1 /* 2 * Procedures for creating, accessing and interpreting the device tree. 3 * 4 * Paul Mackerras August 1996. 5 * Copyright (C) 1996-2005 Paul Mackerras. 6 * 7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 8 * {engebret|bergner}@us.ibm.com 9 * 10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 11 * 12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 13 * Grant Likely. 14 * 15 * This program is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU General Public License 17 * as published by the Free Software Foundation; either version 18 * 2 of the License, or (at your option) any later version. 19 */ 20 21 #define pr_fmt(fmt) "OF: " fmt 22 23 #include <linux/console.h> 24 #include <linux/ctype.h> 25 #include <linux/cpu.h> 26 #include <linux/module.h> 27 #include <linux/of.h> 28 #include <linux/of_graph.h> 29 #include <linux/spinlock.h> 30 #include <linux/slab.h> 31 #include <linux/string.h> 32 #include <linux/proc_fs.h> 33 34 #include "of_private.h" 35 36 LIST_HEAD(aliases_lookup); 37 38 struct device_node *of_root; 39 EXPORT_SYMBOL(of_root); 40 struct device_node *of_chosen; 41 struct device_node *of_aliases; 42 struct device_node *of_stdout; 43 static const char *of_stdout_options; 44 45 struct kset *of_kset; 46 47 /* 48 * Used to protect the of_aliases, to hold off addition of nodes to sysfs. 49 * This mutex must be held whenever modifications are being made to the 50 * device tree. The of_{attach,detach}_node() and 51 * of_{add,remove,update}_property() helpers make sure this happens. 52 */ 53 DEFINE_MUTEX(of_mutex); 54 55 /* use when traversing tree through the child, sibling, 56 * or parent members of struct device_node. 57 */ 58 DEFINE_RAW_SPINLOCK(devtree_lock); 59 60 int of_n_addr_cells(struct device_node *np) 61 { 62 const __be32 *ip; 63 64 do { 65 if (np->parent) 66 np = np->parent; 67 ip = of_get_property(np, "#address-cells", NULL); 68 if (ip) 69 return be32_to_cpup(ip); 70 } while (np->parent); 71 /* No #address-cells property for the root node */ 72 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 73 } 74 EXPORT_SYMBOL(of_n_addr_cells); 75 76 int of_n_size_cells(struct device_node *np) 77 { 78 const __be32 *ip; 79 80 do { 81 if (np->parent) 82 np = np->parent; 83 ip = of_get_property(np, "#size-cells", NULL); 84 if (ip) 85 return be32_to_cpup(ip); 86 } while (np->parent); 87 /* No #size-cells property for the root node */ 88 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 89 } 90 EXPORT_SYMBOL(of_n_size_cells); 91 92 #ifdef CONFIG_NUMA 93 int __weak of_node_to_nid(struct device_node *np) 94 { 95 return NUMA_NO_NODE; 96 } 97 #endif 98 99 #ifndef CONFIG_OF_DYNAMIC 100 static void of_node_release(struct kobject *kobj) 101 { 102 /* Without CONFIG_OF_DYNAMIC, no nodes gets freed */ 103 } 104 #endif /* CONFIG_OF_DYNAMIC */ 105 106 struct kobj_type of_node_ktype = { 107 .release = of_node_release, 108 }; 109 110 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj, 111 struct bin_attribute *bin_attr, char *buf, 112 loff_t offset, size_t count) 113 { 114 struct property *pp = container_of(bin_attr, struct property, attr); 115 return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length); 116 } 117 118 /* always return newly allocated name, caller must free after use */ 119 static const char *safe_name(struct kobject *kobj, const char *orig_name) 120 { 121 const char *name = orig_name; 122 struct kernfs_node *kn; 123 int i = 0; 124 125 /* don't be a hero. After 16 tries give up */ 126 while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) { 127 sysfs_put(kn); 128 if (name != orig_name) 129 kfree(name); 130 name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i); 131 } 132 133 if (name == orig_name) { 134 name = kstrdup(orig_name, GFP_KERNEL); 135 } else { 136 pr_warn("Duplicate name in %s, renamed to \"%s\"\n", 137 kobject_name(kobj), name); 138 } 139 return name; 140 } 141 142 int __of_add_property_sysfs(struct device_node *np, struct property *pp) 143 { 144 int rc; 145 146 /* Important: Don't leak passwords */ 147 bool secure = strncmp(pp->name, "security-", 9) == 0; 148 149 if (!IS_ENABLED(CONFIG_SYSFS)) 150 return 0; 151 152 if (!of_kset || !of_node_is_attached(np)) 153 return 0; 154 155 sysfs_bin_attr_init(&pp->attr); 156 pp->attr.attr.name = safe_name(&np->kobj, pp->name); 157 pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO; 158 pp->attr.size = secure ? 0 : pp->length; 159 pp->attr.read = of_node_property_read; 160 161 rc = sysfs_create_bin_file(&np->kobj, &pp->attr); 162 WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name); 163 return rc; 164 } 165 166 int __of_attach_node_sysfs(struct device_node *np) 167 { 168 const char *name; 169 struct kobject *parent; 170 struct property *pp; 171 int rc; 172 173 if (!IS_ENABLED(CONFIG_SYSFS)) 174 return 0; 175 176 if (!of_kset) 177 return 0; 178 179 np->kobj.kset = of_kset; 180 if (!np->parent) { 181 /* Nodes without parents are new top level trees */ 182 name = safe_name(&of_kset->kobj, "base"); 183 parent = NULL; 184 } else { 185 name = safe_name(&np->parent->kobj, kbasename(np->full_name)); 186 parent = &np->parent->kobj; 187 } 188 if (!name) 189 return -ENOMEM; 190 rc = kobject_add(&np->kobj, parent, "%s", name); 191 kfree(name); 192 if (rc) 193 return rc; 194 195 for_each_property_of_node(np, pp) 196 __of_add_property_sysfs(np, pp); 197 198 return 0; 199 } 200 201 void __init of_core_init(void) 202 { 203 struct device_node *np; 204 205 /* Create the kset, and register existing nodes */ 206 mutex_lock(&of_mutex); 207 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj); 208 if (!of_kset) { 209 mutex_unlock(&of_mutex); 210 pr_err("failed to register existing nodes\n"); 211 return; 212 } 213 for_each_of_allnodes(np) 214 __of_attach_node_sysfs(np); 215 mutex_unlock(&of_mutex); 216 217 /* Symlink in /proc as required by userspace ABI */ 218 if (of_root) 219 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base"); 220 } 221 222 static struct property *__of_find_property(const struct device_node *np, 223 const char *name, int *lenp) 224 { 225 struct property *pp; 226 227 if (!np) 228 return NULL; 229 230 for (pp = np->properties; pp; pp = pp->next) { 231 if (of_prop_cmp(pp->name, name) == 0) { 232 if (lenp) 233 *lenp = pp->length; 234 break; 235 } 236 } 237 238 return pp; 239 } 240 241 struct property *of_find_property(const struct device_node *np, 242 const char *name, 243 int *lenp) 244 { 245 struct property *pp; 246 unsigned long flags; 247 248 raw_spin_lock_irqsave(&devtree_lock, flags); 249 pp = __of_find_property(np, name, lenp); 250 raw_spin_unlock_irqrestore(&devtree_lock, flags); 251 252 return pp; 253 } 254 EXPORT_SYMBOL(of_find_property); 255 256 struct device_node *__of_find_all_nodes(struct device_node *prev) 257 { 258 struct device_node *np; 259 if (!prev) { 260 np = of_root; 261 } else if (prev->child) { 262 np = prev->child; 263 } else { 264 /* Walk back up looking for a sibling, or the end of the structure */ 265 np = prev; 266 while (np->parent && !np->sibling) 267 np = np->parent; 268 np = np->sibling; /* Might be null at the end of the tree */ 269 } 270 return np; 271 } 272 273 /** 274 * of_find_all_nodes - Get next node in global list 275 * @prev: Previous node or NULL to start iteration 276 * of_node_put() will be called on it 277 * 278 * Returns a node pointer with refcount incremented, use 279 * of_node_put() on it when done. 280 */ 281 struct device_node *of_find_all_nodes(struct device_node *prev) 282 { 283 struct device_node *np; 284 unsigned long flags; 285 286 raw_spin_lock_irqsave(&devtree_lock, flags); 287 np = __of_find_all_nodes(prev); 288 of_node_get(np); 289 of_node_put(prev); 290 raw_spin_unlock_irqrestore(&devtree_lock, flags); 291 return np; 292 } 293 EXPORT_SYMBOL(of_find_all_nodes); 294 295 /* 296 * Find a property with a given name for a given node 297 * and return the value. 298 */ 299 const void *__of_get_property(const struct device_node *np, 300 const char *name, int *lenp) 301 { 302 struct property *pp = __of_find_property(np, name, lenp); 303 304 return pp ? pp->value : NULL; 305 } 306 307 /* 308 * Find a property with a given name for a given node 309 * and return the value. 310 */ 311 const void *of_get_property(const struct device_node *np, const char *name, 312 int *lenp) 313 { 314 struct property *pp = of_find_property(np, name, lenp); 315 316 return pp ? pp->value : NULL; 317 } 318 EXPORT_SYMBOL(of_get_property); 319 320 /* 321 * arch_match_cpu_phys_id - Match the given logical CPU and physical id 322 * 323 * @cpu: logical cpu index of a core/thread 324 * @phys_id: physical identifier of a core/thread 325 * 326 * CPU logical to physical index mapping is architecture specific. 327 * However this __weak function provides a default match of physical 328 * id to logical cpu index. phys_id provided here is usually values read 329 * from the device tree which must match the hardware internal registers. 330 * 331 * Returns true if the physical identifier and the logical cpu index 332 * correspond to the same core/thread, false otherwise. 333 */ 334 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id) 335 { 336 return (u32)phys_id == cpu; 337 } 338 339 /** 340 * Checks if the given "prop_name" property holds the physical id of the 341 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not 342 * NULL, local thread number within the core is returned in it. 343 */ 344 static bool __of_find_n_match_cpu_property(struct device_node *cpun, 345 const char *prop_name, int cpu, unsigned int *thread) 346 { 347 const __be32 *cell; 348 int ac, prop_len, tid; 349 u64 hwid; 350 351 ac = of_n_addr_cells(cpun); 352 cell = of_get_property(cpun, prop_name, &prop_len); 353 if (!cell || !ac) 354 return false; 355 prop_len /= sizeof(*cell) * ac; 356 for (tid = 0; tid < prop_len; tid++) { 357 hwid = of_read_number(cell, ac); 358 if (arch_match_cpu_phys_id(cpu, hwid)) { 359 if (thread) 360 *thread = tid; 361 return true; 362 } 363 cell += ac; 364 } 365 return false; 366 } 367 368 /* 369 * arch_find_n_match_cpu_physical_id - See if the given device node is 370 * for the cpu corresponding to logical cpu 'cpu'. Return true if so, 371 * else false. If 'thread' is non-NULL, the local thread number within the 372 * core is returned in it. 373 */ 374 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun, 375 int cpu, unsigned int *thread) 376 { 377 /* Check for non-standard "ibm,ppc-interrupt-server#s" property 378 * for thread ids on PowerPC. If it doesn't exist fallback to 379 * standard "reg" property. 380 */ 381 if (IS_ENABLED(CONFIG_PPC) && 382 __of_find_n_match_cpu_property(cpun, 383 "ibm,ppc-interrupt-server#s", 384 cpu, thread)) 385 return true; 386 387 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread); 388 } 389 390 /** 391 * of_get_cpu_node - Get device node associated with the given logical CPU 392 * 393 * @cpu: CPU number(logical index) for which device node is required 394 * @thread: if not NULL, local thread number within the physical core is 395 * returned 396 * 397 * The main purpose of this function is to retrieve the device node for the 398 * given logical CPU index. It should be used to initialize the of_node in 399 * cpu device. Once of_node in cpu device is populated, all the further 400 * references can use that instead. 401 * 402 * CPU logical to physical index mapping is architecture specific and is built 403 * before booting secondary cores. This function uses arch_match_cpu_phys_id 404 * which can be overridden by architecture specific implementation. 405 * 406 * Returns a node pointer for the logical cpu with refcount incremented, use 407 * of_node_put() on it when done. Returns NULL if not found. 408 */ 409 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread) 410 { 411 struct device_node *cpun; 412 413 for_each_node_by_type(cpun, "cpu") { 414 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread)) 415 return cpun; 416 } 417 return NULL; 418 } 419 EXPORT_SYMBOL(of_get_cpu_node); 420 421 /** 422 * __of_device_is_compatible() - Check if the node matches given constraints 423 * @device: pointer to node 424 * @compat: required compatible string, NULL or "" for any match 425 * @type: required device_type value, NULL or "" for any match 426 * @name: required node name, NULL or "" for any match 427 * 428 * Checks if the given @compat, @type and @name strings match the 429 * properties of the given @device. A constraints can be skipped by 430 * passing NULL or an empty string as the constraint. 431 * 432 * Returns 0 for no match, and a positive integer on match. The return 433 * value is a relative score with larger values indicating better 434 * matches. The score is weighted for the most specific compatible value 435 * to get the highest score. Matching type is next, followed by matching 436 * name. Practically speaking, this results in the following priority 437 * order for matches: 438 * 439 * 1. specific compatible && type && name 440 * 2. specific compatible && type 441 * 3. specific compatible && name 442 * 4. specific compatible 443 * 5. general compatible && type && name 444 * 6. general compatible && type 445 * 7. general compatible && name 446 * 8. general compatible 447 * 9. type && name 448 * 10. type 449 * 11. name 450 */ 451 static int __of_device_is_compatible(const struct device_node *device, 452 const char *compat, const char *type, const char *name) 453 { 454 struct property *prop; 455 const char *cp; 456 int index = 0, score = 0; 457 458 /* Compatible match has highest priority */ 459 if (compat && compat[0]) { 460 prop = __of_find_property(device, "compatible", NULL); 461 for (cp = of_prop_next_string(prop, NULL); cp; 462 cp = of_prop_next_string(prop, cp), index++) { 463 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) { 464 score = INT_MAX/2 - (index << 2); 465 break; 466 } 467 } 468 if (!score) 469 return 0; 470 } 471 472 /* Matching type is better than matching name */ 473 if (type && type[0]) { 474 if (!device->type || of_node_cmp(type, device->type)) 475 return 0; 476 score += 2; 477 } 478 479 /* Matching name is a bit better than not */ 480 if (name && name[0]) { 481 if (!device->name || of_node_cmp(name, device->name)) 482 return 0; 483 score++; 484 } 485 486 return score; 487 } 488 489 /** Checks if the given "compat" string matches one of the strings in 490 * the device's "compatible" property 491 */ 492 int of_device_is_compatible(const struct device_node *device, 493 const char *compat) 494 { 495 unsigned long flags; 496 int res; 497 498 raw_spin_lock_irqsave(&devtree_lock, flags); 499 res = __of_device_is_compatible(device, compat, NULL, NULL); 500 raw_spin_unlock_irqrestore(&devtree_lock, flags); 501 return res; 502 } 503 EXPORT_SYMBOL(of_device_is_compatible); 504 505 /** Checks if the device is compatible with any of the entries in 506 * a NULL terminated array of strings. Returns the best match 507 * score or 0. 508 */ 509 int of_device_compatible_match(struct device_node *device, 510 const char *const *compat) 511 { 512 unsigned int tmp, score = 0; 513 514 if (!compat) 515 return 0; 516 517 while (*compat) { 518 tmp = of_device_is_compatible(device, *compat); 519 if (tmp > score) 520 score = tmp; 521 compat++; 522 } 523 524 return score; 525 } 526 527 /** 528 * of_machine_is_compatible - Test root of device tree for a given compatible value 529 * @compat: compatible string to look for in root node's compatible property. 530 * 531 * Returns a positive integer if the root node has the given value in its 532 * compatible property. 533 */ 534 int of_machine_is_compatible(const char *compat) 535 { 536 struct device_node *root; 537 int rc = 0; 538 539 root = of_find_node_by_path("/"); 540 if (root) { 541 rc = of_device_is_compatible(root, compat); 542 of_node_put(root); 543 } 544 return rc; 545 } 546 EXPORT_SYMBOL(of_machine_is_compatible); 547 548 /** 549 * __of_device_is_available - check if a device is available for use 550 * 551 * @device: Node to check for availability, with locks already held 552 * 553 * Returns true if the status property is absent or set to "okay" or "ok", 554 * false otherwise 555 */ 556 static bool __of_device_is_available(const struct device_node *device) 557 { 558 const char *status; 559 int statlen; 560 561 if (!device) 562 return false; 563 564 status = __of_get_property(device, "status", &statlen); 565 if (status == NULL) 566 return true; 567 568 if (statlen > 0) { 569 if (!strcmp(status, "okay") || !strcmp(status, "ok")) 570 return true; 571 } 572 573 return false; 574 } 575 576 /** 577 * of_device_is_available - check if a device is available for use 578 * 579 * @device: Node to check for availability 580 * 581 * Returns true if the status property is absent or set to "okay" or "ok", 582 * false otherwise 583 */ 584 bool of_device_is_available(const struct device_node *device) 585 { 586 unsigned long flags; 587 bool res; 588 589 raw_spin_lock_irqsave(&devtree_lock, flags); 590 res = __of_device_is_available(device); 591 raw_spin_unlock_irqrestore(&devtree_lock, flags); 592 return res; 593 594 } 595 EXPORT_SYMBOL(of_device_is_available); 596 597 /** 598 * of_device_is_big_endian - check if a device has BE registers 599 * 600 * @device: Node to check for endianness 601 * 602 * Returns true if the device has a "big-endian" property, or if the kernel 603 * was compiled for BE *and* the device has a "native-endian" property. 604 * Returns false otherwise. 605 * 606 * Callers would nominally use ioread32be/iowrite32be if 607 * of_device_is_big_endian() == true, or readl/writel otherwise. 608 */ 609 bool of_device_is_big_endian(const struct device_node *device) 610 { 611 if (of_property_read_bool(device, "big-endian")) 612 return true; 613 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) && 614 of_property_read_bool(device, "native-endian")) 615 return true; 616 return false; 617 } 618 EXPORT_SYMBOL(of_device_is_big_endian); 619 620 /** 621 * of_get_parent - Get a node's parent if any 622 * @node: Node to get parent 623 * 624 * Returns a node pointer with refcount incremented, use 625 * of_node_put() on it when done. 626 */ 627 struct device_node *of_get_parent(const struct device_node *node) 628 { 629 struct device_node *np; 630 unsigned long flags; 631 632 if (!node) 633 return NULL; 634 635 raw_spin_lock_irqsave(&devtree_lock, flags); 636 np = of_node_get(node->parent); 637 raw_spin_unlock_irqrestore(&devtree_lock, flags); 638 return np; 639 } 640 EXPORT_SYMBOL(of_get_parent); 641 642 /** 643 * of_get_next_parent - Iterate to a node's parent 644 * @node: Node to get parent of 645 * 646 * This is like of_get_parent() except that it drops the 647 * refcount on the passed node, making it suitable for iterating 648 * through a node's parents. 649 * 650 * Returns a node pointer with refcount incremented, use 651 * of_node_put() on it when done. 652 */ 653 struct device_node *of_get_next_parent(struct device_node *node) 654 { 655 struct device_node *parent; 656 unsigned long flags; 657 658 if (!node) 659 return NULL; 660 661 raw_spin_lock_irqsave(&devtree_lock, flags); 662 parent = of_node_get(node->parent); 663 of_node_put(node); 664 raw_spin_unlock_irqrestore(&devtree_lock, flags); 665 return parent; 666 } 667 EXPORT_SYMBOL(of_get_next_parent); 668 669 static struct device_node *__of_get_next_child(const struct device_node *node, 670 struct device_node *prev) 671 { 672 struct device_node *next; 673 674 if (!node) 675 return NULL; 676 677 next = prev ? prev->sibling : node->child; 678 for (; next; next = next->sibling) 679 if (of_node_get(next)) 680 break; 681 of_node_put(prev); 682 return next; 683 } 684 #define __for_each_child_of_node(parent, child) \ 685 for (child = __of_get_next_child(parent, NULL); child != NULL; \ 686 child = __of_get_next_child(parent, child)) 687 688 /** 689 * of_get_next_child - Iterate a node childs 690 * @node: parent node 691 * @prev: previous child of the parent node, or NULL to get first 692 * 693 * Returns a node pointer with refcount incremented, use of_node_put() on 694 * it when done. Returns NULL when prev is the last child. Decrements the 695 * refcount of prev. 696 */ 697 struct device_node *of_get_next_child(const struct device_node *node, 698 struct device_node *prev) 699 { 700 struct device_node *next; 701 unsigned long flags; 702 703 raw_spin_lock_irqsave(&devtree_lock, flags); 704 next = __of_get_next_child(node, prev); 705 raw_spin_unlock_irqrestore(&devtree_lock, flags); 706 return next; 707 } 708 EXPORT_SYMBOL(of_get_next_child); 709 710 /** 711 * of_get_next_available_child - Find the next available child node 712 * @node: parent node 713 * @prev: previous child of the parent node, or NULL to get first 714 * 715 * This function is like of_get_next_child(), except that it 716 * automatically skips any disabled nodes (i.e. status = "disabled"). 717 */ 718 struct device_node *of_get_next_available_child(const struct device_node *node, 719 struct device_node *prev) 720 { 721 struct device_node *next; 722 unsigned long flags; 723 724 if (!node) 725 return NULL; 726 727 raw_spin_lock_irqsave(&devtree_lock, flags); 728 next = prev ? prev->sibling : node->child; 729 for (; next; next = next->sibling) { 730 if (!__of_device_is_available(next)) 731 continue; 732 if (of_node_get(next)) 733 break; 734 } 735 of_node_put(prev); 736 raw_spin_unlock_irqrestore(&devtree_lock, flags); 737 return next; 738 } 739 EXPORT_SYMBOL(of_get_next_available_child); 740 741 /** 742 * of_get_child_by_name - Find the child node by name for a given parent 743 * @node: parent node 744 * @name: child name to look for. 745 * 746 * This function looks for child node for given matching name 747 * 748 * Returns a node pointer if found, with refcount incremented, use 749 * of_node_put() on it when done. 750 * Returns NULL if node is not found. 751 */ 752 struct device_node *of_get_child_by_name(const struct device_node *node, 753 const char *name) 754 { 755 struct device_node *child; 756 757 for_each_child_of_node(node, child) 758 if (child->name && (of_node_cmp(child->name, name) == 0)) 759 break; 760 return child; 761 } 762 EXPORT_SYMBOL(of_get_child_by_name); 763 764 static struct device_node *__of_find_node_by_path(struct device_node *parent, 765 const char *path) 766 { 767 struct device_node *child; 768 int len; 769 770 len = strcspn(path, "/:"); 771 if (!len) 772 return NULL; 773 774 __for_each_child_of_node(parent, child) { 775 const char *name = strrchr(child->full_name, '/'); 776 if (WARN(!name, "malformed device_node %s\n", child->full_name)) 777 continue; 778 name++; 779 if (strncmp(path, name, len) == 0 && (strlen(name) == len)) 780 return child; 781 } 782 return NULL; 783 } 784 785 /** 786 * of_find_node_opts_by_path - Find a node matching a full OF path 787 * @path: Either the full path to match, or if the path does not 788 * start with '/', the name of a property of the /aliases 789 * node (an alias). In the case of an alias, the node 790 * matching the alias' value will be returned. 791 * @opts: Address of a pointer into which to store the start of 792 * an options string appended to the end of the path with 793 * a ':' separator. 794 * 795 * Valid paths: 796 * /foo/bar Full path 797 * foo Valid alias 798 * foo/bar Valid alias + relative path 799 * 800 * Returns a node pointer with refcount incremented, use 801 * of_node_put() on it when done. 802 */ 803 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts) 804 { 805 struct device_node *np = NULL; 806 struct property *pp; 807 unsigned long flags; 808 const char *separator = strchr(path, ':'); 809 810 if (opts) 811 *opts = separator ? separator + 1 : NULL; 812 813 if (strcmp(path, "/") == 0) 814 return of_node_get(of_root); 815 816 /* The path could begin with an alias */ 817 if (*path != '/') { 818 int len; 819 const char *p = separator; 820 821 if (!p) 822 p = strchrnul(path, '/'); 823 len = p - path; 824 825 /* of_aliases must not be NULL */ 826 if (!of_aliases) 827 return NULL; 828 829 for_each_property_of_node(of_aliases, pp) { 830 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) { 831 np = of_find_node_by_path(pp->value); 832 break; 833 } 834 } 835 if (!np) 836 return NULL; 837 path = p; 838 } 839 840 /* Step down the tree matching path components */ 841 raw_spin_lock_irqsave(&devtree_lock, flags); 842 if (!np) 843 np = of_node_get(of_root); 844 while (np && *path == '/') { 845 path++; /* Increment past '/' delimiter */ 846 np = __of_find_node_by_path(np, path); 847 path = strchrnul(path, '/'); 848 if (separator && separator < path) 849 break; 850 } 851 raw_spin_unlock_irqrestore(&devtree_lock, flags); 852 return np; 853 } 854 EXPORT_SYMBOL(of_find_node_opts_by_path); 855 856 /** 857 * of_find_node_by_name - Find a node by its "name" property 858 * @from: The node to start searching from or NULL, the node 859 * you pass will not be searched, only the next one 860 * will; typically, you pass what the previous call 861 * returned. of_node_put() will be called on it 862 * @name: The name string to match against 863 * 864 * Returns a node pointer with refcount incremented, use 865 * of_node_put() on it when done. 866 */ 867 struct device_node *of_find_node_by_name(struct device_node *from, 868 const char *name) 869 { 870 struct device_node *np; 871 unsigned long flags; 872 873 raw_spin_lock_irqsave(&devtree_lock, flags); 874 for_each_of_allnodes_from(from, np) 875 if (np->name && (of_node_cmp(np->name, name) == 0) 876 && of_node_get(np)) 877 break; 878 of_node_put(from); 879 raw_spin_unlock_irqrestore(&devtree_lock, flags); 880 return np; 881 } 882 EXPORT_SYMBOL(of_find_node_by_name); 883 884 /** 885 * of_find_node_by_type - Find a node by its "device_type" property 886 * @from: The node to start searching from, or NULL to start searching 887 * the entire device tree. The node you pass will not be 888 * searched, only the next one will; typically, you pass 889 * what the previous call returned. of_node_put() will be 890 * called on from for you. 891 * @type: The type string to match against 892 * 893 * Returns a node pointer with refcount incremented, use 894 * of_node_put() on it when done. 895 */ 896 struct device_node *of_find_node_by_type(struct device_node *from, 897 const char *type) 898 { 899 struct device_node *np; 900 unsigned long flags; 901 902 raw_spin_lock_irqsave(&devtree_lock, flags); 903 for_each_of_allnodes_from(from, np) 904 if (np->type && (of_node_cmp(np->type, type) == 0) 905 && of_node_get(np)) 906 break; 907 of_node_put(from); 908 raw_spin_unlock_irqrestore(&devtree_lock, flags); 909 return np; 910 } 911 EXPORT_SYMBOL(of_find_node_by_type); 912 913 /** 914 * of_find_compatible_node - Find a node based on type and one of the 915 * tokens in its "compatible" property 916 * @from: The node to start searching from or NULL, the node 917 * you pass will not be searched, only the next one 918 * will; typically, you pass what the previous call 919 * returned. of_node_put() will be called on it 920 * @type: The type string to match "device_type" or NULL to ignore 921 * @compatible: The string to match to one of the tokens in the device 922 * "compatible" list. 923 * 924 * Returns a node pointer with refcount incremented, use 925 * of_node_put() on it when done. 926 */ 927 struct device_node *of_find_compatible_node(struct device_node *from, 928 const char *type, const char *compatible) 929 { 930 struct device_node *np; 931 unsigned long flags; 932 933 raw_spin_lock_irqsave(&devtree_lock, flags); 934 for_each_of_allnodes_from(from, np) 935 if (__of_device_is_compatible(np, compatible, type, NULL) && 936 of_node_get(np)) 937 break; 938 of_node_put(from); 939 raw_spin_unlock_irqrestore(&devtree_lock, flags); 940 return np; 941 } 942 EXPORT_SYMBOL(of_find_compatible_node); 943 944 /** 945 * of_find_node_with_property - Find a node which has a property with 946 * the given name. 947 * @from: The node to start searching from or NULL, the node 948 * you pass will not be searched, only the next one 949 * will; typically, you pass what the previous call 950 * returned. of_node_put() will be called on it 951 * @prop_name: The name of the property to look for. 952 * 953 * Returns a node pointer with refcount incremented, use 954 * of_node_put() on it when done. 955 */ 956 struct device_node *of_find_node_with_property(struct device_node *from, 957 const char *prop_name) 958 { 959 struct device_node *np; 960 struct property *pp; 961 unsigned long flags; 962 963 raw_spin_lock_irqsave(&devtree_lock, flags); 964 for_each_of_allnodes_from(from, np) { 965 for (pp = np->properties; pp; pp = pp->next) { 966 if (of_prop_cmp(pp->name, prop_name) == 0) { 967 of_node_get(np); 968 goto out; 969 } 970 } 971 } 972 out: 973 of_node_put(from); 974 raw_spin_unlock_irqrestore(&devtree_lock, flags); 975 return np; 976 } 977 EXPORT_SYMBOL(of_find_node_with_property); 978 979 static 980 const struct of_device_id *__of_match_node(const struct of_device_id *matches, 981 const struct device_node *node) 982 { 983 const struct of_device_id *best_match = NULL; 984 int score, best_score = 0; 985 986 if (!matches) 987 return NULL; 988 989 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) { 990 score = __of_device_is_compatible(node, matches->compatible, 991 matches->type, matches->name); 992 if (score > best_score) { 993 best_match = matches; 994 best_score = score; 995 } 996 } 997 998 return best_match; 999 } 1000 1001 /** 1002 * of_match_node - Tell if a device_node has a matching of_match structure 1003 * @matches: array of of device match structures to search in 1004 * @node: the of device structure to match against 1005 * 1006 * Low level utility function used by device matching. 1007 */ 1008 const struct of_device_id *of_match_node(const struct of_device_id *matches, 1009 const struct device_node *node) 1010 { 1011 const struct of_device_id *match; 1012 unsigned long flags; 1013 1014 raw_spin_lock_irqsave(&devtree_lock, flags); 1015 match = __of_match_node(matches, node); 1016 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1017 return match; 1018 } 1019 EXPORT_SYMBOL(of_match_node); 1020 1021 /** 1022 * of_find_matching_node_and_match - Find a node based on an of_device_id 1023 * match table. 1024 * @from: The node to start searching from or NULL, the node 1025 * you pass will not be searched, only the next one 1026 * will; typically, you pass what the previous call 1027 * returned. of_node_put() will be called on it 1028 * @matches: array of of device match structures to search in 1029 * @match Updated to point at the matches entry which matched 1030 * 1031 * Returns a node pointer with refcount incremented, use 1032 * of_node_put() on it when done. 1033 */ 1034 struct device_node *of_find_matching_node_and_match(struct device_node *from, 1035 const struct of_device_id *matches, 1036 const struct of_device_id **match) 1037 { 1038 struct device_node *np; 1039 const struct of_device_id *m; 1040 unsigned long flags; 1041 1042 if (match) 1043 *match = NULL; 1044 1045 raw_spin_lock_irqsave(&devtree_lock, flags); 1046 for_each_of_allnodes_from(from, np) { 1047 m = __of_match_node(matches, np); 1048 if (m && of_node_get(np)) { 1049 if (match) 1050 *match = m; 1051 break; 1052 } 1053 } 1054 of_node_put(from); 1055 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1056 return np; 1057 } 1058 EXPORT_SYMBOL(of_find_matching_node_and_match); 1059 1060 /** 1061 * of_modalias_node - Lookup appropriate modalias for a device node 1062 * @node: pointer to a device tree node 1063 * @modalias: Pointer to buffer that modalias value will be copied into 1064 * @len: Length of modalias value 1065 * 1066 * Based on the value of the compatible property, this routine will attempt 1067 * to choose an appropriate modalias value for a particular device tree node. 1068 * It does this by stripping the manufacturer prefix (as delimited by a ',') 1069 * from the first entry in the compatible list property. 1070 * 1071 * This routine returns 0 on success, <0 on failure. 1072 */ 1073 int of_modalias_node(struct device_node *node, char *modalias, int len) 1074 { 1075 const char *compatible, *p; 1076 int cplen; 1077 1078 compatible = of_get_property(node, "compatible", &cplen); 1079 if (!compatible || strlen(compatible) > cplen) 1080 return -ENODEV; 1081 p = strchr(compatible, ','); 1082 strlcpy(modalias, p ? p + 1 : compatible, len); 1083 return 0; 1084 } 1085 EXPORT_SYMBOL_GPL(of_modalias_node); 1086 1087 /** 1088 * of_find_node_by_phandle - Find a node given a phandle 1089 * @handle: phandle of the node to find 1090 * 1091 * Returns a node pointer with refcount incremented, use 1092 * of_node_put() on it when done. 1093 */ 1094 struct device_node *of_find_node_by_phandle(phandle handle) 1095 { 1096 struct device_node *np; 1097 unsigned long flags; 1098 1099 if (!handle) 1100 return NULL; 1101 1102 raw_spin_lock_irqsave(&devtree_lock, flags); 1103 for_each_of_allnodes(np) 1104 if (np->phandle == handle) 1105 break; 1106 of_node_get(np); 1107 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1108 return np; 1109 } 1110 EXPORT_SYMBOL(of_find_node_by_phandle); 1111 1112 /** 1113 * of_property_count_elems_of_size - Count the number of elements in a property 1114 * 1115 * @np: device node from which the property value is to be read. 1116 * @propname: name of the property to be searched. 1117 * @elem_size: size of the individual element 1118 * 1119 * Search for a property in a device node and count the number of elements of 1120 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the 1121 * property does not exist or its length does not match a multiple of elem_size 1122 * and -ENODATA if the property does not have a value. 1123 */ 1124 int of_property_count_elems_of_size(const struct device_node *np, 1125 const char *propname, int elem_size) 1126 { 1127 struct property *prop = of_find_property(np, propname, NULL); 1128 1129 if (!prop) 1130 return -EINVAL; 1131 if (!prop->value) 1132 return -ENODATA; 1133 1134 if (prop->length % elem_size != 0) { 1135 pr_err("size of %s in node %s is not a multiple of %d\n", 1136 propname, np->full_name, elem_size); 1137 return -EINVAL; 1138 } 1139 1140 return prop->length / elem_size; 1141 } 1142 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size); 1143 1144 /** 1145 * of_find_property_value_of_size 1146 * 1147 * @np: device node from which the property value is to be read. 1148 * @propname: name of the property to be searched. 1149 * @min: minimum allowed length of property value 1150 * @max: maximum allowed length of property value (0 means unlimited) 1151 * @len: if !=NULL, actual length is written to here 1152 * 1153 * Search for a property in a device node and valid the requested size. 1154 * Returns the property value on success, -EINVAL if the property does not 1155 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the 1156 * property data is too small or too large. 1157 * 1158 */ 1159 static void *of_find_property_value_of_size(const struct device_node *np, 1160 const char *propname, u32 min, u32 max, size_t *len) 1161 { 1162 struct property *prop = of_find_property(np, propname, NULL); 1163 1164 if (!prop) 1165 return ERR_PTR(-EINVAL); 1166 if (!prop->value) 1167 return ERR_PTR(-ENODATA); 1168 if (prop->length < min) 1169 return ERR_PTR(-EOVERFLOW); 1170 if (max && prop->length > max) 1171 return ERR_PTR(-EOVERFLOW); 1172 1173 if (len) 1174 *len = prop->length; 1175 1176 return prop->value; 1177 } 1178 1179 /** 1180 * of_property_read_u32_index - Find and read a u32 from a multi-value property. 1181 * 1182 * @np: device node from which the property value is to be read. 1183 * @propname: name of the property to be searched. 1184 * @index: index of the u32 in the list of values 1185 * @out_value: pointer to return value, modified only if no error. 1186 * 1187 * Search for a property in a device node and read nth 32-bit value from 1188 * it. Returns 0 on success, -EINVAL if the property does not exist, 1189 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1190 * property data isn't large enough. 1191 * 1192 * The out_value is modified only if a valid u32 value can be decoded. 1193 */ 1194 int of_property_read_u32_index(const struct device_node *np, 1195 const char *propname, 1196 u32 index, u32 *out_value) 1197 { 1198 const u32 *val = of_find_property_value_of_size(np, propname, 1199 ((index + 1) * sizeof(*out_value)), 1200 0, 1201 NULL); 1202 1203 if (IS_ERR(val)) 1204 return PTR_ERR(val); 1205 1206 *out_value = be32_to_cpup(((__be32 *)val) + index); 1207 return 0; 1208 } 1209 EXPORT_SYMBOL_GPL(of_property_read_u32_index); 1210 1211 /** 1212 * of_property_read_variable_u8_array - Find and read an array of u8 from a 1213 * property, with bounds on the minimum and maximum array size. 1214 * 1215 * @np: device node from which the property value is to be read. 1216 * @propname: name of the property to be searched. 1217 * @out_values: pointer to return value, modified only if return value is 0. 1218 * @sz_min: minimum number of array elements to read 1219 * @sz_max: maximum number of array elements to read, if zero there is no 1220 * upper limit on the number of elements in the dts entry but only 1221 * sz_min will be read. 1222 * 1223 * Search for a property in a device node and read 8-bit value(s) from 1224 * it. Returns number of elements read on success, -EINVAL if the property 1225 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 1226 * if the property data is smaller than sz_min or longer than sz_max. 1227 * 1228 * dts entry of array should be like: 1229 * property = /bits/ 8 <0x50 0x60 0x70>; 1230 * 1231 * The out_values is modified only if a valid u8 value can be decoded. 1232 */ 1233 int of_property_read_variable_u8_array(const struct device_node *np, 1234 const char *propname, u8 *out_values, 1235 size_t sz_min, size_t sz_max) 1236 { 1237 size_t sz, count; 1238 const u8 *val = of_find_property_value_of_size(np, propname, 1239 (sz_min * sizeof(*out_values)), 1240 (sz_max * sizeof(*out_values)), 1241 &sz); 1242 1243 if (IS_ERR(val)) 1244 return PTR_ERR(val); 1245 1246 if (!sz_max) 1247 sz = sz_min; 1248 else 1249 sz /= sizeof(*out_values); 1250 1251 count = sz; 1252 while (count--) 1253 *out_values++ = *val++; 1254 1255 return sz; 1256 } 1257 EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array); 1258 1259 /** 1260 * of_property_read_variable_u16_array - Find and read an array of u16 from a 1261 * property, with bounds on the minimum and maximum array size. 1262 * 1263 * @np: device node from which the property value is to be read. 1264 * @propname: name of the property to be searched. 1265 * @out_values: pointer to return value, modified only if return value is 0. 1266 * @sz_min: minimum number of array elements to read 1267 * @sz_max: maximum number of array elements to read, if zero there is no 1268 * upper limit on the number of elements in the dts entry but only 1269 * sz_min will be read. 1270 * 1271 * Search for a property in a device node and read 16-bit value(s) from 1272 * it. Returns number of elements read on success, -EINVAL if the property 1273 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 1274 * if the property data is smaller than sz_min or longer than sz_max. 1275 * 1276 * dts entry of array should be like: 1277 * property = /bits/ 16 <0x5000 0x6000 0x7000>; 1278 * 1279 * The out_values is modified only if a valid u16 value can be decoded. 1280 */ 1281 int of_property_read_variable_u16_array(const struct device_node *np, 1282 const char *propname, u16 *out_values, 1283 size_t sz_min, size_t sz_max) 1284 { 1285 size_t sz, count; 1286 const __be16 *val = of_find_property_value_of_size(np, propname, 1287 (sz_min * sizeof(*out_values)), 1288 (sz_max * sizeof(*out_values)), 1289 &sz); 1290 1291 if (IS_ERR(val)) 1292 return PTR_ERR(val); 1293 1294 if (!sz_max) 1295 sz = sz_min; 1296 else 1297 sz /= sizeof(*out_values); 1298 1299 count = sz; 1300 while (count--) 1301 *out_values++ = be16_to_cpup(val++); 1302 1303 return sz; 1304 } 1305 EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array); 1306 1307 /** 1308 * of_property_read_variable_u32_array - Find and read an array of 32 bit 1309 * integers from a property, with bounds on the minimum and maximum array size. 1310 * 1311 * @np: device node from which the property value is to be read. 1312 * @propname: name of the property to be searched. 1313 * @out_values: pointer to return value, modified only if return value is 0. 1314 * @sz_min: minimum number of array elements to read 1315 * @sz_max: maximum number of array elements to read, if zero there is no 1316 * upper limit on the number of elements in the dts entry but only 1317 * sz_min will be read. 1318 * 1319 * Search for a property in a device node and read 32-bit value(s) from 1320 * it. Returns number of elements read on success, -EINVAL if the property 1321 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 1322 * if the property data is smaller than sz_min or longer than sz_max. 1323 * 1324 * The out_values is modified only if a valid u32 value can be decoded. 1325 */ 1326 int of_property_read_variable_u32_array(const struct device_node *np, 1327 const char *propname, u32 *out_values, 1328 size_t sz_min, size_t sz_max) 1329 { 1330 size_t sz, count; 1331 const __be32 *val = of_find_property_value_of_size(np, propname, 1332 (sz_min * sizeof(*out_values)), 1333 (sz_max * sizeof(*out_values)), 1334 &sz); 1335 1336 if (IS_ERR(val)) 1337 return PTR_ERR(val); 1338 1339 if (!sz_max) 1340 sz = sz_min; 1341 else 1342 sz /= sizeof(*out_values); 1343 1344 count = sz; 1345 while (count--) 1346 *out_values++ = be32_to_cpup(val++); 1347 1348 return sz; 1349 } 1350 EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array); 1351 1352 /** 1353 * of_property_read_u64 - Find and read a 64 bit integer from a property 1354 * @np: device node from which the property value is to be read. 1355 * @propname: name of the property to be searched. 1356 * @out_value: pointer to return value, modified only if return value is 0. 1357 * 1358 * Search for a property in a device node and read a 64-bit value from 1359 * it. Returns 0 on success, -EINVAL if the property does not exist, 1360 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1361 * property data isn't large enough. 1362 * 1363 * The out_value is modified only if a valid u64 value can be decoded. 1364 */ 1365 int of_property_read_u64(const struct device_node *np, const char *propname, 1366 u64 *out_value) 1367 { 1368 const __be32 *val = of_find_property_value_of_size(np, propname, 1369 sizeof(*out_value), 1370 0, 1371 NULL); 1372 1373 if (IS_ERR(val)) 1374 return PTR_ERR(val); 1375 1376 *out_value = of_read_number(val, 2); 1377 return 0; 1378 } 1379 EXPORT_SYMBOL_GPL(of_property_read_u64); 1380 1381 /** 1382 * of_property_read_variable_u64_array - Find and read an array of 64 bit 1383 * integers from a property, with bounds on the minimum and maximum array size. 1384 * 1385 * @np: device node from which the property value is to be read. 1386 * @propname: name of the property to be searched. 1387 * @out_values: pointer to return value, modified only if return value is 0. 1388 * @sz_min: minimum number of array elements to read 1389 * @sz_max: maximum number of array elements to read, if zero there is no 1390 * upper limit on the number of elements in the dts entry but only 1391 * sz_min will be read. 1392 * 1393 * Search for a property in a device node and read 64-bit value(s) from 1394 * it. Returns number of elements read on success, -EINVAL if the property 1395 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 1396 * if the property data is smaller than sz_min or longer than sz_max. 1397 * 1398 * The out_values is modified only if a valid u64 value can be decoded. 1399 */ 1400 int of_property_read_variable_u64_array(const struct device_node *np, 1401 const char *propname, u64 *out_values, 1402 size_t sz_min, size_t sz_max) 1403 { 1404 size_t sz, count; 1405 const __be32 *val = of_find_property_value_of_size(np, propname, 1406 (sz_min * sizeof(*out_values)), 1407 (sz_max * sizeof(*out_values)), 1408 &sz); 1409 1410 if (IS_ERR(val)) 1411 return PTR_ERR(val); 1412 1413 if (!sz_max) 1414 sz = sz_min; 1415 else 1416 sz /= sizeof(*out_values); 1417 1418 count = sz; 1419 while (count--) { 1420 *out_values++ = of_read_number(val, 2); 1421 val += 2; 1422 } 1423 1424 return sz; 1425 } 1426 EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array); 1427 1428 /** 1429 * of_property_read_string - Find and read a string from a property 1430 * @np: device node from which the property value is to be read. 1431 * @propname: name of the property to be searched. 1432 * @out_string: pointer to null terminated return string, modified only if 1433 * return value is 0. 1434 * 1435 * Search for a property in a device tree node and retrieve a null 1436 * terminated string value (pointer to data, not a copy). Returns 0 on 1437 * success, -EINVAL if the property does not exist, -ENODATA if property 1438 * does not have a value, and -EILSEQ if the string is not null-terminated 1439 * within the length of the property data. 1440 * 1441 * The out_string pointer is modified only if a valid string can be decoded. 1442 */ 1443 int of_property_read_string(const struct device_node *np, const char *propname, 1444 const char **out_string) 1445 { 1446 const struct property *prop = of_find_property(np, propname, NULL); 1447 if (!prop) 1448 return -EINVAL; 1449 if (!prop->value) 1450 return -ENODATA; 1451 if (strnlen(prop->value, prop->length) >= prop->length) 1452 return -EILSEQ; 1453 *out_string = prop->value; 1454 return 0; 1455 } 1456 EXPORT_SYMBOL_GPL(of_property_read_string); 1457 1458 /** 1459 * of_property_match_string() - Find string in a list and return index 1460 * @np: pointer to node containing string list property 1461 * @propname: string list property name 1462 * @string: pointer to string to search for in string list 1463 * 1464 * This function searches a string list property and returns the index 1465 * of a specific string value. 1466 */ 1467 int of_property_match_string(const struct device_node *np, const char *propname, 1468 const char *string) 1469 { 1470 const struct property *prop = of_find_property(np, propname, NULL); 1471 size_t l; 1472 int i; 1473 const char *p, *end; 1474 1475 if (!prop) 1476 return -EINVAL; 1477 if (!prop->value) 1478 return -ENODATA; 1479 1480 p = prop->value; 1481 end = p + prop->length; 1482 1483 for (i = 0; p < end; i++, p += l) { 1484 l = strnlen(p, end - p) + 1; 1485 if (p + l > end) 1486 return -EILSEQ; 1487 pr_debug("comparing %s with %s\n", string, p); 1488 if (strcmp(string, p) == 0) 1489 return i; /* Found it; return index */ 1490 } 1491 return -ENODATA; 1492 } 1493 EXPORT_SYMBOL_GPL(of_property_match_string); 1494 1495 /** 1496 * of_property_read_string_helper() - Utility helper for parsing string properties 1497 * @np: device node from which the property value is to be read. 1498 * @propname: name of the property to be searched. 1499 * @out_strs: output array of string pointers. 1500 * @sz: number of array elements to read. 1501 * @skip: Number of strings to skip over at beginning of list. 1502 * 1503 * Don't call this function directly. It is a utility helper for the 1504 * of_property_read_string*() family of functions. 1505 */ 1506 int of_property_read_string_helper(const struct device_node *np, 1507 const char *propname, const char **out_strs, 1508 size_t sz, int skip) 1509 { 1510 const struct property *prop = of_find_property(np, propname, NULL); 1511 int l = 0, i = 0; 1512 const char *p, *end; 1513 1514 if (!prop) 1515 return -EINVAL; 1516 if (!prop->value) 1517 return -ENODATA; 1518 p = prop->value; 1519 end = p + prop->length; 1520 1521 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) { 1522 l = strnlen(p, end - p) + 1; 1523 if (p + l > end) 1524 return -EILSEQ; 1525 if (out_strs && i >= skip) 1526 *out_strs++ = p; 1527 } 1528 i -= skip; 1529 return i <= 0 ? -ENODATA : i; 1530 } 1531 EXPORT_SYMBOL_GPL(of_property_read_string_helper); 1532 1533 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args) 1534 { 1535 int i; 1536 printk("%s %s", msg, of_node_full_name(args->np)); 1537 for (i = 0; i < args->args_count; i++) { 1538 const char delim = i ? ',' : ':'; 1539 1540 pr_cont("%c%08x", delim, args->args[i]); 1541 } 1542 pr_cont("\n"); 1543 } 1544 1545 int of_phandle_iterator_init(struct of_phandle_iterator *it, 1546 const struct device_node *np, 1547 const char *list_name, 1548 const char *cells_name, 1549 int cell_count) 1550 { 1551 const __be32 *list; 1552 int size; 1553 1554 memset(it, 0, sizeof(*it)); 1555 1556 list = of_get_property(np, list_name, &size); 1557 if (!list) 1558 return -ENOENT; 1559 1560 it->cells_name = cells_name; 1561 it->cell_count = cell_count; 1562 it->parent = np; 1563 it->list_end = list + size / sizeof(*list); 1564 it->phandle_end = list; 1565 it->cur = list; 1566 1567 return 0; 1568 } 1569 1570 int of_phandle_iterator_next(struct of_phandle_iterator *it) 1571 { 1572 uint32_t count = 0; 1573 1574 if (it->node) { 1575 of_node_put(it->node); 1576 it->node = NULL; 1577 } 1578 1579 if (!it->cur || it->phandle_end >= it->list_end) 1580 return -ENOENT; 1581 1582 it->cur = it->phandle_end; 1583 1584 /* If phandle is 0, then it is an empty entry with no arguments. */ 1585 it->phandle = be32_to_cpup(it->cur++); 1586 1587 if (it->phandle) { 1588 1589 /* 1590 * Find the provider node and parse the #*-cells property to 1591 * determine the argument length. 1592 */ 1593 it->node = of_find_node_by_phandle(it->phandle); 1594 1595 if (it->cells_name) { 1596 if (!it->node) { 1597 pr_err("%s: could not find phandle\n", 1598 it->parent->full_name); 1599 goto err; 1600 } 1601 1602 if (of_property_read_u32(it->node, it->cells_name, 1603 &count)) { 1604 pr_err("%s: could not get %s for %s\n", 1605 it->parent->full_name, 1606 it->cells_name, 1607 it->node->full_name); 1608 goto err; 1609 } 1610 } else { 1611 count = it->cell_count; 1612 } 1613 1614 /* 1615 * Make sure that the arguments actually fit in the remaining 1616 * property data length 1617 */ 1618 if (it->cur + count > it->list_end) { 1619 pr_err("%s: arguments longer than property\n", 1620 it->parent->full_name); 1621 goto err; 1622 } 1623 } 1624 1625 it->phandle_end = it->cur + count; 1626 it->cur_count = count; 1627 1628 return 0; 1629 1630 err: 1631 if (it->node) { 1632 of_node_put(it->node); 1633 it->node = NULL; 1634 } 1635 1636 return -EINVAL; 1637 } 1638 1639 int of_phandle_iterator_args(struct of_phandle_iterator *it, 1640 uint32_t *args, 1641 int size) 1642 { 1643 int i, count; 1644 1645 count = it->cur_count; 1646 1647 if (WARN_ON(size < count)) 1648 count = size; 1649 1650 for (i = 0; i < count; i++) 1651 args[i] = be32_to_cpup(it->cur++); 1652 1653 return count; 1654 } 1655 1656 static int __of_parse_phandle_with_args(const struct device_node *np, 1657 const char *list_name, 1658 const char *cells_name, 1659 int cell_count, int index, 1660 struct of_phandle_args *out_args) 1661 { 1662 struct of_phandle_iterator it; 1663 int rc, cur_index = 0; 1664 1665 /* Loop over the phandles until all the requested entry is found */ 1666 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) { 1667 /* 1668 * All of the error cases bail out of the loop, so at 1669 * this point, the parsing is successful. If the requested 1670 * index matches, then fill the out_args structure and return, 1671 * or return -ENOENT for an empty entry. 1672 */ 1673 rc = -ENOENT; 1674 if (cur_index == index) { 1675 if (!it.phandle) 1676 goto err; 1677 1678 if (out_args) { 1679 int c; 1680 1681 c = of_phandle_iterator_args(&it, 1682 out_args->args, 1683 MAX_PHANDLE_ARGS); 1684 out_args->np = it.node; 1685 out_args->args_count = c; 1686 } else { 1687 of_node_put(it.node); 1688 } 1689 1690 /* Found it! return success */ 1691 return 0; 1692 } 1693 1694 cur_index++; 1695 } 1696 1697 /* 1698 * Unlock node before returning result; will be one of: 1699 * -ENOENT : index is for empty phandle 1700 * -EINVAL : parsing error on data 1701 */ 1702 1703 err: 1704 of_node_put(it.node); 1705 return rc; 1706 } 1707 1708 /** 1709 * of_parse_phandle - Resolve a phandle property to a device_node pointer 1710 * @np: Pointer to device node holding phandle property 1711 * @phandle_name: Name of property holding a phandle value 1712 * @index: For properties holding a table of phandles, this is the index into 1713 * the table 1714 * 1715 * Returns the device_node pointer with refcount incremented. Use 1716 * of_node_put() on it when done. 1717 */ 1718 struct device_node *of_parse_phandle(const struct device_node *np, 1719 const char *phandle_name, int index) 1720 { 1721 struct of_phandle_args args; 1722 1723 if (index < 0) 1724 return NULL; 1725 1726 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0, 1727 index, &args)) 1728 return NULL; 1729 1730 return args.np; 1731 } 1732 EXPORT_SYMBOL(of_parse_phandle); 1733 1734 /** 1735 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list 1736 * @np: pointer to a device tree node containing a list 1737 * @list_name: property name that contains a list 1738 * @cells_name: property name that specifies phandles' arguments count 1739 * @index: index of a phandle to parse out 1740 * @out_args: optional pointer to output arguments structure (will be filled) 1741 * 1742 * This function is useful to parse lists of phandles and their arguments. 1743 * Returns 0 on success and fills out_args, on error returns appropriate 1744 * errno value. 1745 * 1746 * Caller is responsible to call of_node_put() on the returned out_args->np 1747 * pointer. 1748 * 1749 * Example: 1750 * 1751 * phandle1: node1 { 1752 * #list-cells = <2>; 1753 * } 1754 * 1755 * phandle2: node2 { 1756 * #list-cells = <1>; 1757 * } 1758 * 1759 * node3 { 1760 * list = <&phandle1 1 2 &phandle2 3>; 1761 * } 1762 * 1763 * To get a device_node of the `node2' node you may call this: 1764 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args); 1765 */ 1766 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name, 1767 const char *cells_name, int index, 1768 struct of_phandle_args *out_args) 1769 { 1770 if (index < 0) 1771 return -EINVAL; 1772 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, 1773 index, out_args); 1774 } 1775 EXPORT_SYMBOL(of_parse_phandle_with_args); 1776 1777 /** 1778 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list 1779 * @np: pointer to a device tree node containing a list 1780 * @list_name: property name that contains a list 1781 * @cell_count: number of argument cells following the phandle 1782 * @index: index of a phandle to parse out 1783 * @out_args: optional pointer to output arguments structure (will be filled) 1784 * 1785 * This function is useful to parse lists of phandles and their arguments. 1786 * Returns 0 on success and fills out_args, on error returns appropriate 1787 * errno value. 1788 * 1789 * Caller is responsible to call of_node_put() on the returned out_args->np 1790 * pointer. 1791 * 1792 * Example: 1793 * 1794 * phandle1: node1 { 1795 * } 1796 * 1797 * phandle2: node2 { 1798 * } 1799 * 1800 * node3 { 1801 * list = <&phandle1 0 2 &phandle2 2 3>; 1802 * } 1803 * 1804 * To get a device_node of the `node2' node you may call this: 1805 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args); 1806 */ 1807 int of_parse_phandle_with_fixed_args(const struct device_node *np, 1808 const char *list_name, int cell_count, 1809 int index, struct of_phandle_args *out_args) 1810 { 1811 if (index < 0) 1812 return -EINVAL; 1813 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count, 1814 index, out_args); 1815 } 1816 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args); 1817 1818 /** 1819 * of_count_phandle_with_args() - Find the number of phandles references in a property 1820 * @np: pointer to a device tree node containing a list 1821 * @list_name: property name that contains a list 1822 * @cells_name: property name that specifies phandles' arguments count 1823 * 1824 * Returns the number of phandle + argument tuples within a property. It 1825 * is a typical pattern to encode a list of phandle and variable 1826 * arguments into a single property. The number of arguments is encoded 1827 * by a property in the phandle-target node. For example, a gpios 1828 * property would contain a list of GPIO specifies consisting of a 1829 * phandle and 1 or more arguments. The number of arguments are 1830 * determined by the #gpio-cells property in the node pointed to by the 1831 * phandle. 1832 */ 1833 int of_count_phandle_with_args(const struct device_node *np, const char *list_name, 1834 const char *cells_name) 1835 { 1836 struct of_phandle_iterator it; 1837 int rc, cur_index = 0; 1838 1839 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0); 1840 if (rc) 1841 return rc; 1842 1843 while ((rc = of_phandle_iterator_next(&it)) == 0) 1844 cur_index += 1; 1845 1846 if (rc != -ENOENT) 1847 return rc; 1848 1849 return cur_index; 1850 } 1851 EXPORT_SYMBOL(of_count_phandle_with_args); 1852 1853 /** 1854 * __of_add_property - Add a property to a node without lock operations 1855 */ 1856 int __of_add_property(struct device_node *np, struct property *prop) 1857 { 1858 struct property **next; 1859 1860 prop->next = NULL; 1861 next = &np->properties; 1862 while (*next) { 1863 if (strcmp(prop->name, (*next)->name) == 0) 1864 /* duplicate ! don't insert it */ 1865 return -EEXIST; 1866 1867 next = &(*next)->next; 1868 } 1869 *next = prop; 1870 1871 return 0; 1872 } 1873 1874 /** 1875 * of_add_property - Add a property to a node 1876 */ 1877 int of_add_property(struct device_node *np, struct property *prop) 1878 { 1879 unsigned long flags; 1880 int rc; 1881 1882 mutex_lock(&of_mutex); 1883 1884 raw_spin_lock_irqsave(&devtree_lock, flags); 1885 rc = __of_add_property(np, prop); 1886 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1887 1888 if (!rc) 1889 __of_add_property_sysfs(np, prop); 1890 1891 mutex_unlock(&of_mutex); 1892 1893 if (!rc) 1894 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL); 1895 1896 return rc; 1897 } 1898 1899 int __of_remove_property(struct device_node *np, struct property *prop) 1900 { 1901 struct property **next; 1902 1903 for (next = &np->properties; *next; next = &(*next)->next) { 1904 if (*next == prop) 1905 break; 1906 } 1907 if (*next == NULL) 1908 return -ENODEV; 1909 1910 /* found the node */ 1911 *next = prop->next; 1912 prop->next = np->deadprops; 1913 np->deadprops = prop; 1914 1915 return 0; 1916 } 1917 1918 void __of_sysfs_remove_bin_file(struct device_node *np, struct property *prop) 1919 { 1920 sysfs_remove_bin_file(&np->kobj, &prop->attr); 1921 kfree(prop->attr.attr.name); 1922 } 1923 1924 void __of_remove_property_sysfs(struct device_node *np, struct property *prop) 1925 { 1926 if (!IS_ENABLED(CONFIG_SYSFS)) 1927 return; 1928 1929 /* at early boot, bail here and defer setup to of_init() */ 1930 if (of_kset && of_node_is_attached(np)) 1931 __of_sysfs_remove_bin_file(np, prop); 1932 } 1933 1934 /** 1935 * of_remove_property - Remove a property from a node. 1936 * 1937 * Note that we don't actually remove it, since we have given out 1938 * who-knows-how-many pointers to the data using get-property. 1939 * Instead we just move the property to the "dead properties" 1940 * list, so it won't be found any more. 1941 */ 1942 int of_remove_property(struct device_node *np, struct property *prop) 1943 { 1944 unsigned long flags; 1945 int rc; 1946 1947 if (!prop) 1948 return -ENODEV; 1949 1950 mutex_lock(&of_mutex); 1951 1952 raw_spin_lock_irqsave(&devtree_lock, flags); 1953 rc = __of_remove_property(np, prop); 1954 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1955 1956 if (!rc) 1957 __of_remove_property_sysfs(np, prop); 1958 1959 mutex_unlock(&of_mutex); 1960 1961 if (!rc) 1962 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL); 1963 1964 return rc; 1965 } 1966 1967 int __of_update_property(struct device_node *np, struct property *newprop, 1968 struct property **oldpropp) 1969 { 1970 struct property **next, *oldprop; 1971 1972 for (next = &np->properties; *next; next = &(*next)->next) { 1973 if (of_prop_cmp((*next)->name, newprop->name) == 0) 1974 break; 1975 } 1976 *oldpropp = oldprop = *next; 1977 1978 if (oldprop) { 1979 /* replace the node */ 1980 newprop->next = oldprop->next; 1981 *next = newprop; 1982 oldprop->next = np->deadprops; 1983 np->deadprops = oldprop; 1984 } else { 1985 /* new node */ 1986 newprop->next = NULL; 1987 *next = newprop; 1988 } 1989 1990 return 0; 1991 } 1992 1993 void __of_update_property_sysfs(struct device_node *np, struct property *newprop, 1994 struct property *oldprop) 1995 { 1996 if (!IS_ENABLED(CONFIG_SYSFS)) 1997 return; 1998 1999 /* At early boot, bail out and defer setup to of_init() */ 2000 if (!of_kset) 2001 return; 2002 2003 if (oldprop) 2004 __of_sysfs_remove_bin_file(np, oldprop); 2005 __of_add_property_sysfs(np, newprop); 2006 } 2007 2008 /* 2009 * of_update_property - Update a property in a node, if the property does 2010 * not exist, add it. 2011 * 2012 * Note that we don't actually remove it, since we have given out 2013 * who-knows-how-many pointers to the data using get-property. 2014 * Instead we just move the property to the "dead properties" list, 2015 * and add the new property to the property list 2016 */ 2017 int of_update_property(struct device_node *np, struct property *newprop) 2018 { 2019 struct property *oldprop; 2020 unsigned long flags; 2021 int rc; 2022 2023 if (!newprop->name) 2024 return -EINVAL; 2025 2026 mutex_lock(&of_mutex); 2027 2028 raw_spin_lock_irqsave(&devtree_lock, flags); 2029 rc = __of_update_property(np, newprop, &oldprop); 2030 raw_spin_unlock_irqrestore(&devtree_lock, flags); 2031 2032 if (!rc) 2033 __of_update_property_sysfs(np, newprop, oldprop); 2034 2035 mutex_unlock(&of_mutex); 2036 2037 if (!rc) 2038 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop); 2039 2040 return rc; 2041 } 2042 2043 static void of_alias_add(struct alias_prop *ap, struct device_node *np, 2044 int id, const char *stem, int stem_len) 2045 { 2046 ap->np = np; 2047 ap->id = id; 2048 strncpy(ap->stem, stem, stem_len); 2049 ap->stem[stem_len] = 0; 2050 list_add_tail(&ap->link, &aliases_lookup); 2051 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n", 2052 ap->alias, ap->stem, ap->id, of_node_full_name(np)); 2053 } 2054 2055 /** 2056 * of_alias_scan - Scan all properties of the 'aliases' node 2057 * 2058 * The function scans all the properties of the 'aliases' node and populates 2059 * the global lookup table with the properties. It returns the 2060 * number of alias properties found, or an error code in case of failure. 2061 * 2062 * @dt_alloc: An allocator that provides a virtual address to memory 2063 * for storing the resulting tree 2064 */ 2065 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align)) 2066 { 2067 struct property *pp; 2068 2069 of_aliases = of_find_node_by_path("/aliases"); 2070 of_chosen = of_find_node_by_path("/chosen"); 2071 if (of_chosen == NULL) 2072 of_chosen = of_find_node_by_path("/chosen@0"); 2073 2074 if (of_chosen) { 2075 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */ 2076 const char *name = of_get_property(of_chosen, "stdout-path", NULL); 2077 if (!name) 2078 name = of_get_property(of_chosen, "linux,stdout-path", NULL); 2079 if (IS_ENABLED(CONFIG_PPC) && !name) 2080 name = of_get_property(of_aliases, "stdout", NULL); 2081 if (name) 2082 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options); 2083 } 2084 2085 if (!of_aliases) 2086 return; 2087 2088 for_each_property_of_node(of_aliases, pp) { 2089 const char *start = pp->name; 2090 const char *end = start + strlen(start); 2091 struct device_node *np; 2092 struct alias_prop *ap; 2093 int id, len; 2094 2095 /* Skip those we do not want to proceed */ 2096 if (!strcmp(pp->name, "name") || 2097 !strcmp(pp->name, "phandle") || 2098 !strcmp(pp->name, "linux,phandle")) 2099 continue; 2100 2101 np = of_find_node_by_path(pp->value); 2102 if (!np) 2103 continue; 2104 2105 /* walk the alias backwards to extract the id and work out 2106 * the 'stem' string */ 2107 while (isdigit(*(end-1)) && end > start) 2108 end--; 2109 len = end - start; 2110 2111 if (kstrtoint(end, 10, &id) < 0) 2112 continue; 2113 2114 /* Allocate an alias_prop with enough space for the stem */ 2115 ap = dt_alloc(sizeof(*ap) + len + 1, 4); 2116 if (!ap) 2117 continue; 2118 memset(ap, 0, sizeof(*ap) + len + 1); 2119 ap->alias = start; 2120 of_alias_add(ap, np, id, start, len); 2121 } 2122 } 2123 2124 /** 2125 * of_alias_get_id - Get alias id for the given device_node 2126 * @np: Pointer to the given device_node 2127 * @stem: Alias stem of the given device_node 2128 * 2129 * The function travels the lookup table to get the alias id for the given 2130 * device_node and alias stem. It returns the alias id if found. 2131 */ 2132 int of_alias_get_id(struct device_node *np, const char *stem) 2133 { 2134 struct alias_prop *app; 2135 int id = -ENODEV; 2136 2137 mutex_lock(&of_mutex); 2138 list_for_each_entry(app, &aliases_lookup, link) { 2139 if (strcmp(app->stem, stem) != 0) 2140 continue; 2141 2142 if (np == app->np) { 2143 id = app->id; 2144 break; 2145 } 2146 } 2147 mutex_unlock(&of_mutex); 2148 2149 return id; 2150 } 2151 EXPORT_SYMBOL_GPL(of_alias_get_id); 2152 2153 /** 2154 * of_alias_get_highest_id - Get highest alias id for the given stem 2155 * @stem: Alias stem to be examined 2156 * 2157 * The function travels the lookup table to get the highest alias id for the 2158 * given alias stem. It returns the alias id if found. 2159 */ 2160 int of_alias_get_highest_id(const char *stem) 2161 { 2162 struct alias_prop *app; 2163 int id = -ENODEV; 2164 2165 mutex_lock(&of_mutex); 2166 list_for_each_entry(app, &aliases_lookup, link) { 2167 if (strcmp(app->stem, stem) != 0) 2168 continue; 2169 2170 if (app->id > id) 2171 id = app->id; 2172 } 2173 mutex_unlock(&of_mutex); 2174 2175 return id; 2176 } 2177 EXPORT_SYMBOL_GPL(of_alias_get_highest_id); 2178 2179 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur, 2180 u32 *pu) 2181 { 2182 const void *curv = cur; 2183 2184 if (!prop) 2185 return NULL; 2186 2187 if (!cur) { 2188 curv = prop->value; 2189 goto out_val; 2190 } 2191 2192 curv += sizeof(*cur); 2193 if (curv >= prop->value + prop->length) 2194 return NULL; 2195 2196 out_val: 2197 *pu = be32_to_cpup(curv); 2198 return curv; 2199 } 2200 EXPORT_SYMBOL_GPL(of_prop_next_u32); 2201 2202 const char *of_prop_next_string(struct property *prop, const char *cur) 2203 { 2204 const void *curv = cur; 2205 2206 if (!prop) 2207 return NULL; 2208 2209 if (!cur) 2210 return prop->value; 2211 2212 curv += strlen(cur) + 1; 2213 if (curv >= prop->value + prop->length) 2214 return NULL; 2215 2216 return curv; 2217 } 2218 EXPORT_SYMBOL_GPL(of_prop_next_string); 2219 2220 /** 2221 * of_console_check() - Test and setup console for DT setup 2222 * @dn - Pointer to device node 2223 * @name - Name to use for preferred console without index. ex. "ttyS" 2224 * @index - Index to use for preferred console. 2225 * 2226 * Check if the given device node matches the stdout-path property in the 2227 * /chosen node. If it does then register it as the preferred console and return 2228 * TRUE. Otherwise return FALSE. 2229 */ 2230 bool of_console_check(struct device_node *dn, char *name, int index) 2231 { 2232 if (!dn || dn != of_stdout || console_set_on_cmdline) 2233 return false; 2234 return !add_preferred_console(name, index, 2235 kstrdup(of_stdout_options, GFP_KERNEL)); 2236 } 2237 EXPORT_SYMBOL_GPL(of_console_check); 2238 2239 /** 2240 * of_find_next_cache_node - Find a node's subsidiary cache 2241 * @np: node of type "cpu" or "cache" 2242 * 2243 * Returns a node pointer with refcount incremented, use 2244 * of_node_put() on it when done. Caller should hold a reference 2245 * to np. 2246 */ 2247 struct device_node *of_find_next_cache_node(const struct device_node *np) 2248 { 2249 struct device_node *child; 2250 const phandle *handle; 2251 2252 handle = of_get_property(np, "l2-cache", NULL); 2253 if (!handle) 2254 handle = of_get_property(np, "next-level-cache", NULL); 2255 2256 if (handle) 2257 return of_find_node_by_phandle(be32_to_cpup(handle)); 2258 2259 /* OF on pmac has nodes instead of properties named "l2-cache" 2260 * beneath CPU nodes. 2261 */ 2262 if (!strcmp(np->type, "cpu")) 2263 for_each_child_of_node(np, child) 2264 if (!strcmp(child->type, "cache")) 2265 return child; 2266 2267 return NULL; 2268 } 2269 2270 /** 2271 * of_graph_parse_endpoint() - parse common endpoint node properties 2272 * @node: pointer to endpoint device_node 2273 * @endpoint: pointer to the OF endpoint data structure 2274 * 2275 * The caller should hold a reference to @node. 2276 */ 2277 int of_graph_parse_endpoint(const struct device_node *node, 2278 struct of_endpoint *endpoint) 2279 { 2280 struct device_node *port_node = of_get_parent(node); 2281 2282 WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n", 2283 __func__, node->full_name); 2284 2285 memset(endpoint, 0, sizeof(*endpoint)); 2286 2287 endpoint->local_node = node; 2288 /* 2289 * It doesn't matter whether the two calls below succeed. 2290 * If they don't then the default value 0 is used. 2291 */ 2292 of_property_read_u32(port_node, "reg", &endpoint->port); 2293 of_property_read_u32(node, "reg", &endpoint->id); 2294 2295 of_node_put(port_node); 2296 2297 return 0; 2298 } 2299 EXPORT_SYMBOL(of_graph_parse_endpoint); 2300 2301 /** 2302 * of_graph_get_port_by_id() - get the port matching a given id 2303 * @parent: pointer to the parent device node 2304 * @id: id of the port 2305 * 2306 * Return: A 'port' node pointer with refcount incremented. The caller 2307 * has to use of_node_put() on it when done. 2308 */ 2309 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id) 2310 { 2311 struct device_node *node, *port; 2312 2313 node = of_get_child_by_name(parent, "ports"); 2314 if (node) 2315 parent = node; 2316 2317 for_each_child_of_node(parent, port) { 2318 u32 port_id = 0; 2319 2320 if (of_node_cmp(port->name, "port") != 0) 2321 continue; 2322 of_property_read_u32(port, "reg", &port_id); 2323 if (id == port_id) 2324 break; 2325 } 2326 2327 of_node_put(node); 2328 2329 return port; 2330 } 2331 EXPORT_SYMBOL(of_graph_get_port_by_id); 2332 2333 /** 2334 * of_graph_get_next_endpoint() - get next endpoint node 2335 * @parent: pointer to the parent device node 2336 * @prev: previous endpoint node, or NULL to get first 2337 * 2338 * Return: An 'endpoint' node pointer with refcount incremented. Refcount 2339 * of the passed @prev node is decremented. 2340 */ 2341 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent, 2342 struct device_node *prev) 2343 { 2344 struct device_node *endpoint; 2345 struct device_node *port; 2346 2347 if (!parent) 2348 return NULL; 2349 2350 /* 2351 * Start by locating the port node. If no previous endpoint is specified 2352 * search for the first port node, otherwise get the previous endpoint 2353 * parent port node. 2354 */ 2355 if (!prev) { 2356 struct device_node *node; 2357 2358 node = of_get_child_by_name(parent, "ports"); 2359 if (node) 2360 parent = node; 2361 2362 port = of_get_child_by_name(parent, "port"); 2363 of_node_put(node); 2364 2365 if (!port) { 2366 pr_err("graph: no port node found in %s\n", 2367 parent->full_name); 2368 return NULL; 2369 } 2370 } else { 2371 port = of_get_parent(prev); 2372 if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n", 2373 __func__, prev->full_name)) 2374 return NULL; 2375 } 2376 2377 while (1) { 2378 /* 2379 * Now that we have a port node, get the next endpoint by 2380 * getting the next child. If the previous endpoint is NULL this 2381 * will return the first child. 2382 */ 2383 endpoint = of_get_next_child(port, prev); 2384 if (endpoint) { 2385 of_node_put(port); 2386 return endpoint; 2387 } 2388 2389 /* No more endpoints under this port, try the next one. */ 2390 prev = NULL; 2391 2392 do { 2393 port = of_get_next_child(parent, port); 2394 if (!port) 2395 return NULL; 2396 } while (of_node_cmp(port->name, "port")); 2397 } 2398 } 2399 EXPORT_SYMBOL(of_graph_get_next_endpoint); 2400 2401 /** 2402 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers 2403 * @parent: pointer to the parent device node 2404 * @port_reg: identifier (value of reg property) of the parent port node 2405 * @reg: identifier (value of reg property) of the endpoint node 2406 * 2407 * Return: An 'endpoint' node pointer which is identified by reg and at the same 2408 * is the child of a port node identified by port_reg. reg and port_reg are 2409 * ignored when they are -1. 2410 */ 2411 struct device_node *of_graph_get_endpoint_by_regs( 2412 const struct device_node *parent, int port_reg, int reg) 2413 { 2414 struct of_endpoint endpoint; 2415 struct device_node *node = NULL; 2416 2417 for_each_endpoint_of_node(parent, node) { 2418 of_graph_parse_endpoint(node, &endpoint); 2419 if (((port_reg == -1) || (endpoint.port == port_reg)) && 2420 ((reg == -1) || (endpoint.id == reg))) 2421 return node; 2422 } 2423 2424 return NULL; 2425 } 2426 EXPORT_SYMBOL(of_graph_get_endpoint_by_regs); 2427 2428 /** 2429 * of_graph_get_remote_port_parent() - get remote port's parent node 2430 * @node: pointer to a local endpoint device_node 2431 * 2432 * Return: Remote device node associated with remote endpoint node linked 2433 * to @node. Use of_node_put() on it when done. 2434 */ 2435 struct device_node *of_graph_get_remote_port_parent( 2436 const struct device_node *node) 2437 { 2438 struct device_node *np; 2439 unsigned int depth; 2440 2441 /* Get remote endpoint node. */ 2442 np = of_parse_phandle(node, "remote-endpoint", 0); 2443 2444 /* Walk 3 levels up only if there is 'ports' node. */ 2445 for (depth = 3; depth && np; depth--) { 2446 np = of_get_next_parent(np); 2447 if (depth == 2 && of_node_cmp(np->name, "ports")) 2448 break; 2449 } 2450 return np; 2451 } 2452 EXPORT_SYMBOL(of_graph_get_remote_port_parent); 2453 2454 /** 2455 * of_graph_get_remote_port() - get remote port node 2456 * @node: pointer to a local endpoint device_node 2457 * 2458 * Return: Remote port node associated with remote endpoint node linked 2459 * to @node. Use of_node_put() on it when done. 2460 */ 2461 struct device_node *of_graph_get_remote_port(const struct device_node *node) 2462 { 2463 struct device_node *np; 2464 2465 /* Get remote endpoint node. */ 2466 np = of_parse_phandle(node, "remote-endpoint", 0); 2467 if (!np) 2468 return NULL; 2469 return of_get_next_parent(np); 2470 } 2471 EXPORT_SYMBOL(of_graph_get_remote_port); 2472