xref: /linux/drivers/of/base.c (revision 79d2e1919a2728ef49d938eb20ebd5903c14dfb0)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Procedures for creating, accessing and interpreting the device tree.
4  *
5  * Paul Mackerras	August 1996.
6  * Copyright (C) 1996-2005 Paul Mackerras.
7  *
8  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9  *    {engebret|bergner}@us.ibm.com
10  *
11  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12  *
13  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
14  *  Grant Likely.
15  */
16 
17 #define pr_fmt(fmt)	"OF: " fmt
18 
19 #include <linux/cleanup.h>
20 #include <linux/console.h>
21 #include <linux/ctype.h>
22 #include <linux/cpu.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/of_graph.h>
27 #include <linux/spinlock.h>
28 #include <linux/slab.h>
29 #include <linux/string.h>
30 #include <linux/proc_fs.h>
31 
32 #include "of_private.h"
33 
34 LIST_HEAD(aliases_lookup);
35 
36 struct device_node *of_root;
37 EXPORT_SYMBOL(of_root);
38 struct device_node *of_chosen;
39 EXPORT_SYMBOL(of_chosen);
40 struct device_node *of_aliases;
41 struct device_node *of_stdout;
42 static const char *of_stdout_options;
43 
44 struct kset *of_kset;
45 
46 /*
47  * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
48  * This mutex must be held whenever modifications are being made to the
49  * device tree. The of_{attach,detach}_node() and
50  * of_{add,remove,update}_property() helpers make sure this happens.
51  */
52 DEFINE_MUTEX(of_mutex);
53 
54 /* use when traversing tree through the child, sibling,
55  * or parent members of struct device_node.
56  */
57 DEFINE_RAW_SPINLOCK(devtree_lock);
58 
59 bool of_node_name_eq(const struct device_node *np, const char *name)
60 {
61 	const char *node_name;
62 	size_t len;
63 
64 	if (!np)
65 		return false;
66 
67 	node_name = kbasename(np->full_name);
68 	len = strchrnul(node_name, '@') - node_name;
69 
70 	return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
71 }
72 EXPORT_SYMBOL(of_node_name_eq);
73 
74 bool of_node_name_prefix(const struct device_node *np, const char *prefix)
75 {
76 	if (!np)
77 		return false;
78 
79 	return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
80 }
81 EXPORT_SYMBOL(of_node_name_prefix);
82 
83 static bool __of_node_is_type(const struct device_node *np, const char *type)
84 {
85 	const char *match = __of_get_property(np, "device_type", NULL);
86 
87 	return np && match && type && !strcmp(match, type);
88 }
89 
90 #define EXCLUDED_DEFAULT_CELLS_PLATFORMS ( \
91 	IS_ENABLED(CONFIG_SPARC) \
92 )
93 
94 int of_bus_n_addr_cells(struct device_node *np)
95 {
96 	u32 cells;
97 
98 	for (; np; np = np->parent) {
99 		if (!of_property_read_u32(np, "#address-cells", &cells))
100 			return cells;
101 		/*
102 		 * Default root value and walking parent nodes for "#address-cells"
103 		 * is deprecated. Any platforms which hit this warning should
104 		 * be added to the excluded list.
105 		 */
106 		WARN_ONCE(!EXCLUDED_DEFAULT_CELLS_PLATFORMS,
107 			  "Missing '#address-cells' in %pOF\n", np);
108 	}
109 	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
110 }
111 
112 int of_n_addr_cells(struct device_node *np)
113 {
114 	if (np->parent)
115 		np = np->parent;
116 
117 	return of_bus_n_addr_cells(np);
118 }
119 EXPORT_SYMBOL(of_n_addr_cells);
120 
121 int of_bus_n_size_cells(struct device_node *np)
122 {
123 	u32 cells;
124 
125 	for (; np; np = np->parent) {
126 		if (!of_property_read_u32(np, "#size-cells", &cells))
127 			return cells;
128 		/*
129 		 * Default root value and walking parent nodes for "#size-cells"
130 		 * is deprecated. Any platforms which hit this warning should
131 		 * be added to the excluded list.
132 		 */
133 		WARN_ONCE(!EXCLUDED_DEFAULT_CELLS_PLATFORMS,
134 			  "Missing '#size-cells' in %pOF\n", np);
135 	}
136 	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
137 }
138 
139 int of_n_size_cells(struct device_node *np)
140 {
141 	if (np->parent)
142 		np = np->parent;
143 
144 	return of_bus_n_size_cells(np);
145 }
146 EXPORT_SYMBOL(of_n_size_cells);
147 
148 #ifdef CONFIG_NUMA
149 int __weak of_node_to_nid(struct device_node *np)
150 {
151 	return NUMA_NO_NODE;
152 }
153 #endif
154 
155 #define OF_PHANDLE_CACHE_BITS	7
156 #define OF_PHANDLE_CACHE_SZ	BIT(OF_PHANDLE_CACHE_BITS)
157 
158 static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ];
159 
160 static u32 of_phandle_cache_hash(phandle handle)
161 {
162 	return hash_32(handle, OF_PHANDLE_CACHE_BITS);
163 }
164 
165 /*
166  * Caller must hold devtree_lock.
167  */
168 void __of_phandle_cache_inv_entry(phandle handle)
169 {
170 	u32 handle_hash;
171 	struct device_node *np;
172 
173 	if (!handle)
174 		return;
175 
176 	handle_hash = of_phandle_cache_hash(handle);
177 
178 	np = phandle_cache[handle_hash];
179 	if (np && handle == np->phandle)
180 		phandle_cache[handle_hash] = NULL;
181 }
182 
183 void __init of_core_init(void)
184 {
185 	struct device_node *np;
186 
187 	of_platform_register_reconfig_notifier();
188 
189 	/* Create the kset, and register existing nodes */
190 	mutex_lock(&of_mutex);
191 	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
192 	if (!of_kset) {
193 		mutex_unlock(&of_mutex);
194 		pr_err("failed to register existing nodes\n");
195 		return;
196 	}
197 	for_each_of_allnodes(np) {
198 		__of_attach_node_sysfs(np);
199 		if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)])
200 			phandle_cache[of_phandle_cache_hash(np->phandle)] = np;
201 	}
202 	mutex_unlock(&of_mutex);
203 
204 	/* Symlink in /proc as required by userspace ABI */
205 	if (of_root)
206 		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
207 }
208 
209 static struct property *__of_find_property(const struct device_node *np,
210 					   const char *name, int *lenp)
211 {
212 	struct property *pp;
213 
214 	if (!np)
215 		return NULL;
216 
217 	for (pp = np->properties; pp; pp = pp->next) {
218 		if (of_prop_cmp(pp->name, name) == 0) {
219 			if (lenp)
220 				*lenp = pp->length;
221 			break;
222 		}
223 	}
224 
225 	return pp;
226 }
227 
228 struct property *of_find_property(const struct device_node *np,
229 				  const char *name,
230 				  int *lenp)
231 {
232 	struct property *pp;
233 	unsigned long flags;
234 
235 	raw_spin_lock_irqsave(&devtree_lock, flags);
236 	pp = __of_find_property(np, name, lenp);
237 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
238 
239 	return pp;
240 }
241 EXPORT_SYMBOL(of_find_property);
242 
243 struct device_node *__of_find_all_nodes(struct device_node *prev)
244 {
245 	struct device_node *np;
246 	if (!prev) {
247 		np = of_root;
248 	} else if (prev->child) {
249 		np = prev->child;
250 	} else {
251 		/* Walk back up looking for a sibling, or the end of the structure */
252 		np = prev;
253 		while (np->parent && !np->sibling)
254 			np = np->parent;
255 		np = np->sibling; /* Might be null at the end of the tree */
256 	}
257 	return np;
258 }
259 
260 /**
261  * of_find_all_nodes - Get next node in global list
262  * @prev:	Previous node or NULL to start iteration
263  *		of_node_put() will be called on it
264  *
265  * Return: A node pointer with refcount incremented, use
266  * of_node_put() on it when done.
267  */
268 struct device_node *of_find_all_nodes(struct device_node *prev)
269 {
270 	struct device_node *np;
271 	unsigned long flags;
272 
273 	raw_spin_lock_irqsave(&devtree_lock, flags);
274 	np = __of_find_all_nodes(prev);
275 	of_node_get(np);
276 	of_node_put(prev);
277 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
278 	return np;
279 }
280 EXPORT_SYMBOL(of_find_all_nodes);
281 
282 /*
283  * Find a property with a given name for a given node
284  * and return the value.
285  */
286 const void *__of_get_property(const struct device_node *np,
287 			      const char *name, int *lenp)
288 {
289 	const struct property *pp = __of_find_property(np, name, lenp);
290 
291 	return pp ? pp->value : NULL;
292 }
293 
294 /*
295  * Find a property with a given name for a given node
296  * and return the value.
297  */
298 const void *of_get_property(const struct device_node *np, const char *name,
299 			    int *lenp)
300 {
301 	const struct property *pp = of_find_property(np, name, lenp);
302 
303 	return pp ? pp->value : NULL;
304 }
305 EXPORT_SYMBOL(of_get_property);
306 
307 /**
308  * __of_device_is_compatible() - Check if the node matches given constraints
309  * @device: pointer to node
310  * @compat: required compatible string, NULL or "" for any match
311  * @type: required device_type value, NULL or "" for any match
312  * @name: required node name, NULL or "" for any match
313  *
314  * Checks if the given @compat, @type and @name strings match the
315  * properties of the given @device. A constraints can be skipped by
316  * passing NULL or an empty string as the constraint.
317  *
318  * Returns 0 for no match, and a positive integer on match. The return
319  * value is a relative score with larger values indicating better
320  * matches. The score is weighted for the most specific compatible value
321  * to get the highest score. Matching type is next, followed by matching
322  * name. Practically speaking, this results in the following priority
323  * order for matches:
324  *
325  * 1. specific compatible && type && name
326  * 2. specific compatible && type
327  * 3. specific compatible && name
328  * 4. specific compatible
329  * 5. general compatible && type && name
330  * 6. general compatible && type
331  * 7. general compatible && name
332  * 8. general compatible
333  * 9. type && name
334  * 10. type
335  * 11. name
336  */
337 static int __of_device_is_compatible(const struct device_node *device,
338 				     const char *compat, const char *type, const char *name)
339 {
340 	const struct property *prop;
341 	const char *cp;
342 	int index = 0, score = 0;
343 
344 	/* Compatible match has highest priority */
345 	if (compat && compat[0]) {
346 		prop = __of_find_property(device, "compatible", NULL);
347 		for (cp = of_prop_next_string(prop, NULL); cp;
348 		     cp = of_prop_next_string(prop, cp), index++) {
349 			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
350 				score = INT_MAX/2 - (index << 2);
351 				break;
352 			}
353 		}
354 		if (!score)
355 			return 0;
356 	}
357 
358 	/* Matching type is better than matching name */
359 	if (type && type[0]) {
360 		if (!__of_node_is_type(device, type))
361 			return 0;
362 		score += 2;
363 	}
364 
365 	/* Matching name is a bit better than not */
366 	if (name && name[0]) {
367 		if (!of_node_name_eq(device, name))
368 			return 0;
369 		score++;
370 	}
371 
372 	return score;
373 }
374 
375 /** Checks if the given "compat" string matches one of the strings in
376  * the device's "compatible" property
377  */
378 int of_device_is_compatible(const struct device_node *device,
379 		const char *compat)
380 {
381 	unsigned long flags;
382 	int res;
383 
384 	raw_spin_lock_irqsave(&devtree_lock, flags);
385 	res = __of_device_is_compatible(device, compat, NULL, NULL);
386 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
387 	return res;
388 }
389 EXPORT_SYMBOL(of_device_is_compatible);
390 
391 /** Checks if the device is compatible with any of the entries in
392  *  a NULL terminated array of strings. Returns the best match
393  *  score or 0.
394  */
395 int of_device_compatible_match(const struct device_node *device,
396 			       const char *const *compat)
397 {
398 	unsigned int tmp, score = 0;
399 
400 	if (!compat)
401 		return 0;
402 
403 	while (*compat) {
404 		tmp = of_device_is_compatible(device, *compat);
405 		if (tmp > score)
406 			score = tmp;
407 		compat++;
408 	}
409 
410 	return score;
411 }
412 EXPORT_SYMBOL_GPL(of_device_compatible_match);
413 
414 /**
415  * of_machine_compatible_match - Test root of device tree against a compatible array
416  * @compats: NULL terminated array of compatible strings to look for in root node's compatible property.
417  *
418  * Returns true if the root node has any of the given compatible values in its
419  * compatible property.
420  */
421 bool of_machine_compatible_match(const char *const *compats)
422 {
423 	struct device_node *root;
424 	int rc = 0;
425 
426 	root = of_find_node_by_path("/");
427 	if (root) {
428 		rc = of_device_compatible_match(root, compats);
429 		of_node_put(root);
430 	}
431 
432 	return rc != 0;
433 }
434 EXPORT_SYMBOL(of_machine_compatible_match);
435 
436 static bool __of_device_is_status(const struct device_node *device,
437 				  const char * const*strings)
438 {
439 	const char *status;
440 	int statlen;
441 
442 	if (!device)
443 		return false;
444 
445 	status = __of_get_property(device, "status", &statlen);
446 	if (status == NULL)
447 		return false;
448 
449 	if (statlen > 0) {
450 		while (*strings) {
451 			unsigned int len = strlen(*strings);
452 
453 			if ((*strings)[len - 1] == '-') {
454 				if (!strncmp(status, *strings, len))
455 					return true;
456 			} else {
457 				if (!strcmp(status, *strings))
458 					return true;
459 			}
460 			strings++;
461 		}
462 	}
463 
464 	return false;
465 }
466 
467 /**
468  *  __of_device_is_available - check if a device is available for use
469  *
470  *  @device: Node to check for availability, with locks already held
471  *
472  *  Return: True if the status property is absent or set to "okay" or "ok",
473  *  false otherwise
474  */
475 static bool __of_device_is_available(const struct device_node *device)
476 {
477 	static const char * const ok[] = {"okay", "ok", NULL};
478 
479 	if (!device)
480 		return false;
481 
482 	return !__of_get_property(device, "status", NULL) ||
483 		__of_device_is_status(device, ok);
484 }
485 
486 /**
487  *  __of_device_is_reserved - check if a device is reserved
488  *
489  *  @device: Node to check for availability, with locks already held
490  *
491  *  Return: True if the status property is set to "reserved", false otherwise
492  */
493 static bool __of_device_is_reserved(const struct device_node *device)
494 {
495 	static const char * const reserved[] = {"reserved", NULL};
496 
497 	return __of_device_is_status(device, reserved);
498 }
499 
500 /**
501  *  of_device_is_available - check if a device is available for use
502  *
503  *  @device: Node to check for availability
504  *
505  *  Return: True if the status property is absent or set to "okay" or "ok",
506  *  false otherwise
507  */
508 bool of_device_is_available(const struct device_node *device)
509 {
510 	unsigned long flags;
511 	bool res;
512 
513 	raw_spin_lock_irqsave(&devtree_lock, flags);
514 	res = __of_device_is_available(device);
515 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
516 	return res;
517 
518 }
519 EXPORT_SYMBOL(of_device_is_available);
520 
521 /**
522  *  __of_device_is_fail - check if a device has status "fail" or "fail-..."
523  *
524  *  @device: Node to check status for, with locks already held
525  *
526  *  Return: True if the status property is set to "fail" or "fail-..." (for any
527  *  error code suffix), false otherwise
528  */
529 static bool __of_device_is_fail(const struct device_node *device)
530 {
531 	static const char * const fail[] = {"fail", "fail-", NULL};
532 
533 	return __of_device_is_status(device, fail);
534 }
535 
536 /**
537  *  of_device_is_big_endian - check if a device has BE registers
538  *
539  *  @device: Node to check for endianness
540  *
541  *  Return: True if the device has a "big-endian" property, or if the kernel
542  *  was compiled for BE *and* the device has a "native-endian" property.
543  *  Returns false otherwise.
544  *
545  *  Callers would nominally use ioread32be/iowrite32be if
546  *  of_device_is_big_endian() == true, or readl/writel otherwise.
547  */
548 bool of_device_is_big_endian(const struct device_node *device)
549 {
550 	if (of_property_read_bool(device, "big-endian"))
551 		return true;
552 	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
553 	    of_property_read_bool(device, "native-endian"))
554 		return true;
555 	return false;
556 }
557 EXPORT_SYMBOL(of_device_is_big_endian);
558 
559 /**
560  * of_get_parent - Get a node's parent if any
561  * @node:	Node to get parent
562  *
563  * Return: A node pointer with refcount incremented, use
564  * of_node_put() on it when done.
565  */
566 struct device_node *of_get_parent(const struct device_node *node)
567 {
568 	struct device_node *np;
569 	unsigned long flags;
570 
571 	if (!node)
572 		return NULL;
573 
574 	raw_spin_lock_irqsave(&devtree_lock, flags);
575 	np = of_node_get(node->parent);
576 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
577 	return np;
578 }
579 EXPORT_SYMBOL(of_get_parent);
580 
581 /**
582  * of_get_next_parent - Iterate to a node's parent
583  * @node:	Node to get parent of
584  *
585  * This is like of_get_parent() except that it drops the
586  * refcount on the passed node, making it suitable for iterating
587  * through a node's parents.
588  *
589  * Return: A node pointer with refcount incremented, use
590  * of_node_put() on it when done.
591  */
592 struct device_node *of_get_next_parent(struct device_node *node)
593 {
594 	struct device_node *parent;
595 	unsigned long flags;
596 
597 	if (!node)
598 		return NULL;
599 
600 	raw_spin_lock_irqsave(&devtree_lock, flags);
601 	parent = of_node_get(node->parent);
602 	of_node_put(node);
603 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
604 	return parent;
605 }
606 EXPORT_SYMBOL(of_get_next_parent);
607 
608 static struct device_node *__of_get_next_child(const struct device_node *node,
609 						struct device_node *prev)
610 {
611 	struct device_node *next;
612 
613 	if (!node)
614 		return NULL;
615 
616 	next = prev ? prev->sibling : node->child;
617 	of_node_get(next);
618 	of_node_put(prev);
619 	return next;
620 }
621 #define __for_each_child_of_node(parent, child) \
622 	for (child = __of_get_next_child(parent, NULL); child != NULL; \
623 	     child = __of_get_next_child(parent, child))
624 
625 /**
626  * of_get_next_child - Iterate a node childs
627  * @node:	parent node
628  * @prev:	previous child of the parent node, or NULL to get first
629  *
630  * Return: A node pointer with refcount incremented, use of_node_put() on
631  * it when done. Returns NULL when prev is the last child. Decrements the
632  * refcount of prev.
633  */
634 struct device_node *of_get_next_child(const struct device_node *node,
635 	struct device_node *prev)
636 {
637 	struct device_node *next;
638 	unsigned long flags;
639 
640 	raw_spin_lock_irqsave(&devtree_lock, flags);
641 	next = __of_get_next_child(node, prev);
642 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
643 	return next;
644 }
645 EXPORT_SYMBOL(of_get_next_child);
646 
647 /**
648  * of_get_next_child_with_prefix - Find the next child node with prefix
649  * @node:	parent node
650  * @prev:	previous child of the parent node, or NULL to get first
651  * @prefix:	prefix that the node name should have
652  *
653  * This function is like of_get_next_child(), except that it automatically
654  * skips any nodes whose name doesn't have the given prefix.
655  *
656  * Return: A node pointer with refcount incremented, use
657  * of_node_put() on it when done.
658  */
659 struct device_node *of_get_next_child_with_prefix(const struct device_node *node,
660 						  struct device_node *prev,
661 						  const char *prefix)
662 {
663 	struct device_node *next;
664 	unsigned long flags;
665 
666 	if (!node)
667 		return NULL;
668 
669 	raw_spin_lock_irqsave(&devtree_lock, flags);
670 	next = prev ? prev->sibling : node->child;
671 	for (; next; next = next->sibling) {
672 		if (!of_node_name_prefix(next, prefix))
673 			continue;
674 		if (of_node_get(next))
675 			break;
676 	}
677 	of_node_put(prev);
678 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
679 	return next;
680 }
681 EXPORT_SYMBOL(of_get_next_child_with_prefix);
682 
683 static struct device_node *of_get_next_status_child(const struct device_node *node,
684 						    struct device_node *prev,
685 						    bool (*checker)(const struct device_node *))
686 {
687 	struct device_node *next;
688 	unsigned long flags;
689 
690 	if (!node)
691 		return NULL;
692 
693 	raw_spin_lock_irqsave(&devtree_lock, flags);
694 	next = prev ? prev->sibling : node->child;
695 	for (; next; next = next->sibling) {
696 		if (!checker(next))
697 			continue;
698 		if (of_node_get(next))
699 			break;
700 	}
701 	of_node_put(prev);
702 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
703 	return next;
704 }
705 
706 /**
707  * of_get_next_available_child - Find the next available child node
708  * @node:	parent node
709  * @prev:	previous child of the parent node, or NULL to get first
710  *
711  * This function is like of_get_next_child(), except that it
712  * automatically skips any disabled nodes (i.e. status = "disabled").
713  */
714 struct device_node *of_get_next_available_child(const struct device_node *node,
715 	struct device_node *prev)
716 {
717 	return of_get_next_status_child(node, prev, __of_device_is_available);
718 }
719 EXPORT_SYMBOL(of_get_next_available_child);
720 
721 /**
722  * of_get_next_reserved_child - Find the next reserved child node
723  * @node:	parent node
724  * @prev:	previous child of the parent node, or NULL to get first
725  *
726  * This function is like of_get_next_child(), except that it
727  * automatically skips any disabled nodes (i.e. status = "disabled").
728  */
729 struct device_node *of_get_next_reserved_child(const struct device_node *node,
730 						struct device_node *prev)
731 {
732 	return of_get_next_status_child(node, prev, __of_device_is_reserved);
733 }
734 EXPORT_SYMBOL(of_get_next_reserved_child);
735 
736 /**
737  * of_get_next_cpu_node - Iterate on cpu nodes
738  * @prev:	previous child of the /cpus node, or NULL to get first
739  *
740  * Unusable CPUs (those with the status property set to "fail" or "fail-...")
741  * will be skipped.
742  *
743  * Return: A cpu node pointer with refcount incremented, use of_node_put()
744  * on it when done. Returns NULL when prev is the last child. Decrements
745  * the refcount of prev.
746  */
747 struct device_node *of_get_next_cpu_node(struct device_node *prev)
748 {
749 	struct device_node *next = NULL;
750 	unsigned long flags;
751 	struct device_node *node;
752 
753 	if (!prev)
754 		node = of_find_node_by_path("/cpus");
755 
756 	raw_spin_lock_irqsave(&devtree_lock, flags);
757 	if (prev)
758 		next = prev->sibling;
759 	else if (node) {
760 		next = node->child;
761 		of_node_put(node);
762 	}
763 	for (; next; next = next->sibling) {
764 		if (__of_device_is_fail(next))
765 			continue;
766 		if (!(of_node_name_eq(next, "cpu") ||
767 		      __of_node_is_type(next, "cpu")))
768 			continue;
769 		if (of_node_get(next))
770 			break;
771 	}
772 	of_node_put(prev);
773 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
774 	return next;
775 }
776 EXPORT_SYMBOL(of_get_next_cpu_node);
777 
778 /**
779  * of_get_compatible_child - Find compatible child node
780  * @parent:	parent node
781  * @compatible:	compatible string
782  *
783  * Lookup child node whose compatible property contains the given compatible
784  * string.
785  *
786  * Return: a node pointer with refcount incremented, use of_node_put() on it
787  * when done; or NULL if not found.
788  */
789 struct device_node *of_get_compatible_child(const struct device_node *parent,
790 				const char *compatible)
791 {
792 	struct device_node *child;
793 
794 	for_each_child_of_node(parent, child) {
795 		if (of_device_is_compatible(child, compatible))
796 			break;
797 	}
798 
799 	return child;
800 }
801 EXPORT_SYMBOL(of_get_compatible_child);
802 
803 /**
804  * of_get_child_by_name - Find the child node by name for a given parent
805  * @node:	parent node
806  * @name:	child name to look for.
807  *
808  * This function looks for child node for given matching name
809  *
810  * Return: A node pointer if found, with refcount incremented, use
811  * of_node_put() on it when done.
812  * Returns NULL if node is not found.
813  */
814 struct device_node *of_get_child_by_name(const struct device_node *node,
815 				const char *name)
816 {
817 	struct device_node *child;
818 
819 	for_each_child_of_node(node, child)
820 		if (of_node_name_eq(child, name))
821 			break;
822 	return child;
823 }
824 EXPORT_SYMBOL(of_get_child_by_name);
825 
826 struct device_node *__of_find_node_by_path(const struct device_node *parent,
827 						const char *path)
828 {
829 	struct device_node *child;
830 	int len;
831 
832 	len = strcspn(path, "/:");
833 	if (!len)
834 		return NULL;
835 
836 	__for_each_child_of_node(parent, child) {
837 		const char *name = kbasename(child->full_name);
838 		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
839 			return child;
840 	}
841 	return NULL;
842 }
843 
844 struct device_node *__of_find_node_by_full_path(struct device_node *node,
845 						const char *path)
846 {
847 	const char *separator = strchr(path, ':');
848 
849 	while (node && *path == '/') {
850 		struct device_node *tmp = node;
851 
852 		path++; /* Increment past '/' delimiter */
853 		node = __of_find_node_by_path(node, path);
854 		of_node_put(tmp);
855 		path = strchrnul(path, '/');
856 		if (separator && separator < path)
857 			break;
858 	}
859 	return node;
860 }
861 
862 /**
863  * of_find_node_opts_by_path - Find a node matching a full OF path
864  * @path: Either the full path to match, or if the path does not
865  *       start with '/', the name of a property of the /aliases
866  *       node (an alias).  In the case of an alias, the node
867  *       matching the alias' value will be returned.
868  * @opts: Address of a pointer into which to store the start of
869  *       an options string appended to the end of the path with
870  *       a ':' separator.
871  *
872  * Valid paths:
873  *  * /foo/bar	Full path
874  *  * foo	Valid alias
875  *  * foo/bar	Valid alias + relative path
876  *
877  * Return: A node pointer with refcount incremented, use
878  * of_node_put() on it when done.
879  */
880 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
881 {
882 	struct device_node *np = NULL;
883 	const struct property *pp;
884 	unsigned long flags;
885 	const char *separator = strchr(path, ':');
886 
887 	if (opts)
888 		*opts = separator ? separator + 1 : NULL;
889 
890 	if (strcmp(path, "/") == 0)
891 		return of_node_get(of_root);
892 
893 	/* The path could begin with an alias */
894 	if (*path != '/') {
895 		int len;
896 		const char *p = separator;
897 
898 		if (!p)
899 			p = strchrnul(path, '/');
900 		len = p - path;
901 
902 		/* of_aliases must not be NULL */
903 		if (!of_aliases)
904 			return NULL;
905 
906 		for_each_property_of_node(of_aliases, pp) {
907 			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
908 				np = of_find_node_by_path(pp->value);
909 				break;
910 			}
911 		}
912 		if (!np)
913 			return NULL;
914 		path = p;
915 	}
916 
917 	/* Step down the tree matching path components */
918 	raw_spin_lock_irqsave(&devtree_lock, flags);
919 	if (!np)
920 		np = of_node_get(of_root);
921 	np = __of_find_node_by_full_path(np, path);
922 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
923 	return np;
924 }
925 EXPORT_SYMBOL(of_find_node_opts_by_path);
926 
927 /**
928  * of_find_node_by_name - Find a node by its "name" property
929  * @from:	The node to start searching from or NULL; the node
930  *		you pass will not be searched, only the next one
931  *		will. Typically, you pass what the previous call
932  *		returned. of_node_put() will be called on @from.
933  * @name:	The name string to match against
934  *
935  * Return: A node pointer with refcount incremented, use
936  * of_node_put() on it when done.
937  */
938 struct device_node *of_find_node_by_name(struct device_node *from,
939 	const char *name)
940 {
941 	struct device_node *np;
942 	unsigned long flags;
943 
944 	raw_spin_lock_irqsave(&devtree_lock, flags);
945 	for_each_of_allnodes_from(from, np)
946 		if (of_node_name_eq(np, name) && of_node_get(np))
947 			break;
948 	of_node_put(from);
949 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
950 	return np;
951 }
952 EXPORT_SYMBOL(of_find_node_by_name);
953 
954 /**
955  * of_find_node_by_type - Find a node by its "device_type" property
956  * @from:	The node to start searching from, or NULL to start searching
957  *		the entire device tree. The node you pass will not be
958  *		searched, only the next one will; typically, you pass
959  *		what the previous call returned. of_node_put() will be
960  *		called on from for you.
961  * @type:	The type string to match against
962  *
963  * Return: A node pointer with refcount incremented, use
964  * of_node_put() on it when done.
965  */
966 struct device_node *of_find_node_by_type(struct device_node *from,
967 	const char *type)
968 {
969 	struct device_node *np;
970 	unsigned long flags;
971 
972 	raw_spin_lock_irqsave(&devtree_lock, flags);
973 	for_each_of_allnodes_from(from, np)
974 		if (__of_node_is_type(np, type) && of_node_get(np))
975 			break;
976 	of_node_put(from);
977 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
978 	return np;
979 }
980 EXPORT_SYMBOL(of_find_node_by_type);
981 
982 /**
983  * of_find_compatible_node - Find a node based on type and one of the
984  *                                tokens in its "compatible" property
985  * @from:	The node to start searching from or NULL, the node
986  *		you pass will not be searched, only the next one
987  *		will; typically, you pass what the previous call
988  *		returned. of_node_put() will be called on it
989  * @type:	The type string to match "device_type" or NULL to ignore
990  * @compatible:	The string to match to one of the tokens in the device
991  *		"compatible" list.
992  *
993  * Return: A node pointer with refcount incremented, use
994  * of_node_put() on it when done.
995  */
996 struct device_node *of_find_compatible_node(struct device_node *from,
997 	const char *type, const char *compatible)
998 {
999 	struct device_node *np;
1000 	unsigned long flags;
1001 
1002 	raw_spin_lock_irqsave(&devtree_lock, flags);
1003 	for_each_of_allnodes_from(from, np)
1004 		if (__of_device_is_compatible(np, compatible, type, NULL) &&
1005 		    of_node_get(np))
1006 			break;
1007 	of_node_put(from);
1008 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1009 	return np;
1010 }
1011 EXPORT_SYMBOL(of_find_compatible_node);
1012 
1013 /**
1014  * of_find_node_with_property - Find a node which has a property with
1015  *                              the given name.
1016  * @from:	The node to start searching from or NULL, the node
1017  *		you pass will not be searched, only the next one
1018  *		will; typically, you pass what the previous call
1019  *		returned. of_node_put() will be called on it
1020  * @prop_name:	The name of the property to look for.
1021  *
1022  * Return: A node pointer with refcount incremented, use
1023  * of_node_put() on it when done.
1024  */
1025 struct device_node *of_find_node_with_property(struct device_node *from,
1026 	const char *prop_name)
1027 {
1028 	struct device_node *np;
1029 	const struct property *pp;
1030 	unsigned long flags;
1031 
1032 	raw_spin_lock_irqsave(&devtree_lock, flags);
1033 	for_each_of_allnodes_from(from, np) {
1034 		for (pp = np->properties; pp; pp = pp->next) {
1035 			if (of_prop_cmp(pp->name, prop_name) == 0) {
1036 				of_node_get(np);
1037 				goto out;
1038 			}
1039 		}
1040 	}
1041 out:
1042 	of_node_put(from);
1043 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1044 	return np;
1045 }
1046 EXPORT_SYMBOL(of_find_node_with_property);
1047 
1048 static
1049 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
1050 					   const struct device_node *node)
1051 {
1052 	const struct of_device_id *best_match = NULL;
1053 	int score, best_score = 0;
1054 
1055 	if (!matches)
1056 		return NULL;
1057 
1058 	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1059 		score = __of_device_is_compatible(node, matches->compatible,
1060 						  matches->type, matches->name);
1061 		if (score > best_score) {
1062 			best_match = matches;
1063 			best_score = score;
1064 		}
1065 	}
1066 
1067 	return best_match;
1068 }
1069 
1070 /**
1071  * of_match_node - Tell if a device_node has a matching of_match structure
1072  * @matches:	array of of device match structures to search in
1073  * @node:	the of device structure to match against
1074  *
1075  * Low level utility function used by device matching.
1076  */
1077 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1078 					 const struct device_node *node)
1079 {
1080 	const struct of_device_id *match;
1081 	unsigned long flags;
1082 
1083 	raw_spin_lock_irqsave(&devtree_lock, flags);
1084 	match = __of_match_node(matches, node);
1085 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1086 	return match;
1087 }
1088 EXPORT_SYMBOL(of_match_node);
1089 
1090 /**
1091  * of_find_matching_node_and_match - Find a node based on an of_device_id
1092  *				     match table.
1093  * @from:	The node to start searching from or NULL, the node
1094  *		you pass will not be searched, only the next one
1095  *		will; typically, you pass what the previous call
1096  *		returned. of_node_put() will be called on it
1097  * @matches:	array of of device match structures to search in
1098  * @match:	Updated to point at the matches entry which matched
1099  *
1100  * Return: A node pointer with refcount incremented, use
1101  * of_node_put() on it when done.
1102  */
1103 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1104 					const struct of_device_id *matches,
1105 					const struct of_device_id **match)
1106 {
1107 	struct device_node *np;
1108 	const struct of_device_id *m;
1109 	unsigned long flags;
1110 
1111 	if (match)
1112 		*match = NULL;
1113 
1114 	raw_spin_lock_irqsave(&devtree_lock, flags);
1115 	for_each_of_allnodes_from(from, np) {
1116 		m = __of_match_node(matches, np);
1117 		if (m && of_node_get(np)) {
1118 			if (match)
1119 				*match = m;
1120 			break;
1121 		}
1122 	}
1123 	of_node_put(from);
1124 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1125 	return np;
1126 }
1127 EXPORT_SYMBOL(of_find_matching_node_and_match);
1128 
1129 /**
1130  * of_alias_from_compatible - Lookup appropriate alias for a device node
1131  *			      depending on compatible
1132  * @node:	pointer to a device tree node
1133  * @alias:	Pointer to buffer that alias value will be copied into
1134  * @len:	Length of alias value
1135  *
1136  * Based on the value of the compatible property, this routine will attempt
1137  * to choose an appropriate alias value for a particular device tree node.
1138  * It does this by stripping the manufacturer prefix (as delimited by a ',')
1139  * from the first entry in the compatible list property.
1140  *
1141  * Note: The matching on just the "product" side of the compatible is a relic
1142  * from I2C and SPI. Please do not add any new user.
1143  *
1144  * Return: This routine returns 0 on success, <0 on failure.
1145  */
1146 int of_alias_from_compatible(const struct device_node *node, char *alias, int len)
1147 {
1148 	const char *compatible, *p;
1149 	int cplen;
1150 
1151 	compatible = of_get_property(node, "compatible", &cplen);
1152 	if (!compatible || strlen(compatible) > cplen)
1153 		return -ENODEV;
1154 	p = strchr(compatible, ',');
1155 	strscpy(alias, p ? p + 1 : compatible, len);
1156 	return 0;
1157 }
1158 EXPORT_SYMBOL_GPL(of_alias_from_compatible);
1159 
1160 /**
1161  * of_find_node_by_phandle - Find a node given a phandle
1162  * @handle:	phandle of the node to find
1163  *
1164  * Return: A node pointer with refcount incremented, use
1165  * of_node_put() on it when done.
1166  */
1167 struct device_node *of_find_node_by_phandle(phandle handle)
1168 {
1169 	struct device_node *np = NULL;
1170 	unsigned long flags;
1171 	u32 handle_hash;
1172 
1173 	if (!handle)
1174 		return NULL;
1175 
1176 	handle_hash = of_phandle_cache_hash(handle);
1177 
1178 	raw_spin_lock_irqsave(&devtree_lock, flags);
1179 
1180 	if (phandle_cache[handle_hash] &&
1181 	    handle == phandle_cache[handle_hash]->phandle)
1182 		np = phandle_cache[handle_hash];
1183 
1184 	if (!np) {
1185 		for_each_of_allnodes(np)
1186 			if (np->phandle == handle &&
1187 			    !of_node_check_flag(np, OF_DETACHED)) {
1188 				phandle_cache[handle_hash] = np;
1189 				break;
1190 			}
1191 	}
1192 
1193 	of_node_get(np);
1194 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1195 	return np;
1196 }
1197 EXPORT_SYMBOL(of_find_node_by_phandle);
1198 
1199 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1200 {
1201 	int i;
1202 	printk("%s %pOF", msg, args->np);
1203 	for (i = 0; i < args->args_count; i++) {
1204 		const char delim = i ? ',' : ':';
1205 
1206 		pr_cont("%c%08x", delim, args->args[i]);
1207 	}
1208 	pr_cont("\n");
1209 }
1210 
1211 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1212 		const struct device_node *np,
1213 		const char *list_name,
1214 		const char *cells_name,
1215 		int cell_count)
1216 {
1217 	const __be32 *list;
1218 	int size;
1219 
1220 	memset(it, 0, sizeof(*it));
1221 
1222 	/*
1223 	 * one of cell_count or cells_name must be provided to determine the
1224 	 * argument length.
1225 	 */
1226 	if (cell_count < 0 && !cells_name)
1227 		return -EINVAL;
1228 
1229 	list = of_get_property(np, list_name, &size);
1230 	if (!list)
1231 		return -ENOENT;
1232 
1233 	it->cells_name = cells_name;
1234 	it->cell_count = cell_count;
1235 	it->parent = np;
1236 	it->list_end = list + size / sizeof(*list);
1237 	it->phandle_end = list;
1238 	it->cur = list;
1239 
1240 	return 0;
1241 }
1242 EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1243 
1244 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1245 {
1246 	uint32_t count = 0;
1247 
1248 	if (it->node) {
1249 		of_node_put(it->node);
1250 		it->node = NULL;
1251 	}
1252 
1253 	if (!it->cur || it->phandle_end >= it->list_end)
1254 		return -ENOENT;
1255 
1256 	it->cur = it->phandle_end;
1257 
1258 	/* If phandle is 0, then it is an empty entry with no arguments. */
1259 	it->phandle = be32_to_cpup(it->cur++);
1260 
1261 	if (it->phandle) {
1262 
1263 		/*
1264 		 * Find the provider node and parse the #*-cells property to
1265 		 * determine the argument length.
1266 		 */
1267 		it->node = of_find_node_by_phandle(it->phandle);
1268 
1269 		if (it->cells_name) {
1270 			if (!it->node) {
1271 				pr_err("%pOF: could not find phandle %d\n",
1272 				       it->parent, it->phandle);
1273 				goto err;
1274 			}
1275 
1276 			if (of_property_read_u32(it->node, it->cells_name,
1277 						 &count)) {
1278 				/*
1279 				 * If both cell_count and cells_name is given,
1280 				 * fall back to cell_count in absence
1281 				 * of the cells_name property
1282 				 */
1283 				if (it->cell_count >= 0) {
1284 					count = it->cell_count;
1285 				} else {
1286 					pr_err("%pOF: could not get %s for %pOF\n",
1287 					       it->parent,
1288 					       it->cells_name,
1289 					       it->node);
1290 					goto err;
1291 				}
1292 			}
1293 		} else {
1294 			count = it->cell_count;
1295 		}
1296 
1297 		/*
1298 		 * Make sure that the arguments actually fit in the remaining
1299 		 * property data length
1300 		 */
1301 		if (it->cur + count > it->list_end) {
1302 			if (it->cells_name)
1303 				pr_err("%pOF: %s = %d found %td\n",
1304 					it->parent, it->cells_name,
1305 					count, it->list_end - it->cur);
1306 			else
1307 				pr_err("%pOF: phandle %s needs %d, found %td\n",
1308 					it->parent, of_node_full_name(it->node),
1309 					count, it->list_end - it->cur);
1310 			goto err;
1311 		}
1312 	}
1313 
1314 	it->phandle_end = it->cur + count;
1315 	it->cur_count = count;
1316 
1317 	return 0;
1318 
1319 err:
1320 	if (it->node) {
1321 		of_node_put(it->node);
1322 		it->node = NULL;
1323 	}
1324 
1325 	return -EINVAL;
1326 }
1327 EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1328 
1329 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1330 			     uint32_t *args,
1331 			     int size)
1332 {
1333 	int i, count;
1334 
1335 	count = it->cur_count;
1336 
1337 	if (WARN_ON(size < count))
1338 		count = size;
1339 
1340 	for (i = 0; i < count; i++)
1341 		args[i] = be32_to_cpup(it->cur++);
1342 
1343 	return count;
1344 }
1345 
1346 int __of_parse_phandle_with_args(const struct device_node *np,
1347 				 const char *list_name,
1348 				 const char *cells_name,
1349 				 int cell_count, int index,
1350 				 struct of_phandle_args *out_args)
1351 {
1352 	struct of_phandle_iterator it;
1353 	int rc, cur_index = 0;
1354 
1355 	if (index < 0)
1356 		return -EINVAL;
1357 
1358 	/* Loop over the phandles until all the requested entry is found */
1359 	of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1360 		/*
1361 		 * All of the error cases bail out of the loop, so at
1362 		 * this point, the parsing is successful. If the requested
1363 		 * index matches, then fill the out_args structure and return,
1364 		 * or return -ENOENT for an empty entry.
1365 		 */
1366 		rc = -ENOENT;
1367 		if (cur_index == index) {
1368 			if (!it.phandle)
1369 				goto err;
1370 
1371 			if (out_args) {
1372 				int c;
1373 
1374 				c = of_phandle_iterator_args(&it,
1375 							     out_args->args,
1376 							     MAX_PHANDLE_ARGS);
1377 				out_args->np = it.node;
1378 				out_args->args_count = c;
1379 			} else {
1380 				of_node_put(it.node);
1381 			}
1382 
1383 			/* Found it! return success */
1384 			return 0;
1385 		}
1386 
1387 		cur_index++;
1388 	}
1389 
1390 	/*
1391 	 * Unlock node before returning result; will be one of:
1392 	 * -ENOENT : index is for empty phandle
1393 	 * -EINVAL : parsing error on data
1394 	 */
1395 
1396  err:
1397 	of_node_put(it.node);
1398 	return rc;
1399 }
1400 EXPORT_SYMBOL(__of_parse_phandle_with_args);
1401 
1402 /**
1403  * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1404  * @np:		pointer to a device tree node containing a list
1405  * @list_name:	property name that contains a list
1406  * @stem_name:	stem of property names that specify phandles' arguments count
1407  * @index:	index of a phandle to parse out
1408  * @out_args:	optional pointer to output arguments structure (will be filled)
1409  *
1410  * This function is useful to parse lists of phandles and their arguments.
1411  * Returns 0 on success and fills out_args, on error returns appropriate errno
1412  * value. The difference between this function and of_parse_phandle_with_args()
1413  * is that this API remaps a phandle if the node the phandle points to has
1414  * a <@stem_name>-map property.
1415  *
1416  * Caller is responsible to call of_node_put() on the returned out_args->np
1417  * pointer.
1418  *
1419  * Example::
1420  *
1421  *  phandle1: node1 {
1422  *  	#list-cells = <2>;
1423  *  };
1424  *
1425  *  phandle2: node2 {
1426  *  	#list-cells = <1>;
1427  *  };
1428  *
1429  *  phandle3: node3 {
1430  *  	#list-cells = <1>;
1431  *  	list-map = <0 &phandle2 3>,
1432  *  		   <1 &phandle2 2>,
1433  *  		   <2 &phandle1 5 1>;
1434  *  	list-map-mask = <0x3>;
1435  *  };
1436  *
1437  *  node4 {
1438  *  	list = <&phandle1 1 2 &phandle3 0>;
1439  *  };
1440  *
1441  * To get a device_node of the ``node2`` node you may call this:
1442  * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1443  */
1444 int of_parse_phandle_with_args_map(const struct device_node *np,
1445 				   const char *list_name,
1446 				   const char *stem_name,
1447 				   int index, struct of_phandle_args *out_args)
1448 {
1449 	char *cells_name __free(kfree) = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1450 	char *map_name __free(kfree) = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1451 	char *mask_name __free(kfree) = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1452 	char *pass_name __free(kfree) = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1453 	struct device_node *cur, *new = NULL;
1454 	const __be32 *map, *mask, *pass;
1455 	static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = cpu_to_be32(~0) };
1456 	static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = cpu_to_be32(0) };
1457 	__be32 initial_match_array[MAX_PHANDLE_ARGS];
1458 	const __be32 *match_array = initial_match_array;
1459 	int i, ret, map_len, match;
1460 	u32 list_size, new_size;
1461 
1462 	if (index < 0)
1463 		return -EINVAL;
1464 
1465 	if (!cells_name || !map_name || !mask_name || !pass_name)
1466 		return -ENOMEM;
1467 
1468 	ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index,
1469 					   out_args);
1470 	if (ret)
1471 		return ret;
1472 
1473 	/* Get the #<list>-cells property */
1474 	cur = out_args->np;
1475 	ret = of_property_read_u32(cur, cells_name, &list_size);
1476 	if (ret < 0)
1477 		goto put;
1478 
1479 	/* Precalculate the match array - this simplifies match loop */
1480 	for (i = 0; i < list_size; i++)
1481 		initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1482 
1483 	ret = -EINVAL;
1484 	while (cur) {
1485 		/* Get the <list>-map property */
1486 		map = of_get_property(cur, map_name, &map_len);
1487 		if (!map) {
1488 			return 0;
1489 		}
1490 		map_len /= sizeof(u32);
1491 
1492 		/* Get the <list>-map-mask property (optional) */
1493 		mask = of_get_property(cur, mask_name, NULL);
1494 		if (!mask)
1495 			mask = dummy_mask;
1496 		/* Iterate through <list>-map property */
1497 		match = 0;
1498 		while (map_len > (list_size + 1) && !match) {
1499 			/* Compare specifiers */
1500 			match = 1;
1501 			for (i = 0; i < list_size; i++, map_len--)
1502 				match &= !((match_array[i] ^ *map++) & mask[i]);
1503 
1504 			of_node_put(new);
1505 			new = of_find_node_by_phandle(be32_to_cpup(map));
1506 			map++;
1507 			map_len--;
1508 
1509 			/* Check if not found */
1510 			if (!new)
1511 				goto put;
1512 
1513 			if (!of_device_is_available(new))
1514 				match = 0;
1515 
1516 			ret = of_property_read_u32(new, cells_name, &new_size);
1517 			if (ret)
1518 				goto put;
1519 
1520 			/* Check for malformed properties */
1521 			if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1522 				goto put;
1523 			if (map_len < new_size)
1524 				goto put;
1525 
1526 			/* Move forward by new node's #<list>-cells amount */
1527 			map += new_size;
1528 			map_len -= new_size;
1529 		}
1530 		if (!match)
1531 			goto put;
1532 
1533 		/* Get the <list>-map-pass-thru property (optional) */
1534 		pass = of_get_property(cur, pass_name, NULL);
1535 		if (!pass)
1536 			pass = dummy_pass;
1537 
1538 		/*
1539 		 * Successfully parsed a <list>-map translation; copy new
1540 		 * specifier into the out_args structure, keeping the
1541 		 * bits specified in <list>-map-pass-thru.
1542 		 */
1543 		match_array = map - new_size;
1544 		for (i = 0; i < new_size; i++) {
1545 			__be32 val = *(map - new_size + i);
1546 
1547 			if (i < list_size) {
1548 				val &= ~pass[i];
1549 				val |= cpu_to_be32(out_args->args[i]) & pass[i];
1550 			}
1551 
1552 			out_args->args[i] = be32_to_cpu(val);
1553 		}
1554 		out_args->args_count = list_size = new_size;
1555 		/* Iterate again with new provider */
1556 		out_args->np = new;
1557 		of_node_put(cur);
1558 		cur = new;
1559 		new = NULL;
1560 	}
1561 put:
1562 	of_node_put(cur);
1563 	of_node_put(new);
1564 	return ret;
1565 }
1566 EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1567 
1568 /**
1569  * of_count_phandle_with_args() - Find the number of phandles references in a property
1570  * @np:		pointer to a device tree node containing a list
1571  * @list_name:	property name that contains a list
1572  * @cells_name:	property name that specifies phandles' arguments count
1573  *
1574  * Return: The number of phandle + argument tuples within a property. It
1575  * is a typical pattern to encode a list of phandle and variable
1576  * arguments into a single property. The number of arguments is encoded
1577  * by a property in the phandle-target node. For example, a gpios
1578  * property would contain a list of GPIO specifies consisting of a
1579  * phandle and 1 or more arguments. The number of arguments are
1580  * determined by the #gpio-cells property in the node pointed to by the
1581  * phandle.
1582  */
1583 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1584 				const char *cells_name)
1585 {
1586 	struct of_phandle_iterator it;
1587 	int rc, cur_index = 0;
1588 
1589 	/*
1590 	 * If cells_name is NULL we assume a cell count of 0. This makes
1591 	 * counting the phandles trivial as each 32bit word in the list is a
1592 	 * phandle and no arguments are to consider. So we don't iterate through
1593 	 * the list but just use the length to determine the phandle count.
1594 	 */
1595 	if (!cells_name) {
1596 		const __be32 *list;
1597 		int size;
1598 
1599 		list = of_get_property(np, list_name, &size);
1600 		if (!list)
1601 			return -ENOENT;
1602 
1603 		return size / sizeof(*list);
1604 	}
1605 
1606 	rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1);
1607 	if (rc)
1608 		return rc;
1609 
1610 	while ((rc = of_phandle_iterator_next(&it)) == 0)
1611 		cur_index += 1;
1612 
1613 	if (rc != -ENOENT)
1614 		return rc;
1615 
1616 	return cur_index;
1617 }
1618 EXPORT_SYMBOL(of_count_phandle_with_args);
1619 
1620 static struct property *__of_remove_property_from_list(struct property **list, struct property *prop)
1621 {
1622 	struct property **next;
1623 
1624 	for (next = list; *next; next = &(*next)->next) {
1625 		if (*next == prop) {
1626 			*next = prop->next;
1627 			prop->next = NULL;
1628 			return prop;
1629 		}
1630 	}
1631 	return NULL;
1632 }
1633 
1634 /**
1635  * __of_add_property - Add a property to a node without lock operations
1636  * @np:		Caller's Device Node
1637  * @prop:	Property to add
1638  */
1639 int __of_add_property(struct device_node *np, struct property *prop)
1640 {
1641 	int rc = 0;
1642 	unsigned long flags;
1643 	struct property **next;
1644 
1645 	raw_spin_lock_irqsave(&devtree_lock, flags);
1646 
1647 	__of_remove_property_from_list(&np->deadprops, prop);
1648 
1649 	prop->next = NULL;
1650 	next = &np->properties;
1651 	while (*next) {
1652 		if (strcmp(prop->name, (*next)->name) == 0) {
1653 			/* duplicate ! don't insert it */
1654 			rc = -EEXIST;
1655 			goto out_unlock;
1656 		}
1657 		next = &(*next)->next;
1658 	}
1659 	*next = prop;
1660 
1661 out_unlock:
1662 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1663 	if (rc)
1664 		return rc;
1665 
1666 	__of_add_property_sysfs(np, prop);
1667 	return 0;
1668 }
1669 
1670 /**
1671  * of_add_property - Add a property to a node
1672  * @np:		Caller's Device Node
1673  * @prop:	Property to add
1674  */
1675 int of_add_property(struct device_node *np, struct property *prop)
1676 {
1677 	int rc;
1678 
1679 	mutex_lock(&of_mutex);
1680 	rc = __of_add_property(np, prop);
1681 	mutex_unlock(&of_mutex);
1682 
1683 	if (!rc)
1684 		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1685 
1686 	return rc;
1687 }
1688 EXPORT_SYMBOL_GPL(of_add_property);
1689 
1690 int __of_remove_property(struct device_node *np, struct property *prop)
1691 {
1692 	unsigned long flags;
1693 	int rc = -ENODEV;
1694 
1695 	raw_spin_lock_irqsave(&devtree_lock, flags);
1696 
1697 	if (__of_remove_property_from_list(&np->properties, prop)) {
1698 		/* Found the property, add it to deadprops list */
1699 		prop->next = np->deadprops;
1700 		np->deadprops = prop;
1701 		rc = 0;
1702 	}
1703 
1704 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1705 	if (rc)
1706 		return rc;
1707 
1708 	__of_remove_property_sysfs(np, prop);
1709 	return 0;
1710 }
1711 
1712 /**
1713  * of_remove_property - Remove a property from a node.
1714  * @np:		Caller's Device Node
1715  * @prop:	Property to remove
1716  *
1717  * Note that we don't actually remove it, since we have given out
1718  * who-knows-how-many pointers to the data using get-property.
1719  * Instead we just move the property to the "dead properties"
1720  * list, so it won't be found any more.
1721  */
1722 int of_remove_property(struct device_node *np, struct property *prop)
1723 {
1724 	int rc;
1725 
1726 	if (!prop)
1727 		return -ENODEV;
1728 
1729 	mutex_lock(&of_mutex);
1730 	rc = __of_remove_property(np, prop);
1731 	mutex_unlock(&of_mutex);
1732 
1733 	if (!rc)
1734 		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1735 
1736 	return rc;
1737 }
1738 EXPORT_SYMBOL_GPL(of_remove_property);
1739 
1740 int __of_update_property(struct device_node *np, struct property *newprop,
1741 		struct property **oldpropp)
1742 {
1743 	struct property **next, *oldprop;
1744 	unsigned long flags;
1745 
1746 	raw_spin_lock_irqsave(&devtree_lock, flags);
1747 
1748 	__of_remove_property_from_list(&np->deadprops, newprop);
1749 
1750 	for (next = &np->properties; *next; next = &(*next)->next) {
1751 		if (of_prop_cmp((*next)->name, newprop->name) == 0)
1752 			break;
1753 	}
1754 	*oldpropp = oldprop = *next;
1755 
1756 	if (oldprop) {
1757 		/* replace the node */
1758 		newprop->next = oldprop->next;
1759 		*next = newprop;
1760 		oldprop->next = np->deadprops;
1761 		np->deadprops = oldprop;
1762 	} else {
1763 		/* new node */
1764 		newprop->next = NULL;
1765 		*next = newprop;
1766 	}
1767 
1768 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1769 
1770 	__of_update_property_sysfs(np, newprop, oldprop);
1771 
1772 	return 0;
1773 }
1774 
1775 /*
1776  * of_update_property - Update a property in a node, if the property does
1777  * not exist, add it.
1778  *
1779  * Note that we don't actually remove it, since we have given out
1780  * who-knows-how-many pointers to the data using get-property.
1781  * Instead we just move the property to the "dead properties" list,
1782  * and add the new property to the property list
1783  */
1784 int of_update_property(struct device_node *np, struct property *newprop)
1785 {
1786 	struct property *oldprop;
1787 	int rc;
1788 
1789 	if (!newprop->name)
1790 		return -EINVAL;
1791 
1792 	mutex_lock(&of_mutex);
1793 	rc = __of_update_property(np, newprop, &oldprop);
1794 	mutex_unlock(&of_mutex);
1795 
1796 	if (!rc)
1797 		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1798 
1799 	return rc;
1800 }
1801 
1802 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1803 			 int id, const char *stem, int stem_len)
1804 {
1805 	ap->np = np;
1806 	ap->id = id;
1807 	strscpy(ap->stem, stem, stem_len + 1);
1808 	list_add_tail(&ap->link, &aliases_lookup);
1809 	pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1810 		 ap->alias, ap->stem, ap->id, np);
1811 }
1812 
1813 /**
1814  * of_alias_scan - Scan all properties of the 'aliases' node
1815  * @dt_alloc:	An allocator that provides a virtual address to memory
1816  *		for storing the resulting tree
1817  *
1818  * The function scans all the properties of the 'aliases' node and populates
1819  * the global lookup table with the properties.  It returns the
1820  * number of alias properties found, or an error code in case of failure.
1821  */
1822 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1823 {
1824 	const struct property *pp;
1825 
1826 	of_aliases = of_find_node_by_path("/aliases");
1827 	of_chosen = of_find_node_by_path("/chosen");
1828 	if (of_chosen == NULL)
1829 		of_chosen = of_find_node_by_path("/chosen@0");
1830 
1831 	if (of_chosen) {
1832 		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1833 		const char *name = NULL;
1834 
1835 		if (of_property_read_string(of_chosen, "stdout-path", &name))
1836 			of_property_read_string(of_chosen, "linux,stdout-path",
1837 						&name);
1838 		if (IS_ENABLED(CONFIG_PPC) && !name)
1839 			of_property_read_string(of_aliases, "stdout", &name);
1840 		if (name)
1841 			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1842 		if (of_stdout)
1843 			of_stdout->fwnode.flags |= FWNODE_FLAG_BEST_EFFORT;
1844 	}
1845 
1846 	if (!of_aliases)
1847 		return;
1848 
1849 	for_each_property_of_node(of_aliases, pp) {
1850 		const char *start = pp->name;
1851 		const char *end = start + strlen(start);
1852 		struct device_node *np;
1853 		struct alias_prop *ap;
1854 		int id, len;
1855 
1856 		/* Skip those we do not want to proceed */
1857 		if (!strcmp(pp->name, "name") ||
1858 		    !strcmp(pp->name, "phandle") ||
1859 		    !strcmp(pp->name, "linux,phandle"))
1860 			continue;
1861 
1862 		np = of_find_node_by_path(pp->value);
1863 		if (!np)
1864 			continue;
1865 
1866 		/* walk the alias backwards to extract the id and work out
1867 		 * the 'stem' string */
1868 		while (isdigit(*(end-1)) && end > start)
1869 			end--;
1870 		len = end - start;
1871 
1872 		if (kstrtoint(end, 10, &id) < 0)
1873 			continue;
1874 
1875 		/* Allocate an alias_prop with enough space for the stem */
1876 		ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
1877 		if (!ap)
1878 			continue;
1879 		memset(ap, 0, sizeof(*ap) + len + 1);
1880 		ap->alias = start;
1881 		of_alias_add(ap, np, id, start, len);
1882 	}
1883 }
1884 
1885 /**
1886  * of_alias_get_id - Get alias id for the given device_node
1887  * @np:		Pointer to the given device_node
1888  * @stem:	Alias stem of the given device_node
1889  *
1890  * The function travels the lookup table to get the alias id for the given
1891  * device_node and alias stem.
1892  *
1893  * Return: The alias id if found.
1894  */
1895 int of_alias_get_id(const struct device_node *np, const char *stem)
1896 {
1897 	struct alias_prop *app;
1898 	int id = -ENODEV;
1899 
1900 	mutex_lock(&of_mutex);
1901 	list_for_each_entry(app, &aliases_lookup, link) {
1902 		if (strcmp(app->stem, stem) != 0)
1903 			continue;
1904 
1905 		if (np == app->np) {
1906 			id = app->id;
1907 			break;
1908 		}
1909 	}
1910 	mutex_unlock(&of_mutex);
1911 
1912 	return id;
1913 }
1914 EXPORT_SYMBOL_GPL(of_alias_get_id);
1915 
1916 /**
1917  * of_alias_get_highest_id - Get highest alias id for the given stem
1918  * @stem:	Alias stem to be examined
1919  *
1920  * The function travels the lookup table to get the highest alias id for the
1921  * given alias stem.  It returns the alias id if found.
1922  */
1923 int of_alias_get_highest_id(const char *stem)
1924 {
1925 	struct alias_prop *app;
1926 	int id = -ENODEV;
1927 
1928 	mutex_lock(&of_mutex);
1929 	list_for_each_entry(app, &aliases_lookup, link) {
1930 		if (strcmp(app->stem, stem) != 0)
1931 			continue;
1932 
1933 		if (app->id > id)
1934 			id = app->id;
1935 	}
1936 	mutex_unlock(&of_mutex);
1937 
1938 	return id;
1939 }
1940 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
1941 
1942 /**
1943  * of_console_check() - Test and setup console for DT setup
1944  * @dn: Pointer to device node
1945  * @name: Name to use for preferred console without index. ex. "ttyS"
1946  * @index: Index to use for preferred console.
1947  *
1948  * Check if the given device node matches the stdout-path property in the
1949  * /chosen node. If it does then register it as the preferred console.
1950  *
1951  * Return: TRUE if console successfully setup. Otherwise return FALSE.
1952  */
1953 bool of_console_check(const struct device_node *dn, char *name, int index)
1954 {
1955 	if (!dn || dn != of_stdout || console_set_on_cmdline)
1956 		return false;
1957 
1958 	/*
1959 	 * XXX: cast `options' to char pointer to suppress complication
1960 	 * warnings: printk, UART and console drivers expect char pointer.
1961 	 */
1962 	return !add_preferred_console(name, index, (char *)of_stdout_options);
1963 }
1964 EXPORT_SYMBOL_GPL(of_console_check);
1965 
1966 /**
1967  * of_find_next_cache_node - Find a node's subsidiary cache
1968  * @np:	node of type "cpu" or "cache"
1969  *
1970  * Return: A node pointer with refcount incremented, use
1971  * of_node_put() on it when done.  Caller should hold a reference
1972  * to np.
1973  */
1974 struct device_node *of_find_next_cache_node(const struct device_node *np)
1975 {
1976 	struct device_node *child, *cache_node;
1977 
1978 	cache_node = of_parse_phandle(np, "l2-cache", 0);
1979 	if (!cache_node)
1980 		cache_node = of_parse_phandle(np, "next-level-cache", 0);
1981 
1982 	if (cache_node)
1983 		return cache_node;
1984 
1985 	/* OF on pmac has nodes instead of properties named "l2-cache"
1986 	 * beneath CPU nodes.
1987 	 */
1988 	if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
1989 		for_each_child_of_node(np, child)
1990 			if (of_node_is_type(child, "cache"))
1991 				return child;
1992 
1993 	return NULL;
1994 }
1995 
1996 /**
1997  * of_find_last_cache_level - Find the level at which the last cache is
1998  * 		present for the given logical cpu
1999  *
2000  * @cpu: cpu number(logical index) for which the last cache level is needed
2001  *
2002  * Return: The level at which the last cache is present. It is exactly
2003  * same as  the total number of cache levels for the given logical cpu.
2004  */
2005 int of_find_last_cache_level(unsigned int cpu)
2006 {
2007 	u32 cache_level = 0;
2008 	struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
2009 
2010 	while (np) {
2011 		of_node_put(prev);
2012 		prev = np;
2013 		np = of_find_next_cache_node(np);
2014 	}
2015 
2016 	of_property_read_u32(prev, "cache-level", &cache_level);
2017 	of_node_put(prev);
2018 
2019 	return cache_level;
2020 }
2021 
2022 /**
2023  * of_map_id - Translate an ID through a downstream mapping.
2024  * @np: root complex device node.
2025  * @id: device ID to map.
2026  * @map_name: property name of the map to use.
2027  * @map_mask_name: optional property name of the mask to use.
2028  * @target: optional pointer to a target device node.
2029  * @id_out: optional pointer to receive the translated ID.
2030  *
2031  * Given a device ID, look up the appropriate implementation-defined
2032  * platform ID and/or the target device which receives transactions on that
2033  * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
2034  * @id_out may be NULL if only the other is required. If @target points to
2035  * a non-NULL device node pointer, only entries targeting that node will be
2036  * matched; if it points to a NULL value, it will receive the device node of
2037  * the first matching target phandle, with a reference held.
2038  *
2039  * Return: 0 on success or a standard error code on failure.
2040  */
2041 int of_map_id(const struct device_node *np, u32 id,
2042 	       const char *map_name, const char *map_mask_name,
2043 	       struct device_node **target, u32 *id_out)
2044 {
2045 	u32 map_mask, masked_id;
2046 	int map_len;
2047 	const __be32 *map = NULL;
2048 
2049 	if (!np || !map_name || (!target && !id_out))
2050 		return -EINVAL;
2051 
2052 	map = of_get_property(np, map_name, &map_len);
2053 	if (!map) {
2054 		if (target)
2055 			return -ENODEV;
2056 		/* Otherwise, no map implies no translation */
2057 		*id_out = id;
2058 		return 0;
2059 	}
2060 
2061 	if (!map_len || map_len % (4 * sizeof(*map))) {
2062 		pr_err("%pOF: Error: Bad %s length: %d\n", np,
2063 			map_name, map_len);
2064 		return -EINVAL;
2065 	}
2066 
2067 	/* The default is to select all bits. */
2068 	map_mask = 0xffffffff;
2069 
2070 	/*
2071 	 * Can be overridden by "{iommu,msi}-map-mask" property.
2072 	 * If of_property_read_u32() fails, the default is used.
2073 	 */
2074 	if (map_mask_name)
2075 		of_property_read_u32(np, map_mask_name, &map_mask);
2076 
2077 	masked_id = map_mask & id;
2078 	for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
2079 		struct device_node *phandle_node;
2080 		u32 id_base = be32_to_cpup(map + 0);
2081 		u32 phandle = be32_to_cpup(map + 1);
2082 		u32 out_base = be32_to_cpup(map + 2);
2083 		u32 id_len = be32_to_cpup(map + 3);
2084 
2085 		if (id_base & ~map_mask) {
2086 			pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n",
2087 				np, map_name, map_name,
2088 				map_mask, id_base);
2089 			return -EFAULT;
2090 		}
2091 
2092 		if (masked_id < id_base || masked_id >= id_base + id_len)
2093 			continue;
2094 
2095 		phandle_node = of_find_node_by_phandle(phandle);
2096 		if (!phandle_node)
2097 			return -ENODEV;
2098 
2099 		if (target) {
2100 			if (*target)
2101 				of_node_put(phandle_node);
2102 			else
2103 				*target = phandle_node;
2104 
2105 			if (*target != phandle_node)
2106 				continue;
2107 		}
2108 
2109 		if (id_out)
2110 			*id_out = masked_id - id_base + out_base;
2111 
2112 		pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n",
2113 			np, map_name, map_mask, id_base, out_base,
2114 			id_len, id, masked_id - id_base + out_base);
2115 		return 0;
2116 	}
2117 
2118 	pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name,
2119 		id, target && *target ? *target : NULL);
2120 
2121 	/* Bypasses translation */
2122 	if (id_out)
2123 		*id_out = id;
2124 	return 0;
2125 }
2126 EXPORT_SYMBOL_GPL(of_map_id);
2127