xref: /linux/drivers/of/base.c (revision 80d443e8876602be2c130f79c4de81e12e2a700d)
1 /*
2  * Procedures for creating, accessing and interpreting the device tree.
3  *
4  * Paul Mackerras	August 1996.
5  * Copyright (C) 1996-2005 Paul Mackerras.
6  *
7  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8  *    {engebret|bergner}@us.ibm.com
9  *
10  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11  *
12  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13  *  Grant Likely.
14  *
15  *      This program is free software; you can redistribute it and/or
16  *      modify it under the terms of the GNU General Public License
17  *      as published by the Free Software Foundation; either version
18  *      2 of the License, or (at your option) any later version.
19  */
20 
21 #define pr_fmt(fmt)	"OF: " fmt
22 
23 #include <linux/console.h>
24 #include <linux/ctype.h>
25 #include <linux/cpu.h>
26 #include <linux/module.h>
27 #include <linux/of.h>
28 #include <linux/of_graph.h>
29 #include <linux/spinlock.h>
30 #include <linux/slab.h>
31 #include <linux/string.h>
32 #include <linux/proc_fs.h>
33 
34 #include "of_private.h"
35 
36 LIST_HEAD(aliases_lookup);
37 
38 struct device_node *of_root;
39 EXPORT_SYMBOL(of_root);
40 struct device_node *of_chosen;
41 struct device_node *of_aliases;
42 struct device_node *of_stdout;
43 static const char *of_stdout_options;
44 
45 struct kset *of_kset;
46 
47 /*
48  * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
49  * This mutex must be held whenever modifications are being made to the
50  * device tree. The of_{attach,detach}_node() and
51  * of_{add,remove,update}_property() helpers make sure this happens.
52  */
53 DEFINE_MUTEX(of_mutex);
54 
55 /* use when traversing tree through the child, sibling,
56  * or parent members of struct device_node.
57  */
58 DEFINE_RAW_SPINLOCK(devtree_lock);
59 
60 int of_n_addr_cells(struct device_node *np)
61 {
62 	const __be32 *ip;
63 
64 	do {
65 		if (np->parent)
66 			np = np->parent;
67 		ip = of_get_property(np, "#address-cells", NULL);
68 		if (ip)
69 			return be32_to_cpup(ip);
70 	} while (np->parent);
71 	/* No #address-cells property for the root node */
72 	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
73 }
74 EXPORT_SYMBOL(of_n_addr_cells);
75 
76 int of_n_size_cells(struct device_node *np)
77 {
78 	const __be32 *ip;
79 
80 	do {
81 		if (np->parent)
82 			np = np->parent;
83 		ip = of_get_property(np, "#size-cells", NULL);
84 		if (ip)
85 			return be32_to_cpup(ip);
86 	} while (np->parent);
87 	/* No #size-cells property for the root node */
88 	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
89 }
90 EXPORT_SYMBOL(of_n_size_cells);
91 
92 #ifdef CONFIG_NUMA
93 int __weak of_node_to_nid(struct device_node *np)
94 {
95 	return NUMA_NO_NODE;
96 }
97 #endif
98 
99 #ifndef CONFIG_OF_DYNAMIC
100 static void of_node_release(struct kobject *kobj)
101 {
102 	/* Without CONFIG_OF_DYNAMIC, no nodes gets freed */
103 }
104 #endif /* CONFIG_OF_DYNAMIC */
105 
106 struct kobj_type of_node_ktype = {
107 	.release = of_node_release,
108 };
109 
110 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj,
111 				struct bin_attribute *bin_attr, char *buf,
112 				loff_t offset, size_t count)
113 {
114 	struct property *pp = container_of(bin_attr, struct property, attr);
115 	return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length);
116 }
117 
118 /* always return newly allocated name, caller must free after use */
119 static const char *safe_name(struct kobject *kobj, const char *orig_name)
120 {
121 	const char *name = orig_name;
122 	struct kernfs_node *kn;
123 	int i = 0;
124 
125 	/* don't be a hero. After 16 tries give up */
126 	while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) {
127 		sysfs_put(kn);
128 		if (name != orig_name)
129 			kfree(name);
130 		name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i);
131 	}
132 
133 	if (name == orig_name) {
134 		name = kstrdup(orig_name, GFP_KERNEL);
135 	} else {
136 		pr_warn("Duplicate name in %s, renamed to \"%s\"\n",
137 			kobject_name(kobj), name);
138 	}
139 	return name;
140 }
141 
142 int __of_add_property_sysfs(struct device_node *np, struct property *pp)
143 {
144 	int rc;
145 
146 	/* Important: Don't leak passwords */
147 	bool secure = strncmp(pp->name, "security-", 9) == 0;
148 
149 	if (!IS_ENABLED(CONFIG_SYSFS))
150 		return 0;
151 
152 	if (!of_kset || !of_node_is_attached(np))
153 		return 0;
154 
155 	sysfs_bin_attr_init(&pp->attr);
156 	pp->attr.attr.name = safe_name(&np->kobj, pp->name);
157 	pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO;
158 	pp->attr.size = secure ? 0 : pp->length;
159 	pp->attr.read = of_node_property_read;
160 
161 	rc = sysfs_create_bin_file(&np->kobj, &pp->attr);
162 	WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name);
163 	return rc;
164 }
165 
166 int __of_attach_node_sysfs(struct device_node *np)
167 {
168 	const char *name;
169 	struct kobject *parent;
170 	struct property *pp;
171 	int rc;
172 
173 	if (!IS_ENABLED(CONFIG_SYSFS))
174 		return 0;
175 
176 	if (!of_kset)
177 		return 0;
178 
179 	np->kobj.kset = of_kset;
180 	if (!np->parent) {
181 		/* Nodes without parents are new top level trees */
182 		name = safe_name(&of_kset->kobj, "base");
183 		parent = NULL;
184 	} else {
185 		name = safe_name(&np->parent->kobj, kbasename(np->full_name));
186 		parent = &np->parent->kobj;
187 	}
188 	if (!name)
189 		return -ENOMEM;
190 	rc = kobject_add(&np->kobj, parent, "%s", name);
191 	kfree(name);
192 	if (rc)
193 		return rc;
194 
195 	for_each_property_of_node(np, pp)
196 		__of_add_property_sysfs(np, pp);
197 
198 	return 0;
199 }
200 
201 void __init of_core_init(void)
202 {
203 	struct device_node *np;
204 
205 	/* Create the kset, and register existing nodes */
206 	mutex_lock(&of_mutex);
207 	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
208 	if (!of_kset) {
209 		mutex_unlock(&of_mutex);
210 		pr_err("failed to register existing nodes\n");
211 		return;
212 	}
213 	for_each_of_allnodes(np)
214 		__of_attach_node_sysfs(np);
215 	mutex_unlock(&of_mutex);
216 
217 	/* Symlink in /proc as required by userspace ABI */
218 	if (of_root)
219 		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
220 }
221 
222 static struct property *__of_find_property(const struct device_node *np,
223 					   const char *name, int *lenp)
224 {
225 	struct property *pp;
226 
227 	if (!np)
228 		return NULL;
229 
230 	for (pp = np->properties; pp; pp = pp->next) {
231 		if (of_prop_cmp(pp->name, name) == 0) {
232 			if (lenp)
233 				*lenp = pp->length;
234 			break;
235 		}
236 	}
237 
238 	return pp;
239 }
240 
241 struct property *of_find_property(const struct device_node *np,
242 				  const char *name,
243 				  int *lenp)
244 {
245 	struct property *pp;
246 	unsigned long flags;
247 
248 	raw_spin_lock_irqsave(&devtree_lock, flags);
249 	pp = __of_find_property(np, name, lenp);
250 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
251 
252 	return pp;
253 }
254 EXPORT_SYMBOL(of_find_property);
255 
256 struct device_node *__of_find_all_nodes(struct device_node *prev)
257 {
258 	struct device_node *np;
259 	if (!prev) {
260 		np = of_root;
261 	} else if (prev->child) {
262 		np = prev->child;
263 	} else {
264 		/* Walk back up looking for a sibling, or the end of the structure */
265 		np = prev;
266 		while (np->parent && !np->sibling)
267 			np = np->parent;
268 		np = np->sibling; /* Might be null at the end of the tree */
269 	}
270 	return np;
271 }
272 
273 /**
274  * of_find_all_nodes - Get next node in global list
275  * @prev:	Previous node or NULL to start iteration
276  *		of_node_put() will be called on it
277  *
278  * Returns a node pointer with refcount incremented, use
279  * of_node_put() on it when done.
280  */
281 struct device_node *of_find_all_nodes(struct device_node *prev)
282 {
283 	struct device_node *np;
284 	unsigned long flags;
285 
286 	raw_spin_lock_irqsave(&devtree_lock, flags);
287 	np = __of_find_all_nodes(prev);
288 	of_node_get(np);
289 	of_node_put(prev);
290 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
291 	return np;
292 }
293 EXPORT_SYMBOL(of_find_all_nodes);
294 
295 /*
296  * Find a property with a given name for a given node
297  * and return the value.
298  */
299 const void *__of_get_property(const struct device_node *np,
300 			      const char *name, int *lenp)
301 {
302 	struct property *pp = __of_find_property(np, name, lenp);
303 
304 	return pp ? pp->value : NULL;
305 }
306 
307 /*
308  * Find a property with a given name for a given node
309  * and return the value.
310  */
311 const void *of_get_property(const struct device_node *np, const char *name,
312 			    int *lenp)
313 {
314 	struct property *pp = of_find_property(np, name, lenp);
315 
316 	return pp ? pp->value : NULL;
317 }
318 EXPORT_SYMBOL(of_get_property);
319 
320 /*
321  * arch_match_cpu_phys_id - Match the given logical CPU and physical id
322  *
323  * @cpu: logical cpu index of a core/thread
324  * @phys_id: physical identifier of a core/thread
325  *
326  * CPU logical to physical index mapping is architecture specific.
327  * However this __weak function provides a default match of physical
328  * id to logical cpu index. phys_id provided here is usually values read
329  * from the device tree which must match the hardware internal registers.
330  *
331  * Returns true if the physical identifier and the logical cpu index
332  * correspond to the same core/thread, false otherwise.
333  */
334 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
335 {
336 	return (u32)phys_id == cpu;
337 }
338 
339 /**
340  * Checks if the given "prop_name" property holds the physical id of the
341  * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
342  * NULL, local thread number within the core is returned in it.
343  */
344 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
345 			const char *prop_name, int cpu, unsigned int *thread)
346 {
347 	const __be32 *cell;
348 	int ac, prop_len, tid;
349 	u64 hwid;
350 
351 	ac = of_n_addr_cells(cpun);
352 	cell = of_get_property(cpun, prop_name, &prop_len);
353 	if (!cell || !ac)
354 		return false;
355 	prop_len /= sizeof(*cell) * ac;
356 	for (tid = 0; tid < prop_len; tid++) {
357 		hwid = of_read_number(cell, ac);
358 		if (arch_match_cpu_phys_id(cpu, hwid)) {
359 			if (thread)
360 				*thread = tid;
361 			return true;
362 		}
363 		cell += ac;
364 	}
365 	return false;
366 }
367 
368 /*
369  * arch_find_n_match_cpu_physical_id - See if the given device node is
370  * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
371  * else false.  If 'thread' is non-NULL, the local thread number within the
372  * core is returned in it.
373  */
374 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
375 					      int cpu, unsigned int *thread)
376 {
377 	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
378 	 * for thread ids on PowerPC. If it doesn't exist fallback to
379 	 * standard "reg" property.
380 	 */
381 	if (IS_ENABLED(CONFIG_PPC) &&
382 	    __of_find_n_match_cpu_property(cpun,
383 					   "ibm,ppc-interrupt-server#s",
384 					   cpu, thread))
385 		return true;
386 
387 	return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
388 }
389 
390 /**
391  * of_get_cpu_node - Get device node associated with the given logical CPU
392  *
393  * @cpu: CPU number(logical index) for which device node is required
394  * @thread: if not NULL, local thread number within the physical core is
395  *          returned
396  *
397  * The main purpose of this function is to retrieve the device node for the
398  * given logical CPU index. It should be used to initialize the of_node in
399  * cpu device. Once of_node in cpu device is populated, all the further
400  * references can use that instead.
401  *
402  * CPU logical to physical index mapping is architecture specific and is built
403  * before booting secondary cores. This function uses arch_match_cpu_phys_id
404  * which can be overridden by architecture specific implementation.
405  *
406  * Returns a node pointer for the logical cpu with refcount incremented, use
407  * of_node_put() on it when done. Returns NULL if not found.
408  */
409 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
410 {
411 	struct device_node *cpun;
412 
413 	for_each_node_by_type(cpun, "cpu") {
414 		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
415 			return cpun;
416 	}
417 	return NULL;
418 }
419 EXPORT_SYMBOL(of_get_cpu_node);
420 
421 /**
422  * __of_device_is_compatible() - Check if the node matches given constraints
423  * @device: pointer to node
424  * @compat: required compatible string, NULL or "" for any match
425  * @type: required device_type value, NULL or "" for any match
426  * @name: required node name, NULL or "" for any match
427  *
428  * Checks if the given @compat, @type and @name strings match the
429  * properties of the given @device. A constraints can be skipped by
430  * passing NULL or an empty string as the constraint.
431  *
432  * Returns 0 for no match, and a positive integer on match. The return
433  * value is a relative score with larger values indicating better
434  * matches. The score is weighted for the most specific compatible value
435  * to get the highest score. Matching type is next, followed by matching
436  * name. Practically speaking, this results in the following priority
437  * order for matches:
438  *
439  * 1. specific compatible && type && name
440  * 2. specific compatible && type
441  * 3. specific compatible && name
442  * 4. specific compatible
443  * 5. general compatible && type && name
444  * 6. general compatible && type
445  * 7. general compatible && name
446  * 8. general compatible
447  * 9. type && name
448  * 10. type
449  * 11. name
450  */
451 static int __of_device_is_compatible(const struct device_node *device,
452 				     const char *compat, const char *type, const char *name)
453 {
454 	struct property *prop;
455 	const char *cp;
456 	int index = 0, score = 0;
457 
458 	/* Compatible match has highest priority */
459 	if (compat && compat[0]) {
460 		prop = __of_find_property(device, "compatible", NULL);
461 		for (cp = of_prop_next_string(prop, NULL); cp;
462 		     cp = of_prop_next_string(prop, cp), index++) {
463 			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
464 				score = INT_MAX/2 - (index << 2);
465 				break;
466 			}
467 		}
468 		if (!score)
469 			return 0;
470 	}
471 
472 	/* Matching type is better than matching name */
473 	if (type && type[0]) {
474 		if (!device->type || of_node_cmp(type, device->type))
475 			return 0;
476 		score += 2;
477 	}
478 
479 	/* Matching name is a bit better than not */
480 	if (name && name[0]) {
481 		if (!device->name || of_node_cmp(name, device->name))
482 			return 0;
483 		score++;
484 	}
485 
486 	return score;
487 }
488 
489 /** Checks if the given "compat" string matches one of the strings in
490  * the device's "compatible" property
491  */
492 int of_device_is_compatible(const struct device_node *device,
493 		const char *compat)
494 {
495 	unsigned long flags;
496 	int res;
497 
498 	raw_spin_lock_irqsave(&devtree_lock, flags);
499 	res = __of_device_is_compatible(device, compat, NULL, NULL);
500 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
501 	return res;
502 }
503 EXPORT_SYMBOL(of_device_is_compatible);
504 
505 /** Checks if the device is compatible with any of the entries in
506  *  a NULL terminated array of strings. Returns the best match
507  *  score or 0.
508  */
509 int of_device_compatible_match(struct device_node *device,
510 			       const char *const *compat)
511 {
512 	unsigned int tmp, score = 0;
513 
514 	if (!compat)
515 		return 0;
516 
517 	while (*compat) {
518 		tmp = of_device_is_compatible(device, *compat);
519 		if (tmp > score)
520 			score = tmp;
521 		compat++;
522 	}
523 
524 	return score;
525 }
526 
527 /**
528  * of_machine_is_compatible - Test root of device tree for a given compatible value
529  * @compat: compatible string to look for in root node's compatible property.
530  *
531  * Returns a positive integer if the root node has the given value in its
532  * compatible property.
533  */
534 int of_machine_is_compatible(const char *compat)
535 {
536 	struct device_node *root;
537 	int rc = 0;
538 
539 	root = of_find_node_by_path("/");
540 	if (root) {
541 		rc = of_device_is_compatible(root, compat);
542 		of_node_put(root);
543 	}
544 	return rc;
545 }
546 EXPORT_SYMBOL(of_machine_is_compatible);
547 
548 /**
549  *  __of_device_is_available - check if a device is available for use
550  *
551  *  @device: Node to check for availability, with locks already held
552  *
553  *  Returns true if the status property is absent or set to "okay" or "ok",
554  *  false otherwise
555  */
556 static bool __of_device_is_available(const struct device_node *device)
557 {
558 	const char *status;
559 	int statlen;
560 
561 	if (!device)
562 		return false;
563 
564 	status = __of_get_property(device, "status", &statlen);
565 	if (status == NULL)
566 		return true;
567 
568 	if (statlen > 0) {
569 		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
570 			return true;
571 	}
572 
573 	return false;
574 }
575 
576 /**
577  *  of_device_is_available - check if a device is available for use
578  *
579  *  @device: Node to check for availability
580  *
581  *  Returns true if the status property is absent or set to "okay" or "ok",
582  *  false otherwise
583  */
584 bool of_device_is_available(const struct device_node *device)
585 {
586 	unsigned long flags;
587 	bool res;
588 
589 	raw_spin_lock_irqsave(&devtree_lock, flags);
590 	res = __of_device_is_available(device);
591 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
592 	return res;
593 
594 }
595 EXPORT_SYMBOL(of_device_is_available);
596 
597 /**
598  *  of_device_is_big_endian - check if a device has BE registers
599  *
600  *  @device: Node to check for endianness
601  *
602  *  Returns true if the device has a "big-endian" property, or if the kernel
603  *  was compiled for BE *and* the device has a "native-endian" property.
604  *  Returns false otherwise.
605  *
606  *  Callers would nominally use ioread32be/iowrite32be if
607  *  of_device_is_big_endian() == true, or readl/writel otherwise.
608  */
609 bool of_device_is_big_endian(const struct device_node *device)
610 {
611 	if (of_property_read_bool(device, "big-endian"))
612 		return true;
613 	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
614 	    of_property_read_bool(device, "native-endian"))
615 		return true;
616 	return false;
617 }
618 EXPORT_SYMBOL(of_device_is_big_endian);
619 
620 /**
621  *	of_get_parent - Get a node's parent if any
622  *	@node:	Node to get parent
623  *
624  *	Returns a node pointer with refcount incremented, use
625  *	of_node_put() on it when done.
626  */
627 struct device_node *of_get_parent(const struct device_node *node)
628 {
629 	struct device_node *np;
630 	unsigned long flags;
631 
632 	if (!node)
633 		return NULL;
634 
635 	raw_spin_lock_irqsave(&devtree_lock, flags);
636 	np = of_node_get(node->parent);
637 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
638 	return np;
639 }
640 EXPORT_SYMBOL(of_get_parent);
641 
642 /**
643  *	of_get_next_parent - Iterate to a node's parent
644  *	@node:	Node to get parent of
645  *
646  *	This is like of_get_parent() except that it drops the
647  *	refcount on the passed node, making it suitable for iterating
648  *	through a node's parents.
649  *
650  *	Returns a node pointer with refcount incremented, use
651  *	of_node_put() on it when done.
652  */
653 struct device_node *of_get_next_parent(struct device_node *node)
654 {
655 	struct device_node *parent;
656 	unsigned long flags;
657 
658 	if (!node)
659 		return NULL;
660 
661 	raw_spin_lock_irqsave(&devtree_lock, flags);
662 	parent = of_node_get(node->parent);
663 	of_node_put(node);
664 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
665 	return parent;
666 }
667 EXPORT_SYMBOL(of_get_next_parent);
668 
669 static struct device_node *__of_get_next_child(const struct device_node *node,
670 						struct device_node *prev)
671 {
672 	struct device_node *next;
673 
674 	if (!node)
675 		return NULL;
676 
677 	next = prev ? prev->sibling : node->child;
678 	for (; next; next = next->sibling)
679 		if (of_node_get(next))
680 			break;
681 	of_node_put(prev);
682 	return next;
683 }
684 #define __for_each_child_of_node(parent, child) \
685 	for (child = __of_get_next_child(parent, NULL); child != NULL; \
686 	     child = __of_get_next_child(parent, child))
687 
688 /**
689  *	of_get_next_child - Iterate a node childs
690  *	@node:	parent node
691  *	@prev:	previous child of the parent node, or NULL to get first
692  *
693  *	Returns a node pointer with refcount incremented, use of_node_put() on
694  *	it when done. Returns NULL when prev is the last child. Decrements the
695  *	refcount of prev.
696  */
697 struct device_node *of_get_next_child(const struct device_node *node,
698 	struct device_node *prev)
699 {
700 	struct device_node *next;
701 	unsigned long flags;
702 
703 	raw_spin_lock_irqsave(&devtree_lock, flags);
704 	next = __of_get_next_child(node, prev);
705 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
706 	return next;
707 }
708 EXPORT_SYMBOL(of_get_next_child);
709 
710 /**
711  *	of_get_next_available_child - Find the next available child node
712  *	@node:	parent node
713  *	@prev:	previous child of the parent node, or NULL to get first
714  *
715  *      This function is like of_get_next_child(), except that it
716  *      automatically skips any disabled nodes (i.e. status = "disabled").
717  */
718 struct device_node *of_get_next_available_child(const struct device_node *node,
719 	struct device_node *prev)
720 {
721 	struct device_node *next;
722 	unsigned long flags;
723 
724 	if (!node)
725 		return NULL;
726 
727 	raw_spin_lock_irqsave(&devtree_lock, flags);
728 	next = prev ? prev->sibling : node->child;
729 	for (; next; next = next->sibling) {
730 		if (!__of_device_is_available(next))
731 			continue;
732 		if (of_node_get(next))
733 			break;
734 	}
735 	of_node_put(prev);
736 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
737 	return next;
738 }
739 EXPORT_SYMBOL(of_get_next_available_child);
740 
741 /**
742  *	of_get_child_by_name - Find the child node by name for a given parent
743  *	@node:	parent node
744  *	@name:	child name to look for.
745  *
746  *      This function looks for child node for given matching name
747  *
748  *	Returns a node pointer if found, with refcount incremented, use
749  *	of_node_put() on it when done.
750  *	Returns NULL if node is not found.
751  */
752 struct device_node *of_get_child_by_name(const struct device_node *node,
753 				const char *name)
754 {
755 	struct device_node *child;
756 
757 	for_each_child_of_node(node, child)
758 		if (child->name && (of_node_cmp(child->name, name) == 0))
759 			break;
760 	return child;
761 }
762 EXPORT_SYMBOL(of_get_child_by_name);
763 
764 static struct device_node *__of_find_node_by_path(struct device_node *parent,
765 						const char *path)
766 {
767 	struct device_node *child;
768 	int len;
769 
770 	len = strcspn(path, "/:");
771 	if (!len)
772 		return NULL;
773 
774 	__for_each_child_of_node(parent, child) {
775 		const char *name = strrchr(child->full_name, '/');
776 		if (WARN(!name, "malformed device_node %s\n", child->full_name))
777 			continue;
778 		name++;
779 		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
780 			return child;
781 	}
782 	return NULL;
783 }
784 
785 /**
786  *	of_find_node_opts_by_path - Find a node matching a full OF path
787  *	@path: Either the full path to match, or if the path does not
788  *	       start with '/', the name of a property of the /aliases
789  *	       node (an alias).  In the case of an alias, the node
790  *	       matching the alias' value will be returned.
791  *	@opts: Address of a pointer into which to store the start of
792  *	       an options string appended to the end of the path with
793  *	       a ':' separator.
794  *
795  *	Valid paths:
796  *		/foo/bar	Full path
797  *		foo		Valid alias
798  *		foo/bar		Valid alias + relative path
799  *
800  *	Returns a node pointer with refcount incremented, use
801  *	of_node_put() on it when done.
802  */
803 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
804 {
805 	struct device_node *np = NULL;
806 	struct property *pp;
807 	unsigned long flags;
808 	const char *separator = strchr(path, ':');
809 
810 	if (opts)
811 		*opts = separator ? separator + 1 : NULL;
812 
813 	if (strcmp(path, "/") == 0)
814 		return of_node_get(of_root);
815 
816 	/* The path could begin with an alias */
817 	if (*path != '/') {
818 		int len;
819 		const char *p = separator;
820 
821 		if (!p)
822 			p = strchrnul(path, '/');
823 		len = p - path;
824 
825 		/* of_aliases must not be NULL */
826 		if (!of_aliases)
827 			return NULL;
828 
829 		for_each_property_of_node(of_aliases, pp) {
830 			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
831 				np = of_find_node_by_path(pp->value);
832 				break;
833 			}
834 		}
835 		if (!np)
836 			return NULL;
837 		path = p;
838 	}
839 
840 	/* Step down the tree matching path components */
841 	raw_spin_lock_irqsave(&devtree_lock, flags);
842 	if (!np)
843 		np = of_node_get(of_root);
844 	while (np && *path == '/') {
845 		path++; /* Increment past '/' delimiter */
846 		np = __of_find_node_by_path(np, path);
847 		path = strchrnul(path, '/');
848 		if (separator && separator < path)
849 			break;
850 	}
851 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
852 	return np;
853 }
854 EXPORT_SYMBOL(of_find_node_opts_by_path);
855 
856 /**
857  *	of_find_node_by_name - Find a node by its "name" property
858  *	@from:	The node to start searching from or NULL, the node
859  *		you pass will not be searched, only the next one
860  *		will; typically, you pass what the previous call
861  *		returned. of_node_put() will be called on it
862  *	@name:	The name string to match against
863  *
864  *	Returns a node pointer with refcount incremented, use
865  *	of_node_put() on it when done.
866  */
867 struct device_node *of_find_node_by_name(struct device_node *from,
868 	const char *name)
869 {
870 	struct device_node *np;
871 	unsigned long flags;
872 
873 	raw_spin_lock_irqsave(&devtree_lock, flags);
874 	for_each_of_allnodes_from(from, np)
875 		if (np->name && (of_node_cmp(np->name, name) == 0)
876 		    && of_node_get(np))
877 			break;
878 	of_node_put(from);
879 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
880 	return np;
881 }
882 EXPORT_SYMBOL(of_find_node_by_name);
883 
884 /**
885  *	of_find_node_by_type - Find a node by its "device_type" property
886  *	@from:	The node to start searching from, or NULL to start searching
887  *		the entire device tree. The node you pass will not be
888  *		searched, only the next one will; typically, you pass
889  *		what the previous call returned. of_node_put() will be
890  *		called on from for you.
891  *	@type:	The type string to match against
892  *
893  *	Returns a node pointer with refcount incremented, use
894  *	of_node_put() on it when done.
895  */
896 struct device_node *of_find_node_by_type(struct device_node *from,
897 	const char *type)
898 {
899 	struct device_node *np;
900 	unsigned long flags;
901 
902 	raw_spin_lock_irqsave(&devtree_lock, flags);
903 	for_each_of_allnodes_from(from, np)
904 		if (np->type && (of_node_cmp(np->type, type) == 0)
905 		    && of_node_get(np))
906 			break;
907 	of_node_put(from);
908 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
909 	return np;
910 }
911 EXPORT_SYMBOL(of_find_node_by_type);
912 
913 /**
914  *	of_find_compatible_node - Find a node based on type and one of the
915  *                                tokens in its "compatible" property
916  *	@from:		The node to start searching from or NULL, the node
917  *			you pass will not be searched, only the next one
918  *			will; typically, you pass what the previous call
919  *			returned. of_node_put() will be called on it
920  *	@type:		The type string to match "device_type" or NULL to ignore
921  *	@compatible:	The string to match to one of the tokens in the device
922  *			"compatible" list.
923  *
924  *	Returns a node pointer with refcount incremented, use
925  *	of_node_put() on it when done.
926  */
927 struct device_node *of_find_compatible_node(struct device_node *from,
928 	const char *type, const char *compatible)
929 {
930 	struct device_node *np;
931 	unsigned long flags;
932 
933 	raw_spin_lock_irqsave(&devtree_lock, flags);
934 	for_each_of_allnodes_from(from, np)
935 		if (__of_device_is_compatible(np, compatible, type, NULL) &&
936 		    of_node_get(np))
937 			break;
938 	of_node_put(from);
939 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
940 	return np;
941 }
942 EXPORT_SYMBOL(of_find_compatible_node);
943 
944 /**
945  *	of_find_node_with_property - Find a node which has a property with
946  *                                   the given name.
947  *	@from:		The node to start searching from or NULL, the node
948  *			you pass will not be searched, only the next one
949  *			will; typically, you pass what the previous call
950  *			returned. of_node_put() will be called on it
951  *	@prop_name:	The name of the property to look for.
952  *
953  *	Returns a node pointer with refcount incremented, use
954  *	of_node_put() on it when done.
955  */
956 struct device_node *of_find_node_with_property(struct device_node *from,
957 	const char *prop_name)
958 {
959 	struct device_node *np;
960 	struct property *pp;
961 	unsigned long flags;
962 
963 	raw_spin_lock_irqsave(&devtree_lock, flags);
964 	for_each_of_allnodes_from(from, np) {
965 		for (pp = np->properties; pp; pp = pp->next) {
966 			if (of_prop_cmp(pp->name, prop_name) == 0) {
967 				of_node_get(np);
968 				goto out;
969 			}
970 		}
971 	}
972 out:
973 	of_node_put(from);
974 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
975 	return np;
976 }
977 EXPORT_SYMBOL(of_find_node_with_property);
978 
979 static
980 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
981 					   const struct device_node *node)
982 {
983 	const struct of_device_id *best_match = NULL;
984 	int score, best_score = 0;
985 
986 	if (!matches)
987 		return NULL;
988 
989 	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
990 		score = __of_device_is_compatible(node, matches->compatible,
991 						  matches->type, matches->name);
992 		if (score > best_score) {
993 			best_match = matches;
994 			best_score = score;
995 		}
996 	}
997 
998 	return best_match;
999 }
1000 
1001 /**
1002  * of_match_node - Tell if a device_node has a matching of_match structure
1003  *	@matches:	array of of device match structures to search in
1004  *	@node:		the of device structure to match against
1005  *
1006  *	Low level utility function used by device matching.
1007  */
1008 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1009 					 const struct device_node *node)
1010 {
1011 	const struct of_device_id *match;
1012 	unsigned long flags;
1013 
1014 	raw_spin_lock_irqsave(&devtree_lock, flags);
1015 	match = __of_match_node(matches, node);
1016 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1017 	return match;
1018 }
1019 EXPORT_SYMBOL(of_match_node);
1020 
1021 /**
1022  *	of_find_matching_node_and_match - Find a node based on an of_device_id
1023  *					  match table.
1024  *	@from:		The node to start searching from or NULL, the node
1025  *			you pass will not be searched, only the next one
1026  *			will; typically, you pass what the previous call
1027  *			returned. of_node_put() will be called on it
1028  *	@matches:	array of of device match structures to search in
1029  *	@match		Updated to point at the matches entry which matched
1030  *
1031  *	Returns a node pointer with refcount incremented, use
1032  *	of_node_put() on it when done.
1033  */
1034 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1035 					const struct of_device_id *matches,
1036 					const struct of_device_id **match)
1037 {
1038 	struct device_node *np;
1039 	const struct of_device_id *m;
1040 	unsigned long flags;
1041 
1042 	if (match)
1043 		*match = NULL;
1044 
1045 	raw_spin_lock_irqsave(&devtree_lock, flags);
1046 	for_each_of_allnodes_from(from, np) {
1047 		m = __of_match_node(matches, np);
1048 		if (m && of_node_get(np)) {
1049 			if (match)
1050 				*match = m;
1051 			break;
1052 		}
1053 	}
1054 	of_node_put(from);
1055 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1056 	return np;
1057 }
1058 EXPORT_SYMBOL(of_find_matching_node_and_match);
1059 
1060 /**
1061  * of_modalias_node - Lookup appropriate modalias for a device node
1062  * @node:	pointer to a device tree node
1063  * @modalias:	Pointer to buffer that modalias value will be copied into
1064  * @len:	Length of modalias value
1065  *
1066  * Based on the value of the compatible property, this routine will attempt
1067  * to choose an appropriate modalias value for a particular device tree node.
1068  * It does this by stripping the manufacturer prefix (as delimited by a ',')
1069  * from the first entry in the compatible list property.
1070  *
1071  * This routine returns 0 on success, <0 on failure.
1072  */
1073 int of_modalias_node(struct device_node *node, char *modalias, int len)
1074 {
1075 	const char *compatible, *p;
1076 	int cplen;
1077 
1078 	compatible = of_get_property(node, "compatible", &cplen);
1079 	if (!compatible || strlen(compatible) > cplen)
1080 		return -ENODEV;
1081 	p = strchr(compatible, ',');
1082 	strlcpy(modalias, p ? p + 1 : compatible, len);
1083 	return 0;
1084 }
1085 EXPORT_SYMBOL_GPL(of_modalias_node);
1086 
1087 /**
1088  * of_find_node_by_phandle - Find a node given a phandle
1089  * @handle:	phandle of the node to find
1090  *
1091  * Returns a node pointer with refcount incremented, use
1092  * of_node_put() on it when done.
1093  */
1094 struct device_node *of_find_node_by_phandle(phandle handle)
1095 {
1096 	struct device_node *np;
1097 	unsigned long flags;
1098 
1099 	if (!handle)
1100 		return NULL;
1101 
1102 	raw_spin_lock_irqsave(&devtree_lock, flags);
1103 	for_each_of_allnodes(np)
1104 		if (np->phandle == handle)
1105 			break;
1106 	of_node_get(np);
1107 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1108 	return np;
1109 }
1110 EXPORT_SYMBOL(of_find_node_by_phandle);
1111 
1112 /**
1113  * of_property_count_elems_of_size - Count the number of elements in a property
1114  *
1115  * @np:		device node from which the property value is to be read.
1116  * @propname:	name of the property to be searched.
1117  * @elem_size:	size of the individual element
1118  *
1119  * Search for a property in a device node and count the number of elements of
1120  * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
1121  * property does not exist or its length does not match a multiple of elem_size
1122  * and -ENODATA if the property does not have a value.
1123  */
1124 int of_property_count_elems_of_size(const struct device_node *np,
1125 				const char *propname, int elem_size)
1126 {
1127 	struct property *prop = of_find_property(np, propname, NULL);
1128 
1129 	if (!prop)
1130 		return -EINVAL;
1131 	if (!prop->value)
1132 		return -ENODATA;
1133 
1134 	if (prop->length % elem_size != 0) {
1135 		pr_err("size of %s in node %s is not a multiple of %d\n",
1136 		       propname, np->full_name, elem_size);
1137 		return -EINVAL;
1138 	}
1139 
1140 	return prop->length / elem_size;
1141 }
1142 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
1143 
1144 /**
1145  * of_find_property_value_of_size
1146  *
1147  * @np:		device node from which the property value is to be read.
1148  * @propname:	name of the property to be searched.
1149  * @min:	minimum allowed length of property value
1150  * @max:	maximum allowed length of property value (0 means unlimited)
1151  * @len:	if !=NULL, actual length is written to here
1152  *
1153  * Search for a property in a device node and valid the requested size.
1154  * Returns the property value on success, -EINVAL if the property does not
1155  *  exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
1156  * property data is too small or too large.
1157  *
1158  */
1159 static void *of_find_property_value_of_size(const struct device_node *np,
1160 			const char *propname, u32 min, u32 max, size_t *len)
1161 {
1162 	struct property *prop = of_find_property(np, propname, NULL);
1163 
1164 	if (!prop)
1165 		return ERR_PTR(-EINVAL);
1166 	if (!prop->value)
1167 		return ERR_PTR(-ENODATA);
1168 	if (prop->length < min)
1169 		return ERR_PTR(-EOVERFLOW);
1170 	if (max && prop->length > max)
1171 		return ERR_PTR(-EOVERFLOW);
1172 
1173 	if (len)
1174 		*len = prop->length;
1175 
1176 	return prop->value;
1177 }
1178 
1179 /**
1180  * of_property_read_u32_index - Find and read a u32 from a multi-value property.
1181  *
1182  * @np:		device node from which the property value is to be read.
1183  * @propname:	name of the property to be searched.
1184  * @index:	index of the u32 in the list of values
1185  * @out_value:	pointer to return value, modified only if no error.
1186  *
1187  * Search for a property in a device node and read nth 32-bit value from
1188  * it. Returns 0 on success, -EINVAL if the property does not exist,
1189  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1190  * property data isn't large enough.
1191  *
1192  * The out_value is modified only if a valid u32 value can be decoded.
1193  */
1194 int of_property_read_u32_index(const struct device_node *np,
1195 				       const char *propname,
1196 				       u32 index, u32 *out_value)
1197 {
1198 	const u32 *val = of_find_property_value_of_size(np, propname,
1199 					((index + 1) * sizeof(*out_value)),
1200 					0,
1201 					NULL);
1202 
1203 	if (IS_ERR(val))
1204 		return PTR_ERR(val);
1205 
1206 	*out_value = be32_to_cpup(((__be32 *)val) + index);
1207 	return 0;
1208 }
1209 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
1210 
1211 /**
1212  * of_property_read_variable_u8_array - Find and read an array of u8 from a
1213  * property, with bounds on the minimum and maximum array size.
1214  *
1215  * @np:		device node from which the property value is to be read.
1216  * @propname:	name of the property to be searched.
1217  * @out_values:	pointer to return value, modified only if return value is 0.
1218  * @sz_min:	minimum number of array elements to read
1219  * @sz_max:	maximum number of array elements to read, if zero there is no
1220  *		upper limit on the number of elements in the dts entry but only
1221  *		sz_min will be read.
1222  *
1223  * Search for a property in a device node and read 8-bit value(s) from
1224  * it. Returns number of elements read on success, -EINVAL if the property
1225  * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
1226  * if the property data is smaller than sz_min or longer than sz_max.
1227  *
1228  * dts entry of array should be like:
1229  *	property = /bits/ 8 <0x50 0x60 0x70>;
1230  *
1231  * The out_values is modified only if a valid u8 value can be decoded.
1232  */
1233 int of_property_read_variable_u8_array(const struct device_node *np,
1234 					const char *propname, u8 *out_values,
1235 					size_t sz_min, size_t sz_max)
1236 {
1237 	size_t sz, count;
1238 	const u8 *val = of_find_property_value_of_size(np, propname,
1239 						(sz_min * sizeof(*out_values)),
1240 						(sz_max * sizeof(*out_values)),
1241 						&sz);
1242 
1243 	if (IS_ERR(val))
1244 		return PTR_ERR(val);
1245 
1246 	if (!sz_max)
1247 		sz = sz_min;
1248 	else
1249 		sz /= sizeof(*out_values);
1250 
1251 	count = sz;
1252 	while (count--)
1253 		*out_values++ = *val++;
1254 
1255 	return sz;
1256 }
1257 EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array);
1258 
1259 /**
1260  * of_property_read_variable_u16_array - Find and read an array of u16 from a
1261  * property, with bounds on the minimum and maximum array size.
1262  *
1263  * @np:		device node from which the property value is to be read.
1264  * @propname:	name of the property to be searched.
1265  * @out_values:	pointer to return value, modified only if return value is 0.
1266  * @sz_min:	minimum number of array elements to read
1267  * @sz_max:	maximum number of array elements to read, if zero there is no
1268  *		upper limit on the number of elements in the dts entry but only
1269  *		sz_min will be read.
1270  *
1271  * Search for a property in a device node and read 16-bit value(s) from
1272  * it. Returns number of elements read on success, -EINVAL if the property
1273  * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
1274  * if the property data is smaller than sz_min or longer than sz_max.
1275  *
1276  * dts entry of array should be like:
1277  *	property = /bits/ 16 <0x5000 0x6000 0x7000>;
1278  *
1279  * The out_values is modified only if a valid u16 value can be decoded.
1280  */
1281 int of_property_read_variable_u16_array(const struct device_node *np,
1282 					const char *propname, u16 *out_values,
1283 					size_t sz_min, size_t sz_max)
1284 {
1285 	size_t sz, count;
1286 	const __be16 *val = of_find_property_value_of_size(np, propname,
1287 						(sz_min * sizeof(*out_values)),
1288 						(sz_max * sizeof(*out_values)),
1289 						&sz);
1290 
1291 	if (IS_ERR(val))
1292 		return PTR_ERR(val);
1293 
1294 	if (!sz_max)
1295 		sz = sz_min;
1296 	else
1297 		sz /= sizeof(*out_values);
1298 
1299 	count = sz;
1300 	while (count--)
1301 		*out_values++ = be16_to_cpup(val++);
1302 
1303 	return sz;
1304 }
1305 EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array);
1306 
1307 /**
1308  * of_property_read_variable_u32_array - Find and read an array of 32 bit
1309  * integers from a property, with bounds on the minimum and maximum array size.
1310  *
1311  * @np:		device node from which the property value is to be read.
1312  * @propname:	name of the property to be searched.
1313  * @out_values:	pointer to return value, modified only if return value is 0.
1314  * @sz_min:	minimum number of array elements to read
1315  * @sz_max:	maximum number of array elements to read, if zero there is no
1316  *		upper limit on the number of elements in the dts entry but only
1317  *		sz_min will be read.
1318  *
1319  * Search for a property in a device node and read 32-bit value(s) from
1320  * it. Returns number of elements read on success, -EINVAL if the property
1321  * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
1322  * if the property data is smaller than sz_min or longer than sz_max.
1323  *
1324  * The out_values is modified only if a valid u32 value can be decoded.
1325  */
1326 int of_property_read_variable_u32_array(const struct device_node *np,
1327 			       const char *propname, u32 *out_values,
1328 			       size_t sz_min, size_t sz_max)
1329 {
1330 	size_t sz, count;
1331 	const __be32 *val = of_find_property_value_of_size(np, propname,
1332 						(sz_min * sizeof(*out_values)),
1333 						(sz_max * sizeof(*out_values)),
1334 						&sz);
1335 
1336 	if (IS_ERR(val))
1337 		return PTR_ERR(val);
1338 
1339 	if (!sz_max)
1340 		sz = sz_min;
1341 	else
1342 		sz /= sizeof(*out_values);
1343 
1344 	count = sz;
1345 	while (count--)
1346 		*out_values++ = be32_to_cpup(val++);
1347 
1348 	return sz;
1349 }
1350 EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array);
1351 
1352 /**
1353  * of_property_read_u64 - Find and read a 64 bit integer from a property
1354  * @np:		device node from which the property value is to be read.
1355  * @propname:	name of the property to be searched.
1356  * @out_value:	pointer to return value, modified only if return value is 0.
1357  *
1358  * Search for a property in a device node and read a 64-bit value from
1359  * it. Returns 0 on success, -EINVAL if the property does not exist,
1360  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1361  * property data isn't large enough.
1362  *
1363  * The out_value is modified only if a valid u64 value can be decoded.
1364  */
1365 int of_property_read_u64(const struct device_node *np, const char *propname,
1366 			 u64 *out_value)
1367 {
1368 	const __be32 *val = of_find_property_value_of_size(np, propname,
1369 						sizeof(*out_value),
1370 						0,
1371 						NULL);
1372 
1373 	if (IS_ERR(val))
1374 		return PTR_ERR(val);
1375 
1376 	*out_value = of_read_number(val, 2);
1377 	return 0;
1378 }
1379 EXPORT_SYMBOL_GPL(of_property_read_u64);
1380 
1381 /**
1382  * of_property_read_variable_u64_array - Find and read an array of 64 bit
1383  * integers from a property, with bounds on the minimum and maximum array size.
1384  *
1385  * @np:		device node from which the property value is to be read.
1386  * @propname:	name of the property to be searched.
1387  * @out_values:	pointer to return value, modified only if return value is 0.
1388  * @sz_min:	minimum number of array elements to read
1389  * @sz_max:	maximum number of array elements to read, if zero there is no
1390  *		upper limit on the number of elements in the dts entry but only
1391  *		sz_min will be read.
1392  *
1393  * Search for a property in a device node and read 64-bit value(s) from
1394  * it. Returns number of elements read on success, -EINVAL if the property
1395  * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
1396  * if the property data is smaller than sz_min or longer than sz_max.
1397  *
1398  * The out_values is modified only if a valid u64 value can be decoded.
1399  */
1400 int of_property_read_variable_u64_array(const struct device_node *np,
1401 			       const char *propname, u64 *out_values,
1402 			       size_t sz_min, size_t sz_max)
1403 {
1404 	size_t sz, count;
1405 	const __be32 *val = of_find_property_value_of_size(np, propname,
1406 						(sz_min * sizeof(*out_values)),
1407 						(sz_max * sizeof(*out_values)),
1408 						&sz);
1409 
1410 	if (IS_ERR(val))
1411 		return PTR_ERR(val);
1412 
1413 	if (!sz_max)
1414 		sz = sz_min;
1415 	else
1416 		sz /= sizeof(*out_values);
1417 
1418 	count = sz;
1419 	while (count--) {
1420 		*out_values++ = of_read_number(val, 2);
1421 		val += 2;
1422 	}
1423 
1424 	return sz;
1425 }
1426 EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array);
1427 
1428 /**
1429  * of_property_read_string - Find and read a string from a property
1430  * @np:		device node from which the property value is to be read.
1431  * @propname:	name of the property to be searched.
1432  * @out_string:	pointer to null terminated return string, modified only if
1433  *		return value is 0.
1434  *
1435  * Search for a property in a device tree node and retrieve a null
1436  * terminated string value (pointer to data, not a copy). Returns 0 on
1437  * success, -EINVAL if the property does not exist, -ENODATA if property
1438  * does not have a value, and -EILSEQ if the string is not null-terminated
1439  * within the length of the property data.
1440  *
1441  * The out_string pointer is modified only if a valid string can be decoded.
1442  */
1443 int of_property_read_string(const struct device_node *np, const char *propname,
1444 				const char **out_string)
1445 {
1446 	const struct property *prop = of_find_property(np, propname, NULL);
1447 	if (!prop)
1448 		return -EINVAL;
1449 	if (!prop->value)
1450 		return -ENODATA;
1451 	if (strnlen(prop->value, prop->length) >= prop->length)
1452 		return -EILSEQ;
1453 	*out_string = prop->value;
1454 	return 0;
1455 }
1456 EXPORT_SYMBOL_GPL(of_property_read_string);
1457 
1458 /**
1459  * of_property_match_string() - Find string in a list and return index
1460  * @np: pointer to node containing string list property
1461  * @propname: string list property name
1462  * @string: pointer to string to search for in string list
1463  *
1464  * This function searches a string list property and returns the index
1465  * of a specific string value.
1466  */
1467 int of_property_match_string(const struct device_node *np, const char *propname,
1468 			     const char *string)
1469 {
1470 	const struct property *prop = of_find_property(np, propname, NULL);
1471 	size_t l;
1472 	int i;
1473 	const char *p, *end;
1474 
1475 	if (!prop)
1476 		return -EINVAL;
1477 	if (!prop->value)
1478 		return -ENODATA;
1479 
1480 	p = prop->value;
1481 	end = p + prop->length;
1482 
1483 	for (i = 0; p < end; i++, p += l) {
1484 		l = strnlen(p, end - p) + 1;
1485 		if (p + l > end)
1486 			return -EILSEQ;
1487 		pr_debug("comparing %s with %s\n", string, p);
1488 		if (strcmp(string, p) == 0)
1489 			return i; /* Found it; return index */
1490 	}
1491 	return -ENODATA;
1492 }
1493 EXPORT_SYMBOL_GPL(of_property_match_string);
1494 
1495 /**
1496  * of_property_read_string_helper() - Utility helper for parsing string properties
1497  * @np:		device node from which the property value is to be read.
1498  * @propname:	name of the property to be searched.
1499  * @out_strs:	output array of string pointers.
1500  * @sz:		number of array elements to read.
1501  * @skip:	Number of strings to skip over at beginning of list.
1502  *
1503  * Don't call this function directly. It is a utility helper for the
1504  * of_property_read_string*() family of functions.
1505  */
1506 int of_property_read_string_helper(const struct device_node *np,
1507 				   const char *propname, const char **out_strs,
1508 				   size_t sz, int skip)
1509 {
1510 	const struct property *prop = of_find_property(np, propname, NULL);
1511 	int l = 0, i = 0;
1512 	const char *p, *end;
1513 
1514 	if (!prop)
1515 		return -EINVAL;
1516 	if (!prop->value)
1517 		return -ENODATA;
1518 	p = prop->value;
1519 	end = p + prop->length;
1520 
1521 	for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
1522 		l = strnlen(p, end - p) + 1;
1523 		if (p + l > end)
1524 			return -EILSEQ;
1525 		if (out_strs && i >= skip)
1526 			*out_strs++ = p;
1527 	}
1528 	i -= skip;
1529 	return i <= 0 ? -ENODATA : i;
1530 }
1531 EXPORT_SYMBOL_GPL(of_property_read_string_helper);
1532 
1533 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1534 {
1535 	int i;
1536 	printk("%s %s", msg, of_node_full_name(args->np));
1537 	for (i = 0; i < args->args_count; i++) {
1538 		const char delim = i ? ',' : ':';
1539 
1540 		pr_cont("%c%08x", delim, args->args[i]);
1541 	}
1542 	pr_cont("\n");
1543 }
1544 
1545 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1546 		const struct device_node *np,
1547 		const char *list_name,
1548 		const char *cells_name,
1549 		int cell_count)
1550 {
1551 	const __be32 *list;
1552 	int size;
1553 
1554 	memset(it, 0, sizeof(*it));
1555 
1556 	list = of_get_property(np, list_name, &size);
1557 	if (!list)
1558 		return -ENOENT;
1559 
1560 	it->cells_name = cells_name;
1561 	it->cell_count = cell_count;
1562 	it->parent = np;
1563 	it->list_end = list + size / sizeof(*list);
1564 	it->phandle_end = list;
1565 	it->cur = list;
1566 
1567 	return 0;
1568 }
1569 
1570 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1571 {
1572 	uint32_t count = 0;
1573 
1574 	if (it->node) {
1575 		of_node_put(it->node);
1576 		it->node = NULL;
1577 	}
1578 
1579 	if (!it->cur || it->phandle_end >= it->list_end)
1580 		return -ENOENT;
1581 
1582 	it->cur = it->phandle_end;
1583 
1584 	/* If phandle is 0, then it is an empty entry with no arguments. */
1585 	it->phandle = be32_to_cpup(it->cur++);
1586 
1587 	if (it->phandle) {
1588 
1589 		/*
1590 		 * Find the provider node and parse the #*-cells property to
1591 		 * determine the argument length.
1592 		 */
1593 		it->node = of_find_node_by_phandle(it->phandle);
1594 
1595 		if (it->cells_name) {
1596 			if (!it->node) {
1597 				pr_err("%s: could not find phandle\n",
1598 				       it->parent->full_name);
1599 				goto err;
1600 			}
1601 
1602 			if (of_property_read_u32(it->node, it->cells_name,
1603 						 &count)) {
1604 				pr_err("%s: could not get %s for %s\n",
1605 				       it->parent->full_name,
1606 				       it->cells_name,
1607 				       it->node->full_name);
1608 				goto err;
1609 			}
1610 		} else {
1611 			count = it->cell_count;
1612 		}
1613 
1614 		/*
1615 		 * Make sure that the arguments actually fit in the remaining
1616 		 * property data length
1617 		 */
1618 		if (it->cur + count > it->list_end) {
1619 			pr_err("%s: arguments longer than property\n",
1620 			       it->parent->full_name);
1621 			goto err;
1622 		}
1623 	}
1624 
1625 	it->phandle_end = it->cur + count;
1626 	it->cur_count = count;
1627 
1628 	return 0;
1629 
1630 err:
1631 	if (it->node) {
1632 		of_node_put(it->node);
1633 		it->node = NULL;
1634 	}
1635 
1636 	return -EINVAL;
1637 }
1638 
1639 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1640 			     uint32_t *args,
1641 			     int size)
1642 {
1643 	int i, count;
1644 
1645 	count = it->cur_count;
1646 
1647 	if (WARN_ON(size < count))
1648 		count = size;
1649 
1650 	for (i = 0; i < count; i++)
1651 		args[i] = be32_to_cpup(it->cur++);
1652 
1653 	return count;
1654 }
1655 
1656 static int __of_parse_phandle_with_args(const struct device_node *np,
1657 					const char *list_name,
1658 					const char *cells_name,
1659 					int cell_count, int index,
1660 					struct of_phandle_args *out_args)
1661 {
1662 	struct of_phandle_iterator it;
1663 	int rc, cur_index = 0;
1664 
1665 	/* Loop over the phandles until all the requested entry is found */
1666 	of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1667 		/*
1668 		 * All of the error cases bail out of the loop, so at
1669 		 * this point, the parsing is successful. If the requested
1670 		 * index matches, then fill the out_args structure and return,
1671 		 * or return -ENOENT for an empty entry.
1672 		 */
1673 		rc = -ENOENT;
1674 		if (cur_index == index) {
1675 			if (!it.phandle)
1676 				goto err;
1677 
1678 			if (out_args) {
1679 				int c;
1680 
1681 				c = of_phandle_iterator_args(&it,
1682 							     out_args->args,
1683 							     MAX_PHANDLE_ARGS);
1684 				out_args->np = it.node;
1685 				out_args->args_count = c;
1686 			} else {
1687 				of_node_put(it.node);
1688 			}
1689 
1690 			/* Found it! return success */
1691 			return 0;
1692 		}
1693 
1694 		cur_index++;
1695 	}
1696 
1697 	/*
1698 	 * Unlock node before returning result; will be one of:
1699 	 * -ENOENT : index is for empty phandle
1700 	 * -EINVAL : parsing error on data
1701 	 */
1702 
1703  err:
1704 	of_node_put(it.node);
1705 	return rc;
1706 }
1707 
1708 /**
1709  * of_parse_phandle - Resolve a phandle property to a device_node pointer
1710  * @np: Pointer to device node holding phandle property
1711  * @phandle_name: Name of property holding a phandle value
1712  * @index: For properties holding a table of phandles, this is the index into
1713  *         the table
1714  *
1715  * Returns the device_node pointer with refcount incremented.  Use
1716  * of_node_put() on it when done.
1717  */
1718 struct device_node *of_parse_phandle(const struct device_node *np,
1719 				     const char *phandle_name, int index)
1720 {
1721 	struct of_phandle_args args;
1722 
1723 	if (index < 0)
1724 		return NULL;
1725 
1726 	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1727 					 index, &args))
1728 		return NULL;
1729 
1730 	return args.np;
1731 }
1732 EXPORT_SYMBOL(of_parse_phandle);
1733 
1734 /**
1735  * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1736  * @np:		pointer to a device tree node containing a list
1737  * @list_name:	property name that contains a list
1738  * @cells_name:	property name that specifies phandles' arguments count
1739  * @index:	index of a phandle to parse out
1740  * @out_args:	optional pointer to output arguments structure (will be filled)
1741  *
1742  * This function is useful to parse lists of phandles and their arguments.
1743  * Returns 0 on success and fills out_args, on error returns appropriate
1744  * errno value.
1745  *
1746  * Caller is responsible to call of_node_put() on the returned out_args->np
1747  * pointer.
1748  *
1749  * Example:
1750  *
1751  * phandle1: node1 {
1752  *	#list-cells = <2>;
1753  * }
1754  *
1755  * phandle2: node2 {
1756  *	#list-cells = <1>;
1757  * }
1758  *
1759  * node3 {
1760  *	list = <&phandle1 1 2 &phandle2 3>;
1761  * }
1762  *
1763  * To get a device_node of the `node2' node you may call this:
1764  * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1765  */
1766 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1767 				const char *cells_name, int index,
1768 				struct of_phandle_args *out_args)
1769 {
1770 	if (index < 0)
1771 		return -EINVAL;
1772 	return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1773 					    index, out_args);
1774 }
1775 EXPORT_SYMBOL(of_parse_phandle_with_args);
1776 
1777 /**
1778  * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1779  * @np:		pointer to a device tree node containing a list
1780  * @list_name:	property name that contains a list
1781  * @cell_count: number of argument cells following the phandle
1782  * @index:	index of a phandle to parse out
1783  * @out_args:	optional pointer to output arguments structure (will be filled)
1784  *
1785  * This function is useful to parse lists of phandles and their arguments.
1786  * Returns 0 on success and fills out_args, on error returns appropriate
1787  * errno value.
1788  *
1789  * Caller is responsible to call of_node_put() on the returned out_args->np
1790  * pointer.
1791  *
1792  * Example:
1793  *
1794  * phandle1: node1 {
1795  * }
1796  *
1797  * phandle2: node2 {
1798  * }
1799  *
1800  * node3 {
1801  *	list = <&phandle1 0 2 &phandle2 2 3>;
1802  * }
1803  *
1804  * To get a device_node of the `node2' node you may call this:
1805  * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1806  */
1807 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1808 				const char *list_name, int cell_count,
1809 				int index, struct of_phandle_args *out_args)
1810 {
1811 	if (index < 0)
1812 		return -EINVAL;
1813 	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1814 					   index, out_args);
1815 }
1816 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1817 
1818 /**
1819  * of_count_phandle_with_args() - Find the number of phandles references in a property
1820  * @np:		pointer to a device tree node containing a list
1821  * @list_name:	property name that contains a list
1822  * @cells_name:	property name that specifies phandles' arguments count
1823  *
1824  * Returns the number of phandle + argument tuples within a property. It
1825  * is a typical pattern to encode a list of phandle and variable
1826  * arguments into a single property. The number of arguments is encoded
1827  * by a property in the phandle-target node. For example, a gpios
1828  * property would contain a list of GPIO specifies consisting of a
1829  * phandle and 1 or more arguments. The number of arguments are
1830  * determined by the #gpio-cells property in the node pointed to by the
1831  * phandle.
1832  */
1833 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1834 				const char *cells_name)
1835 {
1836 	struct of_phandle_iterator it;
1837 	int rc, cur_index = 0;
1838 
1839 	rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0);
1840 	if (rc)
1841 		return rc;
1842 
1843 	while ((rc = of_phandle_iterator_next(&it)) == 0)
1844 		cur_index += 1;
1845 
1846 	if (rc != -ENOENT)
1847 		return rc;
1848 
1849 	return cur_index;
1850 }
1851 EXPORT_SYMBOL(of_count_phandle_with_args);
1852 
1853 /**
1854  * __of_add_property - Add a property to a node without lock operations
1855  */
1856 int __of_add_property(struct device_node *np, struct property *prop)
1857 {
1858 	struct property **next;
1859 
1860 	prop->next = NULL;
1861 	next = &np->properties;
1862 	while (*next) {
1863 		if (strcmp(prop->name, (*next)->name) == 0)
1864 			/* duplicate ! don't insert it */
1865 			return -EEXIST;
1866 
1867 		next = &(*next)->next;
1868 	}
1869 	*next = prop;
1870 
1871 	return 0;
1872 }
1873 
1874 /**
1875  * of_add_property - Add a property to a node
1876  */
1877 int of_add_property(struct device_node *np, struct property *prop)
1878 {
1879 	unsigned long flags;
1880 	int rc;
1881 
1882 	mutex_lock(&of_mutex);
1883 
1884 	raw_spin_lock_irqsave(&devtree_lock, flags);
1885 	rc = __of_add_property(np, prop);
1886 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1887 
1888 	if (!rc)
1889 		__of_add_property_sysfs(np, prop);
1890 
1891 	mutex_unlock(&of_mutex);
1892 
1893 	if (!rc)
1894 		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1895 
1896 	return rc;
1897 }
1898 
1899 int __of_remove_property(struct device_node *np, struct property *prop)
1900 {
1901 	struct property **next;
1902 
1903 	for (next = &np->properties; *next; next = &(*next)->next) {
1904 		if (*next == prop)
1905 			break;
1906 	}
1907 	if (*next == NULL)
1908 		return -ENODEV;
1909 
1910 	/* found the node */
1911 	*next = prop->next;
1912 	prop->next = np->deadprops;
1913 	np->deadprops = prop;
1914 
1915 	return 0;
1916 }
1917 
1918 void __of_sysfs_remove_bin_file(struct device_node *np, struct property *prop)
1919 {
1920 	sysfs_remove_bin_file(&np->kobj, &prop->attr);
1921 	kfree(prop->attr.attr.name);
1922 }
1923 
1924 void __of_remove_property_sysfs(struct device_node *np, struct property *prop)
1925 {
1926 	if (!IS_ENABLED(CONFIG_SYSFS))
1927 		return;
1928 
1929 	/* at early boot, bail here and defer setup to of_init() */
1930 	if (of_kset && of_node_is_attached(np))
1931 		__of_sysfs_remove_bin_file(np, prop);
1932 }
1933 
1934 /**
1935  * of_remove_property - Remove a property from a node.
1936  *
1937  * Note that we don't actually remove it, since we have given out
1938  * who-knows-how-many pointers to the data using get-property.
1939  * Instead we just move the property to the "dead properties"
1940  * list, so it won't be found any more.
1941  */
1942 int of_remove_property(struct device_node *np, struct property *prop)
1943 {
1944 	unsigned long flags;
1945 	int rc;
1946 
1947 	if (!prop)
1948 		return -ENODEV;
1949 
1950 	mutex_lock(&of_mutex);
1951 
1952 	raw_spin_lock_irqsave(&devtree_lock, flags);
1953 	rc = __of_remove_property(np, prop);
1954 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1955 
1956 	if (!rc)
1957 		__of_remove_property_sysfs(np, prop);
1958 
1959 	mutex_unlock(&of_mutex);
1960 
1961 	if (!rc)
1962 		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1963 
1964 	return rc;
1965 }
1966 
1967 int __of_update_property(struct device_node *np, struct property *newprop,
1968 		struct property **oldpropp)
1969 {
1970 	struct property **next, *oldprop;
1971 
1972 	for (next = &np->properties; *next; next = &(*next)->next) {
1973 		if (of_prop_cmp((*next)->name, newprop->name) == 0)
1974 			break;
1975 	}
1976 	*oldpropp = oldprop = *next;
1977 
1978 	if (oldprop) {
1979 		/* replace the node */
1980 		newprop->next = oldprop->next;
1981 		*next = newprop;
1982 		oldprop->next = np->deadprops;
1983 		np->deadprops = oldprop;
1984 	} else {
1985 		/* new node */
1986 		newprop->next = NULL;
1987 		*next = newprop;
1988 	}
1989 
1990 	return 0;
1991 }
1992 
1993 void __of_update_property_sysfs(struct device_node *np, struct property *newprop,
1994 		struct property *oldprop)
1995 {
1996 	if (!IS_ENABLED(CONFIG_SYSFS))
1997 		return;
1998 
1999 	/* At early boot, bail out and defer setup to of_init() */
2000 	if (!of_kset)
2001 		return;
2002 
2003 	if (oldprop)
2004 		__of_sysfs_remove_bin_file(np, oldprop);
2005 	__of_add_property_sysfs(np, newprop);
2006 }
2007 
2008 /*
2009  * of_update_property - Update a property in a node, if the property does
2010  * not exist, add it.
2011  *
2012  * Note that we don't actually remove it, since we have given out
2013  * who-knows-how-many pointers to the data using get-property.
2014  * Instead we just move the property to the "dead properties" list,
2015  * and add the new property to the property list
2016  */
2017 int of_update_property(struct device_node *np, struct property *newprop)
2018 {
2019 	struct property *oldprop;
2020 	unsigned long flags;
2021 	int rc;
2022 
2023 	if (!newprop->name)
2024 		return -EINVAL;
2025 
2026 	mutex_lock(&of_mutex);
2027 
2028 	raw_spin_lock_irqsave(&devtree_lock, flags);
2029 	rc = __of_update_property(np, newprop, &oldprop);
2030 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
2031 
2032 	if (!rc)
2033 		__of_update_property_sysfs(np, newprop, oldprop);
2034 
2035 	mutex_unlock(&of_mutex);
2036 
2037 	if (!rc)
2038 		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
2039 
2040 	return rc;
2041 }
2042 
2043 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
2044 			 int id, const char *stem, int stem_len)
2045 {
2046 	ap->np = np;
2047 	ap->id = id;
2048 	strncpy(ap->stem, stem, stem_len);
2049 	ap->stem[stem_len] = 0;
2050 	list_add_tail(&ap->link, &aliases_lookup);
2051 	pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
2052 		 ap->alias, ap->stem, ap->id, of_node_full_name(np));
2053 }
2054 
2055 /**
2056  * of_alias_scan - Scan all properties of the 'aliases' node
2057  *
2058  * The function scans all the properties of the 'aliases' node and populates
2059  * the global lookup table with the properties.  It returns the
2060  * number of alias properties found, or an error code in case of failure.
2061  *
2062  * @dt_alloc:	An allocator that provides a virtual address to memory
2063  *		for storing the resulting tree
2064  */
2065 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
2066 {
2067 	struct property *pp;
2068 
2069 	of_aliases = of_find_node_by_path("/aliases");
2070 	of_chosen = of_find_node_by_path("/chosen");
2071 	if (of_chosen == NULL)
2072 		of_chosen = of_find_node_by_path("/chosen@0");
2073 
2074 	if (of_chosen) {
2075 		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
2076 		const char *name = of_get_property(of_chosen, "stdout-path", NULL);
2077 		if (!name)
2078 			name = of_get_property(of_chosen, "linux,stdout-path", NULL);
2079 		if (IS_ENABLED(CONFIG_PPC) && !name)
2080 			name = of_get_property(of_aliases, "stdout", NULL);
2081 		if (name)
2082 			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
2083 	}
2084 
2085 	if (!of_aliases)
2086 		return;
2087 
2088 	for_each_property_of_node(of_aliases, pp) {
2089 		const char *start = pp->name;
2090 		const char *end = start + strlen(start);
2091 		struct device_node *np;
2092 		struct alias_prop *ap;
2093 		int id, len;
2094 
2095 		/* Skip those we do not want to proceed */
2096 		if (!strcmp(pp->name, "name") ||
2097 		    !strcmp(pp->name, "phandle") ||
2098 		    !strcmp(pp->name, "linux,phandle"))
2099 			continue;
2100 
2101 		np = of_find_node_by_path(pp->value);
2102 		if (!np)
2103 			continue;
2104 
2105 		/* walk the alias backwards to extract the id and work out
2106 		 * the 'stem' string */
2107 		while (isdigit(*(end-1)) && end > start)
2108 			end--;
2109 		len = end - start;
2110 
2111 		if (kstrtoint(end, 10, &id) < 0)
2112 			continue;
2113 
2114 		/* Allocate an alias_prop with enough space for the stem */
2115 		ap = dt_alloc(sizeof(*ap) + len + 1, 4);
2116 		if (!ap)
2117 			continue;
2118 		memset(ap, 0, sizeof(*ap) + len + 1);
2119 		ap->alias = start;
2120 		of_alias_add(ap, np, id, start, len);
2121 	}
2122 }
2123 
2124 /**
2125  * of_alias_get_id - Get alias id for the given device_node
2126  * @np:		Pointer to the given device_node
2127  * @stem:	Alias stem of the given device_node
2128  *
2129  * The function travels the lookup table to get the alias id for the given
2130  * device_node and alias stem.  It returns the alias id if found.
2131  */
2132 int of_alias_get_id(struct device_node *np, const char *stem)
2133 {
2134 	struct alias_prop *app;
2135 	int id = -ENODEV;
2136 
2137 	mutex_lock(&of_mutex);
2138 	list_for_each_entry(app, &aliases_lookup, link) {
2139 		if (strcmp(app->stem, stem) != 0)
2140 			continue;
2141 
2142 		if (np == app->np) {
2143 			id = app->id;
2144 			break;
2145 		}
2146 	}
2147 	mutex_unlock(&of_mutex);
2148 
2149 	return id;
2150 }
2151 EXPORT_SYMBOL_GPL(of_alias_get_id);
2152 
2153 /**
2154  * of_alias_get_highest_id - Get highest alias id for the given stem
2155  * @stem:	Alias stem to be examined
2156  *
2157  * The function travels the lookup table to get the highest alias id for the
2158  * given alias stem.  It returns the alias id if found.
2159  */
2160 int of_alias_get_highest_id(const char *stem)
2161 {
2162 	struct alias_prop *app;
2163 	int id = -ENODEV;
2164 
2165 	mutex_lock(&of_mutex);
2166 	list_for_each_entry(app, &aliases_lookup, link) {
2167 		if (strcmp(app->stem, stem) != 0)
2168 			continue;
2169 
2170 		if (app->id > id)
2171 			id = app->id;
2172 	}
2173 	mutex_unlock(&of_mutex);
2174 
2175 	return id;
2176 }
2177 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2178 
2179 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
2180 			       u32 *pu)
2181 {
2182 	const void *curv = cur;
2183 
2184 	if (!prop)
2185 		return NULL;
2186 
2187 	if (!cur) {
2188 		curv = prop->value;
2189 		goto out_val;
2190 	}
2191 
2192 	curv += sizeof(*cur);
2193 	if (curv >= prop->value + prop->length)
2194 		return NULL;
2195 
2196 out_val:
2197 	*pu = be32_to_cpup(curv);
2198 	return curv;
2199 }
2200 EXPORT_SYMBOL_GPL(of_prop_next_u32);
2201 
2202 const char *of_prop_next_string(struct property *prop, const char *cur)
2203 {
2204 	const void *curv = cur;
2205 
2206 	if (!prop)
2207 		return NULL;
2208 
2209 	if (!cur)
2210 		return prop->value;
2211 
2212 	curv += strlen(cur) + 1;
2213 	if (curv >= prop->value + prop->length)
2214 		return NULL;
2215 
2216 	return curv;
2217 }
2218 EXPORT_SYMBOL_GPL(of_prop_next_string);
2219 
2220 /**
2221  * of_console_check() - Test and setup console for DT setup
2222  * @dn - Pointer to device node
2223  * @name - Name to use for preferred console without index. ex. "ttyS"
2224  * @index - Index to use for preferred console.
2225  *
2226  * Check if the given device node matches the stdout-path property in the
2227  * /chosen node. If it does then register it as the preferred console and return
2228  * TRUE. Otherwise return FALSE.
2229  */
2230 bool of_console_check(struct device_node *dn, char *name, int index)
2231 {
2232 	if (!dn || dn != of_stdout || console_set_on_cmdline)
2233 		return false;
2234 	return !add_preferred_console(name, index,
2235 				      kstrdup(of_stdout_options, GFP_KERNEL));
2236 }
2237 EXPORT_SYMBOL_GPL(of_console_check);
2238 
2239 /**
2240  *	of_find_next_cache_node - Find a node's subsidiary cache
2241  *	@np:	node of type "cpu" or "cache"
2242  *
2243  *	Returns a node pointer with refcount incremented, use
2244  *	of_node_put() on it when done.  Caller should hold a reference
2245  *	to np.
2246  */
2247 struct device_node *of_find_next_cache_node(const struct device_node *np)
2248 {
2249 	struct device_node *child;
2250 	const phandle *handle;
2251 
2252 	handle = of_get_property(np, "l2-cache", NULL);
2253 	if (!handle)
2254 		handle = of_get_property(np, "next-level-cache", NULL);
2255 
2256 	if (handle)
2257 		return of_find_node_by_phandle(be32_to_cpup(handle));
2258 
2259 	/* OF on pmac has nodes instead of properties named "l2-cache"
2260 	 * beneath CPU nodes.
2261 	 */
2262 	if (!strcmp(np->type, "cpu"))
2263 		for_each_child_of_node(np, child)
2264 			if (!strcmp(child->type, "cache"))
2265 				return child;
2266 
2267 	return NULL;
2268 }
2269 
2270 /**
2271  * of_graph_parse_endpoint() - parse common endpoint node properties
2272  * @node: pointer to endpoint device_node
2273  * @endpoint: pointer to the OF endpoint data structure
2274  *
2275  * The caller should hold a reference to @node.
2276  */
2277 int of_graph_parse_endpoint(const struct device_node *node,
2278 			    struct of_endpoint *endpoint)
2279 {
2280 	struct device_node *port_node = of_get_parent(node);
2281 
2282 	WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n",
2283 		  __func__, node->full_name);
2284 
2285 	memset(endpoint, 0, sizeof(*endpoint));
2286 
2287 	endpoint->local_node = node;
2288 	/*
2289 	 * It doesn't matter whether the two calls below succeed.
2290 	 * If they don't then the default value 0 is used.
2291 	 */
2292 	of_property_read_u32(port_node, "reg", &endpoint->port);
2293 	of_property_read_u32(node, "reg", &endpoint->id);
2294 
2295 	of_node_put(port_node);
2296 
2297 	return 0;
2298 }
2299 EXPORT_SYMBOL(of_graph_parse_endpoint);
2300 
2301 /**
2302  * of_graph_get_port_by_id() - get the port matching a given id
2303  * @parent: pointer to the parent device node
2304  * @id: id of the port
2305  *
2306  * Return: A 'port' node pointer with refcount incremented. The caller
2307  * has to use of_node_put() on it when done.
2308  */
2309 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
2310 {
2311 	struct device_node *node, *port;
2312 
2313 	node = of_get_child_by_name(parent, "ports");
2314 	if (node)
2315 		parent = node;
2316 
2317 	for_each_child_of_node(parent, port) {
2318 		u32 port_id = 0;
2319 
2320 		if (of_node_cmp(port->name, "port") != 0)
2321 			continue;
2322 		of_property_read_u32(port, "reg", &port_id);
2323 		if (id == port_id)
2324 			break;
2325 	}
2326 
2327 	of_node_put(node);
2328 
2329 	return port;
2330 }
2331 EXPORT_SYMBOL(of_graph_get_port_by_id);
2332 
2333 /**
2334  * of_graph_get_next_endpoint() - get next endpoint node
2335  * @parent: pointer to the parent device node
2336  * @prev: previous endpoint node, or NULL to get first
2337  *
2338  * Return: An 'endpoint' node pointer with refcount incremented. Refcount
2339  * of the passed @prev node is decremented.
2340  */
2341 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
2342 					struct device_node *prev)
2343 {
2344 	struct device_node *endpoint;
2345 	struct device_node *port;
2346 
2347 	if (!parent)
2348 		return NULL;
2349 
2350 	/*
2351 	 * Start by locating the port node. If no previous endpoint is specified
2352 	 * search for the first port node, otherwise get the previous endpoint
2353 	 * parent port node.
2354 	 */
2355 	if (!prev) {
2356 		struct device_node *node;
2357 
2358 		node = of_get_child_by_name(parent, "ports");
2359 		if (node)
2360 			parent = node;
2361 
2362 		port = of_get_child_by_name(parent, "port");
2363 		of_node_put(node);
2364 
2365 		if (!port) {
2366 			pr_err("graph: no port node found in %s\n",
2367 			       parent->full_name);
2368 			return NULL;
2369 		}
2370 	} else {
2371 		port = of_get_parent(prev);
2372 		if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n",
2373 			      __func__, prev->full_name))
2374 			return NULL;
2375 	}
2376 
2377 	while (1) {
2378 		/*
2379 		 * Now that we have a port node, get the next endpoint by
2380 		 * getting the next child. If the previous endpoint is NULL this
2381 		 * will return the first child.
2382 		 */
2383 		endpoint = of_get_next_child(port, prev);
2384 		if (endpoint) {
2385 			of_node_put(port);
2386 			return endpoint;
2387 		}
2388 
2389 		/* No more endpoints under this port, try the next one. */
2390 		prev = NULL;
2391 
2392 		do {
2393 			port = of_get_next_child(parent, port);
2394 			if (!port)
2395 				return NULL;
2396 		} while (of_node_cmp(port->name, "port"));
2397 	}
2398 }
2399 EXPORT_SYMBOL(of_graph_get_next_endpoint);
2400 
2401 /**
2402  * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
2403  * @parent: pointer to the parent device node
2404  * @port_reg: identifier (value of reg property) of the parent port node
2405  * @reg: identifier (value of reg property) of the endpoint node
2406  *
2407  * Return: An 'endpoint' node pointer which is identified by reg and at the same
2408  * is the child of a port node identified by port_reg. reg and port_reg are
2409  * ignored when they are -1.
2410  */
2411 struct device_node *of_graph_get_endpoint_by_regs(
2412 	const struct device_node *parent, int port_reg, int reg)
2413 {
2414 	struct of_endpoint endpoint;
2415 	struct device_node *node = NULL;
2416 
2417 	for_each_endpoint_of_node(parent, node) {
2418 		of_graph_parse_endpoint(node, &endpoint);
2419 		if (((port_reg == -1) || (endpoint.port == port_reg)) &&
2420 			((reg == -1) || (endpoint.id == reg)))
2421 			return node;
2422 	}
2423 
2424 	return NULL;
2425 }
2426 EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
2427 
2428 /**
2429  * of_graph_get_remote_port_parent() - get remote port's parent node
2430  * @node: pointer to a local endpoint device_node
2431  *
2432  * Return: Remote device node associated with remote endpoint node linked
2433  *	   to @node. Use of_node_put() on it when done.
2434  */
2435 struct device_node *of_graph_get_remote_port_parent(
2436 			       const struct device_node *node)
2437 {
2438 	struct device_node *np;
2439 	unsigned int depth;
2440 
2441 	/* Get remote endpoint node. */
2442 	np = of_parse_phandle(node, "remote-endpoint", 0);
2443 
2444 	/* Walk 3 levels up only if there is 'ports' node. */
2445 	for (depth = 3; depth && np; depth--) {
2446 		np = of_get_next_parent(np);
2447 		if (depth == 2 && of_node_cmp(np->name, "ports"))
2448 			break;
2449 	}
2450 	return np;
2451 }
2452 EXPORT_SYMBOL(of_graph_get_remote_port_parent);
2453 
2454 /**
2455  * of_graph_get_remote_port() - get remote port node
2456  * @node: pointer to a local endpoint device_node
2457  *
2458  * Return: Remote port node associated with remote endpoint node linked
2459  *	   to @node. Use of_node_put() on it when done.
2460  */
2461 struct device_node *of_graph_get_remote_port(const struct device_node *node)
2462 {
2463 	struct device_node *np;
2464 
2465 	/* Get remote endpoint node. */
2466 	np = of_parse_phandle(node, "remote-endpoint", 0);
2467 	if (!np)
2468 		return NULL;
2469 	return of_get_next_parent(np);
2470 }
2471 EXPORT_SYMBOL(of_graph_get_remote_port);
2472