 	of_node_put(new);
1523 free:
1524 	kfree(mask_name);
1525 	kfree(map_name);
1526 	kfree(cells_name);
1527 	kfree(pass_name);
1528 
1529 	return ret;
1530 }
1531 EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1532 
1533 /**
1534  * of_count_phandle_with_args() - Find the number of phandles references in a property
1535  * @np:		pointer to a device tree node containing a list
1536  * @list_name:	property name that contains a list
1537  * @cells_name:	property name that specifies phandles' arguments count
1538  *
1539  * Return: The number of phandle + argument tuples within a property. It
1540  * is a typical pattern to encode a list of phandle and variable
1541  * arguments into a single property. The number of arguments is encoded
1542  * by a property in the phandle-target node. For example, a gpios
1543  * property would contain a list of GPIO specifies consisting of a
1544  * phandle and 1 or more arguments. The number of arguments are
1545  * determined by the #gpio-cells property in the node pointed to by the
1546  * phandle.
1547  */
1548 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1549 				const char *cells_name)
1550 {
1551 	struct of_phandle_iterator it;
1552 	int rc, cur_index = 0;
1553 
1554 	/*
1555 	 * If cells_name is NULL we assume a cell count of 0. This makes
1556 	 * counting the phandles trivial as each 32bit word in the list is a
1557 	 * phandle and no arguments are to consider. So we don't iterate through
1558 	 * the list but just use the length to determine the phandle count.
1559 	 */
1560 	if (!cells_name) {
1561 		const __be32 *list;
1562 		int size;
1563 
1564 		list = of_get_property(np, list_name, &size);
1565 		if (!list)
1566 			return -ENOENT;
1567 
1568 		return size / sizeof(*list);
1569 	}
1570 
1571 	rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1);
1572 	if (rc)
1573 		return rc;
1574 
1575 	while ((rc = of_phandle_iterator_next(&it)) == 0)
1576 		cur_index += 1;
1577 
1578 	if (rc != -ENOENT)
1579 		return rc;
1580 
1581 	return cur_index;
1582 }
1583 EXPORT_SYMBOL(of_count_phandle_with_args);
1584 
1585 static struct property *__of_remove_property_from_list(struct property **list, struct property *prop)
1586 {
1587 	struct property **next;
1588 
1589 	for (next = list; *next; next = &(*next)->next) {
1590 		if (*next == prop) {
1591 			*next = prop->next;
1592 			prop->next = NULL;
1593 			return prop;
1594 		}
1595 	}
1596 	return NULL;
1597 }
1598 
1599 /**
1600  * __of_add_property - Add a property to a node without lock operations
1601  * @np:		Caller's Device Node
1602  * @prop:	Property to add
1603  */
1604 int __of_add_property(struct device_node *np, struct property *prop)
1605 {
1606 	int rc = 0;
1607 	unsigned long flags;
1608 	struct property **next;
1609 
1610 	raw_spin_lock_irqsave(&devtree_lock, flags);
1611 
1612 	__of_remove_property_from_list(&np->deadprops, prop);
1613 
1614 	prop->next = NULL;
1615 	next = &np->properties;
1616 	while (*next) {
1617 		if (strcmp(prop->name, (*next)->name) == 0) {
1618 			/* duplicate ! don't insert it */
1619 			rc = -EEXIST;
1620 			goto out_unlock;
1621 		}
1622 		next = &(*next)->next;
1623 	}
1624 	*next = prop;
1625 
1626 out_unlock:
1627 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1628 	if (rc)
1629 		return rc;
1630 
1631 	__of_add_property_sysfs(np, prop);
1632 	return 0;
1633 }
1634 
1635 /**
1636  * of_add_property - Add a property to a node
1637  * @np:		Caller's Device Node
1638  * @prop:	Property to add
1639  */
1640 int of_add_property(struct device_node *np, struct property *prop)
1641 {
1642 	int rc;
1643 
1644 	mutex_lock(&of_mutex);
1645 	rc = __of_add_property(np, prop);
1646 	mutex_unlock(&of_mutex);
1647 
1648 	if (!rc)
1649 		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1650 
1651 	return rc;
1652 }
1653 EXPORT_SYMBOL_GPL(of_add_property);
1654 
1655 int __of_remove_property(struct device_node *np, struct property *prop)
1656 {
1657 	unsigned long flags;
1658 	int rc = -ENODEV;
1659 
1660 	raw_spin_lock_irqsave(&devtree_lock, flags);
1661 
1662 	if (__of_remove_property_from_list(&np->properties, prop)) {
1663 		/* Found the property, add it to deadprops list */
1664 		prop->next = np->deadprops;
1665 		np->deadprops = prop;
1666 		rc = 0;
1667 	}
1668 
1669 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1670 	if (rc)
1671 		return rc;
1672 
1673 	__of_remove_property_sysfs(np, prop);
1674 	return 0;
1675 }
1676 
1677 /**
1678  * of_remove_property - Remove a property from a node.
1679  * @np:		Caller's Device Node
1680  * @prop:	Property to remove
1681  *
1682  * Note that we don't actually remove it, since we have given out
1683  * who-knows-how-many pointers to the data using get-property.
1684  * Instead we just move the property to the "dead properties"
1685  * list, so it won't be found any more.
1686  */
1687 int of_remove_property(struct device_node *np, struct property *prop)
1688 {
1689 	int rc;
1690 
1691 	if (!prop)
1692 		return -ENODEV;
1693 
1694 	mutex_lock(&of_mutex);
1695 	rc = __of_remove_property(np, prop);
1696 	mutex_unlock(&of_mutex);
1697 
1698 	if (!rc)
1699 		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1700 
1701 	return rc;
1702 }
1703 EXPORT_SYMBOL_GPL(of_remove_property);
1704 
1705 int __of_update_property(struct device_node *np, struct property *newprop,
1706 		struct property **oldpropp)
1707 {
1708 	struct property **next, *oldprop;
1709 	unsigned long flags;
1710 
1711 	raw_spin_lock_irqsave(&devtree_lock, flags);
1712 
1713 	__of_remove_property_from_list(&np->deadprops, newprop);
1714 
1715 	for (next = &np->properties; *next; next = &(*next)->next) {
1716 		if (of_prop_cmp((*next)->name, newprop->name) == 0)
1717 			break;
1718 	}
1719 	*oldpropp = oldprop = *next;
1720 
1721 	if (oldprop) {
1722 		/* replace the node */
1723 		newprop->next = oldprop->next;
1724 		*next = newprop;
1725 		oldprop->next = np->deadprops;
1726 		np->deadprops = oldprop;
1727 	} else {
1728 		/* new node */
1729 		newprop->next = NULL;
1730 		*next = newprop;
1731 	}
1732 
1733 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1734 
1735 	__of_update_property_sysfs(np, newprop, oldprop);
1736 
1737 	return 0;
1738 }
1739 
1740 /*
1741  * of_update_property - Update a property in a node, if the property does
1742  * not exist, add it.
1743  *
1744  * Note that we don't actually remove it, since we have given out
1745  * who-knows-how-many pointers to the data using get-property.
1746  * Instead we just move the property to the "dead properties" list,
1747  * and add the new property to the property list
1748  */
1749 int of_update_property(struct device_node *np, struct property *newprop)
1750 {
1751 	struct property *oldprop;
1752 	int rc;
1753 
1754 	if (!newprop->name)
1755 		return -EINVAL;
1756 
1757 	mutex_lock(&of_mutex);
1758 	rc = __of_update_property(np, newprop, &oldprop);
1759 	mutex_unlock(&of_mutex);
1760 
1761 	if (!rc)
1762 		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1763 
1764 	return rc;
1765 }
1766 
1767 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1768 			 int id, const char *stem, int stem_len)
1769 {
1770 	ap->np = np;
1771 	ap->id = id;
1772 	strscpy(ap->stem, stem, stem_len + 1);
1773 	list_add_tail(&ap->link, &aliases_lookup);
1774 	pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1775 		 ap->alias, ap->stem, ap->id, np);
1776 }
1777 
1778 /**
1779  * of_alias_scan - Scan all properties of the 'aliases' node
1780  * @dt_alloc:	An allocator that provides a virtual address to memory
1781  *		for storing the resulting tree
1782  *
1783  * The function scans all the properties of the 'aliases' node and populates
1784  * the global lookup table with the properties.  It returns the
1785  * number of alias properties found, or an error code in case of failure.
1786  */
1787 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1788 {
1789 	struct property *pp;
1790 
1791 	of_aliases = of_find_node_by_path("/aliases");
1792 	of_chosen = of_find_node_by_path("/chosen");
1793 	if (of_chosen == NULL)
1794 		of_chosen = of_find_node_by_path("/chosen@0");
1795 
1796 	if (of_chosen) {
1797 		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1798 		const char *name = NULL;
1799 
1800 		if (of_property_read_string(of_chosen, "stdout-path", &name))
1801 			of_property_read_string(of_chosen, "linux,stdout-path",
1802 						&name);
1803 		if (IS_ENABLED(CONFIG_PPC) && !name)
1804 			of_property_read_string(of_aliases, "stdout", &name);
1805 		if (name)
1806 			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1807 		if (of_stdout)
1808 			of_stdout->fwnode.flags |= FWNODE_FLAG_BEST_EFFORT;
1809 	}
1810 
1811 	if (!of_aliases)
1812 		return;
1813 
1814 	for_each_property_of_node(of_aliases, pp) {
1815 		const char *start = pp->name;
1816 		const char *end = start + strlen(start);
1817 		struct device_node *np;
1818 		struct alias_prop *ap;
1819 		int id, len;
1820 
1821 		/* Skip those we do not want to proceed */
1822 		if (!strcmp(pp->name, "name") ||
1823 		    !strcmp(pp->name, "phandle") ||
1824 		    !strcmp(pp->name, "linux,phandle"))
1825 			continue;
1826 
1827 		np = of_find_node_by_path(pp->value);
1828 		if (!np)
1829 			continue;
1830 
1831 		/* walk the alias backwards to extract the id and work out
1832 		 * the 'stem' string */
1833 		while (isdigit(*(end-1)) && end > start)
1834 			end--;
1835 		len = end - start;
1836 
1837 		if (kstrtoint(end, 10, &id) < 0)
1838 			continue;
1839 
1840 		/* Allocate an alias_prop with enough space for the stem */
1841 		ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
1842 		if (!ap)
1843 			continue;
1844 		memset(ap, 0, sizeof(*ap) + len + 1);
1845 		ap->alias = start;
1846 		of_alias_add(ap, np, id, start, len);
1847 	}
1848 }
1849 
1850 /**
1851  * of_alias_get_id - Get alias id for the given device_node
1852  * @np:		Pointer to the given device_node
1853  * @stem:	Alias stem of the given device_node
1854  *
1855  * The function travels the lookup table to get the alias id for the given
1856  * device_node and alias stem.
1857  *
1858  * Return: The alias id if found.
1859  */
1860 int of_alias_get_id(struct device_node *np, const char *stem)
1861 {
1862 	struct alias_prop *app;
1863 	int id = -ENODEV;
1864 
1865 	mutex_lock(&of_mutex);
1866 	list_for_each_entry(app, &aliases_lookup, link) {
1867 		if (strcmp(app->stem, stem) != 0)
1868 			continue;
1869 
1870 		if (np == app->np) {
1871 			id = app->id;
1872 			break;
1873 		}
1874 	}
1875 	mutex_unlock(&of_mutex);
1876 
1877 	return id;
1878 }
1879 EXPORT_SYMBOL_GPL(of_alias_get_id);
1880 
1881 /**
1882  * of_alias_get_highest_id - Get highest alias id for the given stem
1883  * @stem:	Alias stem to be examined
1884  *
1885  * The function travels the lookup table to get the highest alias id for the
1886  * given alias stem.  It returns the alias id if found.
1887  */
1888 int of_alias_get_highest_id(const char *stem)
1889 {
1890 	struct alias_prop *app;
1891 	int id = -ENODEV;
1892 
1893 	mutex_lock(&of_mutex);
1894 	list_for_each_entry(app, &aliases_lookup, link) {
1895 		if (strcmp(app->stem, stem) != 0)
1896 			continue;
1897 
1898 		if (app->id > id)
1899 			id = app->id;
1900 	}
1901 	mutex_unlock(&of_mutex);
1902 
1903 	return id;
1904 }
1905 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
1906 
1907 /**
1908  * of_console_check() - Test and setup console for DT setup
1909  * @dn: Pointer to device node
1910  * @name: Name to use for preferred console without index. ex. "ttyS"
1911  * @index: Index to use for preferred console.
1912  *
1913  * Check if the given device node matches the stdout-path property in the
1914  * /chosen node. If it does then register it as the preferred console.
1915  *
1916  * Return: TRUE if console successfully setup. Otherwise return FALSE.
1917  */
1918 bool of_console_check(struct device_node *dn, char *name, int index)
1919 {
1920 	if (!dn || dn != of_stdout || console_set_on_cmdline)
1921 		return false;
1922 
1923 	/*
1924 	 * XXX: cast `options' to char pointer to suppress complication
1925 	 * warnings: printk, UART and console drivers expect char pointer.
1926 	 */
1927 	return !add_preferred_console(name, index, (char *)of_stdout_options);
1928 }
1929 EXPORT_SYMBOL_GPL(of_console_check);
1930 
1931 /**
1932  * of_find_next_cache_node - Find a node's subsidiary cache
1933  * @np:	node of type "cpu" or "cache"
1934  *
1935  * Return: A node pointer with refcount incremented, use
1936  * of_node_put() on it when done.  Caller should hold a reference
1937  * to np.
1938  */
1939 struct device_node *of_find_next_cache_node(const struct device_node *np)
1940 {
1941 	struct device_node *child, *cache_node;
1942 
1943 	cache_node = of_parse_phandle(np, "l2-cache", 0);
1944 	if (!cache_node)
1945 		cache_node = of_parse_phandle(np, "next-level-cache", 0);
1946 
1947 	if (cache_node)
1948 		return cache_node;
1949 
1950 	/* OF on pmac has nodes instead of properties named "l2-cache"
1951 	 * beneath CPU nodes.
1952 	 */
1953 	if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
1954 		for_each_child_of_node(np, child)
1955 			if (of_node_is_type(child, "cache"))
1956 				return child;
1957 
1958 	return NULL;
1959 }
1960 
1961 /**
1962  * of_find_last_cache_level - Find the level at which the last cache is
1963  * 		present for the given logical cpu
1964  *
1965  * @cpu: cpu number(logical index) for which the last cache level is needed
1966  *
1967  * Return: The level at which the last cache is present. It is exactly
1968  * same as  the total number of cache levels for the given logical cpu.
1969  */
1970 int of_find_last_cache_level(unsigned int cpu)
1971 {
1972 	u32 cache_level = 0;
1973 	struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
1974 
1975 	while (np) {
1976 		of_node_put(prev);
1977 		prev = np;
1978 		np = of_find_next_cache_node(np);
1979 	}
1980 
1981 	of_property_read_u32(prev, "cache-level", &cache_level);
1982 	of_node_put(prev);
1983 
1984 	return cache_level;
1985 }
1986 
1987 /**
1988  * of_map_id - Translate an ID through a downstream mapping.
1989  * @np: root complex device node.
1990  * @id: device ID to map.
1991  * @map_name: property name of the map to use.
1992  * @map_mask_name: optional property name of the mask to use.
1993  * @target: optional pointer to a target device node.
1994  * @id_out: optional pointer to receive the translated ID.
1995  *
1996  * Given a device ID, look up the appropriate implementation-defined
1997  * platform ID and/or the target device which receives transactions on that
1998  * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
1999  * @id_out may be NULL if only the other is required. If @target points to
2000  * a non-NULL device node pointer, only entries targeting that node will be
2001  * matched; if it points to a NULL value, it will receive the device node of
2002  * the first matching target phandle, with a reference held.
2003  *
2004  * Return: 0 on success or a standard error code on failure.
2005  */
2006 int of_map_id(struct device_node *np, u32 id,
2007 	       const char *map_name, const char *map_mask_name,
2008 	       struct device_node **target, u32 *id_out)
2009 {
2010 	u32 map_mask, masked_id;
2011 	int map_len;
2012 	const __be32 *map = NULL;
2013 
2014 	if (!np || !map_name || (!target && !id_out))
2015 		return -EINVAL;
2016 
2017 	map = of_get_property(np, map_name, &map_len);
2018 	if (!map) {
2019 		if (target)
2020 			return -ENODEV;
2021 		/* Otherwise, no map implies no translation */
2022 		*id_out = id;
2023 		return 0;
2024 	}
2025 
2026 	if (!map_len || map_len % (4 * sizeof(*map))) {
2027 		pr_err("%pOF: Error: Bad %s length: %d\n", np,
2028 			map_name, map_len);
2029 		return -EINVAL;
2030 	}
2031 
2032 	/* The default is to select all bits. */
2033 	map_mask = 0xffffffff;
2034 
2035 	/*
2036 	 * Can be overridden by "{iommu,msi}-map-mask" property.
2037 	 * If of_property_read_u32() fails, the default is used.
2038 	 */
2039 	if (map_mask_name)
2040 		of_property_read_u32(np, map_mask_name, &map_mask);
2041 
2042 	masked_id = map_mask & id;
2043 	for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
2044 		struct device_node *phandle_node;
2045 		u32 id_base = be32_to_cpup(map + 0);
2046 		u32 phandle = be32_to_cpup(map + 1);
2047 		u32 out_base = be32_to_cpup(map + 2);
2048 		u32 id_len = be32_to_cpup(map + 3);
2049 
2050 		if (id_base & ~map_mask) {
2051 			pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n",
2052 				np, map_name, map_name,
2053 				map_mask, id_base);
2054 			return -EFAULT;
2055 		}
2056 
2057 		if (masked_id < id_base || masked_id >= id_base + id_len)
2058 			continue;
2059 
2060 		phandle_node = of_find_node_by_phandle(phandle);
2061 		if (!phandle_node)
2062 			return -ENODEV;
2063 
2064 		if (target) {
2065 			if (*target)
2066 				of_node_put(phandle_node);
2067 			else
2068 				*target = phandle_node;
2069 
2070 			if (*target != phandle_node)
2071 				continue;
2072 		}
2073 
2074 		if (id_out)
2075 			*id_out = masked_id - id_base + out_base;
2076 
2077 		pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n",
2078 			np, map_name, map_mask, id_base, out_base,
2079 			id_len, id, masked_id - id_base + out_base);
2080 		return 0;
2081 	}
2082 
2083 	pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name,
2084 		id, target && *target ? *target : NULL);
2085 
2086 	/* Bypasses translation */
2087 	if (id_out)
2088 		*id_out = id;
2089 	return 0;
2090 }
2091 EXPORT_SYMBOL_GPL(of_map_id);
2092